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Abstract

With the booming of Large Language Models001
(LLMs), prompt-learning has become a promis-002
ing method mainly researched in various re-003
search areas. Recently, many attempts based004
on prompt-learning have been made to improve005
the performance of text classification. However,006
most of these methods are based on heuris-007
tic Chain-of-Thought (CoT), and tend to be008
more complex but less efficient. In this pa-009
per, we rethink the LLM-based text classifica-010
tion methodology, propose a simple and effec-011
tive transfer learning strategy, namely LLMEm-012
bed, to address this classical but challenging013
task. Specifically, we first study how to prop-014
erly extract and fuse the text embeddings via015
various lightweight LLMs at differeny network016
depths to improve their robustness and discrimi-017
nation, then adapt such embeddings to train the018
classifier. We perform extensive experiments019
on publicly available datasets, and the results020
show that LLMEmbed achieves strong perfor-021
mance while enjoys low training overhead us-022
ing lightweight LLM backbones compared to023
recent methods based on larger LLMs, i.e. GPT-024
3, and sophisticated prompt-based strategies.025

1 Introduction026

Recently Large Language Models (LLMs) have027

shown remarkable abilities on various NLP appli-028

cations, such as GPT (Brown et al., 2020; OpenAI,029

2023), PaLM (Chowdhery et al., 2023) and LLaMA030

(Touvron et al., 2023a,b), offering services to users031

through dialogue. Since LLMs refer to large-scale032

PLMs that undergo extensive training on massive033

textual corpora to understand the complexity and re-034

lationships within language, LLMs exhibit amazing035

emergent abilities in comprehension and reason-036

ing (Wei et al., 2022a). This phenomenon further037

promotes research of prompt learning for LLMs038

(White et al., 2023), such as Chain-of-Thought039

(CoT) (Wei et al., 2022b) and Tree-of-Thoughts040

(ToT) (Yao et al., 2023).041

Prompt-learning (Liu et al., 2023) is closely con- 042

nected to the training and inference of LLMs. In- 043

stead of adapting the pre-trained language mod- 044

els (PLMs) to address downstream tasks, prompt- 045

learning directly adapts LLMs to cloze-style pre- 046

diction, autoregressive modeling, or sequence to 047

sequence generation, leading to promising perfor- 048

mances on various tasks (Ding et al., 2022). Its ma- 049

jor advantage of is that, given a suite of appropriate 050

prompts, LLMs can be used to solve a great number 051

of tasks (Brown et al., 2020; Sun et al., 2021) with 052

no necessity of training from the scratch. However, 053

such a paradigm is deeply involved with prompt 054

engineering to find the most appropriate prompts 055

to improve the overall performance. 056

Based on the sophisticated prompts, LLMs are 057

guided to generate results and have achieved coun- 058

terpart, or even stronger performance compara- 059

ble to supervised baselines in various downstream 060

NLP tasks such as natural language inference 061

(Sheng et al., 2023), question answering (Trivedi 062

et al., 2022), information extraction (Josifoski et al., 063

2023), named entity recognition (Wang et al., 2023) 064

and relation extraction (Wadhwa et al., 2023). Nev- 065

ertheless, as a generative model, LLMs still under- 066

perform discriminative models in text classification. 067

Recently Sun et al. introduced the so-called clue 068

and reasoning prompting (CARP) (Sun et al., 2023) 069

to guide GPT-3 through text classification and got 070

the SOTA performances on 5 widely-used text clas- 071

sification benchmarks. 072

For specific scenario customization of LLMs 073

(Zhang et al., 2024) or considerations regarding 074

user data privacy security (Tan et al., 2024), there is 075

still a need for the localized deployment of LLMs. 076

However, deploying LLMs is not always easily 077

available as it requires enormous amounts of com- 078

putation for training and inference (Xia et al., 2023). 079

Moreover, it is worthy noting that only lightweight 080

LLMs (e.g. LLaMA2-7B) are open-source (com- 081

pared to GPT-3 with 175B parameter scale, 7B is 082
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This is an overall sentiment classifier for opinion snippets.
List CLUES (i.e., keywords, phrases, contextual information, semantic relations, semantic meaning, 
tones, references) for determining the overall SENTIMENT of INPUT. (limit to 15 words)

INPUT: noyce films it more as a shocking history lesson than as drama.
SENTIMENT: Positive 
CLUES:

This is an overall sentiment classifier for opinion snippets.
First, list CLUES (i.e., keywords, phrases, contextual information, semantic relations, semantic meaning, 
tones, references) for determining the overall SENTIMENT of INPUT.
Second, induce a diagnostic REASONING process from CLUES and the INPUT for determining the 
overall SENTIMENT (Limit the number of words to 130).

INPUT: noyce films it more as a shocking history lesson than as drama. 
SENTIMENT: Positive 
CLUES: - Positive: "more," "shocking," "history lesson," "drama." - Negative: None. 
REASONING:

- Positive: "more," "shocking," "history lesson," "drama." - Negative: None. 

The input contains positive words such as "more," "shocking," and "drama," which suggest that the 
sentiment is positive. Additionally, the phrase "history lesson" implies that the film is educational and 
informative, which is generally seen as a positive thing. Therefore, the sentiment of the input is positive. 

This is an overall sentiment classifier for opinion snippets.
First, list CLUES (i.e., keywords, phrases, contextual information, semantic relations, semantic meaning, 
tones, references) for determining the overall SENTIMENT of INPUT.
Second, induce a diagnostic REASONING process from CLUES and the INPUT for determining the 
overall SENTIMENT (Limit the number of words to 130).
Third, determine the overall SENTIMENT of INPUT as Positive or Negative considering CLUES, the 
REASONING process and the INPUT. 

INPUT: noyce films it more as a shocking history lesson than as drama. 
SENTIMENT: Positive 
CLUES: - Positive: "more," "shocking," "history lesson," "drama." - Negative: None. 
REASONING:The input contains positive words such as "more," "shocking," and "drama," which 
suggest that the sentiment is positive. Additionally, the phrase "history lesson" implies that the film is 
educational and informative, which is generally seen as a positive thing. Therefore, the sentiment of the 
input is positive. 

……(other KNN demonstrations )

INPUT: press the delete key

CLUES: - Positive: None. - Negative: "delete key."
REASONING: The input contains the phrase "delete key," which implies that something is being 
removed or erased. This is generally seen as a negative action, suggesting that the sentiment of the input 
is negative.
SENTIMENT: Negative

LLM

Training Data

Testing Data

noyce films it 
more as a 
shocking 
history lesson 
than as drama.

press the 
delete key

…… 
……

Downstream
Applications

High-level
Semantic Embeddings

Prompt-based Paradigm LLMEmbed

High-volume 
Datapoints

Figure 1: The principle of our proposed LLMEmbed. The left part shows how recent prompt-based methods work
to classify texts. It can be seen that such a multi-step reasoning process can merely be performed serially, thus
leading to high inference overhead. For comparison, instead of using LLM’s content generation ability, we use
the latent semantic embeddings extracted by LLMs to realize a much more effective adaptation for downstream
classification tasks.

lightweight) by far. Subsequently, most users can083

merely deploy the open-source lightweight LLMs.084

As the parameter scale of open-source lightweight085

LLMs is far smaller than online LLMs, the emer-086

gent abilities of lightweight LLMs fall behind (Wei087

et al., 2022a).088

In this paper, we rethink if the prompt-based089

paradigm remain effective to lightweight LLMs090

for text classification, and propose a novel and ef-091

fective paradigm, namely LLMEmbed to improve092

the overall training efficiency and generalized per-093

formance. Specifically, we fully investigate the094

effectiveness of prompt-based methodology in text095

classification, and realize a low-cost and easy-to-096

use transfer learning framework via the use of LLM097

embeddings. We perform extensive experiments098

on publicly available datasets and fairly compare099

LLMEmbed with recent baselines. It is observed100

that the the inference of prompt-based paradigms101

is complex and highly costly. Moreover, their per-102

formance is not as promising as CARP (Sun et al.,103

2023) claimed when lightweight LLMs are used,104

some of the generated results even deviates from105

the inputs, i.e. hallucination (Zhang et al., 2023;106

Huang et al., 2023). For comparison, our LLMEm-107

bed enjoys a highly robust performance and very 108

low training overhead in all scenarios, which fur- 109

ther highlights the usefulness of LLMEmbed. 110

In summary, our contributions in this paper are 111

listed as follows: 112

• To the best of our knowledge, we are the first 113

to adapt lightweight LLM’s semantic embed- 114

dings for text classification. We propose a sim- 115

ple but effective paradigm, namely LLMEm- 116

bed, based on lightweight LLMs to address 117

the text classification task. Our paradigm 118

achieves SOTA results compared with prompt- 119

based methods with the same lightweight 120

LLM backbone, and comparable performance 121

to methods using large-scale LLMs. 122

• Our LLMEmbed paradigm directly constructs 123

the mapping from input texts to output clas- 124

sification results. Therefore, there is no need 125

for users to design sophisticated prompts to 126

align inputs and outputs, i.e. there exists no 127

hallucination. Compared to existing works, 128

LLMEmbed is budget-saving since no extra 129

token overhead is required. 130

• Our LLMEmbed is more flexible, scalable and 131
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efficient compared to prompt-based methods.132

LLMEmbed can combine the embeddings of133

lightweight LLMs with discriminative mod-134

els (e.g. RoBERTa and BERT), or employ135

other representation learning methods to im-136

prove the classification performance. More-137

over, LLMEmbed can perform classification138

in a high-speed parallel manner by feeding a139

large batch of text datapoints as input, whereas140

prompt-based paradigms cannot.141

2 Related Work142

2.1 Lightweight Large Language Models143

Scaling up the parameters of a language model144

has demonstrated the effectiveness on various145

NLP tasks (Brown et al., 2020; Chowdhery et al.,146

2023). Especially, the breakthrough achieved by147

ChatGPT/GPT-4 (OpenAI, 2023) has made LLMs148

a promising approach to understanding language149

and generating contents. However, considering150

specific scenario customization of LLMs (Zhang151

et al., 2024), user data privacy security (Tan et al.,152

2024), and limited computational resource (Xia153

et al., 2023), open-source lightweight LLMs also154

aroused researchers’ interests, such as LLaMA2-155

7B (Touvron et al., 2023b), OPT-6.7B (Zhang et al.,156

2022a), Pythia-6.9B (Biderman et al., 2023).157

2.2 Prompt-learning158

Prompt works as the input to guide LLMs to gen-159

erate contents satisfying users’ expectations. With160

the recent booming of generative LLMs, the prompt161

engineering (Liu et al., 2023), which focuses on162

designing effective prompts, has been a promis-163

ing research topic. In-Context Learning (ICL) is a164

kind of typical prompt-learning which lists exam-165

ples of the dataset as demonstrations to the LLM166

without adjusting the LLM’s network architecture167

(Brown et al., 2020; Schick and Schütze, 2021b).168

Besides the demonstrations, Instruction-Following169

introduces task-describing instructions with the de-170

sired responses into the prompt, and then fine-tunes171

LLMs on the instructional data (Yi et al., 2019;172

Wei et al., 2021; Mishra et al., 2022; Ouyang et al.,173

2022; Wang et al., 2022b). Impersonation is an-174

other technique which make LLMs pretend to be a175

domain expert when answering a domain-specific176

question (Salewski et al., 2023).177

From the viewpoint of human being’s thinking178

process when solving complicated tasks, Wei et179

al. proposes Chain-of-Thought (CoT) prompting to180

make LLMs decompose the problem into interme- 181

diate steps and solve each before giving the final 182

answer (Wei et al., 2022b). Inspired by CoT, ex- 183

tensions such as zero-shot variants (Kojima et al., 184

2022) and Auto-CoT (Zhang et al., 2022b) have 185

been introduced. Self-consistency samples multi- 186

ple reasoning paths and selects the most consistent 187

answer via a vote (Wang et al., 2022a). Least-to- 188

Most decomposes a given complex problem and 189

solves subproblems iteratively to get the final an- 190

swer (Zhou et al., 2022). ReAct allows the language 191

model to interact with external environments such 192

as Wikipedia to incorporate knowledge to inference 193

(Yao et al., 2022). Self-refine makes the LLM gen- 194

erate an initial output and then iteratively provide 195

feedback on the previous output, which is used to 196

revise the output (Madaan et al., 2023). Tree of 197

Thoughts (ToT) generalize CoT to maintain a tree 198

of thoughts containing multiple different steps, en- 199

abling the LLM to self-evaluate the best way (Yao 200

et al., 2023). 201

2.3 Prompt-based Text Classification 202

Based on the designed prompt, language models 203

are guided to generate answers as the classifica- 204

tion results. Schick et al. reformulated input texts 205

into cloze-style phrases and generated the labels 206

(Schick and Schütze, 2021a). Han et al. designed 207

sub-prompts and composed them into final prompts 208

based on logic rules, to guide the language model 209

to generate results (Han et al., 2022). Liu et al. 210

designed prompt based on the test sample’s seman- 211

tically similar examples (Liu et al., 2022), and Shi 212

et al. used k-nearest neighbor (KNN) algorithm to 213

retrieve similar examples as demonstrations of ICL 214

prompts (Shi et al., 2022). 215

Further combining ICL prompts, CoT and KNN 216

algorithm, Sun et al. proposed a method called 217

clue and reasoning prompting (CARP) (Sun et al., 218

2023) to guide GPT-3 through text classification 219

and got the SOTA performances on 5 widely-used 220

benchmarks. First, they used texts and labels of 221

training dataset to generate clues and reasoning 222

of text classification by GPT-3. Next, they used 223

PLM such as SimCSE (Gao et al., 2021) to com- 224

pute the sentence level representation of training 225

dataset, and then got the most semantically similar 226

demonstrations to the test sample based on KNN al- 227

gorithm. Finally, based on the reasoning process of 228

these demonstrations, GPT-3 performs reasoning 229

on the test sample and generates the classification 230

result with many rounds of voting. 231
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Figure 2: The demonstration of our LLEmbed method. The whole pipeline is a kind of typical transfer learning
framework in which the parameters of backbone are pre-trained and frozen, and only the parameters of classifier
head is fine-tuned during training. We investigate to fuse the semantic embeddings extracted from llama2, roberta
and bert. Moreover, for llama2, we extract the embeddings at multiple network depths, and fuse them later via
pooling operators to improve the embeddings’ generalized ability.

3 Methodology232

As mentioned in the Section 1, improving the per-233

formance of locally deployed lightweight LLMs is234

urgently important, considering specific scenario235

customization of LLMs (Zhang et al., 2024), user236

data privacy security (Tan et al., 2024), and limited237

computational resource (Xia et al., 2023). How-238

ever, the emergent abilities of lightweight LLMs239

fall behind online LLMs due to their far smaller240

parameter scale (Wei et al., 2022a), which sub-241

sequently limits the effectiveness of lightweight242

LLMs in prompt-based text classification methods.243

Therefore, we present the so-called LLMEmbed,244

which directly employ the lightweight LLMs to245

extract text embeddings, and improve the overall246

performance of text classification.247

In this paper, we extract and fuse embeddings248

extracted by multiple backbones at different depths249

to improve the robustness and generalization. Let250

us take f(·|m, dm) to denote the embedding ex-251

traction where m is the model and dm is the net-252

work depth. g(·|θg) refers to the classifier head.253

D = {xi, yi}Ni=1 is the dataset where xi is the dat-254

apoint and yi is the label. D is divided into Dtrain255

and Dtest for training and evaluation .256

During training, we first randomly a batch of257

datapoints {xi, yi}BS
1 ∈ Dtrain, then feed them258

into f(·|m, dm) to extract the semantic embeddings 259

{ϕ(m,dm)
i }. 260

ϕ
(m,dm)
i = f(xi|m, dm), (1) 261

where m ∈ {llama2, roberta, and bert} refers to 262

the backbone selected, dm denotes the embedding 263

is extracted from the last dm-th block of model 264

m. Specifically, dm ∈ {1...5} for llama2 where 265

the embedding of each block is the mean of this 266

block’s all token embeddings, dm = 1 for roberta 267

and bert where the final sentence semantic is used 268

as the embedding. 269

Following we fuse all available embeddings via 270

the operator v(·) to get the final semantic embed- 271

ding {ψi}. 272

ψi = v({ϕ(m,dm)
i }) (2) 273

The fusion operators investigated in this paper 274

are listed in Table 1. It can be seen that average 275

pooling, max pooling, co-occurrence pooling and 276

concatenation are considered. Due to its complex- 277

ity, here we take co-occurrence pooling as example 278

to demonstrate the fusion process in detail. 279

Co-occurence pooling. Given the embedding 280

set {ϕm,dm
i } for each datapoint xi, we first use 281

linear mappings to project them into the same latent 282

space and align them to the same length 1 × k, 283
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Table 1: Fusion strategies employed in the LLMEmbed. The abbreviations Avg, Max, Co and Cat refer to
average pooling, max pooling, co-occurrence pooling and concatenation, respectively. v → v̂ represents aligning an
embedding vector v to a new embedding vector v̂ of new size. Note that the resize operation is executed by a Linear
layer, and the sizes of ϕ(llama2,1)

i , ϕ(roberta,1)
i , ϕ(bert,1)

i are 4096-d, 1024-d, 1024-d, respectively.

Index Embeddings Operator v(·) Description
1 ϕ

(llama2,1)
i / /

2
{ϕ(llama2,dm)

i }dm=[1...5]

Avg ψi = Avg({ϕ(llama2,dm)
i })

3 Max ψi = Max({ϕ(llama2,dm)
i })

4 Cat ψi = Cat({ϕ(llama2,dm)
i })

5 {ϕ(llama2,dm)
i }dm=[1...5],

ϕ
(bert,1)
i

Avg + Cat ψi = Cat(Avg({ϕ(llama2,dm)
i }),ϕ(bert,1)

i )

6 Max + Cat ψi = Cat(Max({ϕ(llama2,dm)
i }),ϕ(bert,1)

i )

7 Cat ψi = Cat({ϕ(llama2,dm)
i },ϕ(bert,1)

i )

8 {ϕ(llama2,dm)
i }dm=[1...5],

ϕ
(roberta,1)
i

Avg + Cat ψi = Cat(Avg({ϕ(llama2,dm)
i }),ϕ(roberta,1)

i )

9 Max + Cat ψi = Cat(Max({ϕ(llama2,dm)
i }),ϕ(roberta,1)

i )

10 Cat ψi = Cat({ϕ(llama2,dm)
i },ϕ(roberta,1)

i )

11

{ϕ(llama2,dm)
i }dm=[1...5],

ϕ
(bert,1)
i ,
ϕ

(roberta,1)
i

Avg + Cat ψi = Cat(Avg({ϕ(llama2,dm)
i }),ϕ(bert,1)

i ,ϕ
(roberta,1)
i )

12 Max + Cat ψi = Cat(Max({ϕ(llama2,dm)
i }),ϕ(bert,1)

i ,ϕ
(roberta,1)
i )

13 Cat ψi = Cat({ϕ(llama2,dm)
i },ϕ(bert,1)

i ,ϕ
(roberta,1)
i )

14 Cat+ Co
1 :{ϕ(llama2,dm)

i }5×4096 → {ϕ̂
(llama2,dm)

i }5×1024

2 :Cat({ϕ̂
(llama2,dm)

i },ϕ(bert,1)
i ,ϕ

(roberta,1)
i ) → X7×1024

3 :ψi = PN(Cat(XXT[1 : 7]), σ)

15 Cat+ Co
+Avg + Cat

1 :{ϕ(llama2,dm)
i }5×4096 → {ϕ̂

(llama2,dm)

i }5×1024

2 :Cat({ϕ̂
(llama2,dm)

i },ϕ(bert,1)
i ,ϕ

(roberta,1)
i ) → X7×1024

3 :ψi = Cat(PN(Cat(XXT[1 : 7]), σ), Avg({ϕ(llama2,dm)
i }))

thus making ϕm,dm
i ∈ R1×K ∀m, d. Then they284

are stacked to formulate the ϕ̂i ∈ RH×K where285

H =
∑

mm · dm. Following, we calculate their286

co-occurrence statistics ψi ∈ K×K.287

ψi = PN(ϕ̂i ⊗ ϕ̂
T

i , σ); (3)288

s. t. PN(X; σ) =
1− e−σX

1 + e−σX
= tanh(2σX), (4)289

where PN(·) is a power normalization function290

used to balance the power distribution of co-291

occurrences, σ is the hyper-parameter to control the292

slope of PN(·) function, and the empirical value293

is 0.2 in this paper.294

Finally, all fused embeddings are fed into295

the classifier head to get the predictions {ỹi =296

g(ψi|θg)}, and we perform CrossEntropy loss to297

train θg.298

θg ← argmin
θg
L =

∑
i

yi log ỹi (5)299

Overall, it can be seen that our pipeline is a typi-300

cal transfer learning framework, which focuses on301

difference fusion strategies on LLM embeddings.302

As extracting embedding is a fast process, our clas-303

sifier can be effectively trained and evaluated at a304

very high speed.305

4 Experiment 306

4.1 Setups 307

We run experiments on five widely-used text clas- 308

sification benchmarks as CARP (Sun et al., 2023) 309

does: SST-2 1, MR2, AGNews3, R8 and R524. 310

SST-2 (Socher et al., 2013) is sampled from snip- 311

pets of Rotten Tomatoes HTML files. The amounts 312

of train set and test set are 67349 and 872 respec- 313

tively, and the max length of words is 56. 314

MR (Maas et al., 2011) contains movie reviews 315

representing positive or negative sentiment. The 316

corpus has 40000 training data and 10000 testing 317

data, of which the max length of words is 2470. 318

AGNews (Zhang et al., 2015) consists of 4 types 319

of news articles from the AG’s corpus. The dataset 320

contains 120000 training and 7600 testing exam- 321

ples, and the max length of words is 177. 322

R8 and R52 are two subsections of Reuters collec- 323

tion, containing 8 and 52 classifications. The R8 324

dataset is composed of 5485 documents for training 325

and 2189 documents for testing, of which the max 326

length of words is 964. The R52 dataset is com- 327

posed of 6532 training and 2568 testing documents, 328

1https://nlp.stanford.edu/sentiment/
2http://www.cs.cornell.edu/people/pabo/movie-review-data/
3http://groups.di.unipi.it/∼gulli/AG_corpus_of_news_articles.html
4https://www.cs.umb.edu/∼smimarog/textmining/datasets/
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Table 2: The accuracy performance of different settings on 5 publicly available datasets. The last row reports the
mean accuracy of each method over benchmarks. The bold results indicate the best performance for each dataset.

Backbone SST-2 MR AGNews R8 R52 Avg. Acc.
PLM Methods

(Kenton and Toutanova, 2019) BERT-large 0.8761 0.8130 0.8216 0.8250 0.6581 0.7988
(Liu et al., 2019) RoBERTa-large 0.9025 0.9346 0.9441 0.9676 0.4217 0.8341

Prompt-based LLM Methods
IO (Brown et al., 2020) LLaMA2 7B 0.8922 0.9065 0.7420 0.2481 0.1869 0.5951
CARP (Sun et al., 2023) LLaMA2 7B 0.8842 0.8394 0.8518 0.7510 0.7305 0.8114
CARP (Sun et al., 2023) GPT-3 175B 0.9569 0.9074 0.9525 0.9783 0.9627 0.9516

LLMEmbed-based Methods
Embeddings: ϕ(llama2,1)

i or {ϕ(llama2,dm)
i }dm=[1...5]

/ LLaMA2 7B 0.9518 0.9522 0.9571 0.9794 0.9455 0.9572
Avg LLaMA2 7B 0.9530 0.9545 0.9566 0.9794 0.9533 0.9594
Max LLaMA2 7B 0.9530 0.9517 0.9555 0.9799 0.9486 0.9577
Cat LLaMA2 7B 0.9518 0.9537 0.9359 0.9785 0.4217 0.8483

Embeddings: {ϕ(llama2,dm)
i }dm=[1...5] and ϕ(bert,1)

i

Avg + Cat LLaMA2 7B 0.9553 0.9543 0.9554 0.9799 0.9517 0.9593
Max+ Cat LLaMA2 7B 0.9530 0.9526 0.9553 0.9794 0.9502 0.9581

Cat LLaMA2 7B 0.9495 0.9531 0.9364 0.9781 0.8501 0.9334
Embeddings: {ϕ(llama2,dm)

i }dm=[1...5] and ϕ(roberta,1)
i

Avg + Cat LLaMA2 7B 0.9541 0.9547 0.9562 0.9808 0.9544 0.9600
Max+ Cat LLaMA2 7B 0.9537 0.9538 0.9555 0.9794 0.9467 0.9578

Cat LLaMA2 7B 0.9507 0.9536 0.9491 0.9790 0.4217 0.8508
Embeddings: {ϕ(llama2,dm)

i }dm=[1...5], ϕ
(bert,1)
i , and ϕ(roberta,1)

i

Avg + Cat LLaMA2 7B 0.9553 0.9534 0.9574 0.9808 0.9548 0.9603
Max+ Cat LLaMA2 7B 0.9541 0.9542 0.9555 0.9799 0.9529 0.9593

Cat LLaMA2 7B 0.9484 0.9540 0.9505 0.9785 0.9326 0.9528
Cat+ Co LLaMA2 7B 0.9553 0.9533 0.9549 0.9794 0.8895 0.9465

Cat+ Co+Avg + Cat LLaMA2 7B 0.9576 0.9549 0.9583 0.9822 0.9568 0.9620

Table 3: The runtime of each method. The reported results are formulated by ’hh:mm:ss’, which refer to hours,
minutes and seconds respectively. (The computational device is Nvidia A100-40G.)

Method Process SST-2 MR AGNews R8 R52 Avg. Time

CARP

clues and reasoning generating 67:54:13 42:52:27 133:32:52 09:28:47 08:33:56
KNN with embedding extracting 00:24:54 00:15:34 00:45:11 00:02:03 00:02:28

inference 11:12:02 138:25:05 97:32:00 30:37:57 36:19:59
total runtime 79:31:09 181:33:06 231:50:03 40:08:47 44:56:23 115:36:01

LLMEmbed

train embedding extraction 00:13:30 05:43:45 00:49:04 00:10:30 00:12:39
test embedding extraction 00:00:10 00:33:21 00:03:09 00:04:15 00:04:57

training (50 epochs) 00:08:30 00:05:13 00:14:57 00:01:08 00:01:09
inference 00:00:01 00:00:02 00:00:02 00:00:01 00:00:01

total runtime 00:22:11 06:22:21 01:07:11 00:15:54 00:18:45 01:41:16

of which the max length of words is 1039.329

Moreover, we solve these text classification tasks330

on Nvidia A100-40G GPU, and employ LLaMA2-331

7B (Touvron et al., 2023b) as the lightweight LLM332

backbone throughout all of our main experiments.333

The batch size we set for each dataset is 1024. The334

classifier is trained for 100 epochs with initial learn-335

ing rate 1 × 10−4. Our LLMEmbed is compared336

with recent PLM- and prompt-based baselines w.r.t.337

performance, efficiency and budget.338

4.2 Performance Analysis339

For the conventional PLM method, we employ the340

widely used BERT and RoBERTa to extract embed-341

dings and adapt them to the downstream text clas-342

sification tasks. Though the PLM method demon-343

strates satisfactory performance, there is still scope 344

for enhancement, such as the RoBERTa hardly con- 345

verges on R52 with only 42.17% accuracy. 346

For the prompt-based method, we initially lever- 347

age the Input-Output (IO) prompting (Brown et al., 348

2020), which provides input-output pairs as demon- 349

strations to guide the LLM in generating results. 350

Additionally, We implement the SOTA prompt 351

method, CARP (Sun et al., 2023). Under the de- 352

tailed guidance of CARP, the overall performance 353

of prompt paradigm improve significantly (the av- 354

erage accuracy improve 21.63%). However, due 355

to the far small parameter scale of LLaMA2(7B) 356

compared to GPT-3(175B), the emergent abilities 357

are somewhat limited. We note that the CARP 358

also hallucinates, and if the prompts exceeds the 359
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Table 4: The estimated electricity consumption of each method, which is calculated based on the the training and
inference runtime. (The computational device is Nvidia A100-40G.)

Method Process SST-2 MR AGNews R8 R52 Avg. Elec Cost

CARP

clues and reasoning generating 11.54kWh 7.29kWh 22.70kWh 1.61kWh 1.46kWh
KNN with representation extracting 0.10kWh 0.06kWh 0.19kWh 0.01kWh 0.01kWh

result generating 2.13kWh 26.30kWh 18.53kWh 5.82kWh 6.90kWh
total electricity consumption 13.77kWh 33.65kWh 41.42kWh 7.44kWh 8.37kWh 20.93kWh

LLMEmbed
representation extracting 0.05kWh 1.51kWh 0.21kWh 0.06kWh 0.07kWh

downstream model 0.01kWh 0.004kWh 0.01kWh 0.0009kWh 0.0009kWh
total electricity consumption 0.06kWh 1.51kWh 0.22kWh 0.06kWh 0.07kWh 0.38kWh

Table 5: The budget comparison between online prompt-based CARP and LLMEmbed.

SST-2 MR AGNews R8 R52 Avg. budget

CARP

tokens of generating clues and reasoning 22227252 41993238 32010577 2243198 4024957
tokens of generating result 6492145 235107723 75016765 33625747 45442485

total tokens 28719397 277100961 107027342 35868945 49467442
total token consumption $57.44 $554.20 $214.05 $71.74 $98.93 $199.27

LLMEmbed total electricity consumption 0.06kWh 1.51kWh 0.22kWh 0.06kWh 0.07kWh
total electricity bill $0.0039 $0.09815 $0.0143 $0.0039 $0.00455 $0.025

LLaMA2’s input length limitation, CARP will360

probably generate irrelevant content.361

For the LLMEmbed paradigm, we employed fu-362

sion strategies as mentioned in Table 1. As shown363

in Table 2, it is evident that average pooling of364

LLM’s embeddings, further concatenated with dif-365

ferent models’ embeddings is most effective.366

Average pooling of LLM’s embeddings: We ob-367

serve that the overall performance of average pool-368

ing surpasses max pooling by 0.1%∼0.2% and369

only-concatenating embeddings by 3%∼10%. The370

average pooling retains more information than max371

pooling. The only-concatenation degrades the per-372

formance due to the too large space of embeddings.373

Concatenating with different models’ embed-374

dings: We find that after average pooling of LLM’s375

embeddings, concatenating it with different mod-376

els’ embeddings will further improve the perfor-377

mance, e.g. Avg + Cat of three models outper-378

forms two models. This is due to fusing embed-379

dings of generative LLM and discriminative models380

can complement each other in semantic space.381

Co-occurrence pooling: This pooling itself may382

be not the most effective method, but it extract383

the high-order representation. We concatenate384

this representation further and get the SOTA per-385

formance based on the LLaMA2 backbone. The386

SOTA LLMEmbed outperforms CARP by 7.34%,387

11.55%, 10.65%, 23.12% and 22.63% for SST2,388

MR, AGNews, R8 and R52, respectively.389

Furthermore, we also compare local lightweight390

LLM-based LLMEmbed with online LLM-based391

CARP. Despite LLaMA2’s significant parame-392

ter scale disadvantage compared to GPT-3, the393

LLMEmbed achieves a comparable performance to394

the GPT-3 CARP by employing fusion strategies,395

even outperforms over SST-2, MR, Agnews, R8. 396

4.3 Efficiency 397

We have measured each process’s time cost of 398

employing the prompt paradigm and LLMEmbed 399

paradigm for text classification, and listed the re- 400

sults in Table 3. Overall, the proposed LLMEmbed 401

paradigm is significantly more efficient than the 402

prompt paradigm. 403

As shown in Figure 3, the downstream model 404

reaches convergence at around 50 epochs. For 405

SST-2, LLMEmbed’s time cost is only 0.46% 406

(22min11s/79h31min9s) of the prompt-based 407

paradigm. Similarly, the ratio of time cost is 3.51% 408

for MR, 0.48% for AGNews, 0.66% for R8 and 409

0.70% for R52. 410

The reasons for the surge in LLMEmbed-based 411

efficiency are: 1) The lightweight LLM only needs 412

to extract the representation of the input texts, with- 413

out spending time generating answers. 2) LLMEm- 414

bed only processes the original input texts without 415

any additional sophisticated prompt words. So the 416

length of input is much smaller than the prompt- 417

based method, resulting in much less computation. 418

3) LLMEmbed can conduct the text classification 419

in a parallel manner by feeding a batch of texts 420

to the lightweight LLM, whereas prompt-based 421

paradigm can’t. We note that if feed a batch of 422

prompts to guide the lightweight LLM to generate 423

results, prompts of this batch will effect each other, 424

leading to a low performance. 425

As shown in Table 3, LLMEmbed costs the most 426

time when solving the MR task. Since the length of 427

each text in MR is generally much longer than 428

other datasets, solving MR task requires larger 429

GPU memory, resulting in limited parallel process- 430
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Figure 3: The losses of training the downstream model.

ing. So, the lightweight LLM spends the most time431

extracting the representation of MR.432

4.4 Budget of Users433

We first compare the electricity consumption be-434

tween prompt paradigm and LLMEmbed paradigm.435

For the prompt-based CARP, the power of gener-436

ating clues and reasoning is about 170W , KNN437

with representation extracting is about 250W , and438

generating result is about 190W . So, referring to439

the time cost listed in Table 3, the total electricity440

consumption of SST-2, MR, AGNews, R8 and R52441

is 13.77kWh, 33.65kWh, 41.42kWh, 7.44kWh442

and 8.37kWh respectively.443

For LLMEmbed paradigm, the power of repre-444

sentation extracting is about 240W . When train-445

ing or testing the downstream model, the power446

is 35W ∼ 55W , which is almost equivalent to447

the power of a GPU just booting up without run-448

ning any program. We take the average 45W as the449

power of these processes. As shown in Figure 3, the450

downstream model converges at around 50 epochs.451

Combined with the time cost in Table 3, the total452

electricity consumption of SST-2, MR, AGNews,453

R8 and R52 is 0.06kWh, 1.51kWh, 0.22kWh,454

0.06kWh and 0.07kWh respectively.455

The detailed results of electricity consumption456

on five benchmarks have been listed in Table 4.457

For SST-2, LLMEmbed’s electricity consumption458

is merely 0.44% (0.06kWh/13.77kWh) of the459

prompt-based paradigm. Similarly, the ratio of460

electricity consumption is 4.49% for MR, 0.53%461

for AGNews, 0.81% for R8 and 0.84% for R52. So,462

we can see that LLMEmbed paradigm is greatly463

more energy efficient than prompt paradigm.464

Then, we compare the budget of users between465

the local LLMEmbed with the online prompt-based 466

LLM,(e.g. GPT5, as CARP does). The pricing of 467

GPT is about $0.002 per 1k tokens6. We tokenize 468

all the input and output of CARP, and calculate the 469

sum of these tokens as well as its budget. For the 470

local LLMEmbed, we have calculated the electric- 471

ity consumption above. Taking Beijing’s electricity 472

tariffs as an example, it is $0.065/kWh. So, we 473

can further work out the electricity bill. 474

All the results have been listed in Table 5. Over- 475

all, the budget of local LLMEmbed is much smaller 476

than the online prompt-based LLM. The ratio of 477

budget is 0.01% for SST-2, 0.02% for MR, 0.01% 478

for AGNews, 0.01% for R8 and 0.005% for R52. 479

The LMMEmbed paradigm extracts the represen- 480

tations from the original input text, thus obtaining 481

the semantic space through the powerful language 482

comprehension capabilities of LLMs. In this rich 483

semantic space, we can improve the performance of 484

LMMEmbed by employing other various semantic 485

representation optimization methods to boost the 486

text classification. Further, we can also adapt this 487

paradigm to other downstream tasks by construct- 488

ing a proper mapping from the semantic space to 489

the output. This novel LLMEmbed paradigm can 490

be beneficial for generative LLMs in handling other 491

tasks such as information extraction. 492

5 Conclusion 493

In this paper, we propose a concise and effective 494

LLM-based paradigm, namely LLMEmbed, to ad- 495

dress the text classification. This novel LLMEmbed 496

paradigm achieves the state-of-the-art performance 497

when solving text classification with lightweight 498

LLM, even comparable to the performance of 499

LLMs (e.g. GPT-3) with sophisticated prompt- 500

based strategies. The LLMEmbed paradigm is also 501

flexible and scalable that the text embeddings via 502

different lightweight LLMs can be fused to im- 503

prove the overall performance. Moreover, the pro- 504

posed LLMEmbed paradigm is far more efficient 505

and budget saving than the prompt-based paradigm. 506

Furthermore, we hope that our novel LLMEmbed 507

paradigm can be beneficial for generative LLMs 508

in handling tasks such as text classification (but 509

not limited to text classification), which used to be 510

solved by discriminative models. 511

5InstructGPT-3 (text-davinci-003, 175B)
6https://openai.com/pricing
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