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Abstract

We investigate MT evaluation metric per-
formance on adversarially-synthesized texts,
to shed light on metric robustness. We
experiment with word- and character-level
attacks on three popular machine transla-
tion metrics: BERTScore, BLEURT, and
COMET. Our human experiments validate
that automatic metrics tend to overpenalize
adversarially-degraded translations. We also
identify inconsistencies in BERTScore ratings,
where it judges the original sentence and the
adversarially-degraded one as similar, while
judging the degraded translation as notably
worse than the original with respect to the ref-
erence. We identify patterns of brittleness that
motivate more robust metric development.

1 Introduction

Automatic evaluation metrics are a key tool in
modern-day machine translation (MT) as a quick
and inexpensive proxy for human judgements. The
most common and direct means to evaluate an au-
tomatic metric is to test its correlation with human
judgements on outputs of MT systems. However,
as such metrics are commonly used to inform the
development of new MT systems and even used
as training and decoding objectives (Wieting et al.,
2019; Fernandes et al., 2022), it is inevitable for
them to be applied to out-of-distribution texts that
do not frequently occur in existing system outputs.
The rapid advancement of MT systems and metrics,
as well as the prospect of incorporating MT metrics
in the training and generation process, motivates
investigation into MT metric robustness.

In this work, we examine textual adversarial at-
tacks (TAAs) as a means to synthesize challeng-
ing translation hypotheses where automatic metrics
systematically underperform. We experiment with
word- (Li et al., 2021; Jia et al., 2019; Feng et al.,
2018) and character-level (Gao et al., 2018) at-
tacks on three popular, high-performing automatic
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Figure 1: (a) The metric overpenalizes the per-
turbed translation when compared with human
ratings. (b) The metric is self-inconsistent as
it judges the original and perturbed transla-
tions to be similar (BERTScore(original, origi-
nal) → (BERTScore(perturbed, original)) while
judging the perturbed sentence as a worse
translation (BERTScore(original, reference) →
BERTScore(perturbed, reference)). All ratings are
normalized.

MT metrics: BERTScore (Zhang et al., 2020),
BLEURT (Sellam et al., 2020), and COMET (Rei
et al., 2020). We construct situations where the
metrics disproportionately penalize adversarially-
degraded translations. To validate such situations,
we collect a large set of human ratings on both orig-
inal and adversarially-degraded translations. As
BERTScore can also be seen as a measure of seman-
tic similarity between any two sentences, we also
explore another scenario of inconsistency where
BERTScore judges the original and adversarially-



perturbed translations as similar while judging the
perturbed translation as notably worse than the orig-
inal one with regard to the reference translation.
Examples are shown in Figure 1.

We identify mask-filling and word substitu-
tion as effective means to generate perturbed
translations where BERTScore, BLEURT, and
COMET over-penalize degraded translations and
BERTScore is self-inconsistent. In particular,
BLEURT and COMET are more susceptible to per-
turbations in data with higher-quality translations.
Our findings serve as a basis for developing more
robust automatic MT metrics.1

2 Methods

2.1 Formulation
Most TAA methods probe for the overreaction of
the victim model f (Wang et al., 2022). Given the
original text x and associated label y, the methods
generate a bounded perturbed x′ with label y′. The
perturbation is assumed to be label-preserving (i.e.
y′ = y). Robust behavior would be f(x′) = y for
classification or f(x′) ≈ y for regression, and the
attack is considered successful iff f(x′) is notably
different to y. The label-preserving assumption is
usually enforced by a set of constraints.

In our task, given the original translation x and
metric rating y, we aim to generate a perturbed
text x′ that misleads the metric f such that f(x′)
is notably different from y. The label-preserving
assumption amounts to equivalence in meaning
and fluency, which is commonly enforced through
sentence embedding distance (Li et al., 2021) and
perplexity (Jia et al., 2019; Alzantot et al., 2018).
However, semantic equivalence can clearly not be
adequately enforced in our case: the MT metric
can roughly be seen as a model-based measure
of semantic similarity, similar to the sentence em-
bedding model enforcing the semantic constraint.
When we have a “successful” attack where f(x′)
is notably different from y, we cannot be cer-
tain whether it is because we have a faulty metric
(where the ground truth y′ is close to y but f(x′)
is notably different from y′) or a faulty constraint
(where the perturbed x′ is semantically different
from x and thus y′ should be different from y).

We explore two approaches with regard to this
issue. Firstly, we experiment with forgoing the
semantic constraint and searching for x′ such that

1Code and data are available at https://github.com/
i-need-sleep/eval_attack.

f(x′) is notably lower than y with a minimal num-
ber of perturbations under only the fluency con-
straint. The intuition is that when the number of
perturbations is small, humans are likely to rate the
extent of degradation as less significant than the
automatic metric. To validate whether the assump-
tion holds, we collect continuous human ratings on
meaning preservation against the reference trans-
lation following Graham et al. (2013, 2014, 2017)
and compare the extent of degradation as judged
by humans and that as judged by the metrics. We
focus on meaning preservation as it is aligned with
the training objectives of BLEURT and COMET.
We describe further details in Appendix A.

Secondly, we investigate a scenario where
BERTScore is self-inconsistent by using itself as
a semantic similarity constraint. As BERTScore
can be seen as a generic distance metric of se-
mantic similarity, we can use it to measure the
distance between the original and the perturbed
translations, the original translation and the refer-
ence, as well as the perturbed translation and the
reference. When the original and perturbed transla-
tions are measured as similar, the robust behavior
would be for them to have similar ratings with re-
gard to the reference. We search for violations
against this where BERTScore(perturbed, refer-
ence) is notably smaller than BERTScore(original,
reference), but BERTScore(perturbed, original) is
close to BERTScore(original, original), which we
use as a maximum score of similarity.2

2.2 Adversarial Attack Setup

We use the German-to-English system outputs from
WMT 12, 17, and 22 (Callison-Burch et al., 2012;
Bojar et al., 2017; Kocmi et al., 2022), and ran-
domly select 500 sentences for each system for
each year, totalling 19K (source, translation, ref-
erence) tuples. For the sake of efficiency, we use
MT outputs whose associated references are longer
than 10 words. We normalize each metric such
that their outputs on this dataset have a mean of
0 and a standard deviation of 1. When probing
for overpenalization, we consider three widely-
used metrics: BERTScore (Zhang et al., 2020),
BLEURT (Sellam et al., 2020), and COMET (Rei
et al., 2020). We constrain the perturbed sentence
to have an increase in perplexity of no more than

2We attempted a similar setup with BLEURT, using a sym-
metric variant of BLEURT as the semantic constraint, but
preliminary experiments returned no successful attacks. We
discuss further details in Appendix C.

https://github.com/i-need-sleep/eval_attack
https://github.com/i-need-sleep/eval_attack


Method BERTScore BLEURT COMET

WMT 12 WMT 17 WMT 22 WMT 12 WMT 17 WMT 22 WMT 12 WMT 17 WMT 22

CLARE 98.56% (7885) 99.44% (5469) 99.38% (5466) 98.74% (7899) 99.91% (5495) 99.62% (5479) 20.28% (1622) 20.78% (1143) 20.73% (1140)
Faster Genetic 75.99% (6079) 75.67% (4162) 70.84% (3896) 76.21% (6097) 80.42% (4423) 75.09% (4130) 11.74% (939) 12.25% (674) 11.80% (649)
Input Reduction 40.01% (3201) 38.16% (2099) 43.76% (2407) 31.46% (2517) 30.96% (1703) 34.24% (1883) 50.01% (4001) 50.49% (2777) 52.82% (2905)
DeepWordBug 10.93% (874) 6.75% (371) 9.09% (500) 12.32% (986) 7.07% (389) 6.55% (360) 17.95% (1436) 10.75% (591) 9.62% (529)

Table 1: The percentages and numbers of perturbations fitting our criteria for each metric for each year. The WMT
12, 17, and 22 splits ontain 8K, 5.5K and 5.5K original system outputs, respectively.

10 as measured by GPT-2 (Radford et al., 2019),
and search for cases where the perturbed transla-
tion causes a decrease of more than 1 standard
deviation in the metric rating. When probing for
self-inconsistency with BERTScore, we constrain
the difference between BERTScore(perturbed, orig-
inal) and BERTScore(original, original) to be less
than 0.3 after normalization, and search for cases
where the perturbed translation causes a decrease
of more than 0.4 in BERTScore.

For both setups, we apply a range of black-box
search methods to generate perturbations, includ-
ing word-level attacks (CLARE (Li et al., 2021),
the Faster Alzantot Genetic Algorithm (Jia et al.,
2019), Input Reduction (Feng et al., 2018)) and
character-level attacks (DeepWordBug (Gao et al.,
2018)). CLARE applies word replacements, in-
sertions, and merges by mask-filling, the Faster
Alzantot Genetric Algorithm applies word substitu-
tions, Input Reduction applies word deletions, and
DeepWordBug applies character swapping, substi-
tution, deletion, and insertion. We further describe
these methods in Appendix B.

3 Results

3.1 Probing for Overpenalization

We generate a total of 102,176 perturbed transla-
tions fitting our criteria. The breakdown across
the search methods, metrics, and years is shown
in Table 1. All three metrics seem insensitive to
character-level perturbations, with DeepWordBug
returning a small number of eligible perturbations
for each year. The more sophisticated CLARE and
Faster Alzantot Genetic Algorithm returns a larger
ratio of eligible perturbations for BERTScore and
BLEURT. On the contrary, COMET appears more
sensitive to word deletions, with Input Reduction
returning eligible perturbations for more than 50%
of the system outputs. The ratio of eligible pertur-
bations fluctuates only slightly for different years.

We collect human ratings for a balanced subset
of eligible perturbated translations and correspond-
ing original translations. We aggregate the normal-

ized ratings across annotators, resulting in 2,800
qualifying ratings respectively for original and per-
turbed sentences. The Pearson r correlations with
human ratings are shown in Figure 2. We observe
that the attacks lead to worsened correlations in
most cases, with CLARE and the Faster Alzantot
Genetic Algorithm leading to bigger degradations,
suggesting mask-filling and word substitution as
effective means of attack. All three metrics are par-
ticularly susceptible to perturbations on the WMT
22 data where the original translations are of higher
quality. Both CLARE and the Faster Alzantot Ge-
netic Algorithm lead to degradations of over 0.2
in Pearson correlations for BLEURT and over 0.4
for COMET. This is likely because BLEURT and
COMET are trained on data from previous years
and cannot easily generalize to higher-quality trans-
lations with minor modifications.

To investigate the cause of the reduced correla-
tions, we compare the degradation of translation
quality as measured by the metrics and as judged by
humans. Results are shown in Figure 5. We observe
that, in most cases, the metrics assign higher differ-
ences between the original and perturbed transla-
tions. To quantify this observation, we perform a
one-sided Wilcoxon rank-sum test on the subsets
of the data corresponding to the 36 combinations of
metrics, years, and attack methods. Under a signifi-
cance level of p < 0.05, for 25 out of the 36 combi-
nations, the degradation as measured by the metrics
is significantly larger than that as measured by hu-
mans. This confirms our assumption of overpenal-
ization. We also find that in most cases, the metrics
penalize different perturbation instances more con-
sistently than humans. As an exception, BLEURT
and COMET are significantly more inconsistent
when measuring CLARE-generated degradations
for WMT 22. This, again, suggests vulnerability
against perturbed, high-quality translations outside
the models’ training sets.

We also investigate the influence of sentence
length on overpenalization. Changing a word in a
short sentence may result in a larger score differ-
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Figure 2: The Pearson correlation (r) with human ratings for different metrics, years, and attack methods on original
and perturbed translations. The error bars show the standard error as computed through bootstraping with 10K
resamples.
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Figure 3: MT output length in the number of words
for: (1) the 19K MT outputs we used to generate the
perturbations (subsampled to be balanced across the
years); (2) all MT outputs leading to eligible perturba-
tions; and (3) the 500 MT outputs where humans and
metrics disagree the most on the degree of penalization.

ence, and this difference might be different between
human and metric scores. We compare the length
of MT outputs (in the number of words) before
perturbation for the following subsets: (1) the 19K
MT outputs we used to generate the perturbations
(subsampled to be balanced across the years); (2)
all MT outputs leading to eligible perturbations;
and (3) the 500 MT outputs where humans and
metrics disagree the most on the degree of penal-
ization. Statistics are shown in Figure 3. Using a
one-sided Wilcoxon rank-sum test with p < 0.05,

Method WMT 12 WMT 17 WMT 22
CLARE 3.68% (49) 5.78% (77) 2.55% (34)
Faster Genetic 0.83% (11) 1.58% (21) 0.98% (13)
Input Reduction 1.28% (17) 0.23% (3) 0.38% (5)

Table 2: Percentages and numbers of successful attacks
on BERTScore for self-inconsistency on 4K randomly-
sampled sentences. DeepWordBug returns no successful
attacks.

we find that (3) is smaller than (1) and (2) at a level
of statistical significance. This suggests that shorter
MT outputs lead to more severe over-penalization.
However, the difference in sentence lengths is small
and does not fully explain the different degrees of
penalization.

3.2 Probing for Self-Inconsistency

We randomly select a total of 4K system out-
puts balanced across years and systems, and
search for perturbations fitting our criterion of self-
inconsistency. Results are shown in Table 2. While
all attack methods return a small number of suc-
cessful attacks, we observe a trend that CLARE
and the Faster Alzantot Genetic Algorithm have a
higher success rate. This, again, suggests the effec-
tiveness of mask-filling and word substitution as
attack methods.



3.3 Implications of this Work

The immediate implication of this work is to aug-
ment training of learned metrics such as BLEURT
and COMET with the data generated in this work,
and experiment with incorporating automatically-
generated synthetic data based on mask-filling and
word substitution.

4 Related Work

Classical MT metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) have been
shown to correlate poorly with human judgements
(Mathur et al., 2020; Kocmi et al., 2022), moti-
vating the development of model-based metrics.
Supervised metrics such as BLEURT (Sellam et al.,
2020) and COMET (Rei et al., 2020) are trained
to mimic human ratings as a regression task. Non-
learnable metrics such as BERTScore (Zhang et al.,
2020), XMoverDistance (Zhao et al., 2020), and
UScore (Belouadi and Eger, 2023) do not rely on
human ratings and instead leverage the embeddings
of the source, reference, and translation. Whereas
more recent and higher-performing metrics ex-
ist, we focus our investigation on BERTScore,
BLEURT, and COMET as they are most commonly
used and easily adapted to other domains such as
text simplification (Maddela et al., 2023).

Wang et al. (2022) defines robustness as perfor-
mance on unseen test distributions. Such distribu-
tions can occur naturally (Hendrycks et al., 2021)
or be constructed adversarially, and robustness fail-
ures are usually identified through human priors
and error analysis. Alves et al. (2022) and Chen
et al. (2022) use hand-crafted types of perturbations
to create challenge sets where MT metrics underpe-
nalize the perturbed translations. Yan et al. (2023)
use minumum risk training (Shen et al., 2016) to
optimize directly for higher metric scores, resulting
in a set of translations with overestimated scores.
This work complements previous works by investi-
gating overpenalization, which is a very different
behavior to overestimation. We use adversarial at-
tacks targeted at each metric that are not limited to
pre-defined categories, which allows us to discover
particular failure cases specific to each metric. In
addition, we consider the same set of metrics on
different years of WMT data. This allows us to
draw connections between adversarial robustness
and the quality of MT system outputs, and whether
the MT system outputs are used when training the
metric.

5 Conclusion

We apply word- and character-level adversar-
ial attacks and probe for overpenalization with
BERTScore, BLEURT, and COMET, and for self-
inconsistencies with BERTScore. We observe that
mask-filling and word substitution are more effec-
tive at generativing challenging cases, and that
BLEURT and COMET are more susceptible to
perturbation of high-quality translations.

Our findings motivate more sophisticated data
augmentation and training methods to achieve
greater metric robustness. In particular, our for-
mulation of self-consistency requires no valida-
tion against human ratings and can be applied to
other embedding-based metrics (Zhao et al., 2020;
Reimers and Gurevych, 2020; Belouadi and Eger,
2023) as a regularization term. We leave this to
future work.

6 Limitations

We use the high-resource German-to-English sub-
set of the WMT datasets, which mainly focuses
on the news domain. How readily our results
translate across to other language pairs, transla-
tion systems, metrics, or domains requires further
investigation. We experiment with only word- and
character-level attacks, but other methods exist that
generate sentence-level (Ross et al., 2022) or multi-
level (Chen et al., 2021) attacks. We leave a more
comprehensive study of attack methods to future
work.

7 Ethics Statement

The human ratings are collected from fluent En-
glish speakers contracted through a work-sharing
company. The annotators are paid fairly according
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annotators had a prompt means of contacting us
throughout the annotation process.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara
Logacheva, Christof Monz, Matteo Negri, Matt Post,
Raphael Rubino, Lucia Specia, and Marco Turchi.
2017. Findings of the 2017 Conference on Machine
Translation (WMT17). In Proceedings of the Second
Conference on Machine Translation, pages 169–214,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 Workshop on Statistical Ma-
chine Translation. In Proceedings of the Seventh
Workshop on Statistical Machine Translation, WMT
’12, page 10–51, USA. Association for Computa-
tional Linguistics.

Xiaoyu Chen, Daimeng Wei, Hengchao Shang,
Zongyao Li, Zhanglin Wu, Zhengzhe Yu, Ting Zhu,
Mengli Zhu, Ning Xie, Lizhi Lei, Shimin Tao, Hao
Yang, and Ying Qin. 2022. Exploring robustness of
machine translation metrics: A study of twenty-two
automatic metrics in the WMT22 metric task. In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 530–540, Abu Dhabi,
United Arab Emirates (Hybrid). Association for Com-
putational Linguistics.

Yangyi Chen, Jin Su, and Wei Wei. 2021. Multi-
granularity textual adversarial attack with behavior
cloning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4511–4526, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Shi Feng, Eric Wallace, Alvin Grissom II, Mohit Iyyer,
Pedro Rodriguez, and Jordan Boyd-Graber. 2018.

Pathologies of neural models make interpretations
difficult. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3719–3728, Brussels, Belgium. Association
for Computational Linguistics.

Patrick Fernandes, António Farinhas, Ricardo Rei,
José G. C. de Souza, Perez Ogayo, Graham Neubig,
and Andre Martins. 2022. Quality-aware decoding
for neural machine translation. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1396–1412,
Seattle, United States. Association for Computational
Linguistics.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun
Qi. 2018. Black-box generation of adversarial text
sequences to evade deep learning classifiers. In 2018
IEEE Security and Privacy Workshops (SPW), pages
50–56.

Yvette Graham, Timothy Baldwin, Alistair Mofat, and
Justin Zobel. 2017. Can machine translation systems
be evaluated by the crowd alone. Natural Language
Engineering, 23(1):3–30.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2013. Continuous measurement scales
in human evaluation of machine translation. In Pro-
ceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, pages 33–41,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2014. Is machine translation getting bet-
ter over time? In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 443–451, Gothenburg,
Sweden. Association for Computational Linguistics.

Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. 2021. Natural adversarial
examples. CVPR.

Robin Jia, Aditi Raghunathan, Kerem Göksel, and Percy
Liang. 2019. Certified robustness to adversarial word
substitutions. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4129–4142, Hong Kong, China. Association
for Computational Linguistics.

Tom Kocmi, Rachel Bawden, Ondřej Bojar, Anton
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A Annotation

To validate whether the perturbed sentences lead to
degraded metric performance, we collected human
ratings for a subset of perturbed translations and
corresponding original system outputs. We largely
follow the DA protocol (Graham et al., 2013, 2014,
2017) and task the annotators to rate on a con-
tinuous scale to what extent the meaning of the
reference is expressed in the translations. We fo-
cus on meaning preservation as it is aligned with
the training objectives of BLEURT and COMET.
We take a more conservative stance by displaying
the original and perturbed sentences in parallel and
highlighting the perturbed words. Our intuition is
that the annotators are more inclined to exaggerate
the quality differences between the original and per-
turbed translations under this setup. An example of
the annotation interface is shown in Figure 4. We
randomise the order of the original and perturbed
sentences such that it is not immediately clear to
the annotator which is which.

For each human intelligence task (HIT) of 100
(reference, original, perturbed) tuples, we use the
ratings from 70 tuples and include 30 tuples as
control items. 15 of the control items are dupli-
cates from the 70 tuples, and the other 15 contain
degraded original and perturbed translations from
the 70 tuples, where we randomly drop four words.
We use the Wilcoxon rank sum test to ensure that
the score differences from the duplicated pairs are
smaller than that of the degraded pairs. We reject
HITs where the p value is larger than 0.05.

We collect ratings from 10 fluent English speak-
ers3 contracted through a work-sharing company.
We conduct training sessions where we describe
the task and annotation interface prior to the annota-
tion process. In total, we collected 268 HITs, with
177 (66.04%) HITs passing quality control. The
ratio is higher than those reported by Graham et al.
(2017) as we work with trained annotators. We ob-

3The annotation team is lead by two native English speak-
ers. Each of the remaining members either completed under-
graduate education in English or have spent years living in the
UK, and have the equivalent of C2 proficiency in English.

tain the z-scores by normalizing annotations from
the same annotator, and aggregate the ratings for
the same translation by averaging. We use tuples
with at least three annotations, resulting in 10,080
annotations for 2,800 tuples. The annotated data is
balanced for the different metrics, years, and search
methods.

B Implementation Details

We use the Huggingface Evaluate4 implemen-
tations of BERTScore, BLEURT, and COMET.
For BERTScore, we use roberta-large as the
underlying model and use F1 score as the met-
ric output. For BLEURT, we use the improved
bleurt-20-d12 checkpoint introduced by Pu et al.
(2021). For COMET, we use the wmt20-comet-da
checkpoint.

We consider four search methods for adversar-
ial attacks: CLARE, the Faster Alzantot Genetic
Algorithm, Input Reduction, and DeepWordBug.
CLARE iteratively applies contextualized word-
level replacements, insertions, and merges by mask-
ing and bounded infilling, with each perturbation
greedily selected by the impact on the victim. The
Faster Alzantot Genetic Algorithm modifies the ge-
netic algorithm proposed by Alzantot et al. (2018),
and iteratively searches for word replacements
that are close in a counter-fitted embedding space
(Mrkšić et al., 2016). Input Reduction iteratively
removes the least important word based on its influ-
ence on the victim’s output. DeepWordBug itera-
tively applies a heuristic set of scores to determine
the word to perturb, and applies character level
swapping, substitution, deletion, and insertion.

We use the TextAttack (Morris et al., 2020)
implementations of the adversarial attacks. For
CLARE, we modify the default implementation
by removing the sentence similarity constraint and
using beam search with width 2 and a maximum
of 10 iterations when probing for overpenalization,
and with width 5 and a maximum of 15 iterations
when probing for self-inconsistency. For the Faster
Alzantot Genetic Algorithm, we modify the im-
plementation by changing the LM constraint and
using a population size of 30 and a maximum of
15 iterations when probing for overpenalization,
and a population size of 60 and a maximum of
40 iterations when probing for self-inconsistency.
We follow the default implementation otherwise.
For the GPT-2 perplexity constraint, we use the

4https://huggingface.co/docs/evaluate/index
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Figure 4: A screenshot of the annotation interface. The slider is initialized at the middle position. The annotator must
interact with the slider before proceeding to the next annotation instance and cannot revisit completed annotations.

Huggingface Evaluate implementation.

C Probing for Self-Inconsistency with
BLEURT

Our formulation of self-consistency does not
immediately apply to BLEURT as it distin-
guishes between the hypothesis and the refer-
ence and thus cannot be seen as a distance met-
ric. We instead experiment with a symmet-
ric variant of BLERUT as the semantic con-
straint. Given BLEURT(hypothesis, reference),
we define symmetric BLEURT as the aver-
age between BLEURT(original, perturbed) and
BLEURT(perturbed, original). We constrain the
difference between BLEURT(original, original)
and this symmetric measure to be smaller than 0.3.
We search for perturbed translations such that the
difference between BLERUT(original, reference)
and BLERUT(perturbed, reference) is larger than
0.4.

None of the search methods returns successful at-
tacks for our preliminary experiments with 1K ran-
domly sampled translations. We find that BLEURT
overpenalizes translations with low-quality refer-
ences, i.e. BLEURT(original, perturbed) is signifi-
cantly smaller than BLERUT(perturbed, original).

This makes it difficult to find perturbations satisfy-
ing the semantic constraint.
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Figure 5: The quality difference between the original and perturbed translations as measured by the metrics and
humans. Bars marked with red asterisks are the cases where the degradation for metrics is significantly larger
(p < 0.05) than that for humans.


