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Abstract

Increasing attention has been placed on improving the rea-001
soning capacities of multi-modal large language models002
(MLLMs). As the cornerstone for AI agents that function in003
the physical realm, video-based visual-spatial intelligence004
(VSI) emerges as one of the most pivotal reasoning capa-005
bilities of MLLMs. This work conducts a first, in-depth006
study on improving the visual-spatial reasoning of MLLMs007
via R1-Zero-like training. Technically, we first identify that008
the visual-spatial reasoning capacities of small- to medium-009
sized Qwen2-VL models cannot be activated via Chain of010
Thought (CoT) prompts. We then incorporate Group Rel-011
ative Policy Optimization (GRPO) training for improved012
visual-spatial reasoning, using the carefully curated VSI-013
100k dataset, following DeepSeek-R1-Zero. During the in-014
vestigation, we identify the necessity to keep the KL penalty015
(even with a small value) in GRPO. With just 120 GPU016
hours, our vsGRPO-2B model, fine-tuned from Qwen2-VL-017
2B, can outperform the base model by 12.1% and surpass018
GPT-4o. Moreover, our vsGRPO-7B model, fine-tuned from019
Qwen2-VL-7B, achieves performance comparable to that of020
the best open-source model LLaVA-NeXT-Video-72B. Addi-021
tionally, we compare vsGRPO with supervised fine-tuning022
and direct preference optimization baselines in terms of023
both spatial and general abilities. Our observations indi-024
cate that GRPO training achieves significant performance025
superiority while effectively balancing spatial and general026
capabilities.027

1. Introduction028

Recently, Large Language Models (LLMs) [1–3, 11, 32]029
have emerged as a significant advancement in AI. These030
models take text as input and generate corresponding re-031
sponses, demonstrating strong generalization capabilities032
in various language tasks. To extend their capabilities to033
the multimodal domain, researchers have developed Mul-034
timodal Large Language Models (MLLMs) [9, 23, 30, 34,035
40, 48] based on pre-trained LLMs. They not only take text036
but also images and videos as inputs and generate textual re-037

sponses, serving as the foundation for various applications, 038
including multi-modal understanding [23, 34], visual lan- 039
guage agents [15, 36], autonomous driving [26, 37], etc. 040

The exhaustive understanding of multi-modal observa- 041
tions hinges on advanced reasoning capability, which has 042
spurred growing interest in investigating reasoning mecha- 043
nisms within MLLMs. This trend mirrors concurrent ad- 044
vancements in vanilla LLMs [22, 35, 38, 44]. As the foun- 045
dation for AI agents [5, 42] operating in the physical world, 046
the video-based visual-spatial reasoning stands out as one 047
of the most crucial capacities of MLLMs, enabling appli- 048
cations in embodied AI [20, 21] and autonomous driving. 049
However, VSI-bench [41] demonstrates that, although an 050
MLLM exhibits strong video understanding and linguistic 051
reasoning capabilities, its spatial reasoning abilities are still 052
developing, and even the state-of-the-art models lag sig- 053
nificantly behind human performance. This highlights the 054
necessity of enhancing the spatial reasoning capabilities of 055
MLLMs. 056

This work conducts a systematic study on improving 057
the visual-spatial reasoning capacities of MLLMs based 058
on R1-Zero-like training. Focusing on the Qwen2-VL 059
models [34], we first perform an initial study to evaluate 060
the performance of Qwen2-VL regarding whether simple 061
reasoning-oriented prompts can activate the visual-spatial 062
reasoning capacities. We are concerned about Chain of 063
Thought (CoT) strategies [38] due to their previous success. 064
However, we find that vanilla non-CoT prompts perform the 065
best for small- to medium-sized Qwen2-VL on VSI-bench, 066
compared to various CoT ones. This exposes the issue that 067
such models cannot trade inference FLOPs for improved 068
visual-spatial reasoning. 069

We naturally choose to improve MLLMs on visual- 070
spatial reasoning data. Although some prior works have 071
proposed visual-spatial datasets, they primarily focus on the 072
image domain [6, 7, 23]. As a result, there is an urgent need 073
for a large-scale video-based visual-spatial dataset to facil- 074
itate advancements in training MLLMs that can understand 075
and reason about dynamic visual content. Considering this, 076
we construct a video-based question answering dataset of 077
more than 100k samples, VSI-100k, following the proto- 078
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col of VSI-bench. Specifically, we leverage ScanNet [10]079
to get high-fidelity video scans accompanied by meticu-080
lous object-level 3D annotations, based on which (question,081
answer) pairs regarding spatial information can be easily082
crafted.083

Given the dataset, we follow the journey of DeepSeek-084
R1-Zero [14], which has demonstrated that simple rule-085
based reinforcement learning can activate LLMs to au-086
tonomously develop complex reasoning capabilities. We087
decide to extend Group Relative Policy Optimization088
(GRPO) to improve the visual-spatial reasoning capaci-089
ties of Qwen2-VL. Specifically, following common prac-090
tice [8, 14, 47], we define the rule-based reward function091
based on the alignment between the model prediction and092
the ground-truth answer to perform GRPO [29]. We also093
include a format reward when trying to activate the CoT094
reasoning behavior.095

Experiments using GRPO on VSI-100k turns the096
pretrained Qwen2-VL-2B model into the performant097
vsGRPO-2B within just 120 GPU hours. We observe that098
vsGRPO-2B outperforms the base model by 12.1% and099
even surpasses GPT-4o. The same pipeline also transforms100
the Qwen2-VL-7B model into vsGRPO-7B, achieving per-101
formance similar to that of the best open-source model with102
72B parameters. During GRPO training, we have identi-103
fied the necessity to keep the KL penalty (even with a small104
value) in the training of GRPO and observed phenomena105
such as reward hacking. We also compare GRPO with su-106
pervised fine-tuning (SFT) and direct preference optimiza-107
tion (DPO) [27] in terms of both spatial and general abili-108
ties, and confirm the superiority of GRPO in improving the109
visual-spatial reasoning capacities of Qwen2-VL while bal-110
ancing between these two aspects.111

In summary, our key contributions are listed as follows:112

• We propose VSI-100k, the first dataset of video-based113
visual-spatial question-answer pairs and will release it to114
contribute to the spatial understanding and reasoning of115
MLLMs.116

• We apply GRPO to enhance visual-spatial understanding117
in Qwen-VL, with vsGRPO-2B outperforming GPT-4o118
and vsGRPO-7B achieving competitive results with the119
top open-source 72B model.120

• We identify the necessity of KL penalty and the reward121
hacking phenomenon in GRPO training, providing a thor-122
ough comparison with other methods like SFT and DPO.123

2. Related Works124

2.1. Multimodal Large Language Models125

In recent years, large language models (LLMs) such as126
GPT-4 [2], LLaMA [32], and Qwen [1] have demonstrated127
impressive text generation capabilities. They leverage vast128
amounts of data in training to produce coherent and con-129

textually relevant text. Building on the architecture of 130
LLMs, multimodal large language models (MLLMs) have 131
emerged, enabling the processing of various input modal- 132
ities, primarily images and videos. This capability allows 133
MLLMs to excel in vision tasks, bridging the gap between 134
textual and visual information. Pioneering models such as 135
the LLaVA series [19, 23], the Qwen-VL series [4, 34], 136
and the InternVL series [9, 48] have driven this advance- 137
ment, demonstrating significant improvements in tasks like 138
image captioning, cross-modal retrieval, visual language 139
agents [15, 36] and autonomous driving [26, 37]. 140

2.2. Multimodal Large Language Model Reasoning 141

Inspired by recent advancements in LLM reasoning [22, 33, 142
38], numerous studies have aimed to enhance the reasoning 143
capabilities of MLLMs [25, 43, 46]. For instance, some 144
previous works [40] have developed SFT datasets that in- 145
corporate step-level reasoning, yet these datasets often lack 146
sufficient human involvement, which limits their effective- 147
ness in addressing complex reasoning tasks. Additionally, 148
some concurrent studies [12, 45] utilize group relative pol- 149
icy optimization from DeepSeek-R1 [14] to further bolster 150
general reasoning abilities. Distinct from these works, our 151
study focuses on the spatial understanding and reasoning 152
capabilities of MLLMs and provides a thorough analysis of 153
various training methods. 154

2.3. Spatial Understanding and Reasoning 155

With the emergence of AI agents [5, 42], spatial understand- 156
ing and reasoning have gained even more significance in 157
multi-modal large language models (MLLM), proving to be 158
valuable across various fields. In response, VSI-bench [41] 159
is proposed to measure these abilities, focusing on aspects 160
such as spatial relations and object size. For training, some 161
prior works have proposed related datasets. For example, 162
VSR [23] offers a dataset focused solely on spatial relations, 163
while SpatialVLM [7] presents an internet-scale 3D spatial 164
reasoning dataset in metric space, though it is not publicly 165
available. More recently, SAT [28] introduces a simulated 166
spatial aptitude training dataset, synthesized using a photo- 167
realistic physics engine. However, they face challenges due 168
to their reliance on image-based data, issues of validity, or 169
synthetic nature. A concurrent work, VisualThinker-R1- 170
Zero [47], shares a similar idea but is based on the SAT 171
dataset and overlooks video-based visual-spatial abilities. 172
Our work is grounded in constructing data from real-world 173
dynamic scenarios and leverage it to improve video-based 174
visual-spatial ability. 175

3. Can Visual-spatial Reasoning Capacities Be 176

Activated by Prompting? 177

We initiate by evaluating Qwen2-VL [34] on the VSI- 178
bench [41] with various prompting strategies. 179
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Table 1. Quantitative comparisons of different prompting strategies on Qwen2-VL-2B and Qwen2-VL-7B on VSI-bench.

Backbone Methods Avg
Obj.

Count
Abs.
Dist.

Obj.
Size

Room
Size

Rel.
Dist.

Rel.
Dir.

Route
Plan.

Appr.
Order

Qwen2-
VL-2B

Think-mode 22.9 18.4 4.3 31.5 17.3 28.3 22.9 26.2 16.8
Observe-mode 21.8 16.8 1.7 32.7 22.7 28.8 27.6 26.2 18.1
Vanilla-mode 23.3 21.4 3.4 32.3 31.1 26.7 27.7 24.7 18.9

Qwen2-
VL-7B

Think-mode 31.3 44.8 26.1 25.3 23.4 34.7 30.9 32.9 31.5
Observe-mode 32.0 29.9 19.0 39.6 32.0 34.6 40.0 36.0 24.4
Vanilla-mode 32.2 39.4 25.0 25.8 43.2 32.6 30.9 27.8 32.6

Concretely, the VSI-bench includes two types of180
question-answer problems:181

• Numerical Answer (NA), including tasks such as object182
count, absolute distance measurement, object size evalu-183
ation, and room size assessment;184

• Multiple-Choice Answer (MCA), including tasks related185
to relative distance, relative direction, route planning, and186
appearance order.187

To evaluate the reasoning capacities of Qwen2-VL on188
this dataset, we consider two CoT prompting strategies: the189
widely adopted think-mode, where the model first thinks190
and then replies to the question, and the observe-mode,191
where the model first observes the input video and then192
replies. The latter follows a human-like pattern and has193
been explored in related works [39]. We also include a non-194
CoT vanilla-mode, the default mode in the original evalua-195
tion, for comparison. Here is a summarization of them:196

• Think-mode: Let’s think step by step197
and then answer the question using a198
single word or phrase.199

• Observe-mode: Please observe the video200
first and then answer the question201
using a single word or phrase.202

• Vanilla-mode: Please answer the question203
using a single word or phrase.204

CoT prompting is ineffective for small- to medium-205
sized Qwen2-VL on VSI-bench. As shown in Table 1, de-206
spite longer responses, think-mode and observe-mode un-207
derperform the simple vanilla-mode. Namely, small- to208
medium-sized Qwen2-VL cannot trade inference FLOPs209
for improved visual-spatial reasoning.210

We visualize some output examples given by Qwen2-211
VL-2B in Figure 1. We see that the model can actually212
understand the instructions for activating thinking, but the213
final answer is still wrong, the same as that of the vanilla214
prompting. From the exposed chain of thoughts, we realize215
that the error may arise from the failure to perceive the sofa216
in the video.217

4. R1-Zero-like Training for Visual-spatial 218

Reasoning 219

Given the above observations, we realize it is necessary to 220
fine-tune the Qwen2-VL models for improved visual-spatial 221
reasoning. Typically, we opt to focus on Group Relative 222
Policy Optimization (GRPO) [29] given its success in build- 223
ing DeepSeek-R1-Zero. 224

4.1. Training Data Construction 225

We first create a video-based question-answering dataset 226
named VSI-100k for visual-spatial reasoning. It consists 227
of more than 100k samples and follows the VSI-bench pro- 228
tocol. Specifically, we utilize ScanNet [10] to obtain high- 229
fidelity video scans that come with detailed object-level 3D 230
annotations. These annotations provide rich spatial context, 231
enabling us to generate (question, answer) pairs that are di- 232
rectly related to spatial information. 233

Specifically, we construct questions regarding seven top- 234
ics, including object count, relative direction, object size, 235
absolute distance, room size and relative distance. We leave 236
the other two topics in VSI-bench, route planning and ap- 237
pearance order, held out. This corresponds to two reasons: 238
1) (question, answer) pairs of this topic cannot be simply 239
constructed given rarely the static 3D information, which 240
implies that expensive annotation or complex pipeline can 241
be required; 2) with this, we can test the task generalization 242
ability of the trained models. For the NA type problems, we 243
implement a question template similar to that used in [41]. 244
For the MCA one, we simplify the question format by re- 245
moving the options. This adjustment enhances the model’s 246
capacity to recognize entity correspondence instead of sim- 247
ply matching symbols. Some examples are provided in Fig- 248
ure 2. 249

We provide a brief introduction to the dataset construc- 250
tion methods for various tasks: 251

• Object Count: directly leverage the object labels included 252
in the annotations document, yielding a total of 6.4k sam- 253
ples; 254

• Relative Distance: fix one targeted object and compute 255
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Video:

Question: Measuring from the closest point of each object, which of these objects (stove, tv, table, 
sofa) is the closest to the stool?
Options: A. stove  B. tv  C. table  D. sofa

Vanilla-mode: C

Think-mode: 
To determine which object is the closest to the stool, let's analyze the positions of the 

objects in the video:
1. The stove is located on the left side of the kitchen.
2. The TV is located on the right side of the kitchen. 
3. The table is located in the center of the kitchen.
4. The sofa is not visible in the video. 
Given this information, the closest object to the stool is the table. So, the correct answer is: 

C. table.

Figure 1. Comparison between the vanilla-mode and think-mode predictions. We use green to label the correct answers and red to indicate
incorrect generations. We observe that while using think-mode allows the model to leverage more tokens during generation and initiate the
reasoning process in the answer, it still produces the same incorrect response as the vanilla mode. This indicates that Qwen2-VL cannot
trade inference FLOPs for improved visual-spatial reasoning.

the absolute distance between it and four other objects to256
estimate relative distance, yielding 13k samples;257

• Object Size: leverage the 3D bounding box to compute258
the longest dimension of the object, yielding a total of259
13k samples;260

• Absolute Distance: first remove objects that appear mul-261
tiple times to ensure specification preciseness, and then262
calculate the distance between geometric centers of vari-263
ous 3D point-cloud objects, obtaining 75k samples;264

• Room size: use the alpha shape algorithm1 to the total265
1.5k scenes, resulting in 1.5k samples.266

• Relative Direction: select one object as the front and de-267
termine the relative direction of two objects based on their268
geometric centers of point clouds, getting a total of 8k269
samples.270

4.2. GRPO271

GRPO is a type of reinforcement learning (RL) that elimi-272
nates the critic model to reduce training costs. Specifically,273
a group of generated output set {o1, o2, · · · , oG} is sampled274
for each question q from policy model πθold . Then GRPO275

1https://en.wikipedia.org/wiki/Alpha_shape

optimizes the model πθ using the following objective: 276

JGRPO(θ) = Eq∼P (Q), {oi}Gi=1∼πθold
(O|q)[

1

G

G∑
i=1

min
( πθ(oi | q)
πθold(oi | q)

Ai,

clip
( πθ(oi | q)
πθold(oi | q)

, 1− ε, 1 + ε
)
Ai

)
− β DKL

(
πθ

∥∥πref

)]
,

(1) 277

The reward r guides the direction of the training process 278
and is crucial. We adhere to [8, 24] of using format rewards 279
and accuracy rewards, but with necessary modifications. 280
Format Reward. Although the CoT prompts are useless 281
for the small-sized Qwen2-VL-2B in inference time, we 282
still wonder if training with them is beneficial for GRPO. 283
As a result, following recent progress in the community, we 284
consider three training prompts for GRPO: 285
• Think-mode: Please think step by step 286
and enclose your thinking process in 287
<think> </think> tags and then provide 288
the short answer with one or two words 289
or a number in <answer> </answer>. 290
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Object Size
Question: What is the length of the longest dimension 
(length,width, or height) of the coffee table, measured in 
centimeters?
Answer:  113

Object Count
Question: How many trash can(s)in the room?

Answer:  3

Room Size
Question: What is the size of this room (in square meters)?

Answer:  47.9

Relative Direction
Question: If I am standing by the shelf and facing the 
shower is the bicycle to the left or the right of the shower?

Answer:  left

Absolute Distance
Question: What is the distance between the shower and 
the kitchen counter (in meters)?

Answer:  6.1

Relative Distance
Question: Which of these objects (sink, pillow, bed, guitar) 
is the closest to the bicycle?

Answer:  sink

Video:

Figure 2. Illustrations of the VSI-100k. We focus on six subtasks: object counting, relative direction, object size, absolute distance, room
size, and relative distance. For each question type, we present one example, accompanied by a video.

• Observe-mode: Please observe carefully291
and analyze what you see that helps292
you to solve the question in the video293
and enclose it in <observe> </observe>294
tag, and then provide the short answer295
with one or two words or a number in296
<answer> </answer>.297

• Vanilla-mode: Please provide the short298
answer with one or two words or a299
number.300
The format reward quantifies how the responses follow301

the specified format. It returns a score of 1 or 0. Note that302
such a reward is omitted for the vanilla-mode.303
Accuracy Reward. In the case of non-NA tasks, we304
employ a character matching method to assess accuracy,305
awarding a score of 1 for a match and 0 for a mismatch. For306
NA tasks, we develop a function that computes the absolute307
difference between the true value and the predicted one and308
divides the result by the minimum of the two values.309

Experimental Settings. Unless specified otherwise, we310
use Qwen2-VL-2B/7B as the base models due to resource311
constraints. For training, we employ LoRA [16] training312
with a learning rate of 10−5 for Qwen2-VL-2B with only313
120 A800 GPU hours and 5× 10−6 for Qwen2-VL-7B. To314
ensure robust performance, we conduct 14 rollouts for each315
question, allowing for a thorough exploration of possible316
responses. We set the default sampling temperature to 1317

to maintain a balance between creativity and coherence in 318
the generated outputs. The KL divergence coefficient β is 319
configured to 0.0001 as the default setting. 320

4.3. Results and Analyses 321

4.3.1. Main Results 322

Let vsGRPO-T, vsGRPO-O, and vsGRPO-V denote the 323
GRPO training on VSI-100k with prompts of think-mode, 324
observe-mode, and vanilla-mode respectively. We evaluate 325
them with the corresponding test prompts by default. Given 326
the studies in the previous section, we also test the trained 327
models with vanilla-mode prompts. 328

As shown in Table 2, for models based on Qwen-VL- 329
2B, all GRPO fine-tuned models improve over the baseline. 330
Besides, for the models trained with CoT prompting strate- 331
gies, their CoT test performance outperforms vanilla one. 332
This indicates that GRPO training can effectively enhance 333
the model’s long reasoning capabilities. We present an ex- 334
ample in Figure 3. We notice that, despite receiving explicit 335
instructions to utilize CoT reasoning and appropriate tags, 336
Qwen2-VL-2B struggles to adhere to them and tends to pro- 337
vide short answers. With think-mode prompting trained us- 338
ing GRPO, the model can correctly apply the tags and ini- 339
tiate a more structured reasoning process. This also proves 340
the effectiveness and stability of GRPO in enhancing the 341
model’s reasoning capabilities. 342
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Table 2. Quantitative results on VSI-bench. vsGRPO-T, vsGRPO-O, and vsGRPO-V refer to GRPO training on VSI-100k with prompts of
think-mode, observe-mode, and vanilla-mode respectively. V, T, and O in the Eval. Mode column refer to using vanilla-mode, think-mode,
and observe-mode prompts for evaluation, respectively. We also present the best performance of open-source models under the specific
model size, like LLaVA-NeXT-Video [19] (LNV for short) and InternVL2 [9] (IVL2 for short), and close-source ones like GPT-4o [18]
and Gemini-1.5 Pro [31].

Methods
Eval.
Mode Avg

Obj.
Count

Abs.
Dist.

Obj.
Size

Room
Size

Rel.
Dist.

Rel.
Dir.

Route
Plan

Appr.
Order

Open-source

Qwen2-VL-2B V 23.3 21.4 3.4 32.3 31.1 26.7 27.7 24.7 18.9
+ SFT V 29.6 29.6 23.5 47.4 33.5 26.9 28.3 28.8 18.6
+ DPO V 23.9 21.7 3.7 34.8 32.4 27.1 28.5 24.2 18.6
+ vsGRPO-T V 26.1 24.7 10.7 37.4 36.2 27.3 29.5 25.7 17.9
+ vsGRPO-O V 28.0 26.2 16.4 44.8 38.2 27.0 29.3 24.2 18.2
+ vsGRPO-T T 29.6 35.0 28.2 34.7 25.2 28.0 38.5 28.5 18.7
+ vsGRPO-O O 31.2 34.6 22.5 44.8 33.7 29.4 41.8 26.8 15.8
+ vsGRPO-V V 35.4 53.6 29.0 52.7 43.4 28.1 30.9 26.8 18.9

Qwen2-VL-7B V 32.2 39.4 25.0 25.8 43.2 32.6 30.9 27.8 32.6
+ SFT V 38.1 44.7 27.6 46.1 50.4 34.0 35.7 33.0 33.4
+ DPO V 32.6 39.1 25.2 26.5 44.2 32.6 30.9 29.3 33.3
+ vsGRPO-V V 40.7 59.9 29.6 50.8 48.3 35.4 35.6 34.0 31.5

IVL2-2B V 27.4 21.8 24.9 22.0 35.0 33.8 44.2 30.5 7.1
LNV-7B V 35.6 48.5 14.0 47.8 24.2 43.5 42.4 34.0 30.6
IVL2-40B V 36.0 34.9 26.9 46.5 31.8 42.1 32.2 34.0 39.6
LNV-72B V 40.9 48.9 22.8 57.4 35.3 42.4 36.7 35.0 48.6

Close-source

GPT-4o V 34.0 46.2 5.3 43.8 38.2 37.0 41.3 31.5 28.5
Gemini-1.5 Pro V 48.8 49.6 28.8 58.6 49.4 46.0 48.1 42.0 68.0

Notably, directly applying the vanilla-mode prompting343
strategy yields the best performance improvements, partic-344
ularly for NA questions, and even outperforms GPT-4o. We345
refer to this model as vsGRPO-2B by default. This under-346
scores the conclusion that CoT prompting is ineffective for347
the small-sized Qwen2-VL-2B on the VSI-bench.348

In terms of Qwen2-VL-7B, we only tried vsGRPO-V349
considering the above results. We observe that vsGRPO-V350
performs the best on two subtasks—object count and abso-351
lute distance. Moreover, the test performance on the Route352
Planning is also improved, similar to the 2B case. This is353
possibly because the Route Planning can be divided into354
sub-tasks that include relative direction, indicating inter-355
task generalization. With only 7B model size, we note that356
our model shows performance comparable to that of the357
leading open-source model, LLaVA-NeXT-Video-72B [19].358

4.3.2. Importance of KL Penalty359

The KL penalty term plays a crucial role in regulating the360
divergence between the online policy and the frozen ref-361

erence one. It avoids the model straying too far from the 362
initial point. While some works [24, 45] advocate for re- 363
moving the KL penalty to enhance performance, we have 364
observed that doing so can easily lead to training collapse, 365
as illustrated in Figure 4. In contrast, introducing a positive 366
β (even very small, such as 0.0001) can effectively address 367
this issue. This may be attributed to the specific nature of 368
VSI reasoning problems. 369

4.3.3. Reward Hacking 370

During training, we observed that the model occasionally 371
discovers strategies to achieve high rewards that do not align 372
with our original intentions. For example, when training in 373
think-mode, some rollouts share the structure: <think> 374
There are [number] [object] in the 375
room</think> <answer>[number]</answer> 376
in the object count task. We also encountered some extreme 377
samples in the rollouts, such as <think> </think> 378
<answer>xx</answer>. While this format is tech- 379
nically correct, it represents a failure to demonstrate a 380
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Video：

Question：You are a robot beginning at the door and facing the stool. You want to navigate to the bed. You 
will perform the following actions …:
1. Go forward until the stool    2. [please fill in] 
3. Go forward until the bed.    You have reached the final destination.
Options:  A. Turn Left  B. Turn Back  C. Turn Right
Instruction: Please think step by step and enclose your thinking process in <think> </think> tags and then 
provide the short answer with one or two words or a number in <answer> </answer>.

Qwen2-VL-2B：<answer> B. Turn Back </answer>

vsGRPO-T-2B：<think> The goal is to navigate from the door to the bed. I have already turned left and 
am now facing the stool. I need to turn right to reach the bed. </think>\n<answer> turn right </answer>

Figure 3. A comparison between Qwen2-VL-2B and its trained variant, vsGRPO-T-2B. We select the route planning question type, given
that the training dataset does not include this category.

Figure 4. The format reward curve of β = 0 and β = 0.0001
during training.

genuine thinking process. This phenomenon is reminiscent381
of observations made in VisualThinker-R1-Zero [47]. In382
response to this issue, we decided to incorporate a length383
reward function as a mitigation strategy. However, we384
soon realized that some new generations merely added385
extra <think></think> and <answer></answer>386
tags to exploit the length reward. This approach also does387
not contribute to a meaningful thinking process. So, more388
reasonable reward functions should be explored.389

4.3.4. Dynamics of Various Rewards390

As shown in Figure 5, during the GRPO training, the format391
reward converges to 1 quickly, while the accuracy reward392
increases more slowly. This phenomenon suggests that the393

Figure 5. The curve of the format reward (blue), the accuracy re-
ward curve of one subtask of VSI-100k (red), and the total reward
curve (yellow) during GRPO training.

format is more easily learned than spatial knowledge. We 394
also notice that there appears to be an upper bound for the 395
accuracy reward, indicating that although GRPO can en- 396
hance spatial reasoning abilities, there may be inherent lim- 397
itations to the extent of improvement achievable. This sug- 398
gests the need for further exploration into alternative meth- 399
ods or additional training paradigms that could push these 400
boundaries and lead to even greater advancements in spatial 401
reasoning tasks. 402

4.3.5. Comparison to Other Training Approaches 403

We also compare our approach with commonly used fine- 404
tuning algorithms, SFT and DPO [27], in Table 2. For SFT, 405
we directly use the constructed VSI-100k for tuning. For 406
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Table 3. General understanding and reasoning ability with different training methods. We use VideoMMMU (16 frames) as the video
reasoning benchmark and VideoMME as the video general benchmark.

Metrics VideoMMMU VideoMME
Qwen2-VL-2B Qwen2-VL-7B Qwen2-VL-2B Qwen2-VL-7B

Base 32.3 43.1 49.6 50.9
SFT 30.7 42.7 49.3 41.8
DPO 32.2 43.7 48.8 50.9

vsGRPO-V 31.7 43.0 49.1 45.6

DPO, the correct answer is modified to a wrong one to serve407
as the less-preferred answer. As shown, the two approaches408
both improve over the base model on the VSI-bench, but409
still lag behind vsGRPO-V. Besides, the improvement of410
DPO is minor, which is perhaps because of the sub-optimal411
preference pair construction.412

In addition to spatial understanding and reasoning abil-413
ities, we also consider general understanding and reason-414
ing abilities when training with different methods using415
visual-spatial data. To evaluate this, we leverage VideoM-416
MMU [17] and VideoMME [13] benchmarks following the417
setting in [12], shown in Table 3. Combining with the re-418
sults in Table 2, we find that, although DPO training does419
not result in a significant decline in general understand-420
ing and reasoning abilities, it fails to improve spatial abil-421
ity. This suggests that using DPO training to inject new422
knowledge into the models may not be the most effective423
approach for enhancing spatial reasoning skills. In con-424
trast, when applying SFT and GRPO, while there is a no-425
table improvement in spatial ability, there is also a corre-426
sponding drop in general understanding and reasoning per-427
formance. This trade-off reveals a critical challenge in bal-428
ancing the enhancement of specific skills with the main-429
tenance of overall cognitive capabilities. Besides, GRPO430
demonstrates a smaller overall decline in general under-431
standing and reasoning compared to SFT. This finding high-432
lights the advantages of GRPO, particularly when training433
with visual-spatial data, suggesting that it may better pre-434
serve broader general abilities while still achieving targeted435
improvements in specific abilities like spatial understanding436
and reasoning.437

5. Conclusion438

In this work, we center on the video-based visual-spatial in-439
telligence of MLLMs. Using Qwen2-VL as the base model,440
we identify that the visual-spatial reasoning capacities of441
Qwen2-VL-2B/7B cannot be activated via CoT prompts.442
We construct VSI-100k to combat data scarcity and adapt443
GRPO training. Extensive experiments demonstrate that444
vsGRPO-2B and vsGRPO-7B outperform models of the445
same size in spatial understanding and reasoning ability,446

and also indicate that the GRPO approach achieves greater 447
improvements in visual-spatial ability while experiencing a 448
smaller drop in general ability when trained with domain- 449
specific data in comparison to SFT and DPO. 450

6. Limitation & Future Work 451

During the application of GRPO to spatial reasoning, we 452
made necessary modifications to the reward functions de- 453
rived from the LLM model, DeepSeek-R1, resulting in im- 454
pressive outcomes. It is natural to introduce additional re- 455
ward functions specifically tailored for visual and temporal 456
aspects of video-based visual-spatial reasoning, which we 457
did not explore in this study. In the future, we aim to inves- 458
tigate these additional reward functions to further enhance 459
the model’s performance in visual-spatial tasks, ultimately 460
leading to more robust reasoning capabilities. 461

References 462

[1] Qwen2 technical report. 2024. 1, 2 463
[2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah- 464

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, 465
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. 466
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 467
2023. 2 468

[3] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin John- 469
son, Dmitry Lepikhin, Alexandre Passos, Siamak Shakeri, 470
Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 471
technical report. arXiv preprint arXiv:2305.10403, 2023. 1 472

[4] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan 473
Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren 474
Zhou. Qwen-vl: A frontier large vision-language model with 475
versatile abilities. arXiv preprint arXiv:2308.12966, 2023. 2 476

[5] Amir Bar, Gaoyue Zhou, Danny Tran, Trevor Darrell, and 477
Yann LeCun. Navigation world models. arXiv preprint 478
arXiv:2412.03572, 2024. 1, 2 479

[6] Wenxiao Cai, Iaroslav Ponomarenko, Jianhao Yuan, Xiaoqi 480
Li, Wankou Yang, Hao Dong, and Bo Zhao. Spatialbot: 481
Precise spatial understanding with vision language models. 482
arXiv preprint arXiv:2406.13642, 2024. 1 483

[7] Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa 484
Sadigh, Leonidas Guibas, and Fei Xia. Spatialvlm: Endow- 485
ing vision-language models with spatial reasoning capabili- 486
ties. In Proceedings of the IEEE/CVF Conference on Com- 487

8



ICCV
#7

ICCV
#7

ICCV 2025 Submission #7. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

puter Vision and Pattern Recognition, pages 14455–14465,488
2024. 1, 2489

[8] Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and Vinci.490
R1-v: Reinforcing super generalization ability in vision-491
language models with less than $3. https://github.492
com/Deep-Agent/R1-V, 2025. Accessed: 2025-02-02.493
2, 4494

[9] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen,495
Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu,496
Lewei Lu, et al. Internvl: Scaling up vision foundation mod-497
els and aligning for generic visual-linguistic tasks. In Pro-498
ceedings of the IEEE/CVF conference on computer vision499
and pattern recognition, pages 24185–24198, 2024. 1, 2, 6500

[10] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-501
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:502
Richly-annotated 3d reconstructions of indoor scenes. In503
Proceedings of the IEEE conference on computer vision and504
pattern recognition, pages 5828–5839, 2017. 2, 3505

[11] Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong506
Qiu, Zhilin Yang, and Jie Tang. Glm: General language507
model pretraining with autoregressive blank infilling. In Pro-508
ceedings of the 60th Annual Meeting of the Association for509
Computational Linguistics (Volume 1: Long Papers), pages510
320–335, 2022. 1511

[12] Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yib-512
ing Wang, Tianshuo Peng, Benyou Wang, and Xiangyu Yue.513
Video-r1: Reinforcing video reasoning in mllms. arXiv514
preprint arXiv:2503.21776, 2025. 2, 8515

[13] Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai516
Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou, Yunhang517
Shen, Mengdan Zhang, et al. Video-mme: The first-ever518
comprehensive evaluation benchmark of multi-modal llms in519
video analysis. arXiv preprint arXiv:2405.21075, 2024. 8520

[14] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,521
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi522
Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning523
capability in llms via reinforcement learning. arXiv preprint524
arXiv:2501.12948, 2025. 2525

[15] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu,526
Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, Yuxiao527
Dong, Ming Ding, et al. Cogagent: A visual language model528
for gui agents. In Proceedings of the IEEE/CVF Conference529
on Computer Vision and Pattern Recognition, pages 14281–530
14290, 2024. 1, 2531

[16] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-532
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen, et al.533
Lora: Low-rank adaptation of large language models. ICLR,534
1(2):3, 2022. 5535

[17] Kairui Hu, Penghao Wu, Fanyi Pu, Wang Xiao, Yuanhan536
Zhang, Xiang Yue, Bo Li, and Ziwei Liu. Video-mmmu:537
Evaluating knowledge acquisition from multi-discipline pro-538
fessional videos. arXiv preprint arXiv:2501.13826, 2025. 8539

[18] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perel-540
man, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Weli-541
hinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card.542
arXiv preprint arXiv:2410.21276, 2024. 6543

[19] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li,544
Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Zi-545

wei Liu, et al. Llava-onevision: Easy visual task transfer. 546
arXiv preprint arXiv:2408.03326, 2024. 2, 6 547

[20] Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yux- 548
ing Long, Yan Shen, Renrui Zhang, Jiaming Liu, and Hao 549
Dong. Manipllm: Embodied multimodal large language 550
model for object-centric robotic manipulation. In Proceed- 551
ings of the IEEE/CVF Conference on Computer Vision and 552
Pattern Recognition, pages 18061–18070, 2024. 1 553

[21] Ziming Li, Huadong Zhang, Chao Peng, and Roshan 554
Peiris. Exploring large language model-driven agents for 555
environment-aware spatial interactions and conversations in 556
virtual reality role-play scenarios. In 2025 IEEE Conference 557
Virtual Reality and 3D User Interfaces (VR), pages 1–11. 558
IEEE, 2025. 1 559

[22] Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Ed- 560
wards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, 561
Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. 562
In The Twelfth International Conference on Learning Repre- 563
sentations, 2023. 1, 2 564

[23] Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spa- 565
tial reasoning. Transactions of the Association for Computa- 566
tional Linguistics, 11:635–651, 2023. 1, 2 567

[24] Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, 568
Quanfeng Lu, Daocheng Fu, Botian Shi, Wenhai Wang, Jun- 569
jun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual 570
aha moment with rule-based large-scale reinforcement learn- 571
ing. arXiv preprint arXiv:2503.07365, 2025. 4, 6 572

[25] Chancharik Mitra, Brandon Huang, Trevor Darrell, and Roei 573
Herzig. Compositional chain-of-thought prompting for large 574
multimodal models. In Proceedings of the IEEE/CVF Con- 575
ference on Computer Vision and Pattern Recognition, pages 576
14420–14431, 2024. 2 577

[26] Chenbin Pan, Burhaneddin Yaman, Tommaso Nesti, Abhirup 578
Mallik, Alessandro G Allievi, Senem Velipasalar, and Liu 579
Ren. Vlp: Vision language planning for autonomous driving. 580
In Proceedings of the IEEE/CVF Conference on Computer 581
Vision and Pattern Recognition, pages 14760–14769, 2024. 582
1, 2 583

[27] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 584
pher D Manning, Stefano Ermon, and Chelsea Finn. Direct 585
preference optimization: Your language model is secretly a 586
reward model. Advances in Neural Information Processing 587
Systems, 36:53728–53741, 2023. 2, 7 588

[28] Arijit Ray, Jiafei Duan, Reuben Tan, Dina Bashkirova, Rose 589
Hendrix, Kiana Ehsani, Aniruddha Kembhavi, Bryan A 590
Plummer, Ranjay Krishna, Kuo-Hao Zeng, et al. Sat: Spa- 591
tial aptitude training for multimodal language models. arXiv 592
preprint arXiv:2412.07755, 2024. 2 593

[29] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao 594
Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, 595
Y Wu, et al. Deepseekmath: Pushing the limits of mathe- 596
matical reasoning in open language models. arXiv preprint 597
arXiv:2402.03300, 2024. 2, 3 598

[30] Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: 599
Visual inference via python execution for reasoning. In 600
Proceedings of the IEEE/CVF International Conference on 601
Computer Vision, pages 11888–11898, 2023. 1 602

9

https://github.com/Deep-Agent/R1-V
https://github.com/Deep-Agent/R1-V
https://github.com/Deep-Agent/R1-V


ICCV
#7

ICCV
#7

ICCV 2025 Submission #7. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[31] Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell,603
Libin Bai, Anmol Gulati, Garrett Tanzer, Damien Vincent,604
Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking605
multimodal understanding across millions of tokens of con-606
text. arXiv preprint arXiv:2403.05530, 2024. 6607

[32] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier608
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste609
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al.610
Llama: Open and efficient foundation language models.611
arXiv preprint arXiv:2302.13971, 2023. 1, 2612

[33] Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei613
Li, Deli Chen, Y Wu, and Zhifang Sui. Math-shepherd: A614
label-free step-by-step verifier for llms in mathematical rea-615
soning. arXiv preprint arXiv:2312.08935, 2023. 2616

[34] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan,617
Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin618
Ge, et al. Qwen2-vl: Enhancing vision-language model’s619
perception of the world at any resolution. arXiv preprint620
arXiv:2409.12191, 2024. 1, 2621

[35] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,622
Ed H Chi, Sharan Narang, Aakanksha Chowdhery, and623
Denny Zhou. Self-consistency improves chain of thought624
reasoning in language models. In The Eleventh International625
Conference on Learning Representations. 1626

[36] Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-627
Levy. Videoagent: Long-form video understanding with628
large language model as agent. In European Conference on629
Computer Vision, pages 58–76. Springer, 2024. 1, 2630

[37] Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen,631
and Zhaoxiang Zhang. Driving into the future: Multiview632
visual forecasting and planning with world model for au-633
tonomous driving. In Proceedings of the IEEE/CVF Con-634
ference on Computer Vision and Pattern Recognition, pages635
14749–14759, 2024. 1, 2636

[38] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten637
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.638
Chain-of-thought prompting elicits reasoning in large lan-639
guage models. Advances in neural information processing640
systems, 35:24824–24837, 2022. 1, 2641

[39] Yixuan Wu, Yizhou Wang, Shixiang Tang, Wenhao Wu,642
Tong He, Wanli Ouyang, Philip Torr, and Jian Wu. Det-643
toolchain: A new prompting paradigm to unleash detection644
ability of mllm. In European Conference on Computer Vi-645
sion, pages 164–182. Springer, 2024. 3646

[40] Guowei Xu, Peng Jin, Li Hao, Yibing Song, Lichao Sun, and647
Li Yuan. Llava-o1: Let vision language models reason step-648
by-step. arXiv preprint arXiv:2411.10440, 2024. 1, 2649

[41] Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han,650
Li Fei-Fei, and Saining Xie. Thinking in space: How mul-651
timodal large language models see, remember, and recall652
spaces. arXiv preprint arXiv:2412.14171, 2024. 1, 2, 3653

[42] Jianwei Yang, Reuben Tan, Qianhui Wu, Ruijie Zheng,654
Baolin Peng, Yongyuan Liang, Yu Gu, Mu Cai, Seonghyeon655
Ye, Joel Jang, et al. Magma: A foundation model for multi-656
modal ai agents. arXiv preprint arXiv:2502.13130, 2025. 1,657
2658

[43] Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang,659
Yibo Wang, Shunyu Liu, Yingjie Wang, Yuxin Song,660

Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm 661
with o1-like reasoning and reflection via collective monte 662
carlo tree search. arXiv preprint arXiv:2412.18319, 2024. 663
2 664

[44] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom 665
Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of 666
thoughts: Deliberate problem solving with large language 667
models. Advances in neural information processing systems, 668
36:11809–11822, 2023. 1 669

[45] Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xi- 670
aochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu, Lingjun 671
Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement 672
learning system at scale. arXiv preprint arXiv:2503.14476, 673
2025. 2, 6 674

[46] Ruohong Zhang, Bowen Zhang, Yanghao Li, Haotian Zhang, 675
Zhiqing Sun, Zhe Gan, Yinfei Yang, Ruoming Pang, and 676
Yiming Yang. Improve vision language model chain-of- 677
thought reasoning. arXiv preprint arXiv:2410.16198, 2024. 678
2 679

[47] Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao Cheng, 680
Tianyi Zhou, and Cho-Jui Hsieh. R1-zero’s” aha moment” 681
in visual reasoning on a 2b non-sft model. arXiv preprint 682
arXiv:2503.05132, 2025. 2, 7 683

[48] Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shen- 684
glong Ye, Lixin Gu, Yuchen Duan, Hao Tian, Weijie Su, 685
Jie Shao, et al. Internvl3: Exploring advanced training and 686
test-time recipes for open-source multimodal models. arXiv 687
preprint arXiv:2504.10479, 2025. 1, 2 688

10


	Introduction
	Related Works
	Multimodal Large Language Models
	Multimodal Large Language Model Reasoning
	Spatial Understanding and Reasoning

	Can Visual-spatial Reasoning Capacities Be Activated by Prompting?
	R1-Zero-like Training for Visual-spatial Reasoning
	Training Data Construction
	GRPO
	Results and Analyses
	Main Results
	Importance of KL Penalty
	Reward Hacking
	Dynamics of Various Rewards
	Comparison to Other Training Approaches


	Conclusion
	Limitation & Future Work

