
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLMS FOR SEQUENTIAL OPTIMIZATION TASKS:
FROM EVALUATION TO DIALECTICAL IMPROVEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities across
diverse domains, opening new possibilities for solving complex optimization prob-
lems. This paper investigates the potential of LLMs as end-to-end designers for
tackling Sequential Optimization Problems (SOPs), a challenging and pervasive
class of tasks. To rigorously evaluate LLM performance, we introduce WorldGen,
a dynamic benchmark for generating unseen SOPs with controllable complexity.
Our initial findings show that while LLMs perform well on simpler SOPs, their
effectiveness declines sharply as complexity increases. To address this, we draw
inspiration from philosophical theories of reasoning—specifically, Hegelian Dialec-
tics—and propose ACE, a dialectical framework that enhances LLM performance
in SOPs without requiring retraining or fine-tuning.

1 INTRODUCTION

Reframing Optimization in the Age of AI: Optimization lies at the heart of decision-making across
disciplines—from engineering and economics to healthcare and scientific discovery. The essence of
decision-making lies in choosing the best option from a set of alternatives, driven by objectives such
as efficient resource allocation, cost minimization, profit maximization, or performance enhancement
of systems and infrastructures Chong & Zak (2013). Traditionally, solving optimization problems
has required domain expertise, algorithmic craftsmanship, and careful handling of challenges such
as high dimensionality, nonlinearity, and stochasticity Datta et al. (2019). Despite decades of
progress, the process remains labor-intensive and brittle, often demanding manual tuning and heuristic
design. Consequently, there is a continuous quest across various fields to simplify and automate the
optimization process.

A New Opportunity: Recent advances in LLMs, such as GPT-4 OpenAI (2023), have sparked
interest in their potential to automate aspects of optimization Song et al. (2024). However, most
existing approaches treat LLMs as auxiliary components—constructing surrogate models, guiding
heuristics, or assisting within human-designed pipelines Wang et al. (2024); Liu et al. (2024); Lange
et al. (2024). In contrast, in this paper, we ask a fundamental question: How proficient are LLMs at
performing end-to-end design for solving Sequential Optimization Problems (SOPs)?

Assessing LLMs in a New Context: Although various benchmarks exist to evaluate LLM per-
formance in general and specialized tasks (e.g., coding, mathematics), their capabilities in solving
optimization problems, particularly SOPs, remain underexplored. SOPs involve making a series
of decisions over time, where each decision affects subsequent options and outcomes, creating a
complex web of interdependencies. Different challenges contribute to this issue, primarily the need
for defining a representative set of SOPs and ensuring that observed performance is not influenced
by data contamination or prior exposure during the LLMs’ training Dong et al. (2024); Mialon et al.
(2023); Chen (2023).

On-Demand SOP Generation: Motivated by these opportunities and challenges, first, we aim
to address this research question: How can we evaluate the performance of LLMs in SOPs? We
introduce a straightforward yet effective framework, WorldGen, capable of generating unseen SOPs
with controllable complexities on demand. WorldGen contrasts with most existing static benchmarks
(e.g., MMLU Hendrycks et al. (2021), GLUE Wang et al. (2018), SuperGLUE Wang et al. (2019),
GSM8k Cobbe et al. (2021), etc.) which become obsolete as LLMs evolve Mialon et al. (2023).
Utilizing this dynamic framework, we have made two key observations: (1) For relatively simple

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

optimization tasks, with a single global maximum and no local maxima (i.e., simple surfaces and
scenarios), current LLMs can design solutions that solve them efficiently. (2) As the complexity of
the optimization problems increases, the performance of LLMs degrades significantly and becomes
unsatisfactory.

Improving LLMs with Roots in Philosophy: Next, inspired by these observations and the poor
performance of LLMs in SOPs, we propose a systematic approach to enhance the performance
of off-the-shelf LLMs (in the context of SOPs) without necessitating any retraining, treating the
LLM as a black box. In particular, we propose ACE, to demonstrate that LLMs can be transformed
from passive assistants into active designers of optimization strategies. ACE empowers LLMs to
select, orchestrate, and adapt optimization methods dynamically—treating SOPs as open-ended
design challenges rather than scripted tasks. To support this, ACE introduces a principled dialectical
reasoning process inspired by Hegelian Dialectics Hegel (1807; 1812). Instead of relying on prompt
engineering, ACE structures inference through thesis–antithesis–synthesis cycles, enabling iterative
refinement and strategic exploration. Crucially, ACE allows LLMs to go beyond generating the
next query point—it enables them to explore alternative strategies, adapt to feedback, and evolve
their approach across the entire optimization lifecycle (See Appendix A for a brief background in
philosophy on reasoning, dialectics, and Hegel’s framework).

Main Contributions: In summary, this paper makes the following key contributions:

1. We design WorldGen, a framework to assess the performance of LLMs in SOP settings, addressing
the data contamination issues typically associated with general LLM benchmarks (detailed in
section 3.1). WorldGen allows for the growth of evaluation complexity in line with the advancement
of LLMs.

2. Using this framework, we provide initial observations on the poor performance of current LLMs
in SOPs, motivating the need for structured reasoning frameworks that support full-cycle design
(detailed in section 3.4).

3. We present ACE, a novel approach inspired by one of the most successful dialectical hypotheses in
philosophy for explaining and enhancing reasoning. We show that ACE improves the performance
of LLMs in end-to-end optimization design through dialectical reasoning. This enhancement
occurs at test time, without any retraining or fine-tuning (detailed in section 3.5).

2 RELATED WORK

Our work intersects with several research areas: (1) LLM-Assisted Optimization, (2) Prompt En-
gineering, (3) Benchmarks for Evaluating LLMs, and (4) Multi-Agent Systems. Here, we briefly
review the first two areas and provide a more detailed discussion of the latter two in Appendix B.

LLMs for Optimization: Recent research on leveraging LLMs for optimization can be broadly
grouped into two categories:

1. LLMs as components in human-designed optimization procedures: In this paradigm, LLMs
serve as auxiliary tools within pre-defined algorithms, assisting with tasks such as generating
initial candidate solutions, constructing surrogate models, or guiding search heuristics. Examples
include integrating LLMs into evolutionary strategies or Bayesian optimization (BO) pipelines,
where human intervention remains essential for prompt design, heuristic tuning, and algorithmic
orchestration Wang et al. (2024); Liu et al. (2024); Lange et al. (2024). While these approaches
demonstrate that LLMs can complement traditional optimizers, they limit the model to a supporting
role rather than granting full desinger autonomy.

2. LLMs as black-box solvers: A smaller body of work explores using LLMs to directly generate
queries Yang et al. (2024). However, the design choices in this group remain largely confined to
the few-shot learning capabilities of LLMs (e.g., generating the next query point based on list
of previous ones as in Yang et al. (2024)). Even in this setting, performance often depends on
manual heuristics—such as specifically sorting previous samples or crafting specialized prompt
templates—to stabilize behavior and improve convergence. This reliance on human-designed
scaffolding constrains the autonomy and generality of these approaches and reduces their true
”black-box” nature.

Our framework, ACE, departs from both paradigms in three key ways. First, ACE positions the LLM
as an autonomous designer, capable of independently selecting and applying optimization strategies

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(e.g., BO, Genetic Algorithms, etc.) without human intervention or guidance. Unlike prior work that
embeds LLMs into rigid pipelines, ACE enables end-to-end decision-making, allowing the model
to hypothesize, test, and refine strategies dynamically. Second, ACE eliminates heuristic prompt
engineering by introducing a principled dialectical reasoning process at inference time. Rather
than relying on ad hoc tweaks, ACE structures reasoning through thesis–antithesis–synthesis cycles,
inspired by Hegelian Dialectics, to improve solution quality systematically. Finally, ACE emphasizes
true autonomy: the model is not restricted to generating the next query point from a curated history
but can explore alternative strategies and adapt its approach based on feedback.

Evaluation Beyond Static Benchmarks: Existing evaluations of LLM-based optimization often rely
on public datasets or well-known problem suites (e.g., Traveling Salesman Problem Applegate et al.
(2006), Black-Box Optimization Benchmarking Finck et al. (2009)), which risk contamination from
pretraining corpora and may inadvertently measure memorization rather than reasoning. To address
this, we introduce WorldGen, a dynamic framework for generating unseen SOPs with controllable
complexity. Unlike static benchmarks, WorldGen can evolve alongside model capabilities, ensuring
fair and forward-looking assessment of LLM performance in genuinely novel scenarios.

Prompt Engineering (PE): Since we treat LLMs as black-boxes and focus on improving the off-the-
shelf models without any retraining, it will be natural to mention works in PE domain here. Prompting
techniques have become essential in enhancing the performance and versatility of LLMs. These
techniques range from Zero-shot Prompting, where models are given tasks without prior examples,
to Few-shot Prompting, which provides a few examples to guide responses Brown et al. (2020).
Chain-of-Thought encourages models to generate intermediate reasoning steps Wei et al. (2022),
Self-Consistency (Majority Vote) generates multiple outputs to select the most consistent one Wang
et al. (2022); Lewkowycz et al. (2022), and Generate Knowledge Prompting prompts the model
to produce relevant background information before answering Liu et al. (2021). Tree of Thoughts
structures reasoning as a tree to explore different branches Yao et al. (2024); Long (2023). Retrieval
Augmented Generation combines document retrieval with generation for improved accuracy Lewis
et al. (2020). Automatic Prompt Engineer uses algorithms to refine prompts Zhou et al. (2022), while
Active-Prompt Diao et al. (2023) adjusts prompts based on performance feedback and Program-
Aided Language incorporate programming logic Gao et al. (2023). Techniques like ReAct combine
reasoning and acting steps Yao et al. (2022), and Self-Reflection prompts models to reflect on their
responses for better outcomes Madaan et al. (2024); Shinn et al. (2024). These diverse techniques
collectively enhance the adaptability and effectiveness of LLMs. ACE is orthogonal compared to
these techniques and as we later show, it can be combined with them (detailed in section 3.5).

3 ASSESSING & IMPROVING LLMS IN SOPS

SOPs are pervasive across diverse domains, ranging from logistics and resource allocation to machine
learning and operations research. Requiring specialized knowledge to address practical issues such as
high dimensionality, nonlinearity, and the dynamic, unpredictable nature of real-world settings make
SOPs complex in their nature Datta et al. (2019). Automating the solution of such problems is highly
desirable, as it can lead to efficiency gains and innovative solutions to complex challenges. On the
other hand, LLMs have demonstrated remarkable capabilities, including proficiency in coding and
exceptional context-awareness, making them promising candidates for tackling SOPs.

So, naturally, exploring the performance of LLMs in addressing these crucial tasks is a significant
step forward in understanding their broader applicability and the opportunity to solve these problems
automatically. However, evaluating LLMs in this context comes with it own set of challenges. Key
concerns include managing data contamination, ensuring that the problems and their solutions were
not inadvertently exposed during training, and consequently distinguishing between genuine reasoning
and mere memorization. Additionally, access to a set of representative optimization problems is vital
to effectively assess LLMs’ capabilities in solving sequential tasks. Addressing these challenges will
enable a deeper understanding of the role LLMs can play in advancing optimization methodologies.

3.1 WORLDGEN

Core Idea: At the heart of optimization lies the task of finding the optimum point(s) in an n-
dimensional world, mathematically expressed as f(x1, x2, . . . , xn−1). So, instead of focusing on

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Samples of generated 3D worlds (and their 2D heatmap versions) for different SOP
complexities: very simple (left), simple (middle), and medium (right).

specific optimization problems, we shift our attention to the worlds that represent these problems.
In other words, rather than trying to come up with specific optimization problems, which may
inadvertently introduce biases or contamination from training data, we focus on directly generating
n-dimensional worlds that can represent the solution spaces for a wide range of SOPs. That said,
we do not predefine the optimization problem. Instead, the task naturally emerges as finding the
maximum (or other extrema) in the generated n-dimensional world. This setup allows us to define
flexible problems while preserving the integrity of the test environment.

Benefits and Advantages: This approach ensures that neither the optimization problem nor its
solution was exposed to the LLM during training. By doing so, we can mimic a real-world scenario
where an optimization expert is asked to tackle a newly faced optimization problem using any
techniques or strategies they prefer. Utilizing this approach brings some advantages. It offers
generative flexibility, allowing the n-dimensional world to represent an infinite variety of optimization
problems, from simple to highly complex ones. By abstracting the problem into a generated world,
it ensures unbiased evaluation, reducing contamination from known problem-solution pairs and
providing a more acceptable measure of the LLM’s capability. Our world generator, WorldGen,
enables the creation of increasingly complex worlds that test the limits of learning agents and provides
a platform for benchmarking them under controlled yet dynamic conditions. Figure 1 shows samples
of generated 3-D worlds with different complexity levels.

3.2 LLM AND ACCESSING THE WORLD

An Interactive Cycle: To enable the LLM agent to perform its task effectively, we provide it with
access to the generated world through an interactive cycle as shown in Figure 2. This ensures a
dynamic sequential process where the agent iteratively learns and refines its approach based on the
information it gathers. Simply put, in each iteration, the LLM agent is allowed to interact with the
world by selecting a batch of interested points where each point is a vector, vi of size n− 1. Then,
the world responds by revealing the corresponding values of f(vi) to the LLM agent. This will end
one iteration/round of the interaction. In the next round, the LLM utilizes this feedback to determine
the next set of points to query.

Supporting Coding & Providing Flexibility: Due to the complexity of SOPs, the LLM agent is
permitted to provide a Python code as part of its response and therefore utilize any library it deems
necessary for solving the problem. This freedom ensures that the agent can employ a diverse range
of tools and techniques to explore and analyze the generated world. As part of its role, the World is
responsible for executing the Python code generated by the LLM agent. Once the code is executed,
the World provides the results back to the agent as part of its feedback, enabling it to adapt and refine
its strategy in subsequent iterations. In case of errors that may arise during execution, the World is
responsible to provide the details of the errors and return meaningful feedback. Moreover, the LLM
agent is not constrained by a fixed set of queries or techniques. Instead, it has the freedom to decide

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

1. ACTION
Including a Python code specifying

the next batch of query points

2. FEEDBACK
Including results from the Python code
and the World values at queried points

Figure 2: Interactive cycle for a LLM agent & the World

Table 1: The success rates of LLM⋆

(GPT-5-chat as base model) in worlds
with diff. complexity levels

WORLD COMPLEXITY SUCCESS RATE ↑
L0 (VERY SIMPLE) 100%
L1 (SIMPLE) 60%
L2 (MEDIUM) 44.5%

how to approach the problem, including leveraging mathematical models, heuristics, or machine
learning techniques. This flexibility mimics the conditions under which human experts operate when
solving optimization problems. The interaction between the LLM and the World creates a real-time
feedback loop. The LLM continually refines its understanding of the world based on the revealed
data, while the World executes the agent’s strategies and provides results.

3.3 NOTION OF EFFICIENCY

To Solve or to Efficiently Solve: Exhaustively searching through all possible solutions, or brute
force, is always a solution to any optimization problem; however, it represents the most inefficient
approach. Thus, merely solving an optimization problem is not the primary goal; solving it efficiently
is what truly matters. To formalize this, we require the notion of an efficient solution. But how can
we define efficiency in a meaningful and practical way here?

The Expert Solution: To address this question, we designed a baseline referred to as the Expert
Solution. This baseline serves as a reference point for assessing the efficiency of the LLM agent’s
performance. The Expert Solution is crafted using different optimization techniques, including a
combination of Monte Carlo search methods, Bayesian optimization, and Active Learning strategies.
An important aspect of the Expert Solution is the introduction of a query budget. This budget
represents the number of queries required by the Expert Solution to reliably solve the optimization
problem. It provides an upper bound on the number of interactions with the environment that are
necessary to achieve a solution. That said, alongside the optimization problem, the LLM agent is
provided with the query budget and instructed to not only solve the optimization problem but also do
so within the given query budget.

Incentivizing Efficiency: This setup ensures that the agent is incentivized to prioritize efficiency. It
must strategize its queries, balancing exploration and exploitation to maximize the information gained
from each interaction. By enforcing a query budget, we can objectively evaluate LLM’s efficiency
and effectiveness in solving the problem. Ultimately, the notion of efficient solutions pushes the
LLM agent beyond simple problem-solving, encouraging it to adopt creative and resource-conscious
strategies that align with real-world optimization challenges.

3.4 EVALUATING LLMS PERFORMANCE IN SOPS

The Setup: To evaluate the performance of the LLM agent, we follow a structured approach based
on repeated experiments. We begin by generating worlds, characterized by a complexity index. In
particular, to simplify experiments, visualizations, and keep overall token usage manageable, we
focus on 3-D worlds and three levels of complexity: very simple (L0), simple (L1), and medium (L2).
Next, we apply the Expert Solution to solve the corresponding SOPs associated with the generated
world. As a result, we find a query budget required to achieve this reliably. Then, LLM agent is asked
to solve the problem constrained by the query budget. We repeat each trial 10 times and define the
success rate of the LLM agent as the proportion of runs in which it successfully identifies the optimal
solution within the given query budget.1 For each complexity category, we compute the success rate
for every individual World, then average these values across all Worlds in that category to obtain
the final success rate. This metric provides a quantitative measure of the agent’s effectiveness and
efficiency. In these experiments, we use the GPT-5-chat model as a strong recent baseline.2

The Default Scheme: Without involving any prompting techniques, the success rates become very
low (close to 0%). Therefore, we borrowed ideas from few-shot learning Brown et al. (2020), Chain of

1We apply a relaxation criterion by treating any value within 5% of the optimum as the optimal point.
2ACE code is available at Anonymous (2025).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

C

S

C

A

S

The Critic

Creating Antithesis C

A

S

The Actor

Creating Thesis

The World

:

Executing the thesis

& providing results

in the form of

observations

Observations

during the i-th

iteration

Synthesizing

the results & creating

the next thesis

(Next Round's Actor)

The Synthesizer

Figure 3: ACE and the spiral of thoughts
Thought (CoT) Wei et al. (2022), and added other techniques such as proper role assignment Karpathy
(2023) to improve the performance of the LLM agent. We name the resulting scheme LLM⋆ and treat
it as our default scheme from now on. In particular, the prompt given to the LLM agent includes:
[Role Assignment], followed by [Problem Definition & Examples], [General Helpful Notes], and
[Required Response Format]. The [Required Response Format] itself consists of [Plain Description
of Current Strategy], [Python Code Implementation of the Strategy], and [Maximum Value Found So
Far] fields (check Appendix E for more details).

Results: Table 1 summarizes the results of LLM⋆ in various scenarios. These results optimistically
suggest that LLMs understand SOP settings and are familiar with optimization techniques. As
expected, the success rate of LLM⋆ depends on the complexity of the underlying world. However,
even in relatively simple scenarios (L1), LLM⋆ does not achieve a high success rate. In straightforward
settings where the world representing the SOP has only one global optimum with no other local
optimum points, LLM⋆ effectively utilizes general optimization techniques such as gradient ascent.
But, when the world exhibits some complexity, with a few local optimum points in non-trivial parts
of the space—common in real-world scenarios—LLMs struggle to strategize properly and find the
global optimum (check Appendix C for more details).

3.5 A DIALECTICAL PERSPECTIVE TO ENHANCE LLMS IN SOPS

Motivated by the unsatisfactory performance of vanilla LLMs in non-straightforward SOPs, we aim
to address a natural follow-up question: Can we enhance the performance of LLMs without relying
on retraining, fine-tuning, or post-training modifications?

The Core Idea: To that end, we propose a framework grounded in the principles of Hegelian
Dialectics, offering a formal structure for enhancing LLM performance through dynamic, iterative
reasoning. Both sequential optimization and dialectical reasoning share a foundational trait: they
operate through structured cycles that aim to progressively improve outcomes. This shared emphasis
on iterative refinement provides a natural bridge between optimization strategies and dialectical logic.
Using the terminology of Hegelian Dialectics, we conceptualize a general LLM agent as a Thesis
Generator—a module that observes a problem and produces an initial solution or response.3 However,
we argue that relying solely on a Thesis Generator is insufficient for solving SOPs. A more robust
architecture should incorporate two additional components: an Antithesis Generator, which analyzes
gaps and challenges in the initial output, and a Synthesis Block, which integrates insights to produce
refined solutions. Together, these three components form a dialectical reasoning cycle, as formally
described by Hegel Hegel (1807; 1812), enabling the system to iteratively evolve and improve its
responses.

ACE 4: The Antithesis Generator plays a critical role by challenging the solutions produced by the
Thesis Generator. It identifies potential flaws, contradictions, or alternative perspectives that may
have been overlooked. This counterbalance forces the system to evaluate its assumptions critically
and consider a broader range of possibilities. The Synthesis Block then reconciles the Thesis and

3This abstraction remains valid even within Minsky’s multi-agent paradigm Minsky (1988), where a complex
problem is decomposed into subproblems handled by specialized agents that communicate and collaborate.

4ACE stands for Act, Critique, and Evolve

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Success rates of schemes across base LLMs and complexity levels in 3D worlds

Scheme
LLM⋆ Self-Reflection Debate Majority ACE

L1 39.2 44.5 36.4 47.5 53.3
L2 18.2 24.5 18.2 16.4 30.0
L1 65.0 53.3 60.0 45.0 75.0
L2 60.9 52.7 53.6 28.2 68.2
L1 60.0 70.0 70.0 64.2 70.8
L2 44.5 51.8 50.0 47.3 59.1
L1 56.7 60.8 50.0 55.8 64.2
L2 48.2 36.4 34.5 32.7 50.0
L1 46.7 42.2 50.8 48.3 53.8
L2 43.6 39.1 44.5 24.5 49.1
L1 40.0 37.5 35.8 41.7 51.7
L2 21.8 25.5 24.5 32.7 24.5
L1 10.0 10.0 15.0 4.2 31.7
L2 8.2 3.6 7.3 1.8 24.5

Base Model Level

Kimi-K2

DeepSeekV3

GPT-5-chat

GPT-4.1

GPT-4o

GPT-4o-mini

O3-mini

Antithesis, combining their insights to produce a more refined and coherent solution. This iterative
interplay between Thesis, Antithesis, and Synthesis ensures that the system continuously evolves its
understanding and response, ultimately arriving at a more suitable outcome. This dialectical structure
led us to introduce our solution, ACE, embodying three components: (1) Actor, (2) Critic, and (3)
Synthesizer. The relationship between these components is shown in Fig. 3. The iterative cycle of
solving a problem starts with the Actor creating an initial thesis. This thesis is then implemented
and executed in the world, and the corresponding outcomes and results (called observations) are
gathered. Next, the Critic examines the initial thesis and the corresponding observations to generate
an antithesis. The thesis, antithesis, and corresponding observations are then fed into the Synthesizer.
The Synthesizer creates an evolved thesis, completing an iteration/round. The cycle continues by
treating the evolved thesis as the next initial thesis in the cycle. As we later show in section 4, ACE
significantly improves the performance of LLMs with no modification to their architecture and no
extra post-training or fine-tuning. By embedding a dialectical reasoning process into the system, ACE
creates a more adaptive process that is better equipped to handle complex and nuanced sequential
optimization tasks (Appendix D provides samples and details of ACE’s dialectical process).

4 EVALUATION

4.1 OVERALL RESULTS

Settings: To put the performance improvements of ACE in proper context, we implemented several
recent related proposals including Self-Reflection Madaan et al. (2024), Majority Vote Wang et al.
(2022); Lewkowycz et al. (2022), and Debate Du et al. (2024) and compared them with ACE. To have
a fair comparison, for the Majority and Debate schemes we set the total number of agents to three and
two agents, respectively, to roughly match the token usage of ACE. Later, in section 4.2, we perform
more evaluations with higher number of agents for them. We accompany all these schemes with the
additional prompting techniques appeared in LLM⋆ to have a fair comparison (check Appendix E for
more details). As for the LLMs, we use 7 different models: DeepSeekV3 DeepSeek-AI (2024), GPT-
5-chat OpenAI (2025a), GPT-4.1 OpenAI (2024b), GPT-4o OpenAI (2024a), GPT-4o-mini OpenAI
(2024c), O3-mini OpenAI (2025b), and Moonshot’s Kimi-K2 AI (2025). We repeat evaluations 10
times and report the overall success rate of different schemes in each category.

Results: Table 2 summarizes the findings and confirms two things. First, WorldGen successfully
scales difficulty: all models show a clear drop from L1 to L2, highlighting the challenge of sequential
optimization as complexity grows. Second, ACE consistently improves performance across models
and levels, remaining the best or tied for best in nearly every scenario. This holds for strong models
like DeepSeekV3 and GPT-5-chat, where ACE pushes success rates to the top tier (e.g., DeepSeekV3
L1: 75.0%), and for smaller models like O3-mini, where ACE lifts performance from small baselines
to meaningful success (e.g., L2: 24.5%)5. ACE operates by treating LLM as a black-box, relying on

5A sample dialectical process in ACE is shown in Appendix D

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Averaged total consumed tokens of
schemes (with O3-mini as base) in L1 class

SCHEME NORMALIZED ↓ TOTAL TOKENS↓
LLM⋆ 1 5659
SELF-REFLECTION 1.88× 10660
ACE 2.85× 16146
DEBATE 3.48× 19710
MAJORITY 3.75× 21260

Table 4: Success rates and avg normalized total
tokens (to LLM⋆’s tokens) in L2 3D worlds

SCHEME O3-MINI GPT-4.1
SUCCESS ↑ COST ↓ SUCCESS ↑ COST ↓

LLM⋆ 8.2 1 48.2 1
DEBATE⋆ 9.1 31.97× 35.5 30.89×
MAJORITY⋆ 0.0 6.06× 37.3 6.90×
ACE 24.5 3.78× 50.0 2.87×

the existing abilities of the LLM without retraining or modifying its weights. So, its performance
naturally varies according to the base model’s capabilities in SOP setting. While the absolute
performance varies, the pattern is stable: ACE works with different models with different starting
capability. Among the models tested, the only exception is GPT-4o-mini at L2, where Majority
slightly leads, suggesting that when base ability is very low and query budgets are tight, majority can
occasionally outperform a single dialectical chain.

Takeaway: ACE is the most reliable scheme across 13 of 14 settings, improving strong models and
transforming weaker ones on harder tasks. Its stepwise dialectical loop prevents error cascades and
adapts to complexity without retraining, making it a robust choice for sequential optimization under
fixed budgets.

4.2 DEEP DIVE

Cost Comparison: We evaluate the cost of using ACE by analyzing the total number of tokens
consumed and comparing it with other approaches. Table 3 reports the average total token usage
across experiments in L1 scenarios for various schemes, along with their corresponding values
normalized to the default single-agent baseline, LLM⋆, using O3-mini as the base model. On average,
ACE consumes 2.87× total tokens compared to LLM⋆; however, it remains more efficient than
multi-agent schemes such as Debate and Majority, which incur significantly higher token costs.

ACE vs. Multi-Agent Schemes with More Agents: A natural assumption might be that increasing
the number of agents in schemes like Debate and Majority would enhance performance. So, we
conducted additional experiments, scaling the number of agents to seven (referred to as Debate⋆
and Majority⋆) and comparing their performance and token costs with ACE. These experiments
were carried out using GPT-4.1 and O3-mini as base models in the L2 scenarios. The results are
summarized in Table 4. As shown in Table 4, increasing the number of agents in these schemes
dramatically increases cost—up to 32× the baseline—while offering no meaningful performance
benefit; in some cases, success rates even decline. Schemes like Debate⋆, which require exchanging
responses among all agents in each round, can experience exponential growth in token consumption
as the number of agents increases. This inefficiency is particularly evident in SOP settings, where
sequential decision-making processes require multiple rounds of interaction, as illustrated by the
token cost data in Table 4. The key takeaway is that simply increasing the number of agents in
tasks involving sequential decision-making, such as those in SOP settings, does not necessarily yield
better results. Instead, it often introduces inefficiencies and performance degradation in solutions like
Debate⋆ and Majority⋆.

5 LIMITATIONS & A BRIEF DISCUSSION

WorldGen’s Limitation: WorldGen effectively generates worlds with adjustable complexity for
testing LLMs in SOPs, but relies on manually designed Expert solutions to solve the SOP. This
dependence on human expertise for robust baselines can be time-intensive and limit the automation
potential of the approach. We leave addressing the fully automated objective to future work.

Limitations of ACE: ACE’s dialectical framework has demonstrated great performance in our main
targeted domain, SOPs, but its effectiveness in other domains, particularly those lacking real-time
feedback, remains an open question. In static question-answering or static tasks without iterative
refinement, the benefits of ACE may be limited. Additionally, by treating LLMs as black boxes,
ACE’s performance is inherently bound by the capabilities of the underlying model. Moreover, while
its token consumption is lower than multi-agent schemes like Debate or Majority, ACE incurs a slight
overhead compared to single-agent approaches. This trade-off is minor in complex SOP tasks but
could pose challenges in resource-constrained scenarios.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Is ACE better than BO, reinforcement learning (RL), etc? This question reflects a common
misconception about our goal. We do not aim to propose a new optimization algorithm or to
test whether LLMs can invent one. Instead, we position LLMs as designers—similar to human
optimization experts—who can draw on any algorithm in their toolbox. From this angle, comparing
ACE to BO, RL, or other techniques is irrelevant, since LLMs can already invoke, adapt, or combine
such methods during problem solving (e.g., Appendix D demonstrates examples of models utilizing
well-known techniques such as BO to solve SOPs). The key point is not whether ACE is superior
to classical algorithms, but that when LLMs are placed in the designer’s seat for end-to-end SOP
solving, they benefit from structured scaffolds like ACE’s dialectical process, which amplifies their
ability to reason, critique, and refine solutions within the interactive, stepwise SOPs.

On the Potential of ACE: The potential of ACE, rooted in its Hegelian dialectical framework, extend
beyond solving SOPs. Its dialectical approach, mirroring human-like problem-solving processes,
fosters solutions that are not only accurate but also deeply contextual and well-reasoned. Furthermore,
Hegelian philosophy provides a foundation to explain the effectiveness of other prompt engineering
techniques, such as self-reflection, by framing them within a structured dialectical process. This
perspective can deepen our understanding of existing methods and their mechanisms. Additionally,
the Hegelian-inspired framework offers a powerful structure for generating synthetic data. Its iterative
nature facilitates the creation of diverse, high-quality datasets that reflect a broad range of perspectives
and solutions, making them invaluable for training and fine-tuning LLMs to tackle complex and
nuanced tasks effectively.

LLM⋆ Could Have Been Better! A fair criticism might be that LLMs might perform better in
solving SOPs with improved prompt engineering. We are not claiming that LLM⋆ represents the
optimal default scheme; rather, we argue that it serves as a robust baseline. Even with carefully
designed prompts, LLMs’ performance in this setting remains limited, highlighting the need for
approaches like ACE to unlock their full potential and deliver superior performance.

What If the Next LLM Becomes Very Capable? A more capable LLM makes ACE even more
useful, not less. As demonstrated in Section 4, a better base model serves as a stronger foundation,
enabling more performance improvements. In essence, ACE with its dialectical base is designed to
complement and amplify the capabilities of any LLM, regardless of its initial proficiency in SOP
context. By leveraging ACE, we can transform an already impressive LLM into an extraordinary one,
pushing what is possible and unlocking new levels of performance in this domain.

Dialectics vs. Debate: From the philosophical point of view, debate is competitive, aiming to
persuade an audience of one position’s superiority. While effective in contexts like politics or law, it
often sacrifices deeper inquiry for rhetoric and winning. Dialectics, however, fosters a cooperative
approach, treating opposing perspectives as opportunities for growth. Through structured dialogue,
dialectics seeks deeper truths, as seen in the Socratic and Hegelian methods, encouraging intellectual
humility and a shared pursuit of wisdom. While debate has been significant in philosophical traditions,
figures like Socrates criticized its focus on persuasion over truth. Dialectics, with its emphasis on
dialogue and synthesis, is regarded as superior for fostering intellectual growth.

6 FINAL NOTE

Our exploration into the capabilities of LLMs in tackling sequential optimization problems has
revealed both their potential and their current limitations. Through the development and use of
WorldGen, we have shown that while LLMs exhibit impressive abilities, they still face challenges
with even relatively simple SOPs. These findings have led us to propose a novel approach inspired by
philosophical reasoning frameworks, aiming to enhance LLM performance in innovative yet easy to
reason about ways. We believe that this work can open new avenues, encouraging the integration
of philosophical reasoning frameworks into AI systems. By fostering a deeper understanding and
application of these frameworks, we can pave the way for more robust and intelligent systems. We
hope our efforts inspire others to explore these interdisciplinary approaches, ultimately contributing
to the advancement of LLMs and its applications across diverse fields.6

6In accordance with ICLR guidelines, we acknowledge that LLMs were used for proofreading and polishing
the text of this paper.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Theodor W. Adorno. Negative Dialectics. Routledge, London, 1966.

Moonshot AI. Kimi k2: Open agentic intelligence. arXiv preprint arXiv:2507.20534, 2025. URL
https://arxiv.org/abs/2507.20534.

Anonymous. Ace repository. https://anonymized-for-the-review-process, 2025.

David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook. The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton, NJ, 2006. ISBN
978-0-691-1.

Aristotle. Metaphysics. Penguin Classics, London, -340.

Aristotle. Prior Analytics. Clarendon Press, Oxford, -350.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Edwin Chen. Hellaswag or hellabad? 36% of this popular llm benchmark contains errors. https:
//www.surgehq.ai/blog/hellaswag-or-hellabad-36-of-this-popular-l
lm-benchmark-contains-errors, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Edwin K. P. Chong and Stanislaw H. Zak. An Introduction to Optimization. Wiley Series in Discrete
Mathematics and Optimization. John Wiley & Sons, Incorporated, Somerset, 4th edition, 2013.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021. URL https://arxiv.org/abs/2110.14168.

Shubhabrata Datta, Sandipan Roy, and J. Paulo Davim. Optimization techniques: an overview. In
Optimization in Industry. Springer, Cham, 2019.

DeepSeek-AI. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024. URL https:
//arxiv.org/abs/2412.19437.

René Descartes. Meditations on First Philosophy. Cambridge University Press, Cambridge, 1641.

Shizhe Diao, Pengcheng Wang, Yong Lin, Rui Pan, Xiang Liu, and Tong Zhang. Active prompting
with chain-of-thought for large language models. arXiv preprint arXiv:2302.12246, 2023.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
memorization: Data contamination and trustworthy evaluation for large language models. arXiv
preprint arXiv:2402.15938, 2024. URL https://arxiv.org/abs/2402.15938.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Proceedings of the 41st
International Conference on Machine Learning, ICML’24, 2024.

Friedrich Engels. Dialectics of Nature. International Publishers, New York, 1875.

10

https://arxiv.org/abs/2507.20534
https://anonymized-for-the-review-process
https://www.surgehq.ai/blog/hellaswag-or-hellabad-36-of-this-popular-llm-benchmark-contains-errors
https://www.surgehq.ai/blog/hellaswag-or-hellabad-36-of-this-popular-llm-benchmark-contains-errors
https://www.surgehq.ai/blog/hellaswag-or-hellabad-36-of-this-popular-llm-benchmark-contains-errors
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2402.15938

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Steffen Finck, Nikolaus Hansen, Raymond Ros, and Anne Auger. Real-parameter black-box opti-
mization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA,
2009. URL https://inria.hal.science/inria-00362633v2/document.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood, Austin
Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, et al. Legalbench: A collaboratively
built benchmark for measuring legal reasoning in large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Georg Wilhelm Friedrich Hegel. Phenomenology of Spirit. Oxford University Press, Oxford, 1807.

Georg Wilhelm Friedrich Hegel. Science of Logic. Cambridge University Press, Cambridge, 1812.

Martin Heidegger. Being and Time. Harper & Row, New York, 1927.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on
Learning Representations, 2021. URL https://arxiv.org/abs/2009.03300.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

David Hume. A Treatise of Human Nature. Oxford University Press, Oxford, 1739.

Immanuel Kant. Critique of Pure Reason. Cambridge University Press, Cambridge, 1781.

Andrej Karpathy. State of gpt. In Microsoft Build 2023, 2023. URL https://github.com/g
iachat/State-of-GPT-2023.

Thomas S. Kuhn. The Structure of Scientific Revolutions. University of Chicago Press, Chicago,
1962.

Robert Tjarko Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies. In
Companion Proceedings of the 2024 Genetic and Evolutionary Computation Conference (GECCO
Companion ’24), pp. 579–582, Melbourne, VIC, Australia, 2024. Association for Computing
Machinery. doi: 10.1145/3638530.3654238. URL https://doi.org/10.1145/3638530.
3654238.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. arXiv preprint arXiv:2005.11401, 2020.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Jiacheng Liu, Alisa Liu, Ximing Lu, Sean Welleck, Peter West, Ronan Le Bras, Yejin Choi, and
Hannaneh Hajishirzi. Generated knowledge prompting for commonsense reasoning. arXiv preprint
arXiv:2110.08387, 2021.

11

https://inria.hal.science/inria-00362633v2/document
https://arxiv.org/abs/2009.03300
https://github.com/giachat/State-of-GPT-2023
https://github.com/giachat/State-of-GPT-2023
https://doi.org/10.1145/3638530.3654238
https://doi.org/10.1145/3638530.3654238

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tennison Liu, Nicolás Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language
models to enhance bayesian optimization. In The Twelfth International Conference on Learning
Representations (ICLR), 2024. URL https://openreview.net/forum?id=OOxotBmG
ol. Poster.

Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: A benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023.
URL https://arxiv.org/abs/2311.12983.

John Stuart Mill. A System of Logic. Longmans, Green, Reader, and Dyer, London, 1843.

Marvin Minsky. Society of mind. Simon and Schuster, 1988.

Friedrich Nietzsche. Beyond Good and Evil. Cambridge University Press, Cambridge, 1886.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.
org/abs/2303.08774.

OpenAI. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024a. URL https://arxiv.
org/abs/2410.21276.

OpenAI. Gpt-4.1 model. https://openai.com/research/gpt-4-1, 2024b. Accessed:
2025-09-19.

OpenAI. Gpt-4o mini: Advancing cost-efficient intelligence. https://openai.com/index
/gpt-4o-mini-advancing-cost-efficient-intelligence/, 2024c. Accessed:
2025-09-19.

OpenAI. Gpt-5 chat model. https://platform.openai.com/docs/models/gpt-5-c
hat-latest, 2025a. Accessed: 2025-09-19.

OpenAI. O3-mini model. https://platform.openai.com/docs/models/o3-mini,
2025b. Accessed: 2025-09-19.

Plato. The Republic. Penguin Classics, London, -380.

Karl Popper. The Logic of Scientific Discovery. Routledge, London, 1934.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong
Sun. Communicative agents for software development. arXiv preprint arXiv:2307.07924, 6(3),
2023.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, 620(7972):172–180, 2023.

Xingyou Song, Yingtao Tian, Robert Tjarko Lange, Chansoo Lee, Yujin Tang, and Yutian Chen.
Position: Leverage foundational models for black-box optimization. In Proceedings of the 41st
International Conference on Machine Learning (ICML), 2024. URL https://arxiv.org/
abs/2405.03547. arXiv:2405.03547.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

12

https://openreview.net/forum?id=OOxotBmGol
https://openreview.net/forum?id=OOxotBmGol
https://arxiv.org/abs/2311.12983
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.21276
https://arxiv.org/abs/2410.21276
https://openai.com/research/gpt-4-1
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://platform.openai.com/docs/models/gpt-5-chat-latest
https://platform.openai.com/docs/models/gpt-5-chat-latest
https://platform.openai.com/docs/models/o3-mini
https://arxiv.org/abs/2405.03547
https://arxiv.org/abs/2405.03547

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355. Association for Computational Linguistics, 2018. URL https://aclant
hology.org/W18-5446.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Xinyuan Wang, Chenxi Li, Zhen Wang, Fan Bai, Haotian Luo, Jiayou Zhang, Nebojsa Jojic, Eric P.
Xing, and Zhiting Hu. Promptagent: Strategic planning with language models enables expert-level
prompt optimization. In The Twelfth International Conference on Learning Representations (ICLR),
2024. URL https://openreview.net/forum?id=22pyNMuIoa.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed H Chi, and Denny Zhou. Self-consistency
improves chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H Chi, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
arXiv preprint arXiv:2201.11903, 2022.

Ludwig Wittgenstein. Tractatus Logico-Philosophicus. Routledge and Kegan Paul, London, 1921.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Qianqian Xie, Weiguang Han, Zhengyu Chen, Ruoyu Xiang, Xiao Zhang, Yueru He, Mengxi Xiao,
Dong Li, Yongfu Dai, Duanyu Feng, et al. The finben: An holistic financial benchmark for large
language models. arXiv preprint arXiv:2402.12659, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations (ICLR), 2024. URL https://openreview.net/forum?id=Bb4VGOWE
LI.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Shixiang Shane Cao, Ziyi Yu, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

A BACKGROUND: REASONING AND DIALECTICS

Reasoning: Despite considerable achievements, LLMs’ reasoning capability continues to be a subject
of intense debate within the AI research community. A key challenge lies in reaching a consensus on
what reasoning entails, how it should be defined, and how it can be reliably measured. Interestingly,
the concept of reasoning is not new. The domain of philosophy has a rich tradition of exploring and
formalizing reasoning through centuries of discourse Aristotle (-350; -340); Plato (-380); Descartes
(1641); Hume (1739); Kant (1781); Mill (1843); Hegel (1807); Nietzsche (1886); Wittgenstein (1921);

13

https://aclanthology.org/W18-5446
https://aclanthology.org/W18-5446
https://openreview.net/forum?id=22pyNMuIoa
https://openreview.net/forum?id=Bb4VGOWELI
https://openreview.net/forum?id=Bb4VGOWELI

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Heidegger (1927); Popper (1934); Kuhn (1962); Adorno (1966). From ancient philosophers such as
Aristotle, who developed formal logic as a foundation for reasoning Aristotle (-350; -340), to more
recent thinkers like Hegel, who introduced dialectics as a dynamic framework for understanding
processes of thought Hegel (1812; 1807), the philosophical study of reasoning has produced a wide
range of influential theories and formal systems. These works not only define reasoning but also
provide structured frameworks for improving and analyzing it.

Dialectics: As a method of reasoning and philosophical argumentation, dialectics involves the
resolution of contradictions through a process of development and transformation. Rooted in ancient
philosophy, dialectics was first formalized by thinkers like Socrates and Aristotle, who used it as a tool
for logical inquiry. Over time, dialectics evolved into a broader philosophical framework, describing
the dynamic process through which contradictions are identified, explored, and resolved Hegel (1807);
Engels (1875). At its core, dialectical thinking posits that reality is composed of opposing forces
or contradictions, and that these contradictions are not static but dynamic, evolving over time. The
resolution of these contradictions leads to the emergence of new, higher forms of understanding or
being.

Hegelian Dialectics: Introduced by the German philosopher Georg Wilhelm Friedrich Hegel,
Hegelian Dialectics crystallizes the modern notion of dialectics by proposing a structured pro-
cess of development through three stages: thesis, antithesis, and synthesis Hegel (1812; 1807). The
thesis represents an initial idea or condition, the antithesis introduces a contradictory or opposing
force, and the synthesis resolves the tension by merging elements of both into a higher, more compre-
hensive understanding. Hegel viewed this triadic process as the driving force of intellectual, historical,
and societal progress, emphasizing that contradictions, which he calls ”negations”, are not merely
obstacles but necessary components of growth and transformation. His dialectical framework has had
profound influence across disciplines, from philosophy to political theory.

Dialectics vs. Debate: From the philosophical point of view, debate is competitive, aiming to
persuade an audience of one position’s superiority. While effective in contexts like politics or law, it
often sacrifices deeper inquiry for rhetoric and winning. Dialectics, however, fosters a cooperative
approach, treating opposing perspectives as opportunities for growth. Through structured dialogue,
dialectics seeks deeper truths, as seen in the Socratic and Hegelian methods, encouraging intellectual
humility and a shared pursuit of wisdom. While debate has been significant in philosophical traditions,
figures like Socrates criticized its focus on persuasion over truth. Dialectics, with its emphasis on
dialogue and synthesis, is regarded as superior for fostering intellectual growth.

In this work, inspired by Hegel’s well-established framework, we demonstrate how the capabilities of
LLMs can be enhanced by adapting dialectics.

B RELATED WORK: PART II

Benchmarks for Evaluating LLMs: There are numerous benchmarks for evaluating LLMs, ranging
from general-purpose (e.g., GLUE Wang et al. (2018), SuperGLUE Wang et al. (2019), ARC Clark
et al. (2018), HellaSwag Zellers et al. (2019), BIG-bench Srivastava et al. (2022), GAIA Mialon et al.
(2023)) to domain-specific (e.g., FinBen Xie et al. (2024) for finance, LegalBench Guha et al. (2024)
for legal reasoning, GSM8K Cobbe et al. (2021) and MATH Hendrycks et al. (2021) for mathematical
reasoning, HumanEval Chen et al. (2021) and MBPP Austin et al. (2021) for coding, MultiMedQA
Singhal et al. (2023) for healthcare, etc.) and ones requiring professional level knowledge in various
fields such as law or science (e.g., MMLU Hendrycks et al. (2021)). Our framework, WorldGen,
falls into the domain-specific category. It addresses the issue of being static and become obsolete
with the rapid advancements in LLMs by providing a dynamic tool for generating SOPs with varying
controllable complexity.

Multi-Agency: Minsky was among the early pioneers to introduce the idea of multi-agent sys-
tems Minsky (1988). His notion of multi-agency involves dividing complex cognitive tasks into
smaller parts, delegating them to specialized “agents”, and integrating the results into a coherent
solution. Inspired by Minsky’s vision, recent works have utilized and implemented multi-agency in
LLM-based systems. Some focus on building general infrastructures for autonomous cooperation
among communicative agents (e.g., CAMEL Li et al. (2023) and AutoGen Wu et al. (2023)). Others
focus on specific multi-agent solutions or tailored applications. For instance, MetaGPT Hong et al.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Strategy in Round 1 (Global Exploration + Plan)

Phase-1 coarse grid (Latin Hypercube) to discover “interesting” regions while avoiding early clustering.
Phase-2 zoom: once any value > 0.8 · max seen is observed, launch a 5× 5 exploratory cross around
that spot (±25 units) to sense gradient direction. Phase-3 local search: from the best cross-centre run
a small 3× 3 pattern (±5 units) and keep shrinking step/2 until improvement < 1%. All coordinates
rounded to 4 decimals; never re-sample the same point; budget 173 calls total.

LLM⋆ Strategies in Rounds 2–21 (No Change)

NA

Phase summary: The strategy of the agent in rounds from 2 through 21 remained (NA).

Figure 4: Kimi-K2 model in a sample run. The figure illustrates the agent’s initial multi-phase plan: a
coarse Latin Hypercube grid for global exploration, followed by local zoom-in and progressively finer
refinements. However, subsequent rounds show no strategic adaptation (marked “NA”), indicating that
the agent adhered rigidly to its original plan without incorporating feedback or diversification. This
static approach highlights the limitations of non-adaptive strategies in complex search landscapes.

(2023) and ChatDev Qian et al. (2023) automate software development by assigning distinct roles to
different agents. Multi-agent debate frameworks (such as MAD Liang et al. (2023), which employs a
debate cycle among agents moderated by a judge agent, and Du et al. Du et al. (2024), where agents
exchange answers to get a chance to modify their next responses) present another direction.

While these works follow Minsky’s multi-agent view, our proposal, ACE takes a different path. ACE
focuses on the reasoning process itself rather than focusing on how to delegate tasks to specialized
agents or automate their communication. Great performance of ACE (as shown in section 4) suggests
that the basic element of intelligence needs to include a Hegelian-inspired triad, not a single entity
offering a complementary perspective to Minsky’s multi-agent approach. Compared to debate-based
proposals, from a philosophical qualitative perspective, as explained earlier in section A, there are
key fundamental differences between debate and dialectics, which ACE draws inspiration from.
Additionally, from a quantitative standpoint, our experiments and comparisons in section 4 highlight
ACE’s superior performance over debate-based works in SOP context.

C A COUPLE OF SAMPLES FOR LLM⋆ IN ACTION

Figures 4 and 5 demonstrate two samples of strategies used by LLM⋆ in separate runs, utilizing the
Kimi-K2 and GPT-4.1 base models, respectively. In the first run (Figure 4), the agent lays out a
clear multi-phase plan: begin with a broad, space-filling sweep over the full domain to avoid early
clustering and surface promising regions; when a high value appears, trigger a local zoom using a
small exploratory stencil to sense ascent directions; then switch to a compact pattern search that
repeatedly shrinks its step size while guarding against re-sampling. After this initial plan, agent
decides to not change its strategy in the subsequent rounds, (marked “NA”), and the run proceeds
by repeatedly tightening the neighborhood around the incumbent best point until the query budget
is exhausted. Overall, the strategy indicates a coarse-to-fine refinement strategy that is systematic
and easy to interpret. However, the actual execution of the agent (through subsequent python
codes) remains highly deterministic and lacks adaptive mechanisms. The execution rigidly follows a
shrinking-grid pattern without introducing stochasticity, or any checks for diminishing returns. As
a result, the agent commits early to local exploitation, never revisits other promising regions, and
continues refining even when improvements become negligible. These issues stem from the absence
of exploration–exploitation balancing logic in the strategy, leading to wasted queries and a high risk
of getting trapped in a local maximum.

In the second example, (Figure 5), the GPT-4.1 model attempts to adapt its strategy based on the
feedback it receives from the World. The agent follows a coarse-to-fine hierarchical grid strategy:
it begins with broad exploration to map the landscape, then repeatedly zooms in around the single
best point it has found, tightening the grid with each turn. The approach is deterministic and
greedy, adapting to feedback only by narrowing the search window, without stochasticity, restarts,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We will begin with a coarse grid sampling approach to explore the entire search space. The range [-
1000, 1000] is divided into a 5x5 grid, covering 25 evenly spaced points. This provides a preliminary
understanding of the landscape.

LLM⋆ Strategy in Turn 1

Refine the search by exploring a finer grid around the current highest value point, (0.0, -1000.0),
while ensuring all selected points remain within the valid range (-1000, 1000). This exploits the most
promising region while maintaining local exploration.

LLM⋆ Strategy in Turn 2

Refine the search further by creating an even finer grid around the current highest value point (-100.0,
-1000.0). This allows us to exploit the local neighborhood of the current best point and move toward
the global maximum.

LLM⋆ Strategy in Turn 3

Focus on the region around (-125.0, -1000.0) with an even finer grid. This helps pinpoint the global
maximum with greater precision.

LLM⋆ Strategy in Turn 4

Focus on the region around (-137.5, -1000.0) with an even finer grid to hone in on the peak with
greater precision.

LLM⋆ Strategy in Turn 5

Narrow the search around (-143.75, -1000.0) with an even finer grid to pinpoint the exact location of
the global maximum.

LLM⋆ Strategy in Turn 6

Focus the search on a very fine grid around (-146.875, -1000.0) to pinpoint the global maximum.
Given the limited number of remaining queries, the grid will be extremely localized.

LLM⋆ Strategy in Turn 7

NA

LLM⋆ Strategy in Turn 8

Figure 5: A sample sequence of strategies employed by LLM⋆ over eight turns using the GPT-4.1
base model. The agent begins with a coarse global grid search and then repeatedly narrows its focus,
applying finer grids around the current best point. While systematic, this deterministic zoom-in
pattern lacks exploration–exploitation balance and fails to revisit other promising regions, ultimately
leading to local entrapment and failure to locate the global optimum.

or diversification. While this yields a clean, interpretable trajectory and can work well on unimodal
surfaces, it ultimately fails to find the global optimum here because it commits too early to local
exploitation, spending most of its budget micro-refining a small neighborhood with diminishing
returns. That said, locating and consistently refining a local maximum is noteworthy: it shows the
agent recognized a regional peak and the qualitative relation between directional moves and observed
changes in the objective. The core shortcomings are an inadequate exploration–exploitation balance,
no revisiting of other promising regions from the initial scan, and no mechanisms to handle multiple
peaks. A more adaptive design would reserve budget for continued exploration, introduce stochastic
escapes and boundary-aware trust regions, or adopt global optimizers (e.g., BO, CMA-ES, etc.) that
explicitly balance exploration and exploitation.

D A SAMPLE OF THE DIALECTICAL PROCESS IN ACE

Figures 6–8 illustrate how the dialectical method of ACE, (with the Kimi-K2 as base model),
transforms the optimization process compared to earlier static strategies shown in Figures 4 and 5.
Rather than committing to a single plan, the agent iterates through thesis, antithesis, and synthesis,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dialectical Progress in ACE (Part 1) — Turns 1–2

Start with a two-stage hybrid search. Stage 1 (exploration): draw a low-discrepancy Latin Hypercube
Sample (LHS) of 60 points that covers the whole 2000×2000 square. LHS spreads points evenly while
leaving no large voids, giving a first rough map of peaks and valleys. Stage 2 (exploitation): after
every LHS batch, fit a cheap surrogate (quadratic regression with interaction terms) to all observations,
optimize it by brute-force on a 1%-resolution grid, and pick the 10 grid cells whose surrogate pre-
diction is highest but whose centres have not been queried yet. Interleave these two stages until 173
queries are spent or the same best point is requested three times in a row (which will lock it as the
believed global maximiser). All coordinates are rounded to four decimals to obey the rules.

Thesis 1

Critique:
• 60 LHS points is a good first scan, but the surrogate model you plan (quadratic + interactions) is

too weak for rugged landscapes; it will hallucinate smooth ridges and miss narrow spikes.
• The gap between best (1162.4) and second-best (907.3) is 255 units – large enough that a 5%

tolerance window already reaches ≈1104. Do not chase the noise inside this window; instead
verify whether the 1162 neighbourhood is a genuine peak or a fluke.

• No edge/corner check: the square corners are still untouched; many test functions hide extrema
there.

• You are 60 / 175 queries in (115 left). At most 30 more should be spent on local polishing; the rest
must go to uncovered regions.

Issues to fix next:
1. Immediately probe 8-points ring ±25 around the current best to confirm curvature.
2. Add a space-filling set (e.g., 20 Sobol) biased toward the still-empty corners/edges.
3. Replace the quadratic surrogate by a flexible one (random-forest or RBF) before you start the

“exploitation” stage.

Antithesis 1

NA
Synthesis 1 (Thesis 2)

Critique:
• You duplicated two neighbours (297.0339,-1000) and (347.0339,-1000); that burns 2 of your 115

remaining queries for zero information.
• The 3×3 stencil only moved 25 units; the jump from 1162 → 1180 shows the ridge continues

east/south-east. Widen the next stencil to 50–75 units in that direction instead of re-sampling the
same 25-unit cloud.

• Corner/edge probe was useful: (-1000,-1000)=627.9 is better than any previous edge value, but still
500 units below the current best – no need for dense edge packing yet.

• You still have not tested a surrogate; 80 points in, start a cheap RBF ensemble to tell you where
prediction error is high, otherwise you will keep polishing locally while missing distant spikes.

Issues ahead:
1. 95% tolerance window is now ≥1121.7 – anything below that is irrelevant.
2. 95 queries left; allocate ≤15 more around the 1180 ridge, then launch a space-filling set (e.g., 30

Sobol) weighted toward unsurveyed quadrants.

Antithesis 2

Figure 6: Dialectical progress in ACE (Part 1) using the Kimi-K2 base model. The first thesis
proposes a two-stage hybrid strategy: global exploration via Latin Hypercube Sampling (LHS)
followed by surrogate-based exploitation. The antitheses critique weaknesses (simplistic surrogate,
lack of edge coverage, premature local focus), setting the stage for more adaptive techniques in later
turns.

using structured critique to refine its approach dynamically. The first thesis proposes a hybrid
plan combining Latin Hypercube Sampling with a simple quadratic surrogate, but the antithesis
immediately flags critical weaknesses—such as the surrogate’s inability to capture rugged landscapes
and the lack of edge coverage. This feedback drives subsequent syntheses toward more advanced

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Dialectical Progress in ACE (Part 2) — Turns 3–4

Keep two parallel tracks: A. Local: follow the rising ridge hinted by 1162→1177→1181. Use 50-
unit steps E/SE; stop as soon as no improvement ≥0.5% is seen for two consecutive rings. B. Global:
spend the bulk of remaining queries on an adaptive RBF-guided search. Fit a thin-plate-spline RBF to
all 80 observations, compute leave-one-out prediction error map on a coarse grid, and pick the 20 cells
with highest upper-confidence-bound (UCB = pred + 2·std) that have not been queried. After every
20-point UCB batch, refit the RBF and repeat.

Synthesis 2 (Thesis 3)

Critique:
• Ridge march is working: 1181→1204 in 50-unit steps. Still no plateau, so keep pushing SE/E with

75-unit stride next.
• You wasted 25 pure-random Sobol points; most landed in already-saturated basins. Replace them

with error-weighted space-filling.
• Duplicate filter is only local; you re-sampled (347.0339,-925.0) – costing 1 query. Use a global

seen-set.
• 95% tolerance window is now ≥1143.6; anything below can be ignored. Two values just crossed it:

(560.66,-804.38,1170.8) and (324.28,859.22,985.4) – second ridge candidate.
Issues next:
1. 69 queries left; spend ≤12 on the 1204 ridge, 15 on the new 1171 ridge, remainder on high-UCB

cells.
2. Widen step to 75 units E/SE; if no +0.5% gain after two steps, declare local peak and switch to

UCB-only.

Antithesis 3

Maintain global seen-set to avoid duplication. Local: continue ridge walk with 75-unit E/SE steps;
stop when two consecutive rings give <0.5% gain. Global: build RBF on all 110 points, evaluate
leave-one-out std on 100×100 grid, pick 20 cells with highest UCB. Interleave 12 local + 20 UCB per
batch; 68 queries left.

Synthesis 3 (Thesis 4)

Critique:
• Ridge march still climbs: 1204→1218 at (472,-925). Step-size 75 is still productive; extend one

more stride.
• You again sprinkled 20 uniform-random “UCB” points instead of using the actual RBF error

surface.
• Duplicate guard worked, but you re-sampled the exact centre of the previous ring.
• 95% tolerance window is now ≥1157. Only two new points cleared it; focus remaining queries on

the 1218 ridge or true high-uncertainty zones.
Issues / next moves:
1. 48 queries left.
2. One last 75-unit E/SE extension; if gain < 0.5%, lock that ridge.
3. Fit RBF now, spend remaining 35 queries on top-UCB grid cells only.

Antithesis 4

Figure 7: Dialectical progress in ACE (Part 2). The agent transitions from static refinement to
a two-track strategy that integrates Bayesian Optimization principles. Locally, it performs ridge
climbing with adaptive step sizes to exploit strong gradients. Globally, it introduces an RBF surrogate
model and uses the Upper Confidence Bound (UCB) acquisition function to guide exploration toward
high-uncertainty regions. Antitheses highlight inefficiencies such as random sampling and delayed
surrogate use, reinforcing the dialectical process as a mechanism for balancing exploration and
exploitation.

techniques, including Radial Basis Function (RBF) surrogates, Upper Confidence Bound (UCB)
acquisition, and explicit allocation of queries between local and global phases.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Dialectical Progress in ACE (Part 3) — Turns 5–7

Build RBF surrogate on all 133 observations immediately; evaluate mean & std on 1% grid; pick 25
highest UCB cells not yet queried. Simultaneously probe the ridge one last time with 75-unit step east
and north-east; if no ≥0.5% gain, cease local march and devote all remaining queries to UCB-guided
search.

Synthesis 4 (Thesis 5)

Critique:
• Ridge march stopped climbing: 1218→1199 (–1.5%). Peak is bracketed; stop local search.
• You again sampled 21 random grid cells instead of the 21 highest UCB cells; wasted 19 queries.
• You still have not fitted the RBF; without it you are blind to high-uncertainty zones.
• 27 queries left – too few for random sampling. Every remaining point must come from the

surrogate’s top-UCB list.
Issues / next moves:
1. Fit RBF now on all 155 observations.
2. Evaluate mean & std on the full grid, pick the top-27 UCB cells – no randomness.

Antithesis 5

NA
Synthesis 5 (Thesis 6)

Critique:
• RBF surrogate built, but you selected cells by prediction value, not UCB. All picks cluster near the

1218 peak.
• Every returned value sits inside the 95% tolerance window; confirms the peak but does not rule out

distant spikes.
• 8 queries remain – too few to carpet-bomb the same neighborhood. You need one best-guess

evaluation and then stop.

Antithesis 6

Given no additional queries remained, maximum is found at ...
Synthesis 6 (Thesis 7)

Figure 8: Dialectical progress in ACE (Part 3). The agent attempts to consolidate its strategy by prior-
itizing UCB-guided sampling and enforcing duplicate filtering. While the synthesis nodes emphasize
surrogate-driven global search, critiques reveal persistent execution flaws—such as selecting points by
raw prediction instead of UCB and over-sampling near the current peak. These final turns underscore
both the strengths and limitations of the dialectical approach: it fosters structured adaptation and
diversification but still depends on correct implementation of its own prescriptions.

As the experiment progress, the strategy evolves into a two-track system: (i) local ridge climbing to
exploit strong gradients and (ii) surrogate-guided global exploration using uncertainty estimates to
target underexplored regions. This represents a significant improvement over the rigid, deterministic
zoom-in patterns seen in previous runs. While some inefficiencies remain—such as delayed surrogate
fitting and occasional random sampling—the dialectical process enforces diversification, duplicate
filtering, and adaptive stopping rules, reducing wasted queries and mitigating local maximum traps.
By embedding critique and synthesis into the reasoning loop, ACE achieves a more principled
exploration–exploitation balance, leveraging Bayesian optimization principles without losing heuristic
flexibility. This structured adaptability enables the agent to make better use of its query budget and
substantially increases its chances of approaching the global optimum in complex, multimodal
landscapes.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E MORE ON THE EVALUATIONS AND THE PROMPT TEMPLATES USED

Prompt Templates: Figure 9 shows the main template used for the LLM⋆ scheme. We use the
same template for the main agent of other schemes compared in this paper, including ACE’s Actor.
Additionally, Figure 10 and 11 demonstrate the initial and transitional prompts used for ACE’s Critic,
respectively. The task of the Synthesizer, the Actor of the previous and next steps, will be identified
through a transitional prompt, as shown in Figure 12.

Majority Scheme: To implement the Majority scheme and automate the solution, we use another
agent called the poll worker. The poll worker checks different agents’ responses and identifies the
Majority response, which is the one with the highest consensus. Figure 13 shows the prompt template
used for the poll worker. Unlike taking the majority vote after every agent completes the task in
general scenarios, in our sequential decision-making problems, we need to take the majority vote in
every round. Therefore, the poll worker processes the agents’ responses at each round of interaction
with the World, identifies the response with the majority consensus at each round so that the World
can execute it and provide the feedback.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Main Initial Prompt Template for LLM⋆ and Other Schemes

You are a great expert in the optimization topic and search algorithms.

Role Assignment

You are tasked with examining an unknown function f(x, y) (−1000 ≤ x, y ≤ 1000). You need to
interact with the function f(x, y) in order to locate the global maximum value. Here’s how to do it:

1. Define Your Strategy: Start with creating a solid strategy to explore the space and solve the
problem.

2. Choose a Point (x, y): Based on your strategy, select unique NEW points
(x1, y1), (x2, y2), . . . to evaluate the function.

3. Get Feedback and Adjust Your Strategy: After I reveal the values of
(x1, y1, f1), (x2, y2, f2), . . . at your chosen points, adjust your strategy based on this
feedback.

4. Repeat the Process: Continue this process for up to QueryBudget queries (in the form of
(xi, yi)) or until you are confident that you have found the global maximum.

Note: Finding a value in the range of [0.95 × (Global Max),Global Max] is equal to solving the
problem.

Problem Definition

Here’s how you should format your response:

• MY CURRENT STRATEGY: <explain your chosen strategy here>

• MAX SEEN SO FAR: x, y, f(x, y)

• NEXT: <Python code snippet that generates the next coordinates and return a list of tuples
[(xi, yi), ...]>

{...}

Response Format

Here are some rules that you must follow: {...}

General Rules and Examples of Acceptable/Unacceptable Responses

• The space is vast, and there will be several LOCAL maximums, so avoid choosing them as
the answer. Make sure that you explore the space enough to ensure that your answer
represents the GLOBAL maximum

• Asking for a certain coordinates multiple times, consumes your available remaining query
budget and reduces your chances of finding the global maximum. So, utilize the responses
so far to select only unique coordinates.

• A very important point is that YOU SHOULD NOT BE HASTY. You should be patient and
explore the space thoroughly. However, remember that you have only a maximum of
QueryBudget queries to solve the problem.

{...}

General Hints

Here are examples of function f where it has multiple local maxima and one global maximum {...}
Examples of Function f

Let’s start. Create an excellent and efficient strategy and choose your first batch of coordinates accord-
ingly.

Start Command

Figure 9: Main initial prompt template used for LLM⋆ and other schemes

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Critic’s Initial Base Prompt Template

You are a great expert in the optimization topic and search algorithms and will assist others in solving
optimization problems.

Role Assignment

Your task is to provide guidance, suggestions, and assistance to a very smart AI agent for solving an
optimization problem.
The agent is to interact with an unknown function f(x, y) (−1000 ≤ x, y ≤ 1000) with the objective
of identifying the global maximum value. Here is the procedure the agent will adhere to:

1. Strategy Development: The agent will begin by devising a comprehensive strategy to explore
the space and tackle the problem.

2. Point Selection (x, y): The agent will choose unique NEW points [(x1, y1), (x2, y2), . . .] for
function evaluation, based on its strategy.

3. Feedback Collection and Strategy Enhancement: Once the values of
[(x1, y1, f1), (x2, y2, f2), . . .] at the agent’s selected points are revealed, the agent can refine
its strategy using this feedback.

4. Process Persistence: The agent will continue this procedure for up to QueryBudget queries
(in the form of (xi, yi)) or until it is confident that the global maximum has been identified.

The agent should present its findings in the following way: {...}
The agent will comply with the following rules: {...}
Given this problem statement, your duty is to ensure that the agent identifies the global maximum
value.

Problem Definition

To achieve your goal, please follow these guidelines:

1. After each step, you can critique the agent’s chosen coordinates or its strategy. It is essential
that you offer constructive criticism to improve its next moves.

2. It’s important to remember that the space is vast, and there may be several LOCAL
maximums, so you must help the agent avoid mistaking local maximum values for the
answer {...}

3. You can offer suggestions and brainstorming to assist the agent in its task. Remember that
the agent is very smart, so do not describe what the agent has already chosen or done! Limit
your responses to constructive criticism.

4. Note: Finding a value in the range of [0.95× (Global Max),Global Max] is equal to solving
the problem, so discourage the agent to spend time on finding values that have small
differences.

5. After every iteration, list the potential issues with the agent’s strategy and decision so far.

6. Ensure that your responses are concise and to the point. Do not provide unnecessarily long
responses.

{...}

General Guidelines

Here is the Agent’s response: < Thesis1 > and the corresponding results: < Observations1 >

Agent’s Response & the Corresponding Results

Now, given all the info, review agent’s response, make your criticism and suggestions, and detect
potential issues ...

Start Command

Figure 10: Initial prompt template used for the Critic in ACE

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Critic’s Transitional Prompt Template

Here is the Agent’s response: < Thesisi > and the corresponding results: < Observationsi >

Agent’s Response & the Corresponding Results

Now, given all the info, review agent’s response, make your criticism and suggestions, and detect
potential issues ...

Start Command

Figure 11: Transitional prompt template used for the Critic in ACE

Synthesizer’s Prompt Template

The corresponding results are: < Observationsi >

To help you on your task, we provide you (the Agent/Actor) with the response from a reviewer who is
observing your attempts:

< Antithesisi >

Given the suggestions and comments provided, improve your strategy and continue.

Synthesize Command

Figure 12: The prompt template used for the Synthesizer in ACE. Note that Synthesizer is the Actor
of the previous round, so it already has access to the Thesisi. This provides an efficient handling of
the context and token usage.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Poll Worker Prompt Template

You are a great assistant with a strong background in AI and optimization problems.

Role Assignment

You are assigned to work as a poll worker to analyze responses from multiple agents to a given prob-
lem. Each agent’s response may include long sentences describing their strategy to solve the problem,
code snippets, or other relevant information.
Your task is to identify the agent whose response is the most frequently specified among all agents. If
there is a tie, you should randomly select one of the tied agents. Your response should only include
the integer ID of the selected agent. Ensure that the selection process is fair and unbiased.

Problem Definition

• Input Data
You will receive a list of responses from multiple agents. Each response is associated with a
unique agent ID. Example format:

– The response from agent id1: response1
– The response from agent id2: response2
– . . .
– The response from agent idn: responsen

• Processing
Analyze the responses to determine which agent’s response is the most frequently specified.
Evaluate the similarity of responses based on the nature of the answer, strategy, and major
similarities, rather than exact wording. In case of a tie, randomly select one of the tied
agents.

General Guidelines

Your output should be a single integer representing the ID of the agent with the most frequently speci-
fied response.
Example output: 3

Response Format

Your response should only include the integer ID of the selected agent. You must avoid apologizing in
your answers. Ensure that the selection process is fair and unbiased. Example: Given the following
input:

• The response from agent 1: ”Use a divide-and-conquer strategy to break the problem into
smaller parts. Start with a few number of smaller parts”

• Agent #2: ”Apply a divide-and-conquer approach to split the problem into manageable
sections. Start with 10 parts”

• agent 3: ”Implement a brute-force method to try all possible solutions”

• The Agent #4’s response: ”Use reinforcement learning to find the optimum solution”

• Agent 5: ”Divide the problem into 10000 smaller parts and solve each part individually”

The most frequently specified strategy is “using divide-and-conquer with small number of total parts”
which is provided by agents 1 and 2. Note that agent 5 specifies the divide-and-conquer part but with
a large number of initial small parts. Therefore, you should output one of the IDs 1 or 2. If there is a
tie, randomly select one of the tied IDs.
Output: 2

Examples

Ok, let’s start
Start Command

Figure 13: The prompt template used for the poll worker agent in Majority scheme

24

	Introduction
	Related Work
	Assessing & Improving LLMs in SOPs
	WorldGen
	LLM and Accessing the World
	Notion of Efficiency
	Evaluating LLMs Performance in SOPs
	A Dialectical Perspective to Enhance LLMs in SOPs

	Evaluation
	Overall Results
	Deep Dive

	Limitations & a Brief Discussion
	Final Note
	Background: Reasoning and Dialectics
	Related Work: Part II
	A Couple of Samples for LLM* in Action
	A Sample of the Dialectical Process in ACE
	More on the Evaluations and the Prompt Templates Used

