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Abstract

Natural language feedback carries mind-shaping
intentions: speakers aim to modify beliefs, goals,
or, in general, cognitive processes of listeners.
Such intentions can be efficiently and accurately
internalized only if the listener possesses a human-
compatible cognitive system—namely, internal
mental states and processes that humans can nat-
urally theorize about, reason over, and influence
through natural language. We compare several
cognitive architectures for Al agents and show
that increasing human-compatibility expands the
diversity, efficiency, and potentially effectiveness
of the teaching strategies that can be employed by
the corresponding agents. This yields our central
thesis: to fully harness natural language feedback,
Al agents must be built with human-compatible
cognitive systems. We outline key research chal-
lenges toward such systems and propose princi-
ples for a unified, theoretically grounded frame-
work for learning from language feedback.

1. Introduction

Learning from human feedback is central to building adap-
tive and aligned AI systems. In open-ended, real-world
environments, agents inevitably encounter situations that
cannot be fully anticipated during training. Human feedback
provides a powerful mechanism for correcting mistakes, re-
fining capabilities, and enabling continual improvement.
Recently, this form of learning has become the dominant ap-
proach for aligning and strengthening large language models
(LLMs): techniques such as reinforcement learning from
human feedback (RLHF) (Christiano et al., 2017) and su-
pervised fine-tuning (SFT) have transformed LLMs from
generic sequence predictors into broadly capable assistants
with emergent reasoning and task-generalization abilities.

Among the various modalities of feedback, natural language
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is uniquely promising. It is the most expressive, efficient,
and intuitive communication channel available to humans.
Despite its power, however, the AI community still lacks a
unified, rigorous framework for learning from natural lan-
guage feedback. Most existing paradigms reduce language
feedback to either imitation learning (Scheurer et al., 2023;
Jin et al., 2023; Chen et al., 2024) or reinforcement learning
(Goyal et al., 2019; Feng et al., 2024), thereby inheriting
the limitations of these frameworks. More recent context-
based approaches (Akyiirek et al., 2023; Madaan et al., 2023;
Scheurer et al., 2023; Chen et al., 2024) leverage the general-
ization abilities of LLMs to incorporate free-form language
feedback directly into the prompt. While extremely flexible,
these methods generally lack theoretical convergence guar-
antees and do not fully capture the cognitive mechanisms
underlying human communication.

In this work, we argue that unlocking the full potential of
natural language feedback requires modeling the underlying
cognitive mechanisms of human communication, not just
the signals they produce. Drawing on foundational work
in socio-cognitive science, we highlight a key insight: the
strategies humans use to teach are deeply shaped by their
assumptions about the learner’s underlying cognitive system.
More specifically, human communication is inherently mind-
shaping: speakers form intentions about how to alter the
listener’s internal cognitive processes—how their beliefs,
desires, intentions, and other mental representations interact
to influence downstream behaviors—and generate linguistic
expressions to influence those processes to achieve intended
behavioral outcomes. These capability presupposes that the
listener possesses human-like internal processes that can
be reasoned about and adapted with language. Existing
learning frameworks rarely model such internal cognitive
structure, limiting both their generalizability, efficiency, and
the range of teaching strategies they can accommodate.

This observation motivates the central thesis of the paper:
to learn effectively and efficiently from diverse types of
natural language feedback, an AI agent must adopt a
human-compatible cognitive system—one that humans
can readily theorize about, reason over, and influence
with natural language. We formalize this idea within an
interactive learning framework and show how different cog-
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nitive architectures support different classes of teaching
strategies. By comparing different cognitive architectures,
we illustrate how increasing cognitive human-compatibility
expands the effectiveness, efficiency, and inclusiveness of
feedback learning capabilities. This perspective helps ex-
plain why current approaches may plateau and suggests a
design principle for future systems: align the agent’s in-
ternal cognitive structure with the assumptions implicit in
human communication.

2. Problem setting

We first formulate an interactive learning process between an
Al agent and a human teacher. We model an MDP environ-
ment with states s € S, actions a € A, start state sg € S,
horizon H, and transition function T : § x A — A(S)
where A(S) denotes the space of probability distributions
over S. A task specification x € X’ describes a task in the
environment. We will refer to « simply as a task. Tasks are
drawn from a distribution Pxy.

The agent maintains a policy 7(a | so,x) that generates
a distribution over actions given an input task x € X and
the start state sg. Since the start state is always sg, we
simply write the policy as w(a | ). We will use 7, as a
shorthand for the conditional policy (- | ). A solution
y = (so,a0,51,a1, -+ ,ag—1,SH) is a sequence of states
and actions, generated by executing the policy in the en-
vironment. The quality of a solution is determined by a
reward function R(z,y).

We define the value of a policy as

V(ﬂ—) £ EII/’NPX,yNP,rI,T [R(:E7 y)] (D

where Py 7 is the distribution over solutions generated by
executing 7, in the environment specified by 7T'.

The goal of learning is to find a policy with maximum value
within the space of feasible policies II:

i

A learning process consists of multiple rounds of interac-
tions between an agent learner and a human teacher. In each
iteration, the agent receives a task x, generates a solution
y, and receives feedback f = h(x,y) from the human. We
impose no restrictions on the form of f: it may be numerical
or linguistic, instructive or corrective, etc. After receiving
feedback, the agent applies a learning algorithm, denoted
by ¢(, f), to update its policy, generating a new policy.

'Our formulation subsumes the special case where f is a pre-
execution instruction. In this case, the agent generates a null output
in the first iteration and obtains an instruction f guiding its actions
in the next iteration.

Algorithm 1 Learning from Human Feedback Process

1: Initialize policy 7(%)

2: fort=0,1,2,...do

3: Agent receives task x ~ Py

4 Agent generates solution y ~ Pﬂ_gt)_T

5: Human provides feedback f = h('x’7 Y)

6 Agent updates policy: 7t = ¢(7(®), f)
7: end for

Cognitive system, architecture, and process. The cogni-
tive system of an agent refers to the mental representations
(beliefs, desires, intentions, emotions, etc.) and the internal
processes operating on these representations that enable the
agent to think and make decisions. A cognitive architecture
refers to the structure of a cognitive system, i.e., what its
components are and how they interact. A cognitive process
is an activity taking place within a cognitive system.

Learning framework. We use the term learning frame-
work to denote Algorithm 1 instantiated with a specific
learning algorithm and agent cognitive system. Viewing
the agent cognitive system as a component of a learning
framework is a key distinction of our perspective. As we
will later demonstrate, certain algorithms require specific
cognitive systems to function.

Desiderata.
framework:

We identify three desiderata for a learning

1. Effectiveness. The learning process instantiated by
the framework asymptotically produces a near-optimal
policy: lim; oo V() > maxgen V(m) — € for a
small € > 0.

2. Efficiency. If a policy value is attainable, low “ef-
fort” is required to reach it. Different notions of effort
may be employed (e.g., number of interactions, time,
expense, cognitive load, or a mixture of them).

3. Inclusiveness. Humans use a variety of strategies to
teach others. Anideal learning framework should allow
the human teacher to freely employ any of those natural
strategies, rather than confining them to a restricted
communication channel.

We prefer frameworks that provably meet these desiderata,
where the proofs can be logical or mathematical. When it
is infeasible to provide such proofs, substantial empirical
evidence is required.

3. Alternative views: Limitations of existing
learning frameworks

In this section, we apply the formulation and desiderata in-
troduced in the previous section to characterize and compare
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popular learning frameworks. Our aim is to help readers
gain a clearer understanding of their limitations and explain
the motivation for moving beyond them. A brief summary
of this section is provided in Table 2.

First, we review two foundational frameworks: imitation
learning (IL) and reinforcement learning (RL). IL enables
learning from demonstrations—sequences of actions be-
longing to the agent’s action space. Meanwhile, RL (Sutton
et al., 1998) enables learning from numbers, often called
rewards.” RL is generally considered less efficient than IL
in terms of number of interactions, since a reward typically
provides much less information about the desired behavior
than a demonstration. However, in many scenarios, rewards
may take significantly less time and effort to obtain than
demonstrations, so the conclusion about efficiency depends
on how effort is defined.

These days, IL and RL are mostly deployed in deep learning
settings, where they are used to improve a neural network
following a gradient-descent optimization approach. Thanks
to the well-established theory of gradient descent, RL and
IL offer strong optimality guarantees in convex optimization
problems and empirically demonstrate robust performance
in non-convex problems, proving their effectiveness.®> Nev-
ertheless, these two frameworks are limited in inclusiveness,
as each can only handle a single type of feedback. More-
over, the types of feedback they support—demonstration
and reward—are simple and low-bandwidth, constraining
both the efficiency of communication and the diversity of
strategies available to the human teacher.

Natural language feedback holds the promise of providing
superior efficiency and inclusiveness. The argument for
inclusiveness is straightforward: natural language is the pre-
dominant means of human communication. On the other
hand, the promise of efficiency comes from two appealing
properties of human language-based communication. First,
human language is referential: people devise concise, ab-
stract terms to substitute for lengthy descriptions, thereby
reducing communication effort. Second, language-based
communication is inferential: the signals that human speak-
ers produce are only hints of what they want to convey.
Listeners take these hints and use their reasoning capabili-
ties to reconstruct the speakers’ intentions. Given sufficient
shared understanding of context, even a single word can
convey a rich narrative.

It is worthwhile to distinguish demonstrations and rewards
from instructive and evaluative language feedback. When
a teacher provides a demonstration, they are, by definition,

*Many techniques convert other types of feedback to rewards,
allowing deploying RL to “learn” from those types of feedback
(e.g., (Christiano et al., 2017)). However, the RL framework itself
can admit only numerical feedback.

3RL may fall short in problems with a large search space.

communicating the solution through the agent’s action space.
The medium of this form of feedback therefore differs from
that of language instructions (e.g., “go left, turn right”).
Likewise, rewards are numerical signals, whereas language
evaluations (e.g., “your solution is wrong”) are conveyed
verbally. Standard IL and RL cannot natively process in-
structive or evaluative language feedback.

Recently, the advent of large language models (LLMs)
has raised the question of whether the problem of learning
from language feedback has already been solved. Several
studies have demonstrated that many of these models can
be improved simply by prompting them with free-form
language feedback (Liang et al., 2024; Jin et al., 2023;
Zawalski et al., 2024). We refer to this framework as
context-based learning (CBL).

How does CBL fare with respect to the three desiderata
of a learning framework? In terms of inclusiveness, CBL
is undeniably a significant step-up from IL and RL: rather
than having to communicate through actions or numbers,
human teachers can now speak freely to learning agents and
employ many teaching strategies present in human-human
communication. With regard to efficiency, CBL can be
considered efficient within the range of performance it is
able to attain, because the feedback provider can exploit the
referential-inferential nature of human language. Unfortu-
nately, the effectiveness of CBL remains questionable, as
no satisfactory theory yet characterizes the generalizability
of LLMs’ language understanding in novel contexts. Em-
pirically, Liang et al. (2024) and Jin et al. (2023) show that
the improvement obtained from language feedback saturates
after a few iterations, well before approaching optimality.

In short, the major shortcoming of IL or RL is efficiency
and inclusiveness, whereas the major shortcoming of CBL
is effectiveness. Although the lack of effectiveness of CBL
can be compensated with additional IL and RL fine-tuning
of the agent’s language understanding, we contend that this
approach can be unnecessarily costly, because the cognitive
system of LLMs may be fundamentally incompatible with
the intentions of natural language feedback. We elaborate
on this point in the next section, but put simply: natural
language feedback is intended to alter processes within a
human-analogous cognitive system; yet it remains unclear
whether LLMs possess such processes, without which
the intentions of natural language feedback cannot be
accurately realized.

4. Human-compatible learning

We propose that incorporating natural language feedback
in a principled way involves two steps: (1) understand the
original intentions of the feedback producers, i.e., how they
imagine the feedback to be incorporated (2) design cognitive
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systems that enable these intentions to be accomplished.
In this section, we characterize the intentions of natural
language feedback and the type of cognitive system that can
incorporate these intentions.

4.1. An overview of human communication

We provide a holistic description of human (cooperative)
communication by integrating three prominent research bod-
ies. The first line of research is theory of mind (Premack
& Woodruff, 1978). In a broad sense, “theory of mind”
refers to the ability to mentally simulate an individual’s
cognitive system, particularly how it directs their outward
behavior. While most animals regard conspecifics as re-
active systems—a straightforward mapping from percepts
to behaviors—humans are different in that they recognize
that there are non-trivial mental processes in between. This
recognition opens a whole new mechanism for communi-
cation. Michael Tomasello’s seminal book Constructing
a Language (PINE, 2005) portrays how human leverages
theory of mind to communicate with and influence others.
This excerpt articulates his distinction between human com-
munication and the communication of other animals:

To oversimplify, animals are aimed at
the behavior and motivational states
of others, whereas human symbols are
aimed at the attentional and mental
states of others. It is this mental dimen-
sion that gives linguistic symbols unpar-
alleled communicative power.

(14
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The excerpt reveals perhaps the most important fact about
human communication: while animal communication is
concerned with regulating behavior, human communication
is oriented toward shaping the mind they attribute to
others. This cognitive approach dramatically boosts the
efficiency of human communication, as intervening on a
single cognitive process can shape multiple behaviors at
once. For instance, telling someone, “The floor is slippery!”
prompts them to exercise greater caution in performing
many tasks within the room. Compared to an approach
that regulates each individual task performance, i.e., telling
them to “do z more carefully” for every relevant task z, the
concise warning achieves a similar effect but with far less
effort.

Whereas Tomasello’s work characterizes the intentions of
human communicative signals, pragmatics theory (Grice,
1990; Sperber & Wilson, 1986) sheds light on the mecha-
nism by which these intentions are recognized. This theory
proposes that human communication is an inferential (or
reasoning-based) process. Human communicative signals
are merely hints of the actual intentions speakers wish to
convey. Such inference is possible because humans possess

an exceptional ability to reason over their theory of mind.
Specifically, during a conversation, the speaker produces a
signal to convey an intention by postulating how the listener
would receive it. On the other end, the listener recognizes
the intention by hypothesizing how the speaker would con-
vey it pragmatically. This mutually recursive reasoning
process allows human ability to transfer information beyond
the literal content of a message, elevating communication
efficiency to a new level.

Combining the three bodies of work, we propose the follow-
ing characterization of the language-based mind-shaping
communication process in humans:

Algorithm 2 How Humans Communicate Linguistically to
Shape the Mind

1: The speaker builds a mental model of the listener’s
cognitive system.

2: The speaker forms an intention to alter cognitive pro-
cesses within that imaginary system, and reasons to
generate an appropriate linguistic expression that sig-
nals that intention.

3: The listener infers the speaker’s intention from the lin-
guistic signal and adapts the targeted cognitive pro-
cesses accordingly.

Human communication can sometimes aim to shape only
outward behavior. For example, teaching via IL or RL
can be seen as a behavior-shaping strategy: IL forces the
agent to perform desired behaviors, whereas RL promotes
or inhibits certain behaviors. Nevertheless, mind-shaping
communication is regarded as the most advanced form of hu-
man communication, enabling the highest (token) efficiency
and robustness in novel situations. When we talk about
learning from language feedback, we refer to the capability
of efficiently and precisely internalizing the mind-shaping
intentions behind this type of feedback.

4.2. The wide range of language feedback intentions

Because there are many ways of theorizing a cognitive sys-
tem and many ways of intervening on it, there exist not one
but many forms of natural language feedback. The slippery-
floor example illustrates feedback that targets beliefs, but
language feedback can also target desires, intentions, emo-
tions, and other mental states. Some feedback aims not at
mental states themselves but at the mental processes that op-
erate over them. Others are directed at multiple mental com-
ponents simultaneously. Table 1 presents a non-exhaustive
list with examples.

The substantial diversity of feedback intentions suggests
that there is unlikely to be a simple, general solution to
the problem of learning from natural language feedback.
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Each intention category requires a different cognitive system
to support it and a different algorithm for incorporating
it. The final solution will likely consist of a collection of
specialized frameworks, each of which handles a group
of related intentions. Despite the heterogeneity, we argue
that there exist common high-level design principles that
can guide solutions for many forms of natural language
feedback. In the next section, we present one such principle.

4.3. The necessity of human-compatible cognitive
systems for incorporating natural language
feedback

Drawing from the description of human communication in
the previous section, we posit that rigorously incorporat-
ing natural language feedback requires an agent to possess
a cognitive system that is compatible with the intentions
behind such feedback. Without such an infrastructure, the
influence assumed by human communicators simply cannot
occur as originally planned.

Because humans naturally use language to communicate
with other humans, a stronger requirement emerges: the
agent’s cognitive system should resemble the theory of mind
that humans routinely attribute to one another. When speak-
ers choose how to phrase an utterance, they habitually imag-
ine how a human listener would interpret and integrate the
latent intention into their cognitive system. For an Al system
to accurately recognize and incorporate such intentions, its
cognitive system must be sufficiently aligned with this imag-
ination. We refer to such a system as a human-compatible
cognitive system—one that is structured and operate in ways
that humans can readily theorize about, reason over, and
intentionally shape through language.

The previous “floor is slippery” example illustrates this re-
quirement concretely. When a speaker issues this warning,
they assume the listener (1) have a representation of the
floor’s slipperiness, (2) use that representation to guide ac-
tions across tasks, and (3) possess a mechanism for updating
that representation in response to linguistic signals. If any
of these components is missing—if the listener stores no
such belief, if the belief has no causal effect on its behav-
ior, or if language cannot update that belief—the intended
mind-shaping effect fails, even when the listener’s outward
behavior appears satisfactory across many situations.

It is still possible to synthesize the effects of natural lan-
guage feedback using a brute-force behavior-shaping ap-
proach, which does not necessitate a human-compatible
cognitive system. In this approach, the agent does not adapt
the targeted cognitive processes; instead, it merely learns
to reproduce the expected outward behaviors in response
to a large set of linguistic cues. Returning to the slippery-
floor example, an agent may be trained—through supervised
demonstrations—to behave more cautiously in a variety of

tasks after receiving the warning. To a human observer, the
agent may present itself as obeying the human’s intention,
even when it lacks any explicit representation of environ-
mental beliefs. However, this approach can be inefficient
or fragile. Fundamentally, this approach attempts to recon-
struct a rich set of complex algorithms—a human theory of
mind—ifrom observed outputs alone, a class of problems
where current deep learning systems are known to strug-
gle (Zaremba & Sutskever, 2014; Lake & Baroni, 2018;
Thomm et al., 2024; Shojaee et al., 2025). In practice, com-
municative intentions that aim to shape many downstream
behaviors require the agent to be trained on a correspond-
ingly large set of desired behaviors. If the agent encounters
substantially novel contexts, the intended influence may
fail to materialize. In the end, while behavior shaping can
offer a superficial approximation of mind-shaping commu-
nication, it is unable to offer the robustness that a truly
human-compatible cognitive system enables.

5. Cognitive architecture bounds learning
ability

To illustrate how an agent’s cognitive system shapes its abil-
ity to learn from human feedback, we present three case
studies featuring agents with different cognitive architec-
tures. We demonstrate that an agent’s cognitive architecture
fundamentally constrains the teaching strategies that can be
effectively employed. In particular, more human-compatible
architectures give rise to more diverse, efficient, and poten-
tially more effective learning capabilities.

5.1. Case 1: Opaque agent (Figure 1)

Behavior shaping
behavior

Figure 1. Opaque agents only allow humans to shape their outward
behavior.

M oM

This agent implements an inscrutable policy 7(y | ). When
teaching this agent, a human teacher likely views it as a re-
active system—a direct mapping from percepts to actions—
ignoring its internal cognitive processes. With this theory
of mind, the only viable strategy is to directly regulate the
outward behavior. Two approaches are available, which
correspond to two currently popular learning frameworks:
(1) force the agent to reproduce a desired behavior (imita-
tion learning) and (2) encourage or discourage a behavior
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Table 1. A non-exhaustive list of types of language feedback, the mental components they target, and the cognitive-system support

required to incorporate them.

Feedback type

Targeted Mental Com-
ponent

Example Utterance

Required Cognitive-
System Support

Belief-shaping

Desire-shaping

Intention-

shaping

Mixed

Process-level

Meta-level

Beliefs about the environ-
ment or task structure

Preferences, goals, or
reward-related values

Plans, subgoals, or action-
level intentions

Beliefs + desires, or be-
liefs + intentions, etc.

Mental processes such as
reasoning style, planning
strategy, or decision rules

How the agent should use
or update its own cogni-
tive system

“The floor is slippery.”
“The cup is on the top shelf.”

“Try to get the freshest ap-
ples.”

“You should prioritize safety
over speed.”

“Stir the mixture before
heating it.”

“Approach the door from the
left.”

“Since the vase is fragile,
handle it gently.”

“Because it’s late, aim for a
quicker route.”

“Think step by step.”
“Double-check your assump-
tions before acting.”

“Don’t trust the map too
much; rely more on what
you observe.”

“When you’re uncertain, ask

Agent must represent envi-
ronmental beliefs and up-
date them in response to lan-
guage.

Agent must represent and
modify internal reward-
related preferences.

Agent must represent inten-
tions or plans and revise
them through linguistic in-
structions.

Agent must integrate mul-
tiple mental representations
and update them jointly.

Agent must expose and
adapt its cognitive processes
(e.g., reasoning pipeline,
planning algorithm).

Agent must model and
revise meta-cognitive pro-
cesses or self-regulation
mechanisms.

for clarification.”

produced by the agent (reinforcement learning).

5.2. Case 2: Chain-of-thought agent (Figure 2)

Behavior shaping
=

behavior

ToM

Figure 2. Chain-of-thought agents allow humans to shape both
their outward behavior and internal reasoning.

A chain-of-thought (CoT) agent mimics how a human rea-
sons by engaging in an inner monologue. This type of agent
employs a policy 7(y, z | ) = mo(z | 2)m1(y | x, 2) that
first produces a (chain of) thought z before generating the
final output y. The thought z is not always revealed to
the human, but we assume it is expressed in natural lan-
guage and that the human has observed enough examples to
build a reasonable model of the thought-generation process.
This enables the human to predict the agent’s thought even

though it is latent. Being able to make these predictions
allows the human to plan communication signals that alter
the agent’s thought, thereby enabling them to influence the
agent’s behavior indirectly, in addition to directly regulating
its behavior.

Concretely, with a CoT agent, a human teacher can apply
the following strategies.

IL or RL on thought and output. The human uses
demonstrations or rewards to shape both z and y. They
may employ different types of feedback for each; for ex-
ample, y can be supervised with demonstrations and z with
rewards.

IL or RL on output only. Alternatively, the human can
view z as adaptable parameters of the policy and provide
demonstrations or rewards on y only. The agent can then
use gradient descent to search for the z that optimizes the
learning objective. In practice, when z is a language utter-
ance, techniques such as REINFORCE (Williams, 1992) are
needed to enable backpropagation through these discrete-
token parameters.

Context-based learning (CBL). Instead of letting the
agent generate 2z on its own, the human can provide the value
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of this variable for it. This strategy requires the agent’s 7y
to be pre-trained to generate good behaviors y conditioned
on human-provided z. The performance of this approach
on previously unseen z relies on the generalizability of the
pre-trained policy.

Interactive learning from activity description (ILIAD).
Developed by (Nguyen et al., 2021), this approach aims to
ensure consistency between z and y. If z is a flawed thought,
we want it to lead to an undesirable rather a good behavior
y (e.g., z = “make bad coffee” — y = actual bad coffee).
In general, z must always be an accurate description of y.
If this consistency holds for all 2, we only need to train the
agent to produce desirable thoughts (i.e., learning 7o (z | x)).
Due to the consistency guarantee, the output behavior will
also be desirable. The learning of 7y can be accomplished
via IL, RL, or CBL.

Suppose the agent has generated (z, y) for an input . The
human feedback in ILIAD is a modified thought 2’ that is
more consistent with y than z. Essentially, the human is
telling the agent “your thought should have been z' instead
of z if what you did was y.” For example, if z is the com-
mand “make coffee,” z is a correct plan for making coffee
(e.g., “First, I will get coffee...”’), and y is a sequence of
actions that produces tea, then the human feedback in this
case is a correct plan for making tea—one that faithfully
describes the actions y.

The feedback in IL on z, CBL, or ILIAD is essentially
language feedback, because it is taken from the space of
z, which, by definition of a CoT agent, is expressed in
language. Moreover, the feedback carries a mind-shaping
intention, as it aims to modify the agent’s original thought.
Hence, these three frameworks exemplify learning frame-
works that capture the nature of human communication,
distinguishing itself from traditional approaches like IL/ RL
on the output y only. We can see that these frameworks are
applicable thanks to the chain-of-thought cognitive architec-
ture. This underscores the necessity of a human-compatible

cognitive system to effectively support natural language
feedback.

5.3. Case 3: Agent with a language-guided world model
(Figure 3)

Following Zhang et al. (2024), we consider an agent that,
instead of reasoning in language, runs an actual optimiza-
tion process to plan its actions. Specifically, in addition to
a policy 7, the agent possesses a language-guided world
model T(s' | s, a; z), which is an approximation of the en-
vironment transition function 7" (recall that our formulation
assumes deterministic environments). In particular, the be-
havior of the model is controlled by textual context z € Z.
We will use 7., as a shorthand for T(-, -; z).

beh;vior Behavior shaping
behavior
N

@ D ToM

behavior
1

Figure 3. Agents that employ a world model for planning allow
humans to efficiently influence multiple behaviors at once by alter-
ing the agent’s world model.

We assume that the agent has access to the task reward func-
tion R(x,y).* Given a task z, the agent generates a solution
y as follows. First, it computes the optimal policy with re-
spect to its world model: 77 = max~, Ey~p_ . [R(z,y)].
where P+ is the distribution over solutions induced by
policy 7, and transition function 7. Next, it generates a

solution using this policy. With this process, the agent’s
world model effectively influences its behavior.

This cognitive process gives rise to a novel strategy for
controlling the agent’s behavior: adapting its world model
by modifying the textual context z. Note that presenting a
new z to the agent is essentially giving it language feedback.
This strategy mimics how humans influence others’ beliefs
about the world in conversations. As seen from the slipper-
floor example (§4), teaching by altering the world model is
remarkably efficient. In our particular formulation, the same
world model is used to compute the policy 7, for every
task z. Consequently, improving the accuracy of the world
model enhances the solution quality for all tasks at once.

We can further extend this type of agent by allowing it
to autonomously generate the world-model context z us-
ing a learned distribution p(z). This new variant behaves
similarly to a chain-of-thought agent: it generates its own
language parameters z and acts in accordance with them.
Consequently, in addition to modifying the world model,
we can employ all the strategies applicable to a CoT agent
to teach this agent.

6. What is next?

Our thesis implies that solving the problem of learning from
human language feedback is not solely a matter of designing
better learning algorithms, but also of designing the right
cognitive architectures to support them. In this endeavor,
the challenge is not only to imitate the human’s theory of

“This is a reasonable assumption in scenarios where this func-
tion can be expressed as a program (e.g., a video game, a pro-
gramming problem graded by unit tests, a math problem graded
by output only, a multiple-choice question).
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mind, but also to enable rigorous proofs of effectiveness,
efficiency, and inclusiveness. In this section, we highlight
several concrete challenges and research directions that can
potentially move us closer to this goal.

Build human-like cognitive systems with language-
guided, reusable modules. Because human reasoning has
been shaped by communication within the same species, the
most human-compatible cognitive system for Al agents will
closely mirror the human cognitive system itself. Although
the human cognitive system is not yet fully understood, re-
cent proposals such as (LeCun, 2022) and (Sumers et al.,
2023), grounded in prominent cognitive science theories,
offer promising starting points for further development.

Two additional principles are particularly important for this
endeavor. First, incorporating modules that are shared
across multiple cognitive processes can substantially in-
crease learning efficiency, as illustrated by the use of a
shared world model in the previous section. Second, model-
ing each module as a language-conditioned function enables
it to be adapted directly through language feedback, thereby
enhancing inclusiveness. In building language-modulated
systems, in addition to language-conditioned world models
(Lin et al., 2023; Nematollahi et al., 2025; Bruce et al., 2024,
Du et al., 2023; Zhou et al., 2024), prior work on language-
conditioned reward functions (Fu et al., 2019) offers valu-
able insights and techniques that future work can leverage.

Connect with the MDP framework to facilitate theoret-
ical guarantees. A well-formulated learning framework
should support rigorous theoretical analysis, enabling for-
mal proofs of effectiveness and efficiency. The classical
MDP framework and its derivatives provide a natural foun-
dation for two reasons. First, they have been extensively
analyzed, yielding a rich set of theoretical tools. Second,
their components align closely with the major human men-
tal states studied in cognitive science: for example, the
transition function corresponds to beliefs about the environ-
ment, the reward function reflects desires, and the policy
represents intentions.

However, most MDP-based formulations treat the agent as a
black box, without specifying its internal cognitive system.
The I-POMDP framework (Gmytrasiewicz & Doshi, 2005)
and related belief-inference models depart from this trend
by assigning explicit reasoning processes to agents. Yet
a full cognitive system—comprising multiple foundational
mental states analogous to those of humans—is still missing.
A central challenge for future work is to derive insightful
theoretical models for agents equipped with such human-
like cognitive systems. Taxonomies like ATOMS (Beaudoin
et al., 2020; Xie et al., 2023; Goyal et al., 2019; Kwon
et al., 2023) provide useful guidance regarding which mental
states to include.

Explore higher-order influence. Directly shaping an
agent’s behavior can be viewed as a zero-order teaching
intention, whereas altering its mental states to induce be-
havioral change is fundamentally first-order. Higher-order
teaching intentions involve influencing at least two interme-
diate mental states. Consider a process in which modifying
the policy for a particular task renders it suboptimal with
respect to the world model, prompting the world model to
adjust itself to remain consistent with the updated policy.
This, in turn, affects the policies of other tasks, which adapt
to stay optimal under the revised world model. In this way,
feedback directed at a single policy can efficiently adapt
many policies at once. Realizing this approach requires opti-
mization methods capable of propagating learning feedback
through complex cognitive processes involving multiple in-
termediate mental representations. Variational approaches
like (Eysenbach et al., 2022) offer fundamental principles
that could enable such propagation.

Adopt a dual-system architecture to enhance speed and
robustness. The second and third case studies in § 5 il-
lustrate two complementary types of cognitive systems:
one that reasons through language and another that rea-
sons through mathematical optimization. The language-
based system is fast and intuitive but may be fragile due
to its reliance on pattern-matching, while the optimization-
based system is more rigorous but computationally demand-
ing. Humans combine two analogous systems to enjoy the
strengths of both, a design known as the fast-and-slow archi-
tecture (Kahneman, 2011). We argue that future Al agents
could similarly benefit from such a dual architecture. The
central challenge is to coordinate the two systems effec-
tively: determining when each should make decisions and
how they should share and transfer knowledge.

Tackle the problem of inferring human intentions.
Thus far, we have focused exclusively on incorporating
human teaching intentions. In practice, however, these in-
tentions are rarely explicit; they must be inferred from lin-
guistic utterances that are often indirect, ambiguous, or
highly context-dependent. Equipping agents with strong
reasoning capabilities is therefore essential for robust com-
munication. The key challenges of this problem have been
examined extensively in position and survey papers (Bisk
et al., 2020; Fried et al., 2022; Hoffman et al., 2024; Fisac
et al., 2019). Addressing them will require integrating ad-
vances in language grounding, theory-of-mind modeling,
and continual learning into a unified framework capable of
reliably inferring and acting upon human intentions across
diverse real-world settings.
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Impact Statement

Learning from human feedback is increasingly central to the
deployment of Al systems in real-world settings, particu-
larly as these systems are expected to operate autonomously,
interact naturally with people, and adapt over time. Nat-
ural language feedback is an especially powerful form of
human input, as it allows users to efficiently convey in-
tentions, corrections, and high-level guidance. However,
current learning frameworks often treat language feedback
as an unstructured signal to be optimized against, without
accounting for the cognitive assumptions implicit in how
humans communicate. This gap limits both the effectiveness
and reliability of human—Al interaction.

This paper argues that to fully and safely harness natural
language feedback, Al agents must be equipped with human-
compatible cognitive systems—internal representations and
processes that humans can naturally reason about and in-
tentionally influence through language. By grounding this
claim in insights from cognitive science and formal learning
frameworks, the paper reframes language-based alignment
not merely as an algorithmic challenge, but as a systems-
level design problem. This perspective helps explain why
existing approaches to learning from language feedback of-
ten plateau or behave unpredictably, and it offers principled
guidance for building more robust and interpretable agents.

The ideas presented here have several positive potential im-
pacts. First, they encourage the development of Al systems
that are easier for humans to teach, correct, and collabo-
rate with, reducing the cognitive and operational burden
on users. Second, by emphasizing cognitive transparency
and structured internal representations, the framework sup-
ports more reliable generalization to novel situations, which
is critical for safety-critical and high-stakes applications.
Third, the paper provides a conceptual foundation for unify-
ing disparate strands of research—including reinforcement
learning, imitation learning, language-based supervision,
and cognitive architectures—under a common theoretical
lens.

At the same time, increased human-compatibility also raises
important considerations. Systems that are designed to be
highly responsive to language feedback must be carefully
evaluated to ensure that they do not over-interpret ambigu-
ous instructions, amplify human errors, or become suscepti-
ble to unintended manipulation. The framework presented
in this paper makes these risks more explicit by tying them
to specific cognitive assumptions, thereby enabling more
targeted evaluation and mitigation strategies.

Overall, this work aims to advance the scientific founda-
tions of human-AlI alignment by clarifying what it means
for an agent to meaningfully incorporate natural language
feedback. By shifting attention from surface-level learn-

ing signals to the underlying cognitive systems that support
communication, the paper seeks to enable Al systems that
are not only more capable, but also more understandable,
controllable, and beneficial to the humans they serve.
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Table 2. Comparison of the three most popular learning frameworks along the three desiderata outlined in §2.

Framework

Effectiveness

Efficiency

Inclusiveness

Imitation Learn-

Optimality  convergence

Highly efficient in terms

Low: restricted to in-

ing (IL) guarantee derives from of number of interactions structive or corrective
gradient-based optimiza- as demonstrations are in- demonstrations
tion theory; empirically formation rich; however,
fast to converge to near- can be viewed as inefficient
optimality since demonstrations may
require substantial effort to
obtain (e.g., self-driving car
domain)
Reinforcement Optimality convergence Due to low-information re- Low: limited to numeri-
Learning (RL) guarantee derives from wards, often inefficient in  cal feedback
gradient-based optimiza- terms of number of inter-
tion theory; in practice, actions in problems with
often not able to converge large search space; but
to near-optimality when rewards can be generally
search space is large (e.g., cheaper to provide than
problems with language demonstrations in certain
output) applications
Context-Based Convergence relies on Highly efficient in terms High: supports free-
Learning (CBL) model generalizability, of spoken information bits ~ form natural language;
which is theoretically (but only within reachable allows wide range of hu-
poorly understood in performance range, which man teaching strategies
oudt-of-distribution cases; can be far from optimality)
empirically, improvement
saturates after a few rounds
of revisions
A. Appendix
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