

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LLMS FOR SEQUENTIAL OPTIMIZATION TASKS: FROM EVALUATION TO DIALECTICAL IMPROVEMENT

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Large Language Models (LLMs) have demonstrated remarkable capabilities across
012 diverse domains, opening new possibilities for solving complex optimization prob-
013 lems. This paper investigates the potential of LLMs as end-to-end designers for
014 tackling Sequential Optimization Problems (SOPs), a challenging and pervasive
015 class of tasks. To rigorously evaluate LLM performance, we introduce WorldGen,
016 a dynamic benchmark for generating unseen SOPs with controllable complexity.
017 Our initial findings show that while LLMs perform well on simpler SOPs, their
018 effectiveness declines sharply as complexity increases. To address this, we draw
019 inspiration from philosophical theories of reasoning—specifically, Hegelian Dialec-
020 tics—and propose ACE, a dialectical framework that enhances LLM performance
021 in SOPs without requiring retraining or fine-tuning.

1 INTRODUCTION

024 **Reframing Optimization in the Age of AI:** Optimization lies at the heart of decision-making across
025 disciplines—from engineering and economics to healthcare and scientific discovery. The essence of
026 decision-making lies in choosing the best option from a set of alternatives, driven by objectives such
027 as efficient resource allocation, cost minimization, profit maximization, or performance enhancement
028 of systems and infrastructures Chong & Zak (2013). Traditionally, solving optimization problems
029 has required domain expertise, algorithmic craftsmanship, and careful handling of challenges such
030 as high dimensionality, nonlinearity, and stochasticity Datta et al. (2019). Despite decades of
031 progress, the process remains labor-intensive and brittle, often demanding manual tuning and heuristic
032 design. Consequently, there is a continuous quest across various fields to simplify and automate the
033 optimization process.

034 **A New Opportunity:** Recent advances in LLMs, such as GPT-4 OpenAI (2023), have sparked
035 interest in their potential to automate aspects of optimization Song et al. (2024). However, most
036 existing approaches treat LLMs as auxiliary components—constructing surrogate models, guiding
037 heuristics, or assisting within human-designed pipelines Wang et al. (2024); Liu et al. (2024); Lange
038 et al. (2024). In contrast, in this paper, we ask a fundamental question: How proficient are LLMs at
039 performing *end-to-end design* for solving Sequential Optimization Problems (SOPs)?

040 **Assessing LLMs in a New Context:** Although various benchmarks exist to evaluate LLM per-
041 formance in general and specialized tasks (e.g., coding, mathematics), their capabilities in solving
042 optimization problems, particularly SOPs, remain underexplored. SOPs involve making a series
043 of decisions over time, where each decision affects subsequent options and outcomes, creating a
044 complex web of interdependencies. Different challenges contribute to this issue, primarily the need
045 for defining a representative set of SOPs and ensuring that observed performance is not influenced
046 by data contamination or prior exposure during the LLMs’ training Dong et al. (2024); Mialon et al.
047 (2023); Chen (2023).

048 **On-Demand SOP Generation:** Motivated by these opportunities and challenges, first, we aim
049 to address this research question: *How can we evaluate the performance of LLMs in SOPs?* We
050 introduce a straightforward yet effective framework, WorldGen, capable of generating unseen SOPs
051 with controllable complexities on demand. WorldGen contrasts with most existing static benchmarks
052 (e.g., MMLU Hendrycks et al. (2021), GLUE Wang et al. (2018), SuperGLUE Wang et al. (2019),
053 GSM8k Cobbe et al. (2021), etc.) which become obsolete as LLMs evolve Mialon et al. (2023). Utilizing
this dynamic framework, we have made two key observations: (1) For relatively simple

optimization tasks, with a single global maximum and no local maxima (i.e., simple surfaces and scenarios), current LLMs can design solutions that solve them efficiently. (2) As the complexity of the optimization problems increases, the performance of LLMs degrades significantly and becomes unsatisfactory.

Improving LLMs with Roots in Philosophy: Next, inspired by these observations and the poor performance of LLMs in SOPs, we propose a systematic approach to enhance the performance of off-the-shelf LLMs (in the context of SOPs) without necessitating any retraining, treating the LLM as a black box. In particular, we propose ACE, to demonstrate that LLMs can be transformed from passive assistants into active designers of optimization strategies. ACE empowers LLMs to select, orchestrate, and adapt optimization methods dynamically—treating SOPs as open-ended design challenges rather than scripted tasks. To support this, ACE introduces a principled dialectical reasoning process inspired by Hegelian Dialectics Hegel (1807; 1812). Instead of relying on prompt engineering, ACE structures inference through *thesis–antithesis–synthesis* cycles, enabling iterative refinement and strategic exploration. Crucially, ACE allows LLMs to go beyond generating the next query point—it enables them to explore alternative strategies, adapt to feedback, and evolve their approach across the entire optimization lifecycle (See Appendix A for a brief background in philosophy on reasoning, dialectics, and Hegel’s framework).

Main Contributions: In summary, this paper makes the following key contributions:

1. We design WorldGen, a framework to assess the performance of LLMs in SOP settings, addressing the data contamination issues typically associated with general LLM benchmarks (detailed in section 3.1). WorldGen allows for the growth of evaluation complexity in line with the advancement of LLMs.
2. Using this framework, we provide initial observations on the poor performance of current LLMs in SOPs, motivating the need for structured reasoning frameworks that support full-cycle design (detailed in section 3.4).
3. We present ACE, a novel approach inspired by one of the most successful dialectical hypotheses in philosophy for explaining and enhancing reasoning. We show that ACE improves the performance of LLMs in end-to-end optimization design through dialectical reasoning. This enhancement occurs at test time, without any retraining or fine-tuning (detailed in section 3.5).

2 RELATED WORK

Our work intersects with several research areas: (1) LLM-Assisted Optimization, (2) Prompt Engineering, (3) Benchmarks for Evaluating LLMs, and (4) Multi-Agent Systems. Here, we briefly review the first two areas and provide a more detailed discussion of the latter two in Appendix B.

LLMs for Optimization: Recent research on leveraging LLMs for optimization can be broadly grouped into two categories:

1. *LLMs as components in human-designed optimization procedures:* In this paradigm, LLMs serve as auxiliary tools within pre-defined algorithms, assisting with tasks such as generating initial candidate solutions, constructing surrogate models, or guiding search heuristics. Examples include integrating LLMs into evolutionary strategies or Bayesian optimization (BO) pipelines, where human intervention remains essential for prompt design, heuristic tuning, and algorithmic orchestration Wang et al. (2024); Liu et al. (2024); Lange et al. (2024). While these approaches demonstrate that LLMs can complement traditional optimizers, they limit the model to a supporting role rather than granting full desinger autonomy.
2. *LLMs as black-box solvers:* A smaller body of work explores using LLMs to directly generate queries Yang et al. (2024). However, the design choices in this group remain largely confined to the few-shot learning capabilities of LLMs (e.g., generating the next query point based on list of previous ones as in Yang et al. (2024)). Even in this setting, performance often depends on manual heuristics—such as specifically sorting previous samples or crafting specialized prompt templates—to stabilize behavior and improve convergence. This reliance on human-designed scaffolding constrains the autonomy and generality of these approaches and reduces their true “black-box” nature.

Our framework, ACE, departs from both paradigms in three key ways. First, ACE positions the LLM as an *autonomous designer*, capable of independently selecting and applying optimization strategies

(e.g., BO, Genetic Algorithms, etc.) without human intervention or guidance. Unlike prior work that embeds LLMs into rigid pipelines, ACE enables end-to-end decision-making, allowing the model to hypothesize, test, and refine strategies dynamically. Second, ACE eliminates heuristic prompt engineering by introducing a *principled dialectical reasoning process* at inference time. Rather than relying on ad hoc tweaks, ACE structures reasoning through thesis–antithesis–synthesis cycles, inspired by Hegelian Dialectics, to improve solution quality systematically. Finally, ACE emphasizes *true autonomy*: the model is not restricted to generating the next query point from a curated history but can explore alternative strategies and adapt its approach based on feedback.

Evaluation Beyond Static Benchmarks: Existing evaluations of LLM-based optimization often rely on public datasets or well-known problem suites (e.g., Traveling Salesman Problem Applegate et al. (2006), Black-Box Optimization Benchmarking Finck et al. (2009)), which risk contamination from pretraining corpora and may inadvertently measure memorization rather than reasoning. To address this, we introduce WorldGen, a dynamic framework for generating unseen SOPs with controllable complexity. Unlike static benchmarks, WorldGen can evolve alongside model capabilities, ensuring fair and forward-looking assessment of LLM performance in genuinely novel scenarios.

Prompt Engineering (PE): Since we treat LLMs as black-boxes and focus on improving the off-the-shelf models without any retraining, it will be natural to mention works in PE domain here. Prompting techniques have become essential in enhancing the performance and versatility of LLMs. These techniques range from Zero-shot Prompting, where models are given tasks without prior examples, to Few-shot Prompting, which provides a few examples to guide responses Brown et al. (2020). Chain-of-Thought encourages models to generate intermediate reasoning steps Wei et al. (2022), Self-Consistency (Majority Vote) generates multiple outputs to select the most consistent one Wang et al. (2022); Lewkowycz et al. (2022), and Generate Knowledge Prompting prompts the model to produce relevant background information before answering Liu et al. (2021). Tree of Thoughts structures reasoning as a tree to explore different branches Yao et al. (2024); Long (2023). Retrieval Augmented Generation combines document retrieval with generation for improved accuracy Lewis et al. (2020). Automatic Prompt Engineer uses algorithms to refine prompts Zhou et al. (2022), while Active-Prompt Diao et al. (2023) adjusts prompts based on performance feedback and Program-Aided Language incorporate programming logic Gao et al. (2023). Techniques like ReAct combine reasoning and acting steps Yao et al. (2022), and Self-Reflection prompts models to reflect on their responses for better outcomes Madaan et al. (2024); Shinn et al. (2024). These diverse techniques collectively enhance the adaptability and effectiveness of LLMs. ACE is orthogonal compared to these techniques and as we later show, it can be combined with them (detailed in section 3.5).

3 ASSESSING & IMPROVING LLMs IN SOPs

SOPs are pervasive across diverse domains, ranging from logistics and resource allocation to machine learning and operations research. Requiring specialized knowledge to address practical issues such as high dimensionality, nonlinearity, and the dynamic, unpredictable nature of real-world settings make SOPs complex in their nature Datta et al. (2019). Automating the solution of such problems is highly desirable, as it can lead to efficiency gains and innovative solutions to complex challenges. On the other hand, LLMs have demonstrated remarkable capabilities, including proficiency in coding and exceptional context-awareness, making them promising candidates for tackling SOPs.

So, naturally, exploring the performance of LLMs in addressing these crucial tasks is a significant step forward in understanding their broader applicability and the opportunity to solve these problems automatically. However, evaluating LLMs in this context comes with its own set of challenges. Key concerns include managing data contamination, ensuring that the problems and their solutions were not inadvertently exposed during training, and consequently distinguishing between genuine reasoning and mere memorization. Additionally, access to a set of representative optimization problems is vital to effectively assess LLMs’ capabilities in solving sequential tasks. Addressing these challenges will enable a deeper understanding of the role LLMs can play in advancing optimization methodologies.

3.1 WORLDGEN

Core Idea: At the heart of optimization lies the task of finding the optimum point(s) in an n -dimensional world, mathematically expressed as $f(x_1, x_2, \dots, x_{n-1})$. So, instead of focusing on

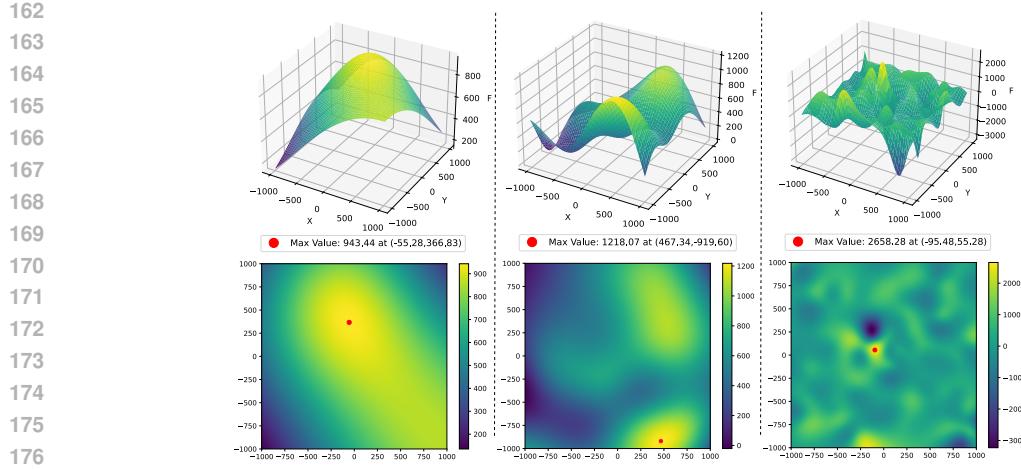


Figure 1: Samples of generated 3D worlds (and their 2D heatmap versions) for different SOP complexities: very simple (left), simple (middle), and medium (right).

specific optimization problems, we shift our attention to the worlds that represent these problems. In other words, rather than trying to come up with specific optimization problems, which may inadvertently introduce biases or contamination from training data, we focus on directly generating n -dimensional worlds that can represent the solution spaces for a wide range of SOPs. That said, we do not predefine the optimization problem. Instead, the task naturally emerges as finding the maximum (or other extrema) in the generated n -dimensional world. This setup allows us to define flexible problems while preserving the integrity of the test environment.

Benefits and Advantages: This approach ensures that neither the optimization problem nor its solution was exposed to the LLM during training. By doing so, we can mimic a real-world scenario where an optimization expert is asked to tackle a newly faced optimization problem using any techniques or strategies they prefer. Utilizing this approach brings some advantages. It offers generative flexibility, allowing the n -dimensional world to represent an infinite variety of optimization problems, from simple to highly complex ones. By abstracting the problem into a generated world, it ensures unbiased evaluation, reducing contamination from known problem-solution pairs and providing a more acceptable measure of the LLM’s capability. Our world generator, WorldGen, enables the creation of increasingly complex worlds that test the limits of learning agents and provides a platform for benchmarking them under controlled yet dynamic conditions. Figure 1 shows samples of generated 3-D worlds with different complexity levels.

3.2 LLM AND ACCESSING THE WORLD

An Interactive Cycle: To enable the LLM agent to perform its task effectively, we provide it with access to the generated world through an interactive cycle as shown in Figure 2. This ensures a dynamic sequential process where the agent iteratively learns and refines its approach based on the information it gathers. Simply put, in each iteration, the LLM agent is allowed to interact with the world by selecting a batch of interested points where each point is a vector, v_i of size $n - 1$. Then, the world responds by revealing the corresponding values of $f(v_i)$ to the LLM agent. This will end one iteration/round of the interaction. In the next round, the LLM utilizes this feedback to determine the next set of points to query.

Supporting Coding & Providing Flexibility: Due to the complexity of SOPs, the LLM agent is permitted to provide a Python code as part of its response and therefore utilize any library it deems necessary for solving the problem. This freedom ensures that the agent can employ a diverse range of tools and techniques to explore and analyze the generated world. As part of its role, the World is responsible for executing the Python code generated by the LLM agent. Once the code is executed, the World provides the results back to the agent as part of its feedback, enabling it to adapt and refine its strategy in subsequent iterations. In case of errors that may arise during execution, the World is responsible to provide the details of the errors and return meaningful feedback. Moreover, the LLM agent is not constrained by a fixed set of queries or techniques. Instead, it has the freedom to decide

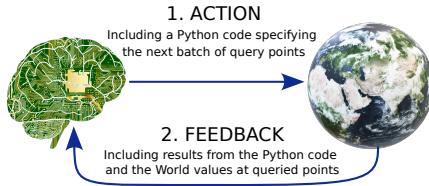
216
217
218
219
220
221
222
223

Figure 2: Interactive cycle for a LLM agent & the World

224 how to approach the problem, including leveraging mathematical models, heuristics, or machine
 225 learning techniques. This flexibility mimics the conditions under which human experts operate when
 226 solving optimization problems. The interaction between the LLM and the World creates a real-time
 227 feedback loop. The LLM continually refines its understanding of the world based on the revealed
 228 data, while the World executes the agent’s strategies and provides results.

230 3.3 NOTION OF EFFICIENCY

231 **To Solve or to Efficiently Solve:** Exhaustively searching through all possible solutions, or brute
 232 force, is always a solution to any optimization problem; however, it represents the most inefficient
 233 approach. Thus, merely solving an optimization problem is not the primary goal; solving it efficiently
 234 is what truly matters. To formalize this, we require the notion of an efficient solution. But how can
 235 we define efficiency in a meaningful and practical way here?

236 **The Expert Solution:** To address this question, we designed a baseline referred to as the Expert
 237 Solution. This baseline serves as a reference point for assessing the efficiency of the LLM agent’s
 238 performance. The Expert Solution is crafted using different optimization techniques, including a
 239 combination of Monte Carlo search methods, Bayesian optimization, and Active Learning strategies.
 240 An important aspect of the Expert Solution is the introduction of a *query budget*. This budget
 241 represents the number of queries required by the Expert Solution to reliably solve the optimization
 242 problem. It provides an upper bound on the number of interactions with the environment that are
 243 necessary to achieve a solution. That said, alongside the optimization problem, the LLM agent is
 244 provided with the query budget and instructed to not only solve the optimization problem but also do
 245 so within the given query budget.

246 **Incentivizing Efficiency:** This setup ensures that the agent is incentivized to prioritize efficiency. It
 247 must strategize its queries, balancing exploration and exploitation to maximize the information gained
 248 from each interaction. By enforcing a query budget, we can objectively evaluate LLM’s efficiency
 249 and effectiveness in solving the problem. Ultimately, the notion of efficient solutions pushes the
 250 LLM agent beyond simple problem-solving, encouraging it to adopt creative and resource-conscious
 251 strategies that align with real-world optimization challenges.

253 3.4 EVALUATING LLMs PERFORMANCE IN SOPS

254 **The Setup:** To evaluate the performance of the LLM agent, we follow a structured approach based
 255 on repeated experiments. We begin by generating worlds, characterized by a complexity index. In
 256 particular, to simplify experiments, visualizations, and keep overall token usage manageable, we
 257 focus on 3-D worlds and three levels of complexity: very simple (L0), simple (L1), and medium (L2).
 258 Next, we apply the Expert Solution to solve the corresponding SOPs associated with the generated
 259 world. As a result, we find a query budget required to achieve this reliably. Then, LLM agent is asked
 260 to solve the problem constrained by the query budget. We repeat each trial 10 times and define the
 261 success rate of the LLM agent as the proportion of runs in which it successfully identifies the optimal
 262 solution within the given query budget.¹ For each complexity category, we compute the success rate
 263 for every individual World, then average these values across all Worlds in that category to obtain
 264 the final success rate. This metric provides a quantitative measure of the agent’s effectiveness and
 265 efficiency. In these experiments, we use the GPT-5-chat model as a strong recent baseline.²

266 **The Default Scheme:** Without involving any prompting techniques, the success rates become very
 267 low (close to 0%). Therefore, we borrowed ideas from few-shot learning Brown et al. (2020), Chain of

Table 1: The success rates of LLM* (GPT-5-chat as base model) in worlds with diff. complexity levels

WORLD COMPLEXITY	SUCCESS RATE ↑
L0 (VERY SIMPLE)	100%
L1 (SIMPLE)	60%
L2 (MEDIUM)	44.5%

¹We apply a relaxation criterion by treating any value within 5% of the optimum as the optimal point.

²ACE code is available at Anonymous (2025).

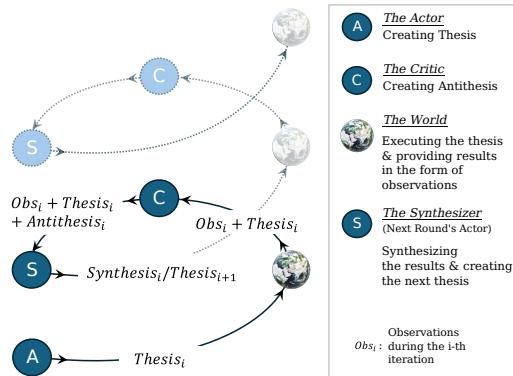


Figure 3: ACE and the spiral of thoughts

Thought (CoT) Wei et al. (2022), and added other techniques such as proper role assignment Karpathy (2023) to improve the performance of the LLM agent. We name the resulting scheme LLM^* and treat it as our default scheme from now on. In particular, the prompt given to the LLM agent includes: [Role Assignment], followed by [Problem Definition & Examples], [General Helpful Notes], and [Required Response Format]. The [Required Response Format] itself consists of [Plain Description of Current Strategy], [Python Code Implementation of the Strategy], and [Maximum Value Found So Far] fields (check Appendix E for more details).

Results: Table 1 summarizes the results of LLM^* in various scenarios. These results optimistically suggest that LLMs understand SOP settings and are familiar with optimization techniques. As expected, the success rate of LLM^* depends on the complexity of the underlying world. However, even in relatively simple scenarios (L1), LLM^* does not achieve a high success rate. In straightforward settings where the world representing the SOP has only one global optimum with no other local optimum points, LLM^* effectively utilizes general optimization techniques such as gradient ascent. But, when the world exhibits some complexity, with a few local optimum points in non-trivial parts of the space—common in real-world scenarios—LLMs struggle to strategize properly and find the global optimum (check Appendix C for more details).

3.5 A DIALECTICAL PERSPECTIVE TO ENHANCE LLMs IN SOPs

Motivated by the unsatisfactory performance of vanilla LLMs in non-straightforward SOPs, we aim to address a natural follow-up question: Can we enhance the performance of LLMs without relying on retraining, fine-tuning, or post-training modifications?

The Core Idea: To that end, we propose a framework grounded in the principles of Hegelian Dialectics, offering a formal structure for enhancing LLM performance through dynamic, iterative reasoning. Both sequential optimization and dialectical reasoning share a foundational trait: *they operate through structured cycles that aim to progressively improve outcomes*. This shared emphasis on iterative refinement provides a natural bridge between optimization strategies and dialectical logic. Using the terminology of Hegelian Dialectics, we conceptualize a general LLM agent as a *Thesis Generator*—a module that observes a problem and produces an initial solution or response.³ However, we argue that relying solely on a Thesis Generator is insufficient for solving SOPs. A more robust architecture should incorporate two additional components: an *Antithesis Generator*, which analyzes gaps and challenges in the initial output, and a *Synthesis Block*, which integrates insights to produce refined solutions. Together, these three components form a dialectical reasoning cycle, as formally described by Hegel Hegel (1807; 1812), enabling the system to iteratively evolve and improve its responses.

ACE⁴: The Antithesis Generator plays a critical role by challenging the solutions produced by the Thesis Generator. It identifies potential flaws, contradictions, or alternative perspectives that may have been overlooked. This counterbalance forces the system to evaluate its assumptions critically and consider a broader range of possibilities. The Synthesis Block then reconciles the Thesis and

³This abstraction remains valid even within Minsky’s multi-agent paradigm Minsky (1988), where a complex problem is decomposed into subproblems handled by specialized agents that communicate and collaborate.

⁴ACE stands for Act, Critique, and Evolve

324
325
326 Table 2: Success rates of schemes across base LLMs and complexity levels in 3D worlds
327
328
329
330
331
332
333
334
335
336
337
338
339
340

Base Model	Level	Scheme				
		LLM*	Self-Reflection	Debate	Majority	ACE
Kimi-K2	L1	39.2	44.5	36.4	47.5	53.3
	L2	18.2	24.5	18.2	16.4	30.0
DeepSeekV3	L1	65.0	53.3	60.0	45.0	75.0
	L2	60.9	52.7	53.6	28.2	68.2
GPT-5-chat	L1	60.0	70.0	70.0	64.2	70.8
	L2	44.5	51.8	50.0	47.3	59.1
GPT-4.1	L1	56.7	60.8	50.0	55.8	64.2
	L2	48.2	36.4	34.5	32.7	50.0
GPT-4o	L1	46.7	42.2	50.8	48.3	53.8
	L2	43.6	39.1	44.5	24.5	49.1
GPT-4o-mini	L1	40.0	37.5	35.8	41.7	51.7
	L2	21.8	25.5	24.5	32.7	24.5
O3-mini	L1	10.0	10.0	15.0	4.2	31.7
	L2	8.2	3.6	7.3	1.8	24.5

341 Antithesis, combining their insights to produce a more refined and coherent solution. This iterative
 342 interplay between Thesis, Antithesis, and Synthesis ensures that the system continuously evolves its
 343 understanding and response, ultimately arriving at a more suitable outcome. This dialectical structure
 344 led us to introduce our solution, ACE, embodying three components: (1) Actor, (2) Critic, and (3)
 345 Synthesizer. The relationship between these components is shown in Fig. 3. The iterative cycle of
 346 solving a problem starts with the Actor creating an initial thesis. This thesis is then implemented
 347 and executed in the world, and the corresponding outcomes and results (called observations) are
 348 gathered. Next, the Critic examines the initial thesis and the corresponding observations to generate
 349 an antithesis. The thesis, antithesis, and corresponding observations are then fed into the Synthesizer.
 350 The Synthesizer creates an evolved thesis, completing an iteration/round. The cycle continues by
 351 treating the evolved thesis as the next initial thesis in the cycle. As we later show in section 4, ACE
 352 significantly improves the performance of LLMs with no modification to their architecture and no
 353 extra post-training or fine-tuning. By embedding a dialectical reasoning process into the system, ACE
 354 creates a more adaptive process that is better equipped to handle complex and nuanced sequential
 355 optimization tasks (Appendix D provides samples and details of ACE’s dialectical process).

356
357

4 EVALUATION

358
359

4.1 OVERALL RESULTS

360 **Settings:** To put the performance improvements of ACE in proper context, we implemented several
 361 recent related proposals including Self-Reflection Madaan et al. (2024), Majority Vote Wang et al.
 362 (2022); Lewkowycz et al. (2022), and Debate Du et al. (2024) and compared them with ACE. To have
 363 a fair comparison, for the Majority and Debate schemes we set the total number of agents to three and
 364 two agents, respectively, to roughly match the token usage of ACE. Later, in section 4.2, we perform
 365 more evaluations with higher number of agents for them. We accompany all these schemes with the
 366 additional prompting techniques appeared in LLM* to have a fair comparison (check Appendix E for
 367 more details). As for the LLMs, we use 7 different models: DeepSeekV3 DeepSeek-AI (2024), GPT-
 368 5-chat OpenAI (2025a), GPT-4.1 OpenAI (2024b), GPT-4o OpenAI (2024a), GPT-4o-mini OpenAI
 369 (2024c), O3-mini OpenAI (2025b), and Moonshot’s Kimi-K2 AI (2025). We repeat evaluations 10
 370 times and report the overall success rate of different schemes in each category.

371 **Results:** Table 2 summarizes the findings and confirms two things. First, WorldGen successfully
 372 scales difficulty: all models show a clear drop from L1 to L2, highlighting the challenge of sequential
 373 optimization as complexity grows. Second, ACE consistently improves performance across models
 374 and levels, remaining the best or tied for best in nearly every scenario. This holds for strong models
 375 like DeepSeekV3 and GPT-5-chat, where ACE pushes success rates to the top tier (e.g., DeepSeekV3
 376 L1: 75.0%), and for smaller models like O3-mini, where ACE lifts performance from small baselines
 377 to meaningful success (e.g., L2: 24.5%)⁵. ACE operates by treating LLM as a black-box, relying on

⁵A sample dialectical process in ACE is shown in Appendix D

378
379
380
Table 3: Averaged total consumed tokens of
schemes (with O3-mini as base) in L1 class

SCHEME	NORMALIZED ↓	TOTAL TOKENS ↓
LLM*	1	5659
SELF-REFLECTION	1.88×	10660
ACE	2.85×	16146
DEBATE	3.48×	19710
MAJORITY	3.75×	21260

381
382
383
384
Table 4: Success rates and avg normalized total
tokens (to LLM*’s tokens) in L2 3D worlds

SCHEME	O3-MINI		GPT-4.1	
	SUCCESS ↑	COST ↓	SUCCESS ↑	COST ↓
LLM*	8.2	1	48.2	1
DEBATE*	9.1	31.97×	35.5	30.89×
MAJORITY*	0.0	6.06×	37.3	6.90×
ACE	24.5	3.78×	50.0	2.87×

385
386
387
388
389
390
the existing abilities of the LLM without retraining or modifying its weights. So, its performance
naturally varies according to the base model’s capabilities in SOP setting. While the absolute
performance varies, the pattern is stable: ACE works with different models with different starting
capability. Among the models tested, the only exception is GPT-4o-mini at L2, where Majority
slightly leads, suggesting that when base ability is very low and query budgets are tight, majority can
occasionally outperform a single dialectical chain.

391
392
393
394
Takeaway: ACE is the most reliable scheme across 13 of 14 settings, improving strong models and
transforming weaker ones on harder tasks. Its stepwise dialectical loop prevents error cascades and
adapts to complexity without retraining, making it a robust choice for sequential optimization under
fixed budgets.

396 4.2 DEEP DIVE

397
398
Cost Comparison: We evaluate the cost of using ACE by analyzing the total number of tokens
399 consumed and comparing it with other approaches. Table 3 reports the average total token usage
400 across experiments in L1 scenarios for various schemes, along with their corresponding values
401 normalized to the default single-agent baseline, LLM*, using O3-mini as the base model. On average,
402 ACE consumes 2.87× total tokens compared to LLM*; however, it remains more efficient than
403 multi-agent schemes such as Debate and Majority, which incur significantly higher token costs.

404
405
ACE vs. Multi-Agent Schemes with More Agents: A natural assumption might be that increasing
406 the number of agents in schemes like Debate and Majority would enhance performance. So, we
407 conducted additional experiments, scaling the number of agents to seven (referred to as Debate*
408 and Majority*) and comparing their performance and token costs with ACE. These experiments
409 were carried out using GPT-4.1 and O3-mini as base models in the L2 scenarios. The results are
410 summarized in Table 4. As shown in Table 4, increasing the number of agents in these schemes
411 dramatically increases cost—up to 32× the baseline—while offering no meaningful performance
412 benefit; in some cases, success rates even decline. Schemes like Debate*, which require exchanging
413 responses among all agents in each round, can experience exponential growth in token consumption
414 as the number of agents increases. This inefficiency is particularly evident in SOP settings, where
415 sequential decision-making processes require multiple rounds of interaction, as illustrated by the
416 token cost data in Table 4. The key takeaway is that simply increasing the number of agents in
417 tasks involving sequential decision-making, such as those in SOP settings, does not necessarily yield
418 better results. Instead, it often introduces inefficiencies and performance degradation in solutions like
419 Debate* and Majority*.

420 5 LIMITATIONS & A BRIEF DISCUSSION

421
422
WorldGen’s Limitation: WorldGen effectively generates worlds with adjustable complexity for
423 testing LLMs in SOPs, but relies on manually designed Expert solutions to solve the SOP. This
424 dependence on human expertise for robust baselines can be time-intensive and limit the automation
potential of the approach. We leave addressing the fully automated objective to future work.

425
426
Limitations of ACE: ACE’s dialectical framework has demonstrated great performance in our main
427 targeted domain, SOPs, but its effectiveness in other domains, particularly those lacking real-time
428 feedback, remains an open question. In static question-answering or static tasks without iterative
429 refinement, the benefits of ACE may be limited. Additionally, by treating LLMs as black boxes,
430 ACE’s performance is inherently bound by the capabilities of the underlying model. Moreover, while
431 its token consumption is lower than multi-agent schemes like Debate or Majority, ACE incurs a slight
overhead compared to single-agent approaches. This trade-off is minor in complex SOP tasks but
could pose challenges in resource-constrained scenarios.

432 **Is ACE better than BO, reinforcement learning (RL), etc?** This question reflects a common
 433 misconception about our goal. We do not aim to propose a new optimization algorithm or to
 434 test whether LLMs can invent one. Instead, we position LLMs as *designers*—similar to human
 435 optimization experts—who can draw on any algorithm in their toolbox. From this angle, comparing
 436 ACE to BO, RL, or other techniques is irrelevant, since LLMs can already invoke, adapt, or combine
 437 such methods during problem solving (e.g., Appendix D demonstrates examples of models utilizing
 438 well-known techniques such as BO to solve SOPs). The key point is not whether ACE is superior
 439 to classical algorithms, but that when LLMs are placed in the designer’s seat for end-to-end SOP
 440 solving, they benefit from structured scaffolds like ACE’s dialectical process, which amplifies their
 441 ability to reason, critique, and refine solutions within the interactive, stepwise SOPs.

442 **On the Potential of ACE:** The potential of ACE, rooted in its Hegelian dialectical framework, extend
 443 beyond solving SOPs. Its dialectical approach, mirroring human-like problem-solving processes,
 444 fosters solutions that are not only accurate but also deeply contextual and well-reasoned. Furthermore,
 445 Hegelian philosophy provides a foundation to explain the effectiveness of other prompt engineering
 446 techniques, such as self-reflection, by framing them within a structured dialectical process. This
 447 perspective can deepen our understanding of existing methods and their mechanisms. Additionally,
 448 the Hegelian-inspired framework offers a powerful structure for *generating synthetic data*. Its iterative
 449 nature facilitates the creation of diverse, high-quality datasets that reflect a broad range of perspectives
 450 and solutions, making them invaluable for training and fine-tuning LLMs to tackle complex and
 451 nuanced tasks effectively.

452 **LLM* Could Have Been Better!** A fair criticism might be that LLMs might perform better in
 453 solving SOPs with improved prompt engineering. We are not claiming that LLM* represents the
 454 optimal default scheme; rather, we argue that it serves as a robust baseline. Even with carefully
 455 designed prompts, LLMs’ performance in this setting remains limited, highlighting the need for
 456 approaches like ACE to unlock their full potential and deliver superior performance.

457 **What If the Next LLM Becomes Very Capable?** A more capable LLM makes ACE even more
 458 useful, not less. As demonstrated in Section 4, a better base model serves as a stronger foundation,
 459 enabling more performance improvements. In essence, ACE with its dialectical base is designed to
 460 complement and amplify the capabilities of any LLM, regardless of its initial proficiency in SOP
 461 context. By leveraging ACE, we can transform an already impressive LLM into an extraordinary one,
 462 pushing what is possible and unlocking new levels of performance in this domain.

463 **Dialectics vs. Debate:** From the philosophical point of view, debate is competitive, aiming to
 464 persuade an audience of one position’s superiority. While effective in contexts like politics or law, it
 465 often sacrifices deeper inquiry for rhetoric and winning. Dialectics, however, fosters a cooperative
 466 approach, treating opposing perspectives as opportunities for growth. Through structured dialogue,
 467 dialectics seeks deeper truths, as seen in the Socratic and Hegelian methods, encouraging intellectual
 468 humility and a shared pursuit of wisdom. While debate has been significant in philosophical traditions,
 469 figures like Socrates criticized its focus on persuasion over truth. Dialectics, with its emphasis on
 470 dialogue and synthesis, is regarded as superior for fostering intellectual growth.

471 6 FINAL NOTE

472 Our exploration into the capabilities of LLMs in tackling sequential optimization problems has
 473 revealed both their potential and their current limitations. Through the development and use of
 474 WorldGen, we have shown that while LLMs exhibit impressive abilities, they still face challenges
 475 with even relatively simple SOPs. These findings have led us to propose a novel approach inspired by
 476 philosophical reasoning frameworks, aiming to enhance LLM performance in innovative yet easy to
 477 reason about ways. We believe that this work can open new avenues, encouraging the integration
 478 of philosophical reasoning frameworks into AI systems. By fostering a deeper understanding and
 479 application of these frameworks, we can pave the way for more robust and intelligent systems. We
 480 hope our efforts inspire others to explore these interdisciplinary approaches, ultimately contributing
 481 to the advancement of LLMs and its applications across diverse fields.⁶

482 ⁶In accordance with ICLR guidelines, we acknowledge that LLMs were used for proofreading and polishing
 483 the text of this paper.

486 REFERENCES
487

488 Theodor W. Adorno. *Negative Dialectics*. Routledge, London, 1966.

489 Moonshot AI. Kimi k2: Open agentic intelligence. *arXiv preprint arXiv:2507.20534*, 2025. URL
490 <https://arxiv.org/abs/2507.20534>.

491

492 Anonymous. Ace repository. <https://anonymized-for-the-review-process>, 2025.

493

494 David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook. *The Traveling Salesman
495 Problem: A Computational Study*. Princeton University Press, Princeton, NJ, 2006. ISBN
978-0-691-1.

496

497 Aristotle. *Metaphysics*. Penguin Classics, London, -340.

498 Aristotle. *Prior Analytics*. Clarendon Press, Oxford, -350.

499

500 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
501 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
502 models. *arXiv preprint arXiv:2108.07732*, 2021.

503 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
504 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
505 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

506

507 Edwin Chen. Hellaswag or hellabad? 36% of this popular llm benchmark contains errors. <https://www.surgehq.ai/blog/hellaswag-or-hellabad-36-of-this-popular-lm-benchmark-contains-errors>, 2023.

508

509

510 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
511 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
512 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.

513

514 Edwin K. P. Chong and Stanislaw H. Zak. *An Introduction to Optimization*. Wiley Series in Discrete
515 Mathematics and Optimization. John Wiley & Sons, Incorporated, Somerset, 4th edition, 2013.

516

517 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
518 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

519

520 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
521 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
522 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
523 2021. URL <https://arxiv.org/abs/2110.14168>.

524

525 Shubhabrata Datta, Sandipan Roy, and J. Paulo Davim. Optimization techniques: an overview. In
Optimization in Industry. Springer, Cham, 2019.

526

527 DeepSeek-AI. Deepseek-v3 technical report. *arXiv preprint arXiv:2412.19437*, 2024. URL <https://arxiv.org/abs/2412.19437>.

528

529 René Descartes. *Meditations on First Philosophy*. Cambridge University Press, Cambridge, 1641.

530

531 Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xiang Liu, and Tong Zhang. Active prompting
532 with chain-of-thought for large language models. *arXiv preprint arXiv:2302.12246*, 2023.

533

534 Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
535 memorization: Data contamination and trustworthy evaluation for large language models. *arXiv
preprint arXiv:2402.15938*, 2024. URL <https://arxiv.org/abs/2402.15938>.

536

537 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
538 factuality and reasoning in language models through multiagent debate. In *Proceedings of the 41st
International Conference on Machine Learning*, ICML’24, 2024.

539

Friedrich Engels. *Dialectics of Nature*. International Publishers, New York, 1875.

540 Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter black-box opti-
 541 mization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA,
 542 2009. URL <https://inria.hal.science/inria-00362633v2/document>.

543 Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
 544 Graham Neubig. Pal: Program-aided language models. In *International Conference on Machine
 545 Learning*, pp. 10764–10799. PMLR, 2023.

546 Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood, Austin
 547 Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, et al. Legalbench: A collaboratively
 548 built benchmark for measuring legal reasoning in large language models. *Advances in Neural
 549 Information Processing Systems*, 36, 2024.

550 Georg Wilhelm Friedrich Hegel. *Phenomenology of Spirit*. Oxford University Press, Oxford, 1807.

551 Georg Wilhelm Friedrich Hegel. *Science of Logic*. Cambridge University Press, Cambridge, 1812.

552 Martin Heidegger. *Being and Time*. Harper & Row, New York, 1927.

553 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 554 Steinhardt. Measuring massive multitask language understanding. In *International Conference on
 555 Learning Representations*, 2021. URL <https://arxiv.org/abs/2009.03300>.

556 Sirui Hong, Xiaowu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
 557 Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
 558 collaborative framework. *arXiv preprint arXiv:2308.00352*, 2023.

559 David Hume. *A Treatise of Human Nature*. Oxford University Press, Oxford, 1739.

560 Immanuel Kant. *Critique of Pure Reason*. Cambridge University Press, Cambridge, 1781.

561 Andrej Karpathy. State of gpt. In *Microsoft Build 2023*, 2023. URL <https://github.com/giachat/State-of-GPT-2023>.

562 Thomas S. Kuhn. *The Structure of Scientific Revolutions*. University of Chicago Press, Chicago,
 563 1962.

564 Robert Tjarko Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies. In
 565 *Companion Proceedings of the 2024 Genetic and Evolutionary Computation Conference (GECCO
 566 Companion '24)*, pp. 579–582, Melbourne, VIC, Australia, 2024. Association for Computing
 567 Machinery. doi: 10.1145/3638530.3654238. URL <https://doi.org/10.1145/3638530.3654238>.

568 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 569 Heinrich Köttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 570 tion for knowledge-intensive nlp tasks. *arXiv preprint arXiv:2005.11401*, 2020.

571 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 572 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 573 reasoning problems with language models. *Advances in Neural Information Processing Systems*,
 574 35:3843–3857, 2022.

575 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel: Com-
 576 municative agents for “mind” exploration of large language model society. *Advances in Neural
 577 Information Processing Systems*, 36:51991–52008, 2023.

578 Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
 579 and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
 580 debate. *arXiv preprint arXiv:2305.19118*, 2023.

581 Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras, Yejin Choi, and
 582 Hannaneh Hajishirzi. Generated knowledge prompting for commonsense reasoning. *arXiv preprint
 583 arXiv:2110.08387*, 2021.

594 Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
 595 models to enhance bayesian optimization. In *The Twelfth International Conference on Learning
 596 Representations (ICLR)*, 2024. URL <https://openreview.net/forum?id=00xotBmG01>. Poster.

598 Jieyi Long. Large language model guided tree-of-thought. *arXiv preprint arXiv:2305.08291*, 2023.

600 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 601 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 602 with self-feedback. *Advances in Neural Information Processing Systems*, 36, 2024.

603 Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
 604 Scialom. Gaia: A benchmark for general ai assistants. *arXiv preprint arXiv:2311.12983*, 2023.
 605 URL <https://arxiv.org/abs/2311.12983>.

606 John Stuart Mill. *A System of Logic*. Longmans, Green, Reader, and Dyer, London, 1843.

607 Marvin Minsky. *Society of mind*. Simon and Schuster, 1988.

608 Friedrich Nietzsche. *Beyond Good and Evil*. Cambridge University Press, Cambridge, 1886.

609 OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023. URL <https://arxiv.org/abs/2303.08774>.

610 OpenAI. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024a. URL <https://arxiv.org/abs/2410.21276>.

611 OpenAI. Gpt-4.1 model. <https://openai.com/research/gpt-4-1>, 2024b. Accessed:
 612 2025-09-19.

613 OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence. <https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/>, 2024c. Accessed:
 614 2025-09-19.

615 OpenAI. Gpt-5 chat model. <https://platform.openai.com/docs/models/gpt-5-chat-latest>, 2025a. Accessed: 2025-09-19.

616 OpenAI. O3-mini model. <https://platform.openai.com/docs/models/o3-mini>,
 617 2025b. Accessed: 2025-09-19.

618 Plato. *The Republic*. Penguin Classics, London, -380.

619 Karl Popper. *The Logic of Scientific Discovery*. Routledge, London, 1934.

620 Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
 621 Sun. Communicative agents for software development. *arXiv preprint arXiv:2307.07924*, 6(3),
 622 2023.

623 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 624 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing
 625 Systems*, 36, 2024.

626 Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
 627 Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfahl, et al. Large language models encode
 628 clinical knowledge. *Nature*, 620(7972):172–180, 2023.

629 Xingyou Song, Yingtao Tian, Robert Tjarko Lange, Chansoo Lee, Yujin Tang, and Yutian Chen.
 630 Position: Leverage foundational models for black-box optimization. In *Proceedings of the 41st
 631 International Conference on Machine Learning (ICML)*, 2024. URL <https://arxiv.org/abs/2405.03547>. arXiv:2405.03547.

632 Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
 633 Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
 634 imitation game: Quantifying and extrapolating the capabilities of language models. *arXiv preprint
 635 arXiv:2206.04615*, 2022.

648 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
 649 A multi-task benchmark and analysis platform for natural language understanding. In *Proceedings*
 650 *of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for*
 651 *NLP*, pp. 353–355. Association for Computational Linguistics, 2018. URL <https://aclanthology.org/W18-5446>.

653 Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
 654 Levy, and Samuel Bowman. SuperGLUE: A stickier benchmark for general-purpose language
 655 understanding systems. In *Advances in Neural Information Processing Systems*, volume 32. Curran
 656 Associates, Inc., 2019.

658 Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P.
 659 Xing, and Zhitong Hu. Promptagent: Strategic planning with language models enables expert-level
 660 prompt optimization. In *The Twelfth International Conference on Learning Representations (ICLR)*,
 661 2024. URL <https://openreview.net/forum?id=22pyNMuIoa>.

662 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed H Chi, and Denny Zhou. Self-consistency
 663 improves chain of thought reasoning in language models. *arXiv preprint arXiv:2203.11171*, 2022.

664 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi, Quoc
 665 Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
 666 *arXiv preprint arXiv:2201.11903*, 2022.

668 Ludwig Wittgenstein. *Tractatus Logico-Philosophicus*. Routledge and Kegan Paul, London, 1921.

670 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
 671 Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen LLM applications via
 672 multi-agent conversation framework. *arXiv preprint arXiv:2308.08155*, 2023.

673 Qianqian Xie, Weiguang Han, Zhengyu Chen, Ruoyu Xiang, Xiao Zhang, Yueru He, Mengxi Xiao,
 674 Dong Li, Yongfu Dai, Duanyu Feng, et al. The finben: An holistic financial benchmark for large
 675 language models. *arXiv preprint arXiv:2402.12659*, 2024.

677 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
 678 Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning*
 679 *Representations (ICLR)*, 2024. URL <https://openreview.net/forum?id=Bb4VGOWELI>.

681 Shunyu Yao, Jeffrey Zhao, Dian Yu, Shixiang Shane Cao, Ziyi Yu, Karthik Narasimhan, and Yuan Cao.
 682 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 683 2022.

684 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
 685 Tree of thoughts: Deliberate problem solving with large language models. *Advances in Neural*
 686 *Information Processing Systems*, 36, 2024.

688 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 689 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

690 Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
 691 and Jimmy Ba. Large language models are human-level prompt engineers. *arXiv preprint*
 692 *arXiv:2211.01910*, 2022.

694

695 **A BACKGROUND: REASONING AND DIALECTICS**

697 **Reasoning:** Despite considerable achievements, LLMs’ reasoning capability continues to be a subject
 698 of intense debate within the AI research community. A key challenge lies in reaching a consensus on
 699 what reasoning entails, how it should be defined, and how it can be reliably measured. Interestingly,
 700 the concept of reasoning is not new. The domain of philosophy has a rich tradition of exploring and
 701 formalizing reasoning through centuries of discourse Aristotle (-350; -340); Plato (-380); Descartes
 (1641); Hume (1739); Kant (1781); Mill (1843); Hegel (1807); Nietzsche (1886); Wittgenstein (1921);

702 Heidegger (1927); Popper (1934); Kuhn (1962); Adorno (1966). From ancient philosophers such as
 703 Aristotle, who developed formal logic as a foundation for reasoning Aristotle (-350; -340), to more
 704 recent thinkers like Hegel, who introduced dialectics as a dynamic framework for understanding
 705 processes of thought Hegel (1812; 1807), the philosophical study of reasoning has produced a wide
 706 range of influential theories and formal systems. These works not only define reasoning but also
 707 provide structured frameworks for improving and analyzing it.

708 **Dialectics:** As a method of reasoning and philosophical argumentation, dialectics involves the
 709 resolution of contradictions through a process of development and transformation. Rooted in ancient
 710 philosophy, dialectics was first formalized by thinkers like Socrates and Aristotle, who used it as a tool
 711 for logical inquiry. Over time, dialectics evolved into a broader philosophical framework, describing
 712 the dynamic process through which contradictions are identified, explored, and resolved Hegel (1807);
 713 Engels (1875). At its core, dialectical thinking posits that reality is composed of opposing forces
 714 or contradictions, and that these contradictions are not static but dynamic, evolving over time. The
 715 resolution of these contradictions leads to the emergence of new, higher forms of understanding or
 716 being.

717 **Hegelian Dialectics:** Introduced by the German philosopher Georg Wilhelm Friedrich Hegel,
 718 Hegelian Dialectics crystallizes the modern notion of dialectics by proposing a structured pro-
 719 cess of development through three stages: *thesis*, *antithesis*, and *synthesis* Hegel (1812; 1807). The
 720 thesis represents an initial idea or condition, the antithesis introduces a contradictory or opposing
 721 force, and the synthesis resolves the tension by merging elements of both into a higher, more compre-
 722 hensive understanding. Hegel viewed this triadic process as the driving force of intellectual, historical,
 723 and societal progress, emphasizing that contradictions, which he calls "negations", are not merely
 724 obstacles but necessary components of growth and transformation. His dialectical framework has had
 725 profound influence across disciplines, from philosophy to political theory.

726 **Dialectics vs. Debate:** From the philosophical point of view, debate is competitive, aiming to
 727 persuade an audience of one position's superiority. While effective in contexts like politics or law, it
 728 often sacrifices deeper inquiry for rhetoric and winning. Dialectics, however, fosters a cooperative
 729 approach, treating opposing perspectives as opportunities for growth. Through structured dialogue,
 730 dialectics seeks deeper truths, as seen in the Socratic and Hegelian methods, encouraging intellectual
 731 humility and a shared pursuit of wisdom. While debate has been significant in philosophical traditions,
 732 figures like Socrates criticized its focus on persuasion over truth. Dialectics, with its emphasis on
 733 dialogue and synthesis, is regarded as superior for fostering intellectual growth.

734 In this work, inspired by Hegel's well-established framework, we demonstrate how the capabilities of
 735 LLMs can be enhanced by adapting dialectics.

737 B RELATED WORK: PART II

739 **Benchmarks for Evaluating LLMs:** There are numerous benchmarks for evaluating LLMs, ranging
 740 from general-purpose (e.g., GLUE Wang et al. (2018), SuperGLUE Wang et al. (2019), ARC Clark
 741 et al. (2018), HellaSwag Zellers et al. (2019), BIG-bench Srivastava et al. (2022), GAIA Mialon et al.
 742 (2023)) to domain-specific (e.g., FinBen Xie et al. (2024) for finance, LegalBench Guha et al. (2024)
 743 for legal reasoning, GSM8K Cobbe et al. (2021) and MATH Hendrycks et al. (2021) for mathematical
 744 reasoning, HumanEval Chen et al. (2021) and MBPP Austin et al. (2021) for coding, MultiMedQA
 745 Singhal et al. (2023) for healthcare, etc.) and ones requiring professional level knowledge in various
 746 fields such as law or science (e.g., MMLU Hendrycks et al. (2021)). Our framework, WorldGen,
 747 falls into the domain-specific category. It addresses the issue of being static and become obsolete
 748 with the rapid advancements in LLMs by providing a dynamic tool for generating SOPs with varying
 749 controllable complexity.

750 **Multi-Agency:** Minsky was among the early pioneers to introduce the idea of multi-agent sys-
 751 tems Minsky (1988). His notion of multi-agency involves dividing complex cognitive tasks into
 752 smaller parts, delegating them to specialized "agents", and integrating the results into a coherent
 753 solution. Inspired by Minsky's vision, recent works have utilized and implemented multi-agency in
 754 LLM-based systems. Some focus on building general infrastructures for autonomous cooperation
 755 among communicative agents (e.g., CAMEL Li et al. (2023) and AutoGen Wu et al. (2023)). Others
 focus on specific multi-agent solutions or tailored applications. For instance, MetaGPT Hong et al.

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

Strategy in Round 1 (Global Exploration + Plan)

Phase-1 coarse grid (Latin Hypercube) to discover “interesting” regions while avoiding early clustering. Phase-2 zoom: once any value $> 0.8 \cdot \text{max_seen}$ is observed, launch a 5×5 exploratory cross around that spot (± 25 units) to sense gradient direction. Phase-3 local search: from the best cross-centre run a small 3×3 pattern (± 5 units) and keep shrinking step/2 until improvement $< 1\%$. All coordinates rounded to 4 decimals; never re-sample the same point; budget 173 calls total.

LLM* Strategies in Rounds 2–21 (No Change)

NA

Phase summary: The strategy of the agent in rounds from 2 through 21 remained (NA).

Figure 4: Kimi-K2 model in a sample run. The figure illustrates the agent’s initial multi-phase plan: a coarse Latin Hypercube grid for global exploration, followed by local zoom-in and progressively finer refinements. However, subsequent rounds show no strategic adaptation (marked “NA”), indicating that the agent adhered rigidly to its original plan without incorporating feedback or diversification. This static approach highlights the limitations of non-adaptive strategies in complex search landscapes.

(2023) and ChatDev Qian et al. (2023) automate software development by assigning distinct roles to different agents. Multi-agent debate frameworks (such as MAD Liang et al. (2023), which employs a debate cycle among agents moderated by a judge agent, and Du et al. Du et al. (2024), where agents exchange answers to get a chance to modify their next responses) present another direction.

While these works follow Minsky’s multi-agent view, our proposal, ACE takes a different path. ACE focuses on the reasoning process itself rather than focusing on how to delegate tasks to specialized agents or automate their communication. Great performance of ACE (as shown in section 4) suggests that the basic element of intelligence needs to include a Hegelian-inspired triad, not a single entity offering a complementary perspective to Minsky’s multi-agent approach. Compared to debate-based proposals, from a philosophical qualitative perspective, as explained earlier in section A, there are key fundamental differences between debate and dialectics, which ACE draws inspiration from. Additionally, from a quantitative standpoint, our experiments and comparisons in section 4 highlight ACE’s superior performance over debate-based works in SOP context.

C A COUPLE OF SAMPLES FOR LLM* IN ACTION

Figures 4 and 5 demonstrate two samples of strategies used by LLM* in separate runs, utilizing the Kimi-K2 and GPT-4.1 base models, respectively. In the first run (Figure 4), the agent lays out a clear multi-phase plan: begin with a broad, space-filling sweep over the full domain to avoid early clustering and surface promising regions; when a high value appears, trigger a local zoom using a small exploratory stencil to sense ascent directions; then switch to a compact pattern search that repeatedly shrinks its step size while guarding against re-sampling. After this initial plan, agent decides to not change its strategy in the subsequent rounds, (marked “NA”), and the run proceeds by repeatedly tightening the neighborhood around the incumbent best point until the query budget is exhausted. Overall, the strategy indicates a coarse-to-fine refinement strategy that is systematic and easy to interpret. However, the actual execution of the agent (through subsequent python codes) remains highly deterministic and lacks adaptive mechanisms. The execution rigidly follows a shrinking-grid pattern without introducing stochasticity, or any checks for diminishing returns. As a result, the agent commits early to local exploitation, never revisits other promising regions, and continues refining even when improvements become negligible. These issues stem from the absence of exploration-exploitation balancing logic in the strategy, leading to wasted queries and a high risk of getting trapped in a local maximum.

In the second example, (Figure 5), the GPT-4.1 model attempts to adapt its strategy based on the feedback it receives from the World. The agent follows a coarse-to-fine hierarchical grid strategy: it begins with broad exploration to map the landscape, then repeatedly zooms in around the single best point it has found, tightening the grid with each turn. The approach is deterministic and greedy, adapting to feedback only by narrowing the search window, without stochasticity, restarts,

810
811
812
813
814**LLM* Strategy in Turn 1**

We will begin with a coarse grid sampling approach to explore the entire search space. The range [-1000, 1000] is divided into a 5x5 grid, covering 25 evenly spaced points. This provides a preliminary understanding of the landscape.

815
816
817
818
819**LLM* Strategy in Turn 2**

Refine the search by exploring a finer grid around the current highest value point, (0.0, -1000.0), while ensuring all selected points remain within the valid range (-1000, 1000). This exploits the most promising region while maintaining local exploration.

820
821
822
823**LLM* Strategy in Turn 3**

Refine the search further by creating an even finer grid around the current highest value point (-100.0, -1000.0). This allows us to exploit the local neighborhood of the current best point and move toward the global maximum.

824
825
826
827**LLM* Strategy in Turn 4**

Focus on the region around (-125.0, -1000.0) with an even finer grid. This helps pinpoint the global maximum with greater precision.

828
829
830**LLM* Strategy in Turn 5**

Focus on the region around (-137.5, -1000.0) with an even finer grid to hone in on the peak with greater precision.

831
832
833
834**LLM* Strategy in Turn 6**

Narrow the search around (-143.75, -1000.0) with an even finer grid to pinpoint the exact location of the global maximum.

835
836
837
838
839
840**LLM* Strategy in Turn 7**

Focus the search on a very fine grid around (-146.875, -1000.0) to pinpoint the global maximum. Given the limited number of remaining queries, the grid will be extremely localized.

841
842
843
844
845
846

Figure 5: A sample sequence of strategies employed by LLM* over eight turns using the GPT-4.1 base model. The agent begins with a coarse global grid search and then repeatedly narrows its focus, applying finer grids around the current best point. While systematic, this deterministic zoom-in pattern lacks exploration-exploitation balance and fails to revisit other promising regions, ultimately leading to local entrapment and failure to locate the global optimum.

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861

or diversification. While this yields a clean, interpretable trajectory and can work well on unimodal surfaces, it ultimately fails to find the global optimum here because it commits too early to local exploitation, spending most of its budget micro-refining a small neighborhood with diminishing returns. That said, locating and consistently refining a local maximum is noteworthy: it shows the agent recognized a regional peak and the qualitative relation between directional moves and observed changes in the objective. The core shortcomings are an inadequate exploration-exploitation balance, no revisiting of other promising regions from the initial scan, and no mechanisms to handle multiple peaks. A more adaptive design would reserve budget for continued exploration, introduce stochastic escapes and boundary-aware trust regions, or adopt global optimizers (e.g., BO, CMA-ES, etc.) that explicitly balance exploration and exploitation.

D A SAMPLE OF THE DIALECTICAL PROCESS IN ACE

862
863

Figures 6–8 illustrate how the dialectical method of ACE, (with the Kimi-K2 as base model), transforms the optimization process compared to earlier static strategies shown in Figures 4 and 5. Rather than committing to a single plan, the agent iterates through thesis, antithesis, and synthesis,

864

Dialectical Progress in ACE (Part 1) — Turns 1–2

865

Thesis 1

866

Start with a two-stage hybrid search. Stage 1 (exploration): draw a low-discrepancy Latin Hypercube Sample (LHS) of 60 points that covers the whole 2000×2000 square. LHS spreads points evenly while leaving no large voids, giving a first rough map of peaks and valleys. Stage 2 (exploitation): after every LHS batch, fit a cheap surrogate (quadratic regression with interaction terms) to all observations, optimize it by brute-force on a 1%-resolution grid, and pick the 10 grid cells whose surrogate prediction is highest but whose centres have not been queried yet. Interleave these two stages until 173 queries are spent or the same best point is requested three times in a row (which will lock it as the believed global maximiser). All coordinates are rounded to four decimals to obey the rules.

867

Antithesis 1

868

Critique:

869

- 60 LHS points is a good first scan, but the surrogate model you plan (quadratic + interactions) is too weak for rugged landscapes; it will hallucinate smooth ridges and miss narrow spikes.
- The gap between best (1162.4) and second-best (907.3) is 255 units – large enough that a 5% tolerance window already reaches ≈ 1104 . Do not chase the noise inside this window; instead verify whether the 1162 neighbourhood is a genuine peak or a fluke.
- No edge/corner check: the square corners are still untouched; many test functions hide extrema there.
- You are 60 / 175 queries in (115 left). At most 30 more should be spent on local polishing; the rest must go to uncovered regions.

870

Issues to fix next:

871

1. Immediately probe 8-points ring ± 25 around the current best to confirm curvature.
2. Add a space-filling set (e.g., 20 Sobol) biased toward the still-empty corners/edges.
3. Replace the quadratic surrogate by a flexible one (random-forest or RBF) before you start the “exploitation” stage.

872

Synthesis 1 (Thesis 2)

873

NA

874

Antithesis 2

875

Critique:

876

- You duplicated two neighbours (297.0339, -1000) and (347.0339, -1000); that burns 2 of your 115 remaining queries for zero information.
- The 3×3 stencil only moved 25 units; the jump from 1162 \rightarrow 1180 shows the ridge continues east/south-east. Widen the next stencil to 50–75 units in that direction instead of re-sampling the same 25-unit cloud.
- Corner/edge probe was useful: $(-1000, -1000) = 627.9$ is better than any previous edge value, but still 500 units below the current best – no need for dense edge packing yet.
- You still have not tested a surrogate; 80 points in, start a cheap RBF ensemble to tell you where prediction error is high, otherwise you will keep polishing locally while missing distant spikes.

877

Issues ahead:

878

1. 95% tolerance window is now ≥ 1121.7 – anything below that is irrelevant.
2. 95 queries left; allocate ≤ 15 more around the 1180 ridge, then launch a space-filling set (e.g., 30 Sobol) weighted toward unsurveyed quadrants.

879

Figure 6: Dialectical progress in ACE (Part 1) using the Kimi-K2 base model. The first thesis proposes a two-stage hybrid strategy: global exploration via Latin Hypercube Sampling (LHS) followed by surrogate-based exploitation. The antitheses critique weaknesses (simplistic surrogate, lack of edge coverage, premature local focus), setting the stage for more adaptive techniques in later turns.

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

using structured critique to refine its approach dynamically. The first thesis proposes a hybrid plan combining Latin Hypercube Sampling with a simple quadratic surrogate, but the antithesis immediately flags critical weaknesses—such as the surrogate’s inability to capture rugged landscapes and the lack of edge coverage. This feedback drives subsequent syntheses toward more advanced

918

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971**Dialectical Progress in ACE (Part 2) — Turns 3–4****Synthesis 2 (Thesis 3)**

Keep two parallel tracks: A. Local: follow the rising ridge hinted by 1162→1177→1181. Use 50-unit steps E/SE; stop as soon as no improvement $\geq 0.5\%$ is seen for two consecutive rings. B. Global: spend the bulk of remaining queries on an adaptive RBF-guided search. Fit a thin-plate-spline RBF to all 80 observations, compute leave-one-out prediction error map on a coarse grid, and pick the 20 cells with highest upper-confidence-bound (UCB = pred + 2·std) that have not been queried. After every 20-point UCB batch, refit the RBF and repeat.

Antithesis 3**Critique:**

- Ridge march is working: 1181→1204 in 50-unit steps. Still no plateau, so keep pushing SE/E with 75-unit stride next.
- You wasted 25 pure-random Sobol points; most landed in already-saturated basins. Replace them with error-weighted space-filling.
- Duplicate filter is only local; you re-sampled (347.0339,-925.0) – costing 1 query. Use a global seen-set.
- 95% tolerance window is now ≥ 1143.6 ; anything below can be ignored. Two values just crossed it: (560.66,-804.38,1170.8) and (324.28,859.22,985.4) – second ridge candidate.

Issues next:

1. 69 queries left; spend ≤ 12 on the 1204 ridge, 15 on the new 1171 ridge, remainder on high-UCB cells.
2. Widen step to 75 units E/SE; if no $+0.5\%$ gain after two steps, declare local peak and switch to UCB-only.

Synthesis 3 (Thesis 4)

Maintain global seen-set to avoid duplication. Local: continue ridge walk with 75-unit E/SE steps; stop when two consecutive rings give $< 0.5\%$ gain. Global: build RBF on all 110 points, evaluate leave-one-out std on 100×100 grid, pick 20 cells with highest UCB. Interleave 12 local + 20 UCB per batch; 68 queries left.

Antithesis 4**Critique:**

- Ridge march still climbs: 1204→1218 at (472,-925). Step-size 75 is still productive; extend one more stride.
- You again sprinkled 20 uniform-random “UCB” points instead of using the actual RBF error surface.
- Duplicate guard worked, but you re-sampled the exact centre of the previous ring.
- 95% tolerance window is now ≥ 1157 . Only two new points cleared it; focus remaining queries on the 1218 ridge or true high-uncertainty zones.

Issues / next moves:

1. 48 queries left.
2. One last 75-unit E/SE extension; if gain $< 0.5\%$, lock that ridge.
3. Fit RBF now, spend remaining 35 queries on top-UCB grid cells only.

Figure 7: Dialectical progress in ACE (Part 2). The agent transitions from static refinement to a two-track strategy that integrates Bayesian Optimization principles. Locally, it performs ridge climbing with adaptive step sizes to exploit strong gradients. Globally, it introduces an RBF surrogate model and uses the Upper Confidence Bound (UCB) acquisition function to guide exploration toward high-uncertainty regions. Antitheses highlight inefficiencies such as random sampling and delayed surrogate use, reinforcing the dialectical process as a mechanism for balancing exploration and exploitation.

techniques, including Radial Basis Function (RBF) surrogates, Upper Confidence Bound (UCB) acquisition, and explicit allocation of queries between local and global phases.

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Dialectical Progress in ACE (Part 3) — Turns 5–7

Synthesis 4 (Thesis 5)

Build RBF surrogate on all 133 observations immediately; evaluate mean & std on 1% grid; pick 25 highest UCB cells not yet queried. Simultaneously probe the ridge one last time with 75-unit step east and north-east; if no $\geq 0.5\%$ gain, cease local march and devote all remaining queries to UCB-guided search.

Antithesis 5

Critique:

- Ridge march stopped climbing: 1218 → 1199 (-1.5%). Peak is bracketed; stop local search.
- You again sampled 21 random grid cells instead of the 21 highest UCB cells; wasted 19 queries.
- You still have not fitted the RBF; without it you are blind to high-uncertainty zones.
- 27 queries left – too few for random sampling. Every remaining point must come from the surrogate’s top-UCB list.

Issues / next moves:

1. Fit RBF now on all 155 observations.
2. Evaluate mean & std on the full grid, pick the top-27 UCB cells – no randomness.

Synthesis 5 (Thesis 6)

NA

Antithesis 6

Critique:

- RBF surrogate built, but you selected cells by prediction value, not UCB. All picks cluster near the 1218 peak.
- Every returned value sits inside the 95% tolerance window; confirms the peak but does not rule out distant spikes.
- 8 queries remain – too few to carpet-bomb the same neighborhood. You need one best-guess evaluation and then stop.

Synthesis 6 (Thesis 7)

Given no additional queries remained, maximum is found at ...

Figure 8: Dialectical progress in ACE (Part 3). The agent attempts to consolidate its strategy by prioritizing UCB-guided sampling and enforcing duplicate filtering. While the synthesis nodes emphasize surrogate-driven global search, critiques reveal persistent execution flaws—such as selecting points by raw prediction instead of UCB and over-sampling near the current peak. These final turns underscore both the strengths and limitations of the dialectical approach: it fosters structured adaptation and diversification but still depends on correct implementation of its own prescriptions.

As the experiment progress, the strategy evolves into a two-track system: (i) local ridge climbing to exploit strong gradients and (ii) surrogate-guided global exploration using uncertainty estimates to target underexplored regions. This represents a significant improvement over the rigid, deterministic zoom-in patterns seen in previous runs. While some inefficiencies remain—such as delayed surrogate fitting and occasional random sampling—the dialectical process enforces diversification, duplicate filtering, and adaptive stopping rules, reducing wasted queries and mitigating local maximum traps. By embedding critique and synthesis into the reasoning loop, ACE achieves a more principled exploration-exploitation balance, leveraging Bayesian optimization principles without losing heuristic flexibility. This structured adaptability enables the agent to make better use of its query budget and substantially increases its chances of approaching the global optimum in complex, multimodal landscapes.

1026 E MORE ON THE EVALUATIONS AND THE PROMPT TEMPLATES USED 1027

1028 **Prompt Templates:** Figure 9 shows the main template used for the LLM* scheme. We use the
 1029 same template for the main agent of other schemes compared in this paper, including ACE’s Actor.
 1030 Additionally, Figure 10 and 11 demonstrate the initial and transitional prompts used for ACE’s Critic,
 1031 respectively. The task of the Synthesizer, the Actor of the previous and next steps, will be identified
 1032 through a transitional prompt, as shown in Figure 12.

1033 **Majority Scheme:** To implement the Majority scheme and automate the solution, we use another
 1034 agent called the poll worker. The poll worker checks different agents’ responses and identifies the
 1035 Majority response, which is the one with the highest consensus. Figure 13 shows the prompt template
 1036 used for the poll worker. Unlike taking the majority vote after every agent completes the task in
 1037 general scenarios, in our sequential decision-making problems, we need to take the majority vote in
 1038 every round. Therefore, the poll worker processes the agents’ responses at each round of interaction
 1039 with the World, identifies the response with the majority consensus at each round so that the World
 1040 can execute it and provide the feedback.

1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Main Initial Prompt Template for LLM* and Other Schemes

Role Assignment

You are a great expert in the optimization topic and search algorithms.

Problem Definition

You are tasked with examining an unknown function $f(x, y)$ ($-1000 \leq x, y \leq 1000$). You need to interact with the function $f(x, y)$ in order to locate the global maximum value. Here's how to do it:

1. *Define Your Strategy:* Start with creating a solid strategy to explore the space and solve the problem.
2. *Choose a Point* (x, y) : Based on your strategy, select unique NEW points $(x_1, y_1), (x_2, y_2), \dots$ to evaluate the function.
3. *Get Feedback and Adjust Your Strategy:* After I reveal the values of $(x_1, y_1, f_1), (x_2, y_2, f_2), \dots$ at your chosen points, adjust your strategy based on this feedback.
4. *Repeat the Process:* Continue this process for up to *QueryBudget* queries (in the form of (x_i, y_i)) or until you are confident that you have found the global maximum.

Note: Finding a value in the range of $[0.95 \times (\text{Global Max}), \text{Global Max}]$ is equal to solving the problem.

Response Format

Here's how you should format your response:

- *MY_CURRENT_STRATEGY*: <explain your chosen strategy here>
- *MAX_SEEN_SO_FAR*: $x, y, f(x, y)$
- *NEXT*: <Python code snippet that generates the next coordinates and return a list of tuples $[(x_i, y_i), \dots]$ >

{...}

General Rules and Examples of Acceptable/Unacceptable Responses

Here are some rules that you must follow: {...}

General Hints

- The space is vast, and there will be several LOCAL maximums, so avoid choosing them as the answer. Make sure that you explore the space enough to ensure that your answer represents the GLOBAL maximum
- Asking for a certain coordinates multiple times, consumes your available remaining query budget and reduces your chances of finding the global maximum. So, utilize the responses so far to select only unique coordinates.
- A very important point is that YOU SHOULD NOT BE HASTY. You should be patient and explore the space thoroughly. However, remember that you have only a maximum of *QueryBudget* queries to solve the problem.

{...}

Examples of Function f

Here are examples of function f where it has multiple local maxima and one global maximum {...}

Start Command

Let's start. Create an excellent and efficient strategy and choose your first batch of coordinates accordingly.

Figure 9: Main initial prompt template used for LLM* and other schemes

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

Critic's Initial Base Prompt Template

Role Assignment

You are a great expert in the optimization topic and search algorithms and will assist others in solving optimization problems.

Problem Definition

Your task is to provide guidance, suggestions, and assistance to a very smart AI agent for solving an optimization problem.

The agent is to interact with an unknown function $f(x, y)$ ($-1000 \leq x, y \leq 1000$) with the objective of identifying the global maximum value. Here is the procedure the agent will adhere to:

1. *Strategy Development*: The agent will begin by devising a comprehensive strategy to explore the space and tackle the problem.
2. *Point Selection* (x, y): The agent will choose unique NEW points $[(x_1, y_1), (x_2, y_2), \dots]$ for function evaluation, based on its strategy.
3. *Feedback Collection and Strategy Enhancement*: Once the values of $[(x_1, y_1, f_1), (x_2, y_2, f_2), \dots]$ at the agent's selected points are revealed, the agent can refine its strategy using this feedback.
4. *Process Persistence*: The agent will continue this procedure for up to *QueryBudget* queries (in the form of (x_i, y_i)) or until it is confident that the global maximum has been identified.

The agent should present its findings in the following way: {...}

The agent will comply with the following rules: {...}

Given this problem statement, your duty is to ensure that the agent identifies the global maximum value.

General Guidelines

To achieve your goal, please follow these guidelines:

1. After each step, you can critique the agent's chosen coordinates or its strategy. It is essential that you offer constructive criticism to improve its next moves.
2. It's important to remember that the space is vast, and there may be several LOCAL maximums, so you must help the agent avoid mistaking local maximum values for the answer {...}
3. You can offer suggestions and brainstorming to assist the agent in its task. Remember that the agent is very smart, so do not describe what the agent has already chosen or done! Limit your responses to constructive criticism.
4. Note: Finding a value in the range of $[0.95 \times (\text{Global Max}), \text{Global Max}]$ is equal to solving the problem, so discourage the agent to spend time on finding values that have small differences.
5. After every iteration, list the potential issues with the agent's strategy and decision so far.
6. Ensure that your responses are concise and to the point. Do not provide unnecessarily long responses.

{...}

Agent's Response & the Corresponding Results

Here is the Agent's response: $\langle \text{Thesis}_1 \rangle$ and the corresponding results: $\langle \text{Observations}_1 \rangle$

Start Command

Now, given all the info, review agent's response, make your criticism and suggestions, and detect potential issues ...

Figure 10: Initial prompt template used for the Critic in ACE

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

Critic's Transitional Prompt Template

Agent's Response & the Corresponding Results

Here is the Agent's response: $\langle Thesis_i \rangle$ and the corresponding results: $\langle Observations_i \rangle$

Start Command

Now, given all the info, review agent's response, make your criticism and suggestions, and detect potential issues ...

Figure 11: Transitional prompt template used for the Critic in ACE

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

Synthesizer's Prompt Template

Synthesize Command

The corresponding results are: $\langle Observations_i \rangle$

To help you on your task, we provide you (the Agent/Actor) with the response from a reviewer who is observing your attempts:

$\langle Antithesis_i \rangle$

Given the suggestions and comments provided, improve your strategy and continue.

Figure 12: The prompt template used for the Synthesizer in ACE. Note that Synthesizer is the Actor of the previous round, so it already has access to the $Thesis_i$. This provides an efficient handling of the context and token usage.

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

Poll Worker Prompt Template

Role Assignment

You are a great assistant with a strong background in AI and optimization problems.

Problem Definition

You are assigned to work as a poll worker to analyze responses from multiple agents to a given problem. Each agent's response may include long sentences describing their strategy to solve the problem, code snippets, or other relevant information.

Your task is to identify the agent whose response is the most frequently specified among all agents. If there is a tie, you should randomly select one of the tied agents. Your response should only include the integer ID of the selected agent. Ensure that the selection process is fair and unbiased.

General Guidelines

• Input Data

You will receive a list of responses from multiple agents. Each response is associated with a unique agent ID. *Example format:*

- The response from agent id_1 : $response_1$
- The response from agent id_2 : $response_2$
- ...
- The response from agent id_n : $response_n$

• Processing

Analyze the responses to determine which agent's response is the most frequently specified. Evaluate the similarity of responses based on the nature of the answer, strategy, and major similarities, rather than exact wording. In case of a tie, randomly select one of the tied agents.

Response Format

Your output should be a single integer representing the ID of the agent with the most frequently specified response.

Example output: 3

Examples

Your response should only include the integer ID of the selected agent. You must avoid apologizing in your answers. Ensure that the selection process is fair and unbiased. *Example:* Given the following input:

- The response from agent 1: "Use a divide-and-conquer strategy to break the problem into smaller parts. Start with a few number of smaller parts"
- Agent #2: "Apply a divide-and-conquer approach to split the problem into manageable sections. Start with 10 parts"
- agent 3: "Implement a brute-force method to try all possible solutions"
- The Agent #4's response: "Use reinforcement learning to find the optimum solution"
- Agent 5: "Divide the problem into 10000 smaller parts and solve each part individually"

The most frequently specified strategy is "using divide-and-conquer with small number of total parts" which is provided by agents 1 and 2. Note that agent 5 specifies the divide-and-conquer part but with a large number of initial small parts. Therefore, you should output one of the IDs 1 or 2. If there is a tie, randomly select one of the tied IDs.

Output: 2

Start Command

Ok, let's start

Figure 13: The prompt template used for the poll worker agent in Majority scheme