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Abstract

A fundamental notion of distance between train and test distributions from the field
of domain adaptation is discrepancy distance. While in general hard to compute,
here we provide the first set of provably efficient algorithms for testing localized
discrepancy distance, where discrepancy is computed with respect to a fixed output
classifier. These results imply a broad set of new, efficient learning algorithms in
the recently introduced model of Testable Learning with Distribution Shift (TDS
learning) due to Klivans et al. (2023).
Our approach generalizes and improves all prior work on TDS learning: (1)
we obtain universal learners that succeed simultaneously for large classes of
test distributions, (2) achieve near-optimal error rates, and (3) give exponential
improvements for constant depth circuits. Our methods further extend to semi-
parametric settings and imply the first positive results for low-dimensional convex
sets. Additionally, we separate learning and testing phases and obtain algorithms
that run in fully polynomial time at test time.

1 Introduction

Distribution shift remains a central challenge in machine learning. While practitioners may exert
some level of control over a model’s training distribution, they have far less insight into future,
potentially adversarial, test distributions. Developing algorithms that can predict whether a trained
classifier will perform well on an unseen test set is therefore critical to the widescale deployment of
modern foundation models.

A heavily-studied framework for modeling distribution shift is domain adaptation, where a learner
has access to labeled examples from some training distribution, unlabeled examples from some
test distribution and is asked to output a hypothesis with low error on the test distribution. Over
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the last twenty years, researchers in domain adaptation and related fields [BDBCP06, BCK+07,
MMR09, BDBC+10, RMH+20, ZLWJ20, KM21b, HKM23, KZZ24] have established bounds for
out-of-distribution generalization in terms of some type of distance between train and test distributions.
By far the most commonly studied notion is discrepancy distance:

discC(D,D′) = sup
f1,f2∈C

∣∣∣ P
x∼D

[f1(x) ̸= f2(x)]− P
x∼D′

[f1(x) ̸= f2(x)]
∣∣∣

Estimating or even testing discrepancy distance, however, seems difficult, as its definition involves
an enumeration over all classifiers from some underlying function class (in Appendix F we give the
first hardness result for computing discrepancy distance in general). As such, obtaining provably
efficient algorithms for domain adaptation has seen little progress (none of the above works give
polynomial-time guarantees).

In search of efficient algorithms for learning with distribution shift with certifiable error guarantees,
recent work by [KSV24b] defined the Testable Learning with Distribution Shift (TDS learning)
framework. In this model (similar to domain adaptation), a learner receives labeled examples
from train distribution D, unlabeled examples from test distribution D′, and then runs a test. If
the (efficiently computable) test accepts, the learner outputs h that is guaranteed to have low test
error with respect to D′. No guarantees are given if the test rejects, but it must accept (with high
probability) if the marginals of D and D′ are equal. This framework has led to the first provably
efficient algorithms for learning with distribution shift for certain concept classes (for example,
halfspaces) [KSV24b, KSV24a].

It is straightforward to see that if algorithm A learns concept class C in the (ordinary) PAC/agnostic
model, and we have an efficient localized discrepancy tester for C, then C is learnable in the TDS
framework: simply apply the discrepancy tester to the output of A and accept if this quantity is small.
A dream scenario would be to augment all known PAC/agnostic learning algorithms with associated
localized discrepancy testers. This is nontrivial in part because we cannot make any assumptions on
the test distribution D′ (our test has to always accept or reject correctly). Nevertheless, our main
contribution is a suite of new discrepancy testers for well-studied function class/training distribution
pairs that unifies and greatly expands all prior work on TDS learning.

1.1 Our Contributions

Optimal Error Guarantees via L1 Sandwiching. The work of [KSV24b] followed a moment-
matching approach to show that the existence of L2 sandwiching polynomial approximators implies
TDS learning up to a constant factor of the optimum error. Although their result implies TDS learning
for several fundamental concept classes, the L2 sandwiching requirement seems restrictive for classes
such as constant-depth circuits or polynomial threshold functions. In Theorem 3.1, we provide TDS
learning results in terms of the much more well-understood notion of L1 sandwiching, resolving one
of the main questions left open in [KSV24b]. As such, we obtain exponential improvements for TDS
learning constant depth circuits (AC0), and the first results for degree-2 polynomial threshold functions
(see Table 1). Our result also bridges a gap between TDS learning and testable agnostic learning
[RV23], since the latter has been known to be implied by L1 sandwiching [GKK23]. Additionally,
in the agnostic setting, the error guarantees we achieve are essentially optimal (as opposed to the
constant-factor approximation by [KSV24b]).

Universal TDS Learners. A natural and important goal in TDS learning is to design algorithms that
accept and make trustworthy predictions whenever the distribution shift is benign. In Theorems 4.2
and 5.1, we give the first TDS learners that are guaranteed to accept whenever the test marginal falls in
a wide class of distributions that are not necessarily close to the training distribution (in say statistical
distance) but, instead, share some mild structural properties. In the literature of testable agnostic
learning, testers with relaxed completeness criteria are called universal [GKSV23]. Our universal
TDS learners accept all distributions that are sufficiently concentrated and anti-concentrated and work
for convex sets with low intrinsic dimension (Theorem 4.2) and halfspace intersections (Theorem 5.1).
Surprisingly, our algorithms can handle distributions that are heavy-tailed and multimodal, for which
efficient (ordinary) agnostic learning algorithms are not known to exist. Our algorithms exploit
localization guarantees from the training phase (e.g., subspace or boundary recovery) to relax the
requirements of the testing phase.
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Fully Polynomial-Time Testing. All of the TDS learners we provide consist of two decoupled
phases. In the training phase, the algorithm uses labeled training examples to output a candidate
hypothesis h. The testing phase receives the candidate h and uses unlabeled test examples to decide
whether to reject or accept and output h. Separation of the two phases is an important feature of our
approach, as it may be desirable for these tasks to be performed by distinct parties who have different
amounts of available (computing) resources. Efficient implementations of the testing phase are of
utmost importance, especially for potential users of large pre-trained models who need to certify
that the candidate model at hand is safe to deploy. In Theorem 5.1, we give the first TDS learner
for intersections of halfspaces that runs in fully polynomial test time, and additionally improves
the overall runtime of the previous state-of-the-art TDS learner for intersection of halfspaces by
[KSV24a]. In fact, our TDS learner’s overall runtime is polynomial in the dimension d, while the
time complexity of the TDS learner given by [KSV24a] involved a factor of dO(log(1/ϵ)), where ϵ is
the error parameter.

1.2 Our Techniques

Our approach for designing TDS learners focuses on efficient algorithms for testing a new notion of
localized discrepancy distance:
Definition 1.1 (Localized Discrepancy). Let D be a distribution over X ⊆ Rd and let H, C ⊆ {±1}X
be hypothesis and concept classes respectively. Define neighborhood N to be a function N : H → 2C .
For f̂ ∈ H, the (f̂ ,N)-localized discrepancy from D to D′ is defined as:

discf̂ ,N(D,D′) = sup
f∈N(f̂)

(
P

x∼D′
[f̂(x) ̸= f(x)]− P

x∼D
[f̂(x) ̸= f(x)]

)
Testing localized discrepancy is clearly easier than testing the traditional (global) discrepancy distance,
since global discrepancy is defined with respect to a supremum over all pairs of concepts within some
given class, while localized discrepancy only depends on a small neighborhood of concepts around
some given reference classifier f̂ .

Assume for a moment that we have fixed a neighborhood function N and have obtained a learner that
always outputs a classifier close to the ground truth function f∗ (i.e., f∗ ∈ N(f̂)). In this case, if we
can test localized discrepancy, then we obtain a TDS learner as follows: output f̂ if the corresponding
localized discrepancy is small and reject otherwise (recall f̂ is close to the ground truth for both
training and test distributions).

The algorithmic challenge is finding a definition of neighborhood that admits both an efficient learner
(for outputting a classifier close to the ground truth) and an efficient localized discrepancy tester.
Smaller neighborhoods make the learning problem more difficult while larger neighborhoods make
discrepancy testing more challenging.

Ultimately, the appropriate localized discrepancy relaxation of the testing phase depends on the
guarantees one can ensure during training, which, in turn, depends on the properties of the concept
class C and the training distribution. For our main applications below we briefly describe the choice
of neighborhood and the corresponding discrepancy tester. Note that we give a different discrepancy
tester for each of the following cases.

Classes with Low-Degree Sandwiching Approximators. We show that the existence of degree-ℓ
L1-sandwiching approximators for a class C over X ⊆ Rd turns out to be sufficient to design a
localized discrepancy tester that runs in time dO(ℓ) where the notion of neighborhood is widest
possible, i.e., N(f̂) = C.6 In this case, the requirement for the training algorithm is minimal, as the
ground truth f∗ lies within C, which coincides with N(f̂). The proposed tester is based on estimating
the chow parameters of the reference hypothesis f̂ under the test marginal and checking whether they
closely match the chow parameters of f̂ under the training marginal. For more details, see Section 3.

Convex Sets with Low Intrinsic Dimension. For convex sets with few relevant dimensions, there
are algorithms from standard PAC learning that guarantee approximate recovery of the relevant
subspace. This guarantee allows one to choose a much stronger notion of neighborhood while

6The discrepancy is still localized, since it is defined with respect to a reference hypothesis f̂ .
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still ensuring that f∗ ∈ N(f̂). The appropriate notion of neighborhood contains low-dimensional
concepts whose relevant subspace is geometrically close to the subspace of the reference hypothesis.
The corresponding tester exhaustively checks that the marginal D′ is well-behaved on the relevant
subspace. For more details, see Section 4.

Intersections of Halfspaces. For intersections of halfspaces, we prove a structural result stating that
finding a hypothesis with low Gaussian disagreement with the ground truth f∗ implies approximate
pointwise recovery of the boundary of f∗. It is therefore sufficient to check whether the marginal
of the test distribution assigns unreasonably large mass near the boundary of the training output
hypothesis f̂ , which can be done in fully polynomial time. Any proper algorithm for learning
halfspace intersections under Gaussian training marginals is then sufficient for our purposes. For
more details, see Section 5.

1.3 Related Work

Domain Adaptation. In the past two decades, there has been a long line of research on generalization
bounds for domain adaptation. The work of [MMR09] introduced the notion of discrepancy distance,
following work by [BDBCP06, BDBC+10], which used similar notions of distance between distri-
butions. Other important notions of distribution similarity include bounded density ratios [SSK12]
and related notions [KM21b, KZZ24]. A type of localized discrepancy distance was defined by
[ZLWJ20] and used to provide improved sample complexity bounds for domain adaptation. None of
the above works give efficient (polynomial-time) algorithms. Here, we give a more general notion of
localization and use it to obtain efficient and universal algorithms for TDS learning.

TDS Learning and Related Models. The framework of TDS learning was defined by [KSV24b],
where it was shown that any class that admits degree-ℓ L2-sandwiching approximators can be TDS
learned in time dO(ℓ) up to error O(λ), where λ is the standard (and necessary) benchmark for the
error in domain adaptation when the training and test distributions are allowed to be arbitrary. Here,
we show that the relaxed notion of L1-sandwiching approximators suffices for TDS learning and we
improve the error guarantee to nearly-match the information-theoretically optimal λ (see Section 3).
For intersections of halfspaces under Gaussian training marginals, [KSV24a] gave TDS learners
with improved guarantees compared to those given by [KSV24b] through L2 sandwiching. Our
TDS learners for halfspace intersections are superior to the ones from [KSV24a] in terms of overall
runtime, universality and test-time efficiency (see Section 5).

Another related framework for learning with distribution shift is PQ learning, which was defined by
[GKKM20]. In PQ learning, the learner may reject regions of the domain where it is not confident to
make predictions, but the total mass of these regions under the training distribution must be small.
In fact, PQ learning is known to imply TDS learning (see [KSV24b]). However, the only known
algorithms for PQ learning, which were given by [GKKM20, KK21], require access to oracles for
learning primitives that are known to be hard even for simple classes (see [KK21]).

The framework of TDS learning is also related to testable agnostic learning, where the goal of the
tester is to certify a near-optimal error guarantee. Testable agnostic learning was defined by [RV23]
and there are several subsequent works in this framework [GKK23, GKSV24, GKSV23, DKK+23].
There are many important differences between TDS learning and testable agnostic learning, including
the fact that, in testable agnostic learning, there is no distribution shift and that in TDS learning, the
learner does not have access to labels from the distribution on which it is evaluated. In particular,
testable agnostic learning is only defined in the presence of noise in the labels, while TDS learning is
meaningful even when the labels are generated noise-free (i.e., realizable learning).

PAC Learning. In the standard framework of PAC learning, there is an abundance of algorithmic
ideas and techniques that aim to achieve efficient learning, under various assumptions (see e.g.,
[LW94, BK97, KOS04, KLT09, KOS08a, Vem10b, Vem10a, GKM12, KKM13, DKS18a, DTK22]).
In this work, we make use of polynomial regression [KKMS08], dimension reduction techniques
[Vem10a], as well as techniques for robustly learning geometric concepts [DKS18b], in order to
obtain efficient TDS learners. In fact, our approach of designing TDS learning algorithms through
localized discrepancy testing sheds a light on what kinds of guarantees from the training algorithms are
desirable for learning in the presence of distribution shift. For example, we show that if approximate
subspace recovery is guaranteed after training, then the discrepancy testing problem can be relaxed to
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an easier, localized version. Moreover, our results on TDS learning halfspace intersections emphasize
the importance of proper learners in the context of learning with distribution shift.

2 Preliminaries

We use standard big-O notation (and Õ to hide poly-logarithmic factors), Rd is the d-dimensional
euclidean space and Nd the standard Gaussian over Rd, {±1}d is the d-dimensional hypercube and
Unif({±1}d) the uniform distribution over {±1}d, N is the set of natural numbers N = {1, 2, . . . }
and x ∈ Rd denotes a vector with x = (x1, . . . ,xd) and inner products x · v. See also Appendix A.

Localized Discrepancy Testing. Testing localized discrepancy (Definition 1.1) is defined as follows.

Definition 2.1 (Testing Localized Discrepancy). For a set D of distributions and D over X and ϵ > 0,
we say that T is a (N, ϵ)-tester for localized discrepancy from D with respect to D, if, T , upon
receiving f̂ ∈ H and a set X of mT i.i.d. examples from some distribution D′ over X satisfies:

(a) (Soundness.) With probability at least 3/4: If T accepts, then discf̂ ,N(D,D′) ≤ ϵ .

(b) (Completeness.) If D′ ∈ D, then T accepts with probability at least 3/4.

For a concept class C, a distribution D over X , ϵ ∈ (0, 1), we say that C has ϵ-L1 sandwiching degree
ℓ with respect to D if for any f ∈ C, there exist polynomials pup, pdown over X with degree at most ℓ
such that (1) pdown(x) ≤ f(x) ≤ pup(x) for all x ∈ X and (2) Ex∼D[pup(x)− pdown(x)] ≤ ϵ.

Learning Setting. For X ⊆ Rd, the learner is given labeled samples from a training distribution
Dtrain

XY over X ×{±1} with X -marginal Dtrain
X = D and unlabeled examples from the marginal Dtest

X
of a test distribution Dtest

XY over X × {±1}. For a concept class C ⊆ {X → {±1}}, in the realizable
setting, there is f∗ ∈ C that generates the labels for both Dtrain

XY and Dtest
XY . In the agnostic setting,

the standard goal in domain adaptation is to achieve an error guarantee that is competitive with the
information-theoretically optimal joint error λ = minf∈C(err(f ;Dtrain

XY ) + err(f ;Dtest
XY )), achieved

by some f∗ ∈ C, where err(f ;Dtrain
XY ) = P(x,y)∼Dtrain

XY
[y ̸= f(x)] (and similarly for err(f ;Dtest

XY )).

Definition 2.2 (Universal TDS Learning). Let C be a concept class over X ⊆ Rd, D a distribution
over X and D some class of distributions over X . The algorithm A is said to D-universally TDS
learn C with respect to D up to error ψ and probability of failure δ if, upon receiving mtrain labeled
samples from a training distribution Dtrain

XY with X -marginal D and mtest unlabeled samples from
a test distribution Dtest

XY , w.p. at least 1 − δ, algorithm A either rejects, or accepts and outputs a
hypothesis h : X → {±1} such that:

(a) (Soundness.) If A accepts, then the output h satisfies err(h;Dtest
XY ) ≤ ψ.

(b) (Completeness.) If Dtest
X ∈ D then A accepts.

In the agnostic setting, parameter ψ may depend on λ = λ(C;Dtrain
XY ,Dtest

XY ), whereas in the realizable
setting, ψ = ϵ ∈ (0, 1). If D = {D}, then we simply say that A ψ-TDS learns C w.r.t. D.

Note that the success probability for TDS learning can be amplified through repetition [KSV24b] and
we will consider δ = 0.1 unless specified otherwise.

3 Classes with Low Sandwiching Degree

Prior work on TDS learning by [KSV24b] showed that the existence of degree-ℓ L2-sandwiching
approximators implies TDS learning in time dO(ℓ). A major question left open was whether the more
traditional notion of L1 sandwiching (see Definition C.1) suffices for TDS learning. We answer this
question in the affirmative, and as a consequence we obtain exponential improvements in the runtime
of TDS learning for constant depth circuits (AC0) and the first TDS learning results for degree-2
polynomial threshold functions (see Table 1). For more details, see Appendix C.

Theorem 3.1 (L1-sandwiching implies TDS learning). Let ϵ, δ ∈ (0, 1) and let C ⊆ {X → {±1}}
be a concept class such that the ϵ-approximate L1-sandwiching degree of C under D is ℓ(ϵ) ∈ N.
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Then, there exists a TDS learning algorithm for C with respect to D up to error λ+ opttrain +O(ϵ)
and fails with probability at most δ with time and sample complexity poly(dℓ(ϵ), 1ϵ ) log(1/δ).

Note that prior work [KSV24b] had only obtained a bound of O(λ) in the above error guarantee. Our
techniques allow us to achieve the optimal dependence of simply λ.

Concept class Training Marginal Time Prior Work

1 Degree-2 PTFs
Nd or

Unif({±1}d) dÕ(1/ϵ9) None

2 Circuits of size s, depth t Unif({±1}d) dO(log(s/ϵ))O(t) d
√
s·O(log(s/ϵ))O(t)

only for formulas

Table 1: New results for TDS learning through L1 sandwiching. For constant-depth formulas, we
achieve an exponential improvement compared to [KSV24b] (which used L2-sandwiching), and our
results work for circuits as well.

For Gaussian and uniform halfspaces, intersections and functions of halfspaces, as well as for
decision trees over the uniform distribution, the L2-sandwiching approach of [KSV24b] provided
TDS learning algorithms with similar runtime as the one obtained here, but their error guarantee was
O(λ) + ϵ instead of λ + opttrain + ϵ (where opttrain = minf∈C err(f ;Dtrain

XY )), which is the best
known upper bound on the error, even information theoretically (see [BDBC+10, DLLP10]).

Localized discrepancy testing via Chow matching. The improvements we obtain here are based
on the idea of substituting the moment-matching tester of [KSV24b] with a more localized test,
depending on a candidate output hypothesis f̂ provided by a training algorithm run on samples from
the training distribution. In particular, we estimate the Chow parameters [OS08] Ex∼Dtest

X
[f̂(x)xα]

for all low-degree monomials xα =
∏d

i=1 x
αi
i and reject if they do not match the corresponding

quantities Ex∼D[f̂(x)x
α] under the training marginal. We obtain the following result.

Proposition 3.2 (Informal, see Theorem C.3). For any class C with low sandwiching degree under
D, the low-degree chow matching tester is a tester for localized discrepancy for the neighborhood
N(f̂) = C, i.e., it certifies that Px∼Dtest

X
[f̂(x) ̸= f(x)] ≤ Px∼D[f̂(x) ̸= f(x)] + ϵ for all f ∈ C.

Proof Outline. The main observation for obtaining the localized discrepancy testing result
is that the disagreement between two functions is a linear function of their correlation, i.e.,
2Px∼Dtest

X
[f̂(x) ̸= f(x)] = 1 − Ex∼Dtest

X
[f̂(x)f(x)], and, because f ∈ C, it is sandwiched

by two polynomials pup, pdown, which implies Ex∼Dtest
X

[f̂(x)f(x)] ≥ Ex∼Dtest
X

[f̂(x)pup(x)] −
Ex∼Dtest

X
[pup(x)− pdown(x)]. The latter quantity can be certified to be close to the corresponding

quantity under the training marginal D by Chow (and moment) matching.

Although the notion of neighborhood we require here is quite generic, it is sufficient to provide
significant improvements over prior work. The discrepancy tester is localized in the sense that
it certifies properties of the tested marginal distribution that are related to a particular candidate
hypothesis f̂ , but actually considers the whole concept class C to be inside the neighborhood of
f̂ . Since the concept f∗ that achieves λ = minf∈C(err(f ;Dtrain

XY ) + err(f ;Dtest
XY )) lies within C by

definition, the total test error of f̂ is directly related to the error achieved by the training algorithm,
whenever the Chow matching tester accepts.

4 Non-Parametric Low-Dimensional Classes

For non-parametric classes like convex sets over Rd, dimension-efficient TDS learning is impossible,
even from an information-theoretic perspective [KSV24b] and 2Ω(d) time is required even in the
realizable setting. However, the best known upper bound on the L1 sandwiching degree for convex
sets is given indirectly by known results in approximation of convex sets by intersections of halfspaces
(see, e.g., [DNS23] and references therein) and implies a TDS learning algorithm that runs in time
doubly exponential in d. Improving on the doubly exponential bound based on L1-sandwiching,
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we provide a realizable TDS learner with singly exponential (in poly(d)) runtime for convex sets
that are ϵ-balanced, meaning that the Gaussian mass of both the interior and the exterior of the
convex set is at least ϵ. For convex sets with only a few relevant dimensions, our results actually give
dimension-efficient TDS learners. For more details, see Appendix D.
Theorem 4.1 (TDS Learning of Convex Subspace Juntas). For ϵ ∈ (0, 1/2), d, k ∈ N, let C be the
class of ϵ-balanced convex sets over Rd with k relevant dimensions. There is anO(ϵ)-TDS learner for
C with respect to Nd in the realizable setting, which, for the training phase, uses poly(d)2poly(k/ϵ)

samples and time and, for the testing phase, uses poly(d)(k/ϵ)O(k) samples and time.

We note that the balancing assumption is mild, since it can be tested by using examples from the
training distribution and has been used in prior work on realizable TDS learning of intersections of
halfspaces with respect to the Gaussian distribution [KSV24a].

Universal TDS Learners. Importantly, the TDS learner of Theorem 4.1 can be made universal with
respect to a wide class of distributions that enjoy some mild concentration and anti-concentration
properties. The cost is an exponential deterioration of the runtime of the training phase. In other
words, finding a hypothesis with better performance on the training distribution suffices to give error
guarantees for a wide range of test distributions, including, for example, multi-modal and heavy-tailed
distributions. We believe that this result is interesting even from an information-theoretic perspective.
In Table 2 in the appendix, we give a more precise trade-off between universality and training runtime.

Let Dk be the class of distributions D over Rd such that Ex∼D[(v · x)4] ≤ C for any v ∈ Sd−1 and
for any subspace W ⊆ Rd of dimension at most k, the marginal density of D on W is upper bounded
by Ck2

, where C is some positive universal constant. Then the following is true.
Theorem 4.2 (Universal TDS Learning of Convex Subspace Juntas). There is a Dk-universal O(ϵ)-
TDS learner for k-dimensional ϵ-balanced convex sets over Rd with respect to Nd in the realizable
setting, which, for the training phase, uses poly(d) exp(2O(k2/ϵ)) samples and time and, for the
testing phase, uses poly(d)kO(k3/ϵ2) samples and time.

We remark that the testing time for the universal TDS learner of Theorem 4.2 is still singly exponential
in poly(k), although the dependence on ϵ is exponentially worse. Having lower testing runtime is a
desirable feature because the potential users of large machine learning models might have limited
resources compared to those available during training. We provide a more thorough discussion about
this feature in the following section.

Cylindrical grids tester for localized discrepancy. To obtain our TDS learning results of The-
orems 4.1 and 4.2, we once more make use of the localized discrepancy testing framework. In
particular, we identify low-dimensionality (Definition D.1) and boundary smoothness (Definition D.4)
of the underlying concept class as sufficient conditions for efficient testing of localized discrepancy
when the notion of localization is defined with respect to the subspace neighborhood (Theorem D.7).
The subspace neighborhood Ns(f̂) contains low-dimensional concepts f whose relevant subspace
is geometrically close to the relevant subspace for f̂ (see Definition D.2). For TDS learning, we
combine such testers with known learning algorithms for subspace recovery of low-dimensional
convex sets (see, e.g., [Vem10a, KSV24a] and Theorem D.13) to ensure that the training phase will
output some hypothesis f̂ such that the ground truth f∗ lies within Ns(f̂).

In other words, we exploit the existence of training algorithms with stronger guarantees (i.e., ap-
proximate subspace recovery) than merely training error bounds, to relax the discrepancy testing
problem to a low-dimensional localized version, while still providing end-to-end results for TDS
learning. This relaxation not only improves the testing runtime, but also enables universality, since
the localized discrepancy between two distributions can be much smaller than the global discrepancy
between them (see also [ZLWJ20] and references therein).

The idea behind the localized discrepancy tester for the subspace neighborhood is to split the
disagreement between f̂ and an arbitrary concept f ∈ Ns(f̂) under the test distribution in two parts:
(1) the disagreement between f̂ and a rotated version f̃ of f where the input x is projected on the
relevant subspace of the given hypothesis f̂ instead of the actual, unknown relevant subspace of f
and (2) the disagreement between f̃ and f . For part (2), we use the fact that the relevant subspace
of f is geometrically close to the relevant subspace for f̂ (since f ∈ Ns(f̂)). We conclude that f
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and f̃ can only disagree far from the origin and, hence, testing that the test marginal is appropriately
concentrated suffices to give the desired bound.

Low-dimensional disagreement between concepts with smooth boundaries. For part (1), we use
the fact that the k-dimensional relevant subspace V for f̂ is known. We construct a grid on V and run
tests to certify that the probability (under the test marginal) of falling inside each of the cells is not
unreasonably large. In order to bound the size of the grid, we also test that the probability of falling
far from the origin on the subspace V is appropriately bounded. We then argue that the disagreement
region can be approximated reasonably well by discretizing with respect to an appropriately refined
grid. To ensure that the discretization of the near-boundary region does not introduce a significant
error blow-up, it is important that f̂ and f̃ have smooth boundaries (see Figure 2 in the appendix).

5 Fully Polynomial-Time Testers

Algorithms for TDS learning that are efficient in testing time, can be useful to check whether a
pre-trained model can be applied to a particular population, without the need for overly expensive
resources. Here, we focus on the class of balanced intersections of halfspaces (see Definition E.9)
and provide the first TDS learner for this class that runs in fully polynomial time during test time.
Moreover, the proposed tester is universal with respect to a wide class of distributions that satisfy
some concentration and anticoncentration properties.

Let D1 be the class of distributions D over Rd such that for any v ∈ Sd−1 we have Ex∼D[(v·x)4] ≤ C
and, also, that the one-dimensional density of the projection v · x where x ∼ D is upper bounded by
C, where C is some positive universal constant. Then the following is true (see also Theorem E.10).
Theorem 5.1 (Universal TDS Learning of Balanced Intersections). For ϵ ∈ (0, 1/2), d, k ∈ N, there
is a D1-universal O(ϵ)-TDS learner for the class of ϵ-balanced intersections of k halfspaces over Rd

w.r.t. Nd in the realizable setting, which, for the training phase, uses poly(d) exp(O(k5/ϵ)) samples
and time and, for the testing phase, uses poly(d, k, 1/ϵ) samples and time.

For comparison, the previous state-of-the-art TDS learning algorithm for halfspace intersec-
tions by [KSV24a] had overall runtime dO(log(k/ϵ)) + poly(d) exp(O(k6/ϵ8)) and testing runtime
dO(log(k/ϵ))+poly(d)(k/ϵ)O(k2) (although training and testing were not explicitly separated). Hence,
the overall runtime of the algorithm of Theorem 5.1 is better than the previous state-of-the-art, but
also enjoys two additional properties: (1) the testing time is fully polynomial and (2) the tester is
universal with respect to a wide class (of multimodal and even heavy-tailed distributions).

We note that it is not by chance that these two properties are satisfied simultaneously: they both relate
to the fact that it suffices to solve a simple discrepancy testing problem. Since the tested property
is relaxed, more distributions should satisfy it and testing the property can be made efficient. For
comparison, as well as to provide a TDS learner with better overall runtime in some regimes, we may
trade-off universality and test-time efficiency to obtain the following result (see Theorem E.10).
Theorem 5.2 (TDS Learning of Balanced Intersections). For ϵ ∈ (0, 1/2), d, k ∈ N, there is an
O(ϵ)-TDS learner for the class of ϵ-balanced intersections of k halfspaces over Rd w.r.t. Nd in the
realizable setting, which, for the training phase, uses poly(d)(k/ϵ)O(k3) samples and time and, for
the testing phase, uses (dk)O(log(1/ϵ)) samples and time.

Remark 5.3. The algorithms of Theorems 5.1 and 5.2 can both tolerate some amount of noise,
i.e., provide an O(ϵ) error guarantee even when λ = minf∈C(err(f ;Dtrain

XY ) + err(f ;Dtest
XY )) is

non-zero (but sufficiently small). For Theorem 5.1, the amount of noise that can be tolerated is
λ = exp(−Õ(k/ϵ)), while for Theorem 5.2, the tolerated amount is λ = (k/ϵ)−O(k) (see Table 3).
The amount of noise tolerated by the non-universal tester is more, because the test is more expensive
and, therefore, does a better job in translating the guarantees of the training phase to guarantees for
the test error. For comparison, the Chow matching tester of Theorem 3.1 runs much more expensive
tests and can, therefore, tolerate much more noise, i.e., λ = O(ϵ).

Discrepancy testing through boundary proximity. We once more use the framework of localized
discrepancy testing, in order to obtain TDS learners with strong guarantees. In order to achieve fully
polynomial-time performance, we aim to use a tester that is as simple as possible. In particular, for a
given halfspace intersection f̂ , we test whether the probability that an example drawn from the test
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marginal falls close to the boundary of f̂ , i.e., close to at least one of the defining halfspaces (see
Lemma E.13 and Definition E.3). We also test concentration of the test distribution marginal.

Interestingly, we show that these two tests are sufficient for certifying low localized discrepancy
from the Gaussian distribution with respect to the notion of disagreement neighborhood Ne, i.e.,
f ∈ Ne(f̂) if the Gaussian disagreement Px∼Nd

[f(x) ̸= f̂(x)] between f and f̂ is small enough
(see Definition E.2). In particular, we show that if f is a balanced intersection and f ∈ Ne(f̂),
then f and f̂ can only differ either (1) far from the origin or (2) close to the boundary of f̂ (see
Proposition E.4 and Lemma E.12). Importantly, this property is point-wise: for any x ∈ Rd such that
f(x) ̸= f̂(x), x will either satisfy (1) or (2) and, hence, no distribution over Rd can fool our tester.

In the heart of our proof is a geometric lemma which demonstrates that any balanced convex set is
locally balanced as well (Lemma E.12), meaning that for any point x ∈ Rd, there is a large number
of points near x with the same label as x. Therefore (unless the norm of x is large), any hypothesis
f̂ with low Gaussian disagreement from the ground truth f∗, must encode all of the local structure
(or boundary) of f∗ that is not very far from the origin. To show this, we use a geometric argument
about convex sets (see Figure 1 for the case when the label of x is 1. The other case is simpler and
follows by the existence of a separating hyperplane between a convex set and any point outside it).

Figure 1: If x lies within a balanced convex set K, then many points close to x lie within K as well,
i.e., there is a cone R′ with R′ ⊆ B(x, ϱ) ∩ K, where B(x, ϱ) is a ball around x. The ball centered
at xc exists due to the fact that K is balanced: any balanced convex set contains some ball with
non-negligible radius. The convex hull of x and the ball at xc lies within K. (See also Fig. 3)

Since we have a localized discrepancy tester with respect to the disagreement neighborhood, all we
need from the training phase is to output some intersection of halfspaces f̂ with low training error (so
that the ground truth f∗ lies within Ne(f̂)). Hence, we may use any proper PAC learning algorithm
for intersections of halfspaces under the Gaussian distribution. We use the algorithm by [DKS18b]
(see also Theorem E.11).
Remark 5.4. We note that the three important properties we used to apply the method of boundary
proximity are that (1) the hypothesis f̂ returned by the learning algorithm admits an efficient boundary
proximity tester and (2) the ground truth f∗ is locally balanced and (3) that f̂ and f∗ are both low-
dimensional. For more details, see Appendix E.

6 Limitations, Future Work and Broader Impacts

TDS learning beyond discrepancy testing. We show that all of the known results in TDS learning
can be achieved (and improved) by decoupling the training and testing phases. While separating
training and testing phases is appealing and well-motivated by real-world scenarios, it is an interesting
open question whether using the examples from the test marginal during training time could lead to
improved TDS learning algorithms.

Characterizations of discrepancy testing complexity. We provide several positive results for local-
ized discrepancy testing which imply new results in TDS learning. Moreover, on the lower bounds
side, in Appendix F, we show that global discrepancy testing is NP-hard even for simple classes
under no further assumptions. It is an interesting open question to explore tight characterizations for
dimension-efficient, universal or fully polynomial-time localized discrepancy testing.

Lifting the balancing assumption. For our universal TDS learners (and universal discrepancy
testers), we require that the underlying concept class only contains concepts that are not too biased
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towards one of the two possible labels under the training distribution (so that the training examples
include enough information for localization). This condition is mild and can be easily tested by using
training examples. However, better understanding of the importance of this condition for (universal)
TDS learning could potentially lead to (or rule out) improved and/or universal algorithms for broader
concept classes, e.g., polynomial threshold functions.

Relaxing assumptions on training marginal. Our main results in this work hold under the assump-
tion that the marginal of the training distribution is either the Gaussian distribution or the uniform
distribution over the hypercube. Such assumptions are standard in learning theory, as they serve as a
concrete theoretical testbed for simplifying the analysis and presentation of the proposed algorithms
and ideas. Relaxing those assumptions is an important and obvious goal for future work and parts of
our analysis hint towards such relaxations (see, e.g., Remarks D.10 and E.5).

Broader Impacts. We do not identify any direct potential negative societal impacts. In fact, although
our results are of theoretical nature, our algorithms might, in principle, help mitigate potentially unfair
outcomes of applying certain pre-trained models on populations that are misrepresented in training
data. Our discrepancy testers will either certify low prediction error on the deployment population
or signal that the model at hand might not be applicable to the deployment population and another
model should be considered.
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A Extended Preliminaries

We use standard big-O notation (and Õ to hide poly-logarithmic factors), Rd is the d-dimensional
euclidean space and Nd the standard Gaussian over Rd, {±1}d is the d-dimensional hypercube and
Unif({±1}d) the uniform distribution over {±1}d, N is the set of natural numbers N = {1, 2, . . . }
and x ∈ Rd denotes a vector with x = (x1, . . . ,xd) and inner products x · v. For α ∈ Nd, we
denote with xα the product

∏
i∈[d] x

αi
i , Mα = E[xα] and ∥α∥1 =

∑
i∈[d] αi. For a polynomial7

p over Rd and α ∈ Nd, we denote with pα the coefficient of p corresponding to xα, i.e., we
have p(x) =

∑
α∈Nd pαx

α. If p is a polynomial over {±1}d, then we express it in its multilinear
form, using only coefficients pα with α ∈ {0, 1}d, i.e., p(x) =

∑
α∈{0,1}d pαx

α. We define
the degree of p and denote deg(p) the maximum degree of a monomial whose coefficient in p is
non-zero. We use standard notations for norms ∥x∥1 =

∑
i∈[d] |xi|, ∥x∥2 = (

∑
i∈[d] x

2
i )

1/2 and
∥x∥∞ = maxi∈[d] |xi|. We denote with Sd−1 the d− 1 dimensional sphere on Rd and, for x ∈ Rk

and r > 0, Bk(x, r) = {y ∈ Rd : ∥x− y∥2 ≤ r}.

For any v1,v2 ∈ Rd, we denote with v1·v2 the inner product between v1 and v2 and we let ∡(v1,v2)
be the angle between the two vectors, i.e., the quantity θ ∈ [0, π] such that ∥v1∥2∥v2∥2 cos(θ) =
v1 · v2. For v ∈ Rd, τ ∈ R, we call a function of the form x 7→ sign(v · x) an origin-centered (or
homogeneous) halfspace and a function of the form x 7→ sign(v ·x+ τ) a general halfspace over Rd.

We let X ⊆ Rd be either the d-dimensional hypercube {±1}d or Rd. For a distribution D over X ,
we use ED (or Ex∼D) to refer to the expectation over distribution D and for a given set X , we use
EX (or Ex∼X ) to refer to the expectation over the uniform distribution on X (i.e., Ex∼X [g(x)] =
1

|X|
∑

x∈X g(x), counting possible duplicates separately). We let R+ = (0,∞).

We define the notion of balance as follows.

Definition A.1 (Balanced Concepts). For β ∈ (0, 1), we say that a function f : Rd → {±1} is
(globally) β-balanced if for any x ∈ Rd we have Pz∼N [f(z) = f(x)] > β.

B Additional Tools

B.1 Boundary Smoothness of Structured Concepts

In this section, we prove that low dimensional polynomial threshold functions and convex sets
have smooth boundary, i.e., a non-asymptotic anticoncentration bounds that scales linearly with the
distance from the boundary. We first prove that PTFs have smooth boundary.

Lemma B.1 (Smooth Boundary for PTFs). Let p be a polynomial of degree ℓ over Rk. Let F : Rk →
{±1} be the function defined as F (x) = sign(p(x)). Then, F has a Cℓ3k-smooth boundary with
respect to Nk for a large universal constant C.

Proof. Let C be a large universal constant that we fix later. Let δ = 3Cℓ3γk. Define the set
S := {x | ∃i ∈ [ℓ], ∥∇ip(x)∥2 > (Cℓ3/δ) · ∥∇i−1p(x)∥2}. Observe that Px∼Nk

[x ∈ ∂γF ] ≤
Px∼Nk

[x ∈ S] +Px∼Nk
[x ∈ ∂γf | x /∈ S]. We bound these two terms separately. To bound the first

term, we use the following theorem from [KM21a].

Lemma B.2 (Lemma 1.6 from [KM21a]). Let C be a large universal constant. For any polynomial
p : Rk → R of degree ℓ and x ∼ Nk, the following event occurs with probability at least 1− δ:

∥∇ip(x)∥2 ≤ (Cℓ3/δ)∥∇i−1p(x)∥2, for all 1 ≤ i ≤ ℓ.

Thus, we have that Px∼Nk
[x ∈ S] ≤ δ. Now consider a point x /∈ S. From a multivariate taylor

expansion, we have that p(x + z) = p(x) +
∑

α∈Nk,1≤|α|≤ℓ
∂αp(x)

α! · zα. Thus, for z ∈ Rk with

7In Appendices D and E, we use the notation p to denote natural numbers and use q for polynomials instead.
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∥z∥2 ≤ γ, we obtain that

|p(x)− p(x+ z)| ≤
∑

1≤|α|≤ℓ

∣∣∂αp(x)∣∣ · ∥z∥|α|∞ ≤
∑
i∈[ℓ]

∥z∥i2 · ∥∇ip(x)∥1

≤
∑
i∈[ℓ]

γiki∥∇ip(x)∥2 ≤
∑
i∈[l]

γiki(Cℓ3/δ)i|p(x)| ≤ |p(x)|/2 .

The first inequality follows from the multivariate Taylor expansion. The third inequality follows from
the fact that ∥z∥2 ≤ γ and the bound on the number of monomials of size i by k2i. The penultimate
inequality follows from the definition of the set S and the last inequality is true by our choice of δ.

Since |p(x)− p(x+ z)| ≤ |p(x)|/2, we have that F (x) = F (x+ z) for all z ∈ Rk with ∥z∥2 ≤ γ.
Thus, we have that Px∼Nk

[x ∈ ∂γF | x /∈ S] = 0. Thus, we have that Px∼Nk
[x ∈ ∂γF ] ≤

3Cℓ3γk.

We now move on to proving that low dimensional convex sets. To prove this, we will crucially use
the notion of Gaussian surface area (an asymptotic anticoncentration bound) that we will now define.

Definition B.3 (Gaussian Surface Area). Let f be a boolean function. The Gaussian surface area
Γ(f) is defined as

Γ(f) = lim inf
δ→0

1

δ
P

z∼N (0,Ik)

[
z ∈ Aδ

f \Af

]
,

where Af = 1{x | f(x) = 1}, Aδ
f = {u : minv∈Af

∥u− v∥2 ≤ δ}.

We prove that convex sets have smooth boundary in two steps. We first prove that the set of
points inside the set that are close to it’s boundary have small mass. To do this, we use a noise
sensitivity argument (Lemma B.5). Then, we prove that points outside it that are close to the boundary
(Lemma B.7). This will follow from an argument uses the definition of Gaussian Surface area and a
bound on this quantity for convex sets due to [Bal93]. Together, these two lemmas imply that convex
sets have smooth boundary.

The following lemma will be useful in proving the smooth boundary of the interior of the set.

Lemma B.4. Let λ ∈ (0, 1/2). Let S be a convex set on Rk and let f(x) = 1{x ∈ S} be the
indicator function of S. Then, we have that Px∼Nk

[f(x) ̸= f(x/
√
1− λ)] ≤ k log k

√
λ.

Proof. For any vector w ∈ Rk with ∥w∥2 = 1, let fw : R+ → R be the function defined as
fw(r) = f(r · w). Also, note that fw is the indicator function of a one dimensional convex set.
Observe that Px∼Nk

[f(x) ̸= f(x/
√
1− λ)] ≤ sup∥w∥2=1 Pr∼χ2(k)[fw(

√
r) ̸= fw(

√
r/
√
1− λ)]

from the fact that the k dimensional Gaussian conditioned on pointing in direction w is distributed as√
rw where r ∼ χ2(k). Here, χ2(k) is the one dimensional Chi-squared distribution with mean k.

We have thus reduced the problem to one dimension. Consider a function g : R → R such that g(x) =
1{x ∈ [

√
a/(1− λ),

√
b/(1− λ)]} where a, b are from R+∪{+∞}. All one dimensional indicators

of convex sets are of this form. We will now prove that Pr∼χ2(k)[g(
√
r) ̸= g(

√
r/
√

1− λ)] ≤
kλ log(k/λ).

Observe that Pr∼χ2(k)[g(
√
r) ̸= g(

√
r/1− λ)] ≤ Pr∼χ2(k) [r ∈ [a, a/(1− λ)] ∪ [b, b/(1− λ)]]. It

suffices to bound Pr∼χ2(k)[r ∈ [a, a/(1− λ)]] for a ∈ R+ as the claim then follows from a union
bound. We bound this by splitting into two cases.

Case 1: a ≥ 2k log(k/λ). Since χ2(k) is the distribution of the sum of squares of k indepen-
dent N (0, 1) Gaussian random variables, we have that Pr∼χ2(k)[r ≥ a] ≤ k Px∼N (0,1)[|x|2 ≥
a/k] ≤ ke−a/(2k). Thus, when a ≥ 2k log(k/λ), we have that Pr∼χ2(k)

[
r ∈ [a, a/(1 − λ)]

]
≤

Pr∼χ2(k)

[
r ≥ a

]
≤ λ.

Case 2: a < 2k log(k/λ). Let ψ be the density function for χ2(k). It is a standard fact from
probability that ψ(x) = xk/2−1

2k/2Γ(k/2)
e−x/2. For k = 1, it is a fact that ψ(x) ≤ 1. For k ≥ 2, by taking
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a derivative, we can see that this density function is maximized at x = k − 2. We obtain that

ψ(x) =
(k − 2)k/2−1

2k/2Γ(k/2)
e−k/2+1 ≤ ((k − 2) · e)k/2−1

2k/2(k/2)k/2−1
e−k/2+1 ≤ 1

2

where the second inequality follows from the fact that Γ(t) ≥
(
t
e

)t−1
for all t ≥ 2 and Γ(1) = 1.

We have that

P
r∼χ2(k)

[
r ∈ [a, a/(1− λ)]

]
≤ ∥ψ∥∞ · a (1/(1− λ)− 1) ≤ 4kλ log(k/λ) ≤ 4k log k

√
λ .

We get the first inequality from the upper bound on the density. The second follows from the fact
that 1/(1− λ) ≤ 1 + 2λ when λ < 1/2. The third inequality follows from the assumption on a. The
final inequality follows from the fact that x log(1/x) ≤

√
x.

We are now ready to prove the set of points inside the convex set that are close to it’s boundary have
small mass under the Gaussian.

Lemma B.5. Let S be a convex set on Rk. Let ϱ ∈ (0, 1). Then, we have that Px∼Nk
[x ∈ S∩∂ϱS] ≤

Ck log kϱ where C is a large universal constant.

Proof. Define the function f : Rk → R as f(x) = 1{x ∈ S}. We now use a restatement of
Corollary 12 from [KOS08b].

Lemma B.6. Let g be a boolean function on Rk. For any λ ∈ (0, 1), it holds that

P
x,y∼Nk

[
g (x) ̸= g

(√
1− λx+

√
λy
)]

≤ C
√
λΓ(g)

for large universal constant C.

Let g be the function g(x) = f(x/
√
1− λ). Observe that g is also an indicator of a convex set.

From [Bal93] we have that Γ(g) ≤ 4k1/4. Thus, applying Lemma B.6 to g, we obtain that for any
λ ∈ (0, 1)

P
x,y∼Nk

[
f(x/

√
1− λ) ̸= f

(
x+

√
λ

1− λ
y

)]
≤ C

√
λk1/4

where C is a large constant. Combining the above expression with Lemma B.4, we obtain that for
any λ ∈ (0, 1/2),

P
x,y∼Nk

[
f(x) ̸= f

(
x+

√
λ

1− λ
y

)]
≤ C

√
λk1/4 + 2k log k

√
λ . (B.1)

Now, consider any point p in S∩∂ϱS. Since S is convex, there exists a hyperplane h(x) = 1{w ·x+
b ≥ 0} for w ∈ Rk with ∥w∥2 = 1 and b ∈ R such that h(y) = 1 for all y ∈ S and w · p+ b ≤ ϱ.
This hyperplane correponds to the tangential plane whose normal vector is the line joining p and the
point closest to it in ∂S. We have that for any γ > 0, Pz∼Nk

[w ·γz ≤ −ϱ] ≥ 1
2 −

ϱ
2γ as the Gaussian

density is upper bounded by 1 pointwise. Thus, for any γ > 0, Pz∼Nk
[f(p+γz) ̸= f(p)] ≥ 1

2 −
ϱ
2γ .

Combining this with Equation (B.1), we obtain that(
1

2
− ϱ

2
·
√

1− λ

λ

)
· P
x∼Nk

[x ∈ S ∩ ∂ϱS] ≤ C
√
λk1/4 + 2k log k

√
λ .

Setting λ = 4ϱ2 and rearranging terms, we obtain that Px∼Nk
[x ∈ S ∩ ∂ϱS] ≤ C ′k log kϱ where C ′

is a sufficiently large universal constant.

We now prove the smoothness result for points outside the set.

Lemma B.7. Let S be a convex set on Rk. Let ϱ ∈ (0, 1). Then, we have that Px∼Nk
[x ∈

Sc ∩ ∂ϱS] ≤ Ck1/4ϱ where C is a sufficiently large universal constant.
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Proof. For t > 0, define the set St as St = {x ∈ Rk | infy∈S∥x− y∥2 ≤ t}. We have that

P
x∼Nk

[x ∈ Sc ∩ ∂ϱ] = P
x∼Nk

[x ∈ Sϱ \ S]

=

∫ ϱ

t=0

∫
x∈∂St

N (x; 0, Ik)dx dt ≤
∫ ϱ

t=0

Ck1/4 dt ≤ Ck1/4ϱ

where C is a large universal constant. We obtained the penultimate inequality using the definition of
Gaussian surface area.

We now state our final result on the smooth boundary of convex sets.

Lemma B.8 (Smooth Boundary for Convex sets). Let S be a convex set. Let F : Rk → {±1} be the
function defined as F (x) = 1{x ∈ S}. Then, F has a Ck log k-smooth boundary with respect to
Nk for a sufficiently large universal constant C.

Proof. The proof is immediate from Lemma B.5 and Lemma B.7.

B.2 Sandwiching Polynomials

In this section, we present known results from pseudorandomness literature on the existence of
sandwiching polynomials for various function classes with respect to Unif{±1}d and Nd. Although
previously known, these results are mostly not stated in the manner in which we need them. In
particular, the coefficient bounds are not explicity stated in previous work. We state these results in
terms of existence of sandwiching polynomials with coefficient bounds for completeness.

We now introduce the important notion of (δ, ℓ)-independent distributions.

Definition B.9 ((δ, ℓ)-independent distribution). Let D,D′ be distributions on Rd. For δ > 0 and
ℓ ∈ N, we say that the distribution D′ is (δ, ℓ)-independent with respect to D if

∣∣Ex∼D[x
α] −

Ex∼D′ [xα]
∣∣ ≤ δ for all α ∈ Nd.

We drop the "with respect to D" when the distribution is clear from context. Let D,D′ be distributions
on X ⊆ Rd and f : X → {±1}. For ϵ > 0, we say that D′ ϵ-fools f with respect to D if∣∣Ex∼D[f(x)]− Ex∼D′ [f(x)]

∣∣ ≤ ϵ (again, we drop the "with respect to" when the target distribution
is clear from context). For a concept class C, we say that D′ ϵ-fools C with respect to D if D′ ϵ-fools
f with respect to D for all functions f ∈ C.

We will use the following result from [GKK23] which is a generalization of a result from [Baz09].
We will only need one direction of the result which we state below.

Lemma B.10. [Theorem 3.2 from [GKK23]] Let D be a distribution on X ⊆ Rd. Let δ, ϵ > 0 and
ℓ ∈ N. Let f : X → Rd be a function that satisfies the following property: given any distribution
D′ that is (δ, ℓ)-independent with respect to D, we have that

∣∣Ex∼D[f(x)] − Ex∼D′ [f(x)]
∣∣ ≤ ϵ.

Then, there exists degree ℓ polynomials pdown, pup such that pdown ≤ f ≤ pup and Ex∼D[pup(x)−
pdown(x)] + δ(|pup|+ |pdown|) ≤ ϵ.

B.2.1 Sandwiching Polynomials: Boolean

In this section, the target distrbution is Unif{±1}d. We will find the following lemma useful.

Lemma B.11. Let ϵ > 0 and ℓ ∈ N. Let f : {±1}d → {±1} be a function such that all
(0, ℓ)-independent distributions ϵ-fool f . Then, there exists polynomials pup, pdown of degree ℓ and
coefficients bounded by O(dℓ) such that pdown ≤ f ≤ pup and Ex∼Unif{±1}d [pup(x)−pdown(x)] ≤
O(ϵ).

Proof. We use the following theorem from [AGM03] that states that for any (δ, ℓ)-distribution , there
exists a (0, ℓ) distribution that is ϵ-close to it in TV distance.

Lemma B.12 (Theorem 2.1 from [AGM03]). For δ > 0 and ℓ ∈ N, let D be a (δ, ℓ)-independent
distribution on {±1}d. Then, there exists a distribution D′ that is (0, ℓ)-independent such that the TV
distance between D and D′ is at most δdℓ.
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From the above claim, we have that any (ϵ/dℓ, ℓ)-independent distribution 2ϵ-fools f . Thus, from
Lemma B.10, there exists polynomials pup, pdown of degree ℓ with coefficients bounded by O(dℓ)
such that Ex∼Unif{±1}d [pup(x)− pdown(x)] ≤ 2ϵ. This proves the claim.

Lemma B.13 (Sandwiching polynomials for degree 2 PTFs). Let C be the class of degree 2 PTFs. For
ϵ > 0, the O(ϵ)-approximate L1 sandwiching degree of C under Unif{±1}d is at most ℓ = Õ(1/ϵ9)
with coefficient bound O(dℓ).

Proof. From [DKN10], we have that (0, ℓ)-independent distributions ϵ-fools C when ℓ = Õ(1/ϵ9).
Now, we apply Lemma B.11 to finish the proof.

Lemma B.14 (Sandwiching polynomials for depth-t AC0). Let C be the class of depth-t AC0 circuits
of size s on {±1}d. For ϵ > 0, the O(ϵ)-approximate L1 sandwiching degree of C under Unif{±1}d
is at most ℓ = (log s)O(t) log(1/ϵ) with coefficient bound O(dℓ).

Proof. From [Bra10, Tal17, HS19], we have that (0, ℓ)-independent distributions ϵ-fools f when
ℓ = (log s)O(t) log(1/ϵ). Now, we apply Lemma B.11 to finish the proof.

B.2.2 Sandwiching Polynomials: Gaussian

Lemma B.15. Let ϵ > 0 and ℓ ∈ N. Let f : Rd → {±1} be a function such that all (0, ℓ)-
independent distributions ϵ-fool f . Then, there exists polynomials pup, pdown of degree ℓ and
coefficients bounded by O(dℓ) such that pdown ≤ f ≤ pup and Ex∼Nd

[pup(x)− pdown(x)] ≤ O(ϵ).

Proof. From Lemma B.10, we have that there exists pup, pdown of degree ℓ such that Ex∼Nd
[pup(x)−

pdown(x)] ≤ 2ϵ and pdown ≤ f ≤ pup. The claim now follows from the following lemma(proof is
included in the end of this section) that states that any sandwiching polynomial with respect to Nd

must have bounded coefficients.

Lemma B.16. Let f : Rd → {±1} be a function, and let pup and pdown be degree-ℓ polyno-
mials satisfying the following (i) for every x ∈ Rd we have pup(x) ≥ f(x) ≥ pdown(x). (ii)
Ex∈N (0,I)[pup(x) − pdown(x)] ≤ 1. Then, the polynomials pup and pdown both have coefficients
bounded by 2 · (10d)ℓ in absolute value.

Lemma B.17 (Sandwiching polynomials for degree 2 PTFs). Let C be the class of degree 2 PTFs.
For ϵ > 0, the O(ϵ)-approximate L1 sandwiching degree of C under Nd is at most ℓ = Õ(1/ϵ8) with
coefficient bound O(dℓ).

Proof. From [DKN10], we have that (0, ℓ)-independent distributions ϵ-fools C when ℓ = Õ(1/ϵ8).
Now, we apply Lemma B.15 to finish the proof.

In the remainder of this section, we prove Lemma B.16. We will use the notion of Hermite poly-
nomials. Recall that for i = 0, 1, 2, · Hermite polynomials {Hi} are the unique collection of
polynomials over R that are orthogonal with respect to Gaussian distribution. In other words
Ex∈N (0,1)[Hi(x)Hj(x)] = 0 whenever i ̸= j. In this work, we normalize the Hermite polynomials
to further satisfy Ex∈N (0,1)[Hi(x)Hi(x)] = 1. It is a standard fact from theory of orthogonal polyno-
mials that H0(x) = 1, H1(x) = x and for i ≥ 2 Hermite polynomials satisfy the following recursive
identity:

Hi+1(x) ·
√
(i+ 1)! = xHi(x) ·

√
i!− i ·Hi−1(x) ·

√
(i− 1)!

Proposition B.18. Each coefficient of Hi is bounded by 2i in absolute value.

Proof. This follows immediately from the recursion relation.

Proposition B.19. All coefficients of multi-dimensional polynomial Hi1(x1)Hi2(x2) · · ·Hid(xd)
are bounded by 2i1+i2+···+id .
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Proof. Each monomial of Hi1(x1)Hi2(x2) · · ·Hid(xd) can be expressed as
∏

j mj(xj) where each
mj(xj) is a monomial of Hij (xj). But we know that the coefficient of mj is bounded by 2ij in
absolute value. Thus, each coefficient of Hi1(x1)Hi2(x2) · · ·Hid(xd) is at most 2i1+i2+···+id .

Proposition B.20. Let p be a polynomial over Rd of degree ℓ. Suppose that p satisfies

E
x∈N (0,I)

[(p(x))2] ≤ 1,

then every monomial of p has a coefficient of at most (2d)ℓ in absolute value.

Proof. For an element x ∈ Rd we let (x1, · · · ,xd) be its coordinates. We expand p(x) as a sum of
multidimensional Hermite polynomials8:

p(x) =
∑

i1,i2,···id≥0
i1+i2+···id≤ℓ

αi1,i2,··· ,idHi1(x1)Hi2(x2) · · ·Hid(xd) (B.2)

Due to orthogonality of Hermite polynomials, we have:∑
i1,i2,···id≥0
i1+i2+···id≤ℓ

α2
i1,i2,··· ,id = E

x∈N (0,I)
[(p(x))2] ≤ 1

In particular, this implies that each coefficient αi1,i2,··· ,id is bounded by 1 in absolute value. Combin-
ing this with Equation B.2, Proposition B.19 and the fact that there are at most dℓ ways to choose
i1, i2, · · · id ≥ 0 satisfying

∑
j ij ≤ ℓ, we see that each coefficient of p bounded by (2d)ℓ in absolute

value.

Finally, we need the following standard fact.
Fact B.21 (Gaussian Hypercontractivity [Bog98],[Nel73]). If p : Rd → R is a polynomial of degree
at most ℓ, for every t ≥ 2,

E
x∼N (0,Id)

[|p(x)|t] 1t ≤ (t− 1)ℓ/2
√

E
x∼Nd

[p2(x)] .

The following is a standard corollary:
Proposition B.22. If p : Rd → R is a polynomial of degree ℓ, then√

E
x∈N (0,I)

[(p(x))2] ≤ eℓ E
x∈N (0,I)

[|p(x)|]

Proof. The proof is standard, and is included here for completeness (a completely analogous proof
for the Boolean case can be found in Theorem 9.22 from [O’D14]). Let λ > 0 be a parameter and let
θ = 1

2
λ

1+λ . Using Generalized Holder’s inequality and Gaussian Hypercontractivity, we have

√
E

x∈N (0,I)
[(p(x))2] ≤

(
E

x∈N (0,I)
[|p(x)|]

)θ (
E

x∈N (0,I)
[(p(x))2+λ]

) 1−θ
2+λ

≤

≤
(

E
x∈N (0,I)

[|p(x)|]
)θ
(
(1 + λ)ℓ/2

√
E

x∈N (0,I)
[(p(x))2]

)1−θ

Overall, (√
E

x∈N (0,I)
[(p(x))2]

)θ

≤ (1 + λ)(1−θ)ℓ/2

(
E

x∈N (0,I)
[|p(x)|]

)θ

8Note that the expansion below is always possible for a degree ℓ polynomials because polynomials of the
form Hi1(x1)Hi2(x2) · · ·Hid(xd) are polynomials of degree at most ℓ that are linearly independent, because
they are orthonormal with respect to the standard d-dimensional Gaussian.
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Taking power 1/θ of both sides and recalling that θ = 1
2

λ
1+λ we get:√

E
x∈N (0,I)

[(p(x))2] ≤ (1 + λ)
(1−θ)

θ ℓ/2 E
x∈N (0,I)

[|p(x)|] = (1 + λ)(
1
λ− 1

2 )ℓ E
x∈N (0,I)

[|p(x)|].

Finally, taking λ→ 0 proves the proposition.

Finally, we are ready to prove Theorem B.16.

Proof of Theorem B.16. Without loss of generality9, we bound the coefficients of pup(x). We have

E
x∈N (0,I)

[|pup(x)|] ≤ E
x∈N (0,I)

[|f(x)|] + E
x∈N (0,I)

[|pup(x)− f(x)|] ≤

≤ E
x∈N (0,I)

[|f(x)|] + E
x∈N (0,I)

[pup(x)− pdown(x)] ≤ 2.

Note that in the last inequality the value of Ex∈N (0,I)[|f(x)|] is bounded by 1 because f is {±1}-
valued, and Ex∈N (0,I)[pup(x)− pdown(x)] was bounded by 1 by the premise of the theorem. Com-
bining the equation above with Proposition B.22, we get√

E
x∈N (0,I)

[(pup(x))2] ≤ 2 · eℓ.

Finally, together with Proposition B.20 implies that each coefficient of pup

2·eℓ is bounded by (2d)ℓ in
absolute value. This allows us to conclude that each coefficient of pup is bounded by 2 · (10d)ℓ in
absolute value.

C Chow Matching Tester

We now focus on functions that have low-degree sandwiching polynomials approximators under the
training distribution.

Definition C.1 (L1-sandwiching polynomials). Consider X ⊆ Rd and a distribution D over X . For
ϵ > 0 and f : X → {±1}, we say that the polynomials pup, pdown : X → R are ϵ-approximate
L1-sandwiching polynomials for f under D if the following are true.

1. pdown(x) ≤ f(x) ≤ pup(x), for all x ∈ X .

2. Ex∼D[pup(x)− pdown(x)] ≤ ϵ

We say that the ϵ-approximate L1-sandwiching degree of C under D is at most ℓ and with (coefficient)
boundB if for any f ∈ C there are ϵ-approximate L1-sandwiching polynomials pup, pdown for f such
that deg(pup),deg(pdown) ≤ ℓ and each of the coefficients of pup, pdown are absolutely bounded by
B.

It turns out that given a function class C with low degree sandwiching approximators, we can test
localized discrepancy of a hypothesis f̂ with respect to a very global notion of neighbourhood: the
entire concept class C! We state the definition here.

Definition C.2 (Global Neighborhood). The global (H, C) neighborhood is defined as N(f̂) = C for
all f̂ ∈ H. We denote this by NC .

C.1 Discrepancy Testing Result

We now present our discrepancy tester for concept classes with bounded ϵ-approximate L1 sandwich-
ing degree. The primary advantage of this tester is it’s global nature: given a hypothesis f̂ , it certifies
low localized discrepancy with respect to every function in the concept class.

9This is indeed without loss of generality, because the function −f is bounded from above by −pdown and
from below by −pup.
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Theorem C.3 (Chow Matching Tester). Let D be a distribution over a set X ⊆ Rd. Let C ⊆ {X →
{±1}} be a concept class. Let ϵ > 0,mconc ∈ N. Let H = {±1}X . Assume that the following are
true.

1. (L1-sandwiching) The ϵ
3 -approximate L1-sandwiching degree of C w.r.t. D is ℓ with bound

B.

2. (Chow-concentration) For any function f̂ ∈ H, if X ∼ D⊗m with m ≥ mconc, then with
probability at least 9/10, we have that for all α ∈ Nd with ∥α∥1 ≤ ℓ,

∣∣ED[f̂(x) · xα] −
EX [f̂(x) · xα]

∣∣ ≤ ϵ
Bd2ℓ .

Then, there exists a (NC , ϵ)-tester T for localized discrepancy from D with respect to {D} that uses
mconc +O( 1

ϵ2 ) samples and runs in time poly
(
mconc, d

ℓ, 1ϵ
)
.

Proof. For an input distribution D′ and function f̂ ∈ H, the tester runs Algorithm 1 with mconc

samples X from D′ and function f̂ as input. We now prove it’s correctness.

Soundness We first consider the case where T accepts D′. Let f∗ = argmaxf∈C
(
Px∼D′

[
f̂(x) ̸=

f(x)
]
− Px∼D

[
f̂(x) ̸= f(x)

])
. Since Px∼D′ [f̂(x) ̸= f∗(x)] = (1 − ED′ [f∗(x) · f̂(x)])/2, it

is sufficient to prove a lower bound on the second term. From a Chernoff bound, we have that
ED′ [f∗(x) · f̂(x)] ≥ EX [f∗(x) · f̂(x)] − ϵ with probability at least 3/4 when |X| ≥ C/ϵ2 for
some universal constant C ≥ 1. We now bound EX [f∗(x) · f̂(x)]. Let pup, pdown be ϵ-approximate
L1-sandwiching polynomials for f∗ under D. We have that

E
X
[f∗(x) · f̂(x)] = E

X
[(f∗(x)− pup(x)) · f̂(x)] + E

X
[pup(x) · f̂(x)]

≥ E
X
[pdown(x)− pup(x)] + E

X
[pup(x) · f̂(x)] ≥ E

D
[pdown(x)− pup(x)] + E

D
[pup(x) · f̂(x)]− 3ϵ

≥ E
D
[f∗(x) · f̂(x)] + E

D
[(pup(x)− f∗(x)) · f̂(x)]− 4ϵ ≥ E

D
[f∗(x) · f̂(x)]− 5ϵ .

The first inequality follows from the fact that pdown(x) ≤ f∗(x) ≤ pup(x). To obtain the second
inequality, we use the fact that the tester accepts if and only if |EX [xα] − ED[x

α]| < ∆ and
|EX [f̂(x) · xα]− ED[f̂(x) · xα]| < ∆ for ∆ = ϵ

Bd2ℓ and all α ∈ N such that ∥α∥1 ≤ ℓ. Since the
coefficients of pup, pdown are bounded by B and each have at most d2ℓ monomials, we obtain the
second inequality. The last two inequalities use the fact that ED[pup(x)− pdown(x)] ≤ ϵ.

Thus, we obtain that ED′ [f∗(x) · f̂(x)] ≥ ED[f
∗(x) · f̂(x)]− 6ϵ with probability at least 3/4. This

implies that Px∼D′ [f∗(x) ̸= f̂(x)] ≤ Px∼D[f
∗(x) ̸= f̂(x)] + 3ϵ. From the definition of f∗, we

therefore have that discf̂ ,NC
(D,D′) ≤ 3ϵ with probability at least 3/4 when the tester accepts.

Completeness In this case, we have that D′ = D. Clearly, from our assumption on Chow
concentration, we have that with probability at least 4/5, |EX [xα]− ED[x

α]| < ∆ and |EX [f̂(x) ·
xα]− ED[f̂(x) · xα]| < ∆ for ∆ = ϵ

Bd2ℓ and all α ∈ N such that ∥α∥1 ≤ ℓ. Thus, with probability
at least 4/5, the tester will accept.

Algorithm 1: Chow Matching Tester

Input: Set X from D′, function f̂ : X → {±1}, parameters ϵ > 0, ℓ ∈ N, B > 0
Set ∆ = ϵ

Bd2ℓ

For each α ∈ Nd with ∥α∥1 ≤ ℓ, compute the quantity M̂α = EX [f̂(x) · xα].
Accept if |M̂α − ED[f̂(x) · xα]| < ∆ and |EX [xα]− ED[x

α]| < ∆ for all α with ∥α∥1 ≤ ℓ.
Reject otherwise.
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C.2 Applications to TDS Learning

In this section we prove that any concept class with L1 sandwiching polynomials can be TDS learned.
This improves on the results of Klivans et al. 2023 which proved that L2 sandwiching implies TDS
learning. In particular, our result implies a new TDS learning algorithm for the class of all constant
depth circuits(AC0) which was unknown in prior work. We also achieve tight dependence on the
parameter λ as compared to prior work which was off by constant factors.

Algorithm 2: TDS learning through Chow matching

Input: Sets Strain from Dtrain
XY , Xtest from Dtest

X , Training Algorithm
A, ϵ ∈ (0, 1), ℓ ∈ N, B > 0

Let f̂ be the output of A when run on input Strain

Run the Chow matching tester(Algorithm 1) with inputs Xtest, f̂ , ϵ, ℓ and B with source
distribution Dtrain

X .
Accept and output f̂ if the Chow matching tester accepts.
Reject otherwise.

We now state our general theorem about the connection between L1 sandwiching and TDS learning.
In contrast to prior work, we completely decouple the training and testing phase of the TDS learner.

Theorem C.4 (L1-sandwiching implies TDS learning). Let D be a distribution over a set X ⊆ Rd.
Let C ⊆ {X → {±1}} be a concept class. Let ϵ, δ ∈ (0, 1). Let H = {±1}X . Assume that the
following are true.

1. (L1-sandwiching) The ϵ-approximate L1 sandwiching degree of C under D is at most ℓ with
bound B.

2. (Chow-concentration) For any function f̂ ∈ H, if X ∼ D⊗m with m ≥ mconc, then with
probability at least 9/10, we have that for all α ∈ Nd with ∥α∥1 ≤ ℓ,

∣∣ED[f̂(x) · xα] −
EX [f̂(x) · xα]

∣∣ ≤ ϵ
Bd2ℓ .

3. (Agnostic Learning Algorithm) There exists an algorithm A that takes mtrain samples
from Dtrain

XY , runs in time Ttrain, and outputs w.p. at least 1 − δ
2 a hypothesis f̂ such that

P(x,y)∼Dtrain
XY

[y ̸= f̂(x)] ≤ errA.

Then, there exists an algorithm that takes mtrain labelled samples from the training
distribution, O

(
(mconc + 1/ϵ2) log(1/δ)

)
unlabelled test samples, runs in time Ttrain +

poly
(
mconc, d

ℓ, 1ϵ , log(1/δ)
)

and TDS learns C with respect to D up to error λ+ errA + ϵ and fails
with probability at most δ.

Proof. Let Dtrain
XY be the training distribution with marginal Dtrain

X = D and let Dtest
XY be the test

distribution with marginal equal . Let Strain be a set of mtrain samples from Dtrain
XY and let Xtest be

a set of mconc + 1/ϵ2 samples from Dtest
X . Run Algorithm 2 with inputs Strain, Xtest,A, ϵ, ℓ and B.

We now prove it’s correctness.

Soundness We first consider the case when the input distribution is accepted. This happens when
Dtest

X is accepted by the Chow Matching tester from Algorithm 1. From Theorem C.3, we have
that with probability at least 3/4 , discf̂ ,NC

(Dtrain
X ,Dtest

X ) ≤ ϵ. This probability can be boosted
to 1 − δ/2 by repeating the Chow matching tester O

(
log(1/δ)

)
times with independent samples

and accepting if and only if a majority of the tests accept. Let f∗ = argminf∈C{err(f ;Dtrain
XY ) +

err(f ;Dtest
XY )}. That is, λ = err(f∗;Dtrain

XY ) + err(f∗;Dtest
XY ). From Definition C.2 and the fact that

discf̂ ,NC
(Dtrain

X ,Dtest
X ) ≤ ϵ, we have that

P
x∼Dtest

X

[f∗(x) ̸= f̂(x)]− P
x∼Dtrain

X

[f∗(x) ̸= f̂(x)] ≤ ϵ (C.1)
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We also have that err(f̂ ;Dtrain
XY ) ≤ errA with probability at least 1− δ/2 from the error guarantee of

A. We are now ready to bound err(f̂ ;Dtest
XY ). We have that

err(f̂ ;Dtest
XY ) ≤ err(f∗;Dtest

XY ) + P
x∼Dtest

X

[f∗(x) ̸= f̂(x)]

≤ err(f∗;Dtest
XY ) + P

x∼Dtrain
X

[f∗(x) ̸= f̂(x)] + ϵ

≤ err(f∗;Dtest
XY ) + P

(x,y)∼Dtrain
XY

[f∗(x) ̸= y] + P
(x,y)∼Dtrain

XY

[f̂(x) ̸= y]

≤ err(f∗;Dtrain
XY ) + err(f∗;Dtest

XY ) + errA ≤ λ+ errA + ϵ .

The first and third inequalities follow from the triangle inequality. The second inequality follows
from Equation (C.1). The penultimate inequality follows from the error guarantee of A. The last
inequality follows from the definition of λ.

Completeness This follows immediately from the completeness guarantee of Theorem C.3. As
seen before, the success probability can be boosted to 1 − δ/2. Thus, the tester accepts when
Dtest

X = Dtrain
X with probability at least 1− δ/2.

Remark C.5. The above theorem completely decouples training and testing. This is in contrast to the
Klivans et al. 2023 which don’t make this distinction. In particular, this forces their output hypothesis
to be polynomial threshold function. In our theorem, the hypothesis can be any function output by
the training algorithm A that achieves low error. This is also in contrast with the other TDS learning
algorithms in this paper that require additional structure from the hypothesis output by the training
algorithm.

In fact, we can drop Assumption 3 from Theorem C.4 entirely, if we restrict our training algorithm.
In particular, we use the following theorem from [KKMS08].
Theorem C.6 (Theorem 5 from [KKMS08]). Let D be a distribution on X × {±1} for X ⊆ Rd

with marginal DX . Let ϵ, δ ∈ (0, 1). Let C be a class of functions such that for all f ∈ C, there
exists polynomials p of degree ℓ such that Ex∼Dx [|f(x)− p(x)|] ≤ ϵ. Then there exists an agnostic
learning algorithm A that has run time and sample complexity at most poly(dℓ, 1/ϵ, log(1/δ)) that
outputs a hypothesis f̂ such that with probability at least 1− δ, we have that

P
(x,y)∼D

[y ̸= f̂(x)] ≤ inf
f∈C

P
(x,y)∼D

[f(x) ̸= y]

Armed with this, we give our end to end result that L1 sandwiching implies TDS learning.
Theorem C.7 (L1-sandwiching implies TDS learning). Let D be a distribution over a set X ⊆ Rd.
Let C ⊆ {X → {±1}} be a concept class. Let ϵ, δ ∈ (0, 1). Let H = {±1}X . Assume that the
following are true.

1. (L1-sandwiching) The ϵ-approximate L1 sandwiching degree of C under D is at most ℓ with
bound B.

2. (Chow-concentration) For any function f̂ ∈ H, if X ∼ D⊗m with m ≥ mconc, then with
probability at least 9/10, we have that for all α ∈ Nd with ∥α∥1 ≤ ℓ,

∣∣ED[f̂(x) · xα] −
EX [f̂(x) · xα]

∣∣ ≤ ϵ
Bd2ℓ .

Then, there exists an algorithm that takes poly(dℓ, 1/ϵ) labelled samples from the training distribution,
O
(
(mconc + 1/ϵ2) · log(1/δ)

)
unlabelled test samples, runs in time poly

(
mconc, d

ℓ, 1ϵ , log(1/δ)
)

and TDS learns C with respect to D up to error λ+ opttrain + ϵ and fails with probability at most δ.

Proof. Observe that L1 sandwiching polynomials are also L1 approximating polynomials. Thus, C
satisfies the requirements of Theorem C.6. Thus, we can run Algorithm 2 with A instantiated to be
the algorithm from Theorem C.6. The proof of correctness follows from Algorithm 2.

We now argue that when Dtrain
X ∈ {Unif{±1}d,Nd}, then we have that Assumption 2 of Theo-

rem C.4 is always true with mconc ≤ poly(dℓB/ϵ).
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Lemma C.8. Let D ∈ {Unif{±1}d,Nd}. Let f be a function taking values in {±1}. Let ℓ ∈ N. Let
X ∼ D⊗mconc for mconc ≥ poly(dℓ/ϵ). Then, with probability atleast 9/10 over S, we have that
for all α ∈ Nd with ∥α∥1 ≤ ℓ, ∣∣E

D
[f(x) · xα]− E

X
[f(x) · xα]

∣∣ ≤ ϵ.

Proof. For α ∈ Nd, let Ẑ = EX [f(x) · xα] be the empirical mean over the samples. Let Z =

ED[f(x)·xα] be the true mean. Clearly, EX [Ẑ] = Z. Thus, we have that PX [|Ẑ−Z| ≥ ϵ] ≤ VarX [Ẑ]
ϵ2 .

We have that VarX [Ẑ] ≤ 1
mconc

Var[f(x) · xα]. We have that Var[f(x) · xα] ≤ ED[x
2α] from the

fact that f takes values in {±1}. When D = Unif{±1}d, x2α = 1. When D = Nd, we have that
ED[x

2α] ≤ poly(dℓ)(see Proposition 2.5.2 [Ver18]). Thus, Thus, choosing mconc = poly(dℓ/ϵ), we
have that PX [|Ẑ − Z| ≥ ϵ] ≤ ϵ

dΩ(ℓ) . Taking a union bound over all α ∈ Nd completes the proof.

Applying Theorem C.7, Lemma C.8 and the bounds on the sandwiching degrees(Lemmas B.13,
B.14 and B.17) from Appendix B.2, we immediately get the following results on TDS learning as
corollaries.

Corollary C.9 (TDS learning for degree 2 PTFs with respect to Unif{±1}d or Nd). Let C be the
class of degree-2 PTFs. Let ϵ > 0 and ℓ = Õ(1/ϵ9). Then, there exists an algorithm that runs in time
dO(ℓ) and TDS learning C with respect to Unif{±1}d or Nd with error at most opttrain + λ+ ϵ.

Corollary C.10 (TDS learning for depth-t AC0). Let C be the class of depth-t AC0 circuits of size s
on {±1}d. Let ϵ > 0 and ℓ = (log s)O(t) log(1/ϵ). Then, there exists an algorithm that runs in time
dO(ℓ) and TDS learning C with respect to Unif{±1}d with error at most opttrain + λ+ ϵ.

D Cylindrical Grids Tester

We focus on functions whose values only depend on the projection of the input on some low-
dimensional subspace, i.e., we focus on the class of subspace juntas, which is formally defined as
follows.

Definition D.1 (Subspace Junta). We say that a function f : Rd → {±1} is a k-subspace junta if
there exists W ∈ Rk×d with ∥W∥2 = 1 and WW⊤ = Ik as well as a function F : Rk → {±1}
such that

f(x) = fW (x) = F (Wx) for any x ∈ Rd

Since such functions only depend on a low-dimensional subspace, one might hope to exploit this
property to obtain more efficient discrepancy testers. However, the relevant subspaces of different
subspace juntas can be completely different and the low dimensional structure of a class of subspace
juntas does not seem enough to provide significant improvements for global discrepancy testing.
Nevertheless, it turns out that testing the localized discrepancy with respect to a notion of subspace
neighborhood can be benefited by the low-dimensional structure. In particular, we define the notion
of subspace neighborhood as follows.

Definition D.2 (Subspace Neighborhood). Let H be the class of k-subspace juntas (see Definition D.1)
and C be some concept class. We define the (γs, γe)-subspace neighborhood Ns : H → Pow(C) as
follows for any f̂ = f̂V ∈ H.

Ns(f̂V ) = {fW ∈ C | ∥W − V ∥2 ≤ γs and P
x∼N

[f(x) ̸= f̂(x)] ≤ γe}

To design efficient testers for localized discrepancy in terms of the subspace neighborhood, we also
use the notion of boundary of concepts and we require the boundaries to be smooth, meaning that the
measure of the region close to the boundaries scales proportionally to its thickness. Formally, we
provide the following definitions.

Definition D.3 (Boundary of Concept). Let F : Rk → {±1} some concept. For ϱ ≥ 0, we denote
∂ϱF the ϱ-boundary of F , i.e., the region {x ∈ Rk : ∃z ∈ Rk with ∥z∥2 ≤ ϱ and F (x+z) ̸= F (x)}.
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Definition D.4 (Smooth Boundary). Let F : Rk → {±1}. For σ ≥ 1, we say that F has σ-smooth
boundary with respect to Nk if for any ϱ ≥ 0

P
x∼Nk

[x ∈ ∂ϱF ] := P
x∼Nk

[∃z : ∥z∥2 ≤ ϱ, F (x+ z) ̸= F (x)] ≤ σϱ

As we will show shortly, the choice of the subspace neighborhood not only enables obtaining faster
localized discrepancy testers, but also testers that are guaranteed to accept much wider classes of
distributions. This is because the properties of the test marginal that need to be tested in order to
ensure low localized discrepancy are much simpler, compared to the properties required for global
discrepancy. Such properties are not only easy to test, but are also satisfied by more distributions. The
structural properties we will require for the completeness criteria of our algorithms are concentration
in every direction and anti-concentration of low-dimensional marginals. More formally, we consider
structured distributions to be as follows.

Definition D.5 (Structured Distributions). For µc : N → R+, µac : R+ → R+, k, d ∈ N with k ≤ d,
we say that the distribution D over Rd is (µc, µac)-structured on k-dimensions (w.r.t. Nk), if the
following are true.

1. (Concentration) For any v ∈ Sd−1 and p ∈ N, we have Ex∼D′ [(v · x)2p] ≤ µc(p).

2. (Anti-concentration) For any subspace U of dimension k, if Q is the density of the marginal
of D on U we have Q(x)

Nk(x)
≤ µac(R) for any x ∈ Rk with ∥x∥2 ≤ R.

Moreover, if k = d, we simply say that D is (µc, µac)-structured.

Remark D.6. We note that the two conditions of Definition D.5 are not always independent. For
example, if µac(R) = O(1), then the distribution Q of condition 2 is subgaussian, which implies
a bound on µc(p) for all p ∈ N (i.e., implies some version of condition 1). However, the anti-
concentration condition does not always imply the concentration condition (e.g., if µac(R) =

Θ(eR
2/2)) and both conditions are important.

For example, isotropic log-concave distributions are structured on k-dimensions with µc(p) ≤
(O(p))2p and µac(R) = (O(k))k exp(R

2

2 ).

D.1 Discrepancy Testing Result

We now provide our main localized discrepancy testing result for subspace juntas with smooth
boundaries, where we use some free parameters R, p that can be chosen according to how structured
the target accepted class of distribution is.

Theorem D.7 (Discrepancy Testing through Cylindrical Grids). Let µc : N → R≥1, µac : R+ →
R≥1, p ∈ N, R, σ, σ̂ ≥ 1 and γs, γe ∈ (0, 1). Let also H (resp. C) be a class whose elements are
k-subspace juntas over Rd with σ̂-smooth (resp. σ-smooth) boundaries. Consider D to be the class
of distributions over Rd that are (µc, µac)-structured on k-dimensions and Ns : H → Pow(C) the
(γs, γe)-subspace neighborhood. For any ϵ ∈ (0, 1), there is a (Ns, ψ + ϵ)-tester (Algorithm 3)
for localized discrepancy from Nd with respect to D with sample complexity m = 10µc(2)

(µc(1))2
d4 +

12R2p

kµc(p)
+ 14k(

√
2π exp(R2))k

µac(R
√
k)ηk

ln( 3Rη ) + O( 1
ϵ2 ) and time complexity O(md3 +mdk(2⌈R

η ⌉)
k), where

η = γsR
p

2σ̂
√
k

√
µc(1)/µc(p) and the error parameter ψ is

ψ =
14kµc(p)

R2p
+ 12

(2kR2pµc(1) lnµac(R
√
k)

µc(p)

) 1
2

µac(R
√
k)σγs + 2µac(R

√
k)γe

For different target distribution classes we obtain different results, that reveal a trade-off between
universality and the size of the subspace neighborhood tested. To accept wider classes of distribu-
tions, we restrict to testing localized discrepancy with respect to narrower neighborhoods, which is
parameterized by γs and γe in the following corollary. Eventually, for applications in TDS learning,
this will result into requiring the training algorithm to provide stronger error guarantees by using
more training examples and time.
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Algorithm 3: Cylindrical Grids Tester

Input: Set X of points in Rd, matrix V ∈ Rk×d, parameters p ∈ N, R ≥ 1, η > 0
Compute the matrix M = Ex∼X [xx⊤] and reject if the largest eigenvalue is larger than 2µc(1).
Compute the quantity Px∼X [∥V x∥∞ > R] and reject if the value is larger than 2kµc(p)

R2p .
Let I = {−⌈R

η ⌉, . . . ,−1, 0, . . . , ⌈R
η ⌉ − 1} and consider the grid

Gη,R = {[i1η, (i1 + 1)η]× · · · × [ikη, (ik + 1)η] : i1, . . . , ik ∈ I}
for each grid cell G ∈ Gη,R do

Compute the quantity Px∼X [V x ∈ G] and reject if the value is larger than
2µac(R

√
k)Px∼N [V x ∈ G].

end
Otherwise, accept.

Corollary D.8. Let ϵ ∈ (0, 1), let H, C, σ, σ̂ be as in Theorem D.7 and let Ns : H → Pow(C) be the
(γs, γe)-subspace neighborhood (on k dimensions). For a class of distributions D over Rd, there is a
(Ns, ϵ)-tester for localized discrepancy from Nd with respect to D in each of the following cases for
appropriately large universal constants C1, C2 ≥ 1.

1. D = {Nd}, σγs ≤ γe ≤ ( ϵ
C1k

)C2 . The tester has time and sample complexity
poly(d)(kϵ )

O(k)(σσ̂)k.

2. D is the class of C-subgaussian and isotropic log-concave measures over Rd for some
C = O(1) and σγs ≤ γe ≤ ( ϵ

C1
)C2k. The tester has time and sample complexity

poly(d)(kϵ )
O(k2)(σσ̂)k.

3. D is the class of isotropic log-concave measures over Rd and also σγs ≤
γe ≤ ( 1

C1
)−C2k

2 log2(1/ϵ). The tester has time and sample complexity

poly(d)kO(k3 log2(1/ϵ))(σσ̂)k.

4. D is the class of distributions over Rd that are (µc, µac)-structured on k-dimensions, with
µc(2) ≤ C and µac(R) ≤ Ck2

eR
2/2 for some C = O(1) and σγs ≤ γe ≤ ( 1

C1
)−C2k

2/ϵ.

The tester has time and sample complexity poly(d)kO(k3/ϵ2)(σσ̂)k.

Proof. To apply Theorem D.7 in each case, it suffices to show bounds for µc(p) and µac(R
√
k) for

each of the choices for D. We then pick p = log(1/ϵ) in Cases 1,2 and 3 and p = 1 in Case 4 and R
sufficiently small to achieve error guarantee ϵ. For Case 1, µc(p) ≤ (Cp)p and µac(R

√
k) ≤ 1. For

case 2, µc(p) ≤ (2Cp)p and µac(R
√
k) ≤ (Ck)kekR

2/2. Finally, for Case 3, µc(p) ≤ (Cp)2p and
µac(R

√
k) ≤ (Ck)kekR

2/2. These bounds follow from properties of log-concave and subgaussian
distributions (see, e.g., [LV07, Ver18]).

In order to prove Theorem D.7, we first provide a tester which can certify that the mass assigned
by the tested distribution to the region near the boundary of any function with smooth boundary is
bounded. Structured distributions (Definition D.5) indeed have this property and the proposed tester
can certify it universally over the class of such distributions.

This can be done by considering a cover the low-dimensional space by a grid of bounded size and
checking whether the probability of falling within each of the grid cells is appropriately bounded. To
account for grid cells that are far from the origin, it suffices to check that the tested distribution is
sufficiently concentrated. If these tests pass, then we have a certificate that the mass of the tested
distribution close to the boundary of any smooth function is appropriately bounded, because such
regions can be covered by the union of a relatively small number of grid cells (see Figure 2).

Lemma D.9 (Grids Tester). Let µc : N → R+, µac : R+ → R+, p ∈ N, R, σ ≥ 1 and ϱ ∈ (0, 1).
There is a tester T which, upon receiving a set X of vectors in Rk, and in time |X| · (O(R

√
k

ϱ ))k,
either accepts or rejects and satisfies the following.

26



(a) (Soundness.) If T accepts, then for any F : Rk → {±1} with σ-smooth boundary we have

P
x∼X

[x ∈ ∂ϱF ] ≤
2kµc(p)

R2p
+ 4σϱµac(R

√
k)

(b) (Completeness.) If X consists of at least 12R2p

kµc(p)
+ 14k(3

√
2πk exp(R2))k

µac(R
√
k)ϱk

ln( 9Rk
ϱ ) i.i.d. exam-

ples from some (µc, µac)-structured distribution over Rk, then T accepts with probability
at least 99%.

Proof. Let η = ϱ

3
√
k

be some parameter, I = {−⌈R
η ⌉, . . . ,−1, 0, . . . , ⌈R

η ⌉ − 1} be a set of indices
and Gη,R = {[i1η, (i1 + 1)η]× · · · × [ikη, (ik + 1)η] : i1, . . . , ik ∈ I} the corresponding finite grid
with cell length η (each cell corresponds to a hypercube in Rk, the cartesian product of k intervals
each of length η). The tester does the following.

1. Computes the quantity Px∼X [∥x∥∞ > R] and rejects if the computed value is larger than
2kµc(p)
R2p .

2. For each cell G in the grid Gη,R, computes the quantity Px∼X [x ∈ G] and rejects if the
computed value is Px∼X [x ∈ G] > 2µac(R

√
k)Px∼Nk

[x ∈ G].

3. Otherwise, the tester accepts.

Soundness. Suppose that the tester T has accepted. This means that the quantities Px∼X [∥x∥∞ >
R] and Px∼X [x ∈ G] are appropriately bounded (for any G ∈ Gη,R). Let F be any function with
σ-smooth boundary with respect to Nk.

Consider G̃ ⊆ Gη,R to be the set of grid cells that have non-empty intersection with the set ∂ϱF
(see Definition D.3), i.e., G̃ := {G ∈ Gη,R : G ∩ ∂ϱF ̸= ∅}. Observe that if x ∈ ∂ϱF then
either ∥x∥∞ > R, or x ∈ G for some G ∈ G̃, because the grid covers the set {x : ∥x∥∞ ≤ R}.
Moreover, if x ∈ G̃, then there is a point y ∈ G̃ ∩ ∂ϱF that falls in the same cell as x and, therefore,
∥x− y∥2 ≤ η

√
k, because each cell has length η. This implies that x ∈ ∂ϱ+η

√
kF . We overall have

the following (see also Figure 2).

∂ϱF \ {x : ∥x∥∞ > R} ⊆
⋃
G∈G̃

G ⊆ ∂ϱ̃F , where ϱ̃ := ϱ+ η
√
k (D.1)

Figure 2: Discretization of smooth boundary
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Combining the first inclusion in expression (D.1) with the fact that the tester has accepted, the quantity
Px∼X [x ∈ ∂ϱF ] is bounded as follows.

P
x∼X

[x ∈ ∂ϱF ] ≤ P
x∼X

[∥x∥∞ > R] +
∑
G∈G̃

P
x∼X

[x ∈ G]

≤ 2kµc(p)

R2p
+ 2µac(R

√
k)
∑
G∈G̃

P
x∼Nk

[x ∈ G]

For any G,G′ ∈ G̃ with G ̸= G′, the events that x ∈ G and that x ∈ G′ are mutually exclusive.
Therefore

∑
G∈G̃ Px∼Nk

[x ∈ G] = Px∼Nk
[x ∈ ∪G∈G̃G] ≤ Px∼Nk

[x ∈ ∂ϱ̃F ], where the final
inequality follows from the second inclusion in expression (D.1). Since F has σ-smooth boundary,
we have Px∼Nk

[x ∈ ∂ϱ̃F ] ≤ σϱ̃. Overall, we have

P
x∼X

[x ∈ ∂ϱF ] ≤
2kµc(p)

R2p
+ 2σ(ϱ+ η

√
k)µac(R

√
k)

≤ 2kµc(p)

R2p
+ 4σϱµac(R

√
k) , as desired.

Completeness. Suppose, now, that the examples X are drawn independently from a (µc, µac)-
structured distribution Q. We first show that, with probability at least 1− 1

200 , we have Px∼X [∥x∥∞ >

R] ≤ 2kµc(p)
R2p .

We first bound the quantity Px∼Q[∥x∥∞ > R], by using Markov’s inequality as follows.

P
x∼Q

[∥x∥∞ > R] ≤ k sup
v∈Sk−1

P
x∼Q

[|v · x| > R]

≤ k
supv∈Sk−1 Ex∼Q[(v · x)2p]

R2p

≤ kµc(p)

R2p
, since Q is structured.

By the multiplicative Chernoff bound10, we have that Px∼X [∥x∥∞ > R] ≤ 2Px∼Q[∥x∥∞ > R]

with probability at least 1− exp(−|X|kµc(p)
2R2p ) ≥ 1− 1

200 , since |X| ≥ 12R2p

kµc(p)
.

We will show that for each G ∈ Gη,R, Px∼X [x ∈ G] ≤ 2µac(R
√
k)Px∼Nk

[x ∈ G], with probability
at least 1− exp(− |X|

2 µac(R
√
k)ηk/(

√
2πeR

2

)k). The desired result then follows by a union bound

over Gη,R (where |Gη,R| ≤ (3R/η)k) and the fact that |X| ≥ 14k(
√
2π exp(R2))k

µac(R
√
k)ηk

ln( 3Rη ).

We first bound Px∼Q[x ∈ G] as follows by using the fact that Q is structured and ∥x∥2 ≤ ∥x∥∞
√
k ≤

R
√
k for all x ∈ G (because G ∈ Gη,R).

P
x∼Q

[x ∈ G] =

∫
x∈G

Q(x) dx ≤ µac(R
√
k)

∫
x∈G

N (x) dx = µac(R
√
k) P

x∼N
[x ∈ G]

By the multiplicative Chernoff bound, we once more have that Px∼X [x ∈ G] ≤ 2Px∼Q[x ∈ G] with
probability at least 1 − exp(− |X|

2 µac(R
√
k)Px∼N [x ∈ G]) and conclude the proof by observing

that Px∼N [x ∈ G] ≥ ( η√
2π exp(R2)

)k.

Remark D.10. We note that Lemma D.9 is not specialized to the Gaussian distribution. The only
requirement is that the distribution of the completeness criterion is structured with respect to the same
distribution for which the functions F of the soundness criterion have smooth boundary. In particular,
in Definition D.5, the anti-concentration condition 2 is defined with respect to the Gaussian, but it
could also be defined with respect to some other distribution. The concentration condition 1 is always
the same.

10We use the version of the Chernoff bound that uses an upper bound on the expectation rather than the exact
value, through a standard coupling argument.
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We are now ready to prove Theorem D.7. The idea is that if a function f lies within the subspace
neighborhood of another function f̂ , then the disagreement region between the two functions is
bounded by the union of: (1) their disagreement after projecting on the relevant subspace for f̂ (since
the subspace is known, it can be tested exhaustively, similarly to Lemma D.9) and (2) the region far
from the origin (for which testing concentration suffices).

Proof of Theorem D.7. Let D′ be the unknown distribution and X a set of m i.i.d. samples from D′

and let η = γsR
p

2σ̂
√
k

√
µc(1)
µc(p)

. Let (f̂V , X) be an instance of the localized discepancy testing problem
(see Definition 1.1). We run Algorithm 3 with input (X,V, p,R, η) and accept (or reject) accordingly.

Soundness. Suppose that the algorithm accepts. We will show that Px∼X [f̂(x) ̸= f(x)] ≤ ψ for
any f ∈ Ns(f̂). Since the event that f̂(x) ̸= f(x) is independent for each x ∈ X , we may apply the
Hoeffding bound to show that Px∼D′ [f̂(x) ̸= f(x)] ≤ ψ + ϵ with probability at least 3/4 whenever
|X| ≥ 3

ϵ2 . To bound the empirical quantity, we have the following, for Rs = Rp(µc(1)/µc(p))
1/2

and ϱ = γsRs

σ̂ .

P
x∼X

[F (Wx) ̸= F̂ (V x)] ≤ P
x∼X

[F (Wx) ̸= F (V x)]︸ ︷︷ ︸
P1

+ P
x∼X

[F (V x) ̸= F̂ (V x)]︸ ︷︷ ︸
P2

For the term P1, we observe that F (Wx) = F ((W − V )x+ V x) and therefore

P1 ≤ P
x∼X

[∥(W − V )x∥2 ≥ γsRs] + P
x∼X

[∃z ∈ Rk : ∥z∥2 ≤ γsRs, F (V x+ z) ̸= F (V x)]

= P
x∼X

[∥(W − V )x∥2 ≥ γsRs] + P
x∼X

[V x ∈ ∂γsRsF ]

By applying Chebyshev’s inequality for the first term in the above expression and Lemma D.9 for the
second term (note that we have chosen η ≤ γsRs

3
√
k

and Algorithm 3 runs the tester corresponding to
Lemma D.9), we obtain the following bound for P1 (recall that ∥W−V ∥2 ≤ γs and ∥(W−V )x∥2 ≤
∥W − V ∥2∥ projU x∥2, where U is the span of the columns of the matrix W − V ).

P1 ≤
k supv∈Sd−1 Ex∼X [(v · x)2]

R2
s

+
2kµc(p)

R2p
+ 4σγsRsµac(R

√
k)

≤ 2kµc(1)

R2
s

+
2kµc(p)

R2p
+ 4σγsRsµac(R

√
k)

The last inequality follows from the spectral bound on the empirical covariance matrix M =
Ex∼X [xx⊤] implied by Algorithm 3 upon acceptance.

For the term P2, consider the set of grid cells G̃ with non-zero intersection with the disagreement
region, i.e., G̃ = {G ∈ Gη,R : there is x with V x ∈ G and F (V x) ̸= F̂ (V x)}. Recall that
ϱ = η

√
k and let G̃in be the interior part of G̃, i.e., G̃in = {G ∈ G̃ : for any x with V x ∈

G we have F (V x) ̸= F̂ (V x)}}.

Let x be such that ∥V x∥∞ ≤ R, F (V x) ̸= F̂ (V x) and V x /∈ ∂ϱF ∪ ∂ϱF̂ . It must be that V x lies
within some grid cell in G̃in. To see this, note that V x must be in exactly one grid cell G in G̃ (by
definition of G̃) and if this grid cell was in G̃ \ G̃in, this would imply that for some x′ with V x′ ∈ G

we would have either F (V x) ̸= F (V x′) or F̂ (V x) ̸= F̂ (V x′) (because F, F̂ disagree on V x but
agree on V x′). However, ∥V x− V x′∥2 ≤ η

√
k = ϱ, because they are in the same grid cell and we

conclude that V x ∈ ∂ϱF ∪ ∂ϱF̂ , which is a contradiction. Overall, we have the following.

P2 ≤ P
x∼X

[∥V x∥∞ > R]︸ ︷︷ ︸
P21

+ P
x∼X

[V x ∈ ∂ϱF ]︸ ︷︷ ︸
P22

+ P
x∼X

[V x ∈ ∂ϱF̂ ]︸ ︷︷ ︸
P23

+
∑

G∈G̃in

P
x∼X

[V x ∈ G]

︸ ︷︷ ︸
P24
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For the term P21, we use the bound implied by Algorithm 3, for the terms P22, P23 we apply
Lemma D.9 and for the term P24, we use the fact that (upon acceptance) Px∼X [V x ∈ G] ≤
2µac(R

√
k)Px∼N [V x ∈ G] to obtain the following.

P24 ≤ 2µac(R
√
k)
∑

G∈G̃in

P
x∼N

[V x ∈ G]

≤ 2µac(R
√
k) P

x∼N
[F (V x) ̸= F̂ (V x)]

We bound the quantity Px∼N [F (V x) ̸= F̂ (V x)] as follows.

P
x∼N

[F (V x) ̸= F̂ (V x)] ≤ P
x∼N

[F (Wx) ̸= F̂ (V x)] + P
x∼N

[F (Wx) ̸= F (V x)]

≤ γe + P
x∼N

[∥(W − V )x∥2 > γsR
′] + P

x∼N
[V x ∈ ∂γsR′F ]

≤ γe + 4ke−
R′2
2k + σγsR

′

where the last inequality follows from Gaussian concentration and the fact that F has σ-smooth
boundary. By choosing R′ = (2k ln(R

2pµac(R
√
k)

µc(p)
))1/2, we obtain that

P24 ≤ 2µac(R
√
k)γe +

4kµc(p)

R2p
+ 2σγsµac(R

√
k)
(
2k ln

(R2pµac(R
√
k)

µc(p)

))1/2
Overall, for the term P2 we have the following bound.

P2 ≤ 10kµc(p)

R2p
+ 10σγsR

p

√
2kµc(1)

µc(p)
µac(R

√
k)(lnµac(R

√
k))1/2 + 2γeµac(R

√
k)

Combining the bounds for P1 and P2, we obtain the desired result.

Completeness. Suppose, now, that D′ ∈ D. It suffices to show that all the tests will accept
with probability at least 3/4. For the quantity Px∼X [∥V x∥∞ > R] as well as the quantities
Px∼X [V x ∈ G], we apply the Chernoff Bound as described in the proof of completeness of the grid
tester (see the proof of Lemma D.9). For the quantity M = Ex∼X [xx⊤], we use the Chebyshev’s
inequality on each of the random variables Mij = Ex∼X [xixj ], the fact that E[M2

ij ] ≤ µc(2) and a
union bound over i, j ∈ [d].

D.2 Application to TDS Learning

Interestingly, in learning theory, there are algorithms that are guaranteed to recover the relevant
subspace for certain classes of subspace juntas that have some additional properties. This enables us
to use the discrepancy tester of Theorem D.7 to obtain end-to-end results for TDS learning, because
the training phase can guarantee that the ground truth lies within the subspace neighborhood of the
output hypothesis f̂ , for which we have efficient localized discrepancy testers. Here, we present
a TDS learning result for balanced convex subspace juntas in the realizable setting. The class of
balanced convex subspace juntas is defined as follows.
Definition D.11 (Balanced Convex Subspace Juntas). A concept f : Rd → {±1} is a β-balanced
convex k-subspace junta if it is β-balanced (see Definition A.1), convex and a k-subspace junta (see
Definition D.1).

We make use of known algorithms from PAC learning that are guaranteed to approximately recover
the effective ground-truth subspace in terms of geometric distance, which is important since the tester
of Theorem D.7 works with respect to the subspace neighborhood and obtain the following theorem,
which underlines a trade-off between training time and universality.
Theorem D.12 (TDS Learning of Convex Subspace Juntas). For β ∈ (0, 1/2), d, k ∈ N, let C be the
class of β-balanced convex k-subspace juntas over Rd. For any ϵ ∈ (0, 1), there is a (decoupled)
ϵ-TDS learner for C with respect to Nd in the realizable setting, which, for the learning phase, uses
poly(d)( 1β )

poly(k/ϵ) samples and time and, for the testing phase, uses poly(d)(k/ϵ)O(k) samples
and time. Moreover, in the same setting, there is a D-universal ϵ-TDS learner for C for each of the
cases listed in Table 2.
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Class D over Rd Training Time and Samples Testing Time and Samples

1 1-subgaussian &
Isotropic Log-Concave poly(d)( 1β )

poly(1/ϵk) poly(d)(k/ϵ)O(k2)

2 Isotropic Log-Concave poly(d)( 1β )
2O(k2 log2(1/ϵ))

poly(d)kO(k3 log2(1/ϵ))

3

Fourth Moments Bound:
E[(v · x)4] ≤ C∥v∥42 &
Dimension-k Marginals

Density Bound: Ck2

poly(d)( 1β )
2O(k2/ϵ)

poly(d)kO(k3/ϵ2)

Table 2: Specifications for D-universal (ϵ, δ)-TDS learning of β-balanced convex k-subspace juntas.
The properties that define the class D in line 3, hold for some given universal constant C ≥ 1, for all
members of D, for all v ∈ Rd and the density bound holds for any projection on some k-dimensional
subspace of any member of D.

In order to obtain a TDS learner for some class C, one might hope to learn a hypothesis f̂ during the
training phase, such that the subspace neighborhood of f̂ (see Definition D.2) contains the ground
truth. Then, the test error can be bounded simply by running the localized discrepancy tester of
Theorem D.7, assuming that both f̂ and the class C have smooth boundaries. In Appendix B.1,
we show that, indeed, convex subspace juntas have smooth boundaries. However, for the learning
guarantee, prior work in standard PAC learning implicitly provides the following weaker guarantee
regarding subspace retrieval for convex subspace juntas, which, as we show, is, nevertheless, still
sufficient for our purposes.

Theorem D.13 (Implicit in [Vem10a], see also [KSV24a]). For any γ ∈ (0, 1), β ∈ (0, 1/2), there is
an algorithm that, upon receiving a number of i.i.d. examples from Nd, labeled by some β-balanced
convex k-subspace junta f∗(x) = F ∗(W ∗x), runs in time poly(d)( 1β )

poly(k/γ) and returns, w.p. at
least 0.99, some polynomial q̂ : Rk → {±1} of degree at most poly(k/γ) and some V ∈ Rk×d

with V V ⊤ = Ik such that the following are true for the hypothesis f̂(x) = sign(q̂(V x)) and some
f(x) = F ∗(Wx) with WW⊤ = Ik.

(a) f ∈ Ns(f̂), where Ns is the k-dimensional (γ, γ)-subspace neighborhood, i.e., ∥W −
V ∥2 ≤ γ and Px∼Nd

[f(x) ̸= f̂(x)] ≤ γ.

(b) For any x ∈ Rd with ∥W ∗x∥2 ≤
√
k/γ, we have f(x) = f∗(x).

We are now ready to prove Theorem D.12.

Proof of Theorem D.12. Our plan is to combine Theorem D.7 with Theorem D.13. We will use an
additional test, to account for the fact that Theorem D.13 does not provide exact subspace recovery,
but, rather, recovery of the effectively relevant subspace (see Item (b)).

Suppose that the training distribution Dtrain
XY has marginal Dtrain

X = Nd and that the labels (both in
training and in test distribution Dtest

XY as well) are generated by some β-balanced convex k-subspace
junta f∗ : Rd → {±1}, where f∗(x) = F ∗(W ∗x) for some W ∗ ∈ Rk×d with W ∗W ∗⊤ = Ik.

Learning Phase. The learner runs the algorithm of Theorem D.13 for γ chosen so that the error
parameter ϵ′(γ) of Theorem D.7 is at most ϵ′ ≤ ϵ/3 using labeled examples from Dtrain

XY and
computes f̂(x) = sign(q̂(V x)) with the corresponding specifications. For the particular choice of γ,
see Corollary D.8, where σ = poly(k) according to Lemma B.8.

Testing Phase. The tester first computes the maximum eigenvalue of the matrix Ex∼Xtest [xx
⊤]

using samples Xtest drawn from Dtest
X and rejects if the quantity is larger than 2. Then, the tester

runs the localized discrepancy tester of Theorem D.7 and rejects or accepts accordingly.
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Testing Run-Time. To bound the testing run-time we use Corollary D.8, where σ = poly(k)
(because C is the class of convex subspace juntas and due to Lemma B.8) and σ̂ = poly(k/γ),
because f̂ is a polynomial threshold function of degree poly(k/γ) and, therefore, has poly(k/γ)-
smooth boundary according to Lemma B.1.

Soundness. If the tester accepts and |Xtest| ≥ poly(1/ϵ), then we have Px∼Dtest
X

[∥W ∗x∥2 >√
k/γ] ≤ Px∼Xtest

[∥W ∗x∥2 >
√
k/γ] + ϵ/6 (by the Hoeffding bound) and Px∼Xtest

[∥W ∗x∥2 >√
k/γ] ≤ 2γ ≤ ϵ/6 for γ ≤ ϵ/12. Hence, overall, by combining Theorem D.13 with the guarantees

from the fact that the testing phase has accepted, we have

err(f̂ ;Dtest
XY ) = P

x∼Dtest
XY

[f∗(x) ̸= f̂(x)]

≤ P
x∼Dtest

X

[∥W ∗x∥2 >
√
k/γ] + P

x∼Dtest
X

[f̂(x) ̸= f(x)]

≤ ϵ

3
+ P

x∼Nd

[f̂(x) ̸= f(x)] +
ϵ

3

≤ 2ϵ

3
+ γ ≤ ϵ ,

where we used the soundness property of the cylindrical grids tester (Theorem D.7 and Corollary D.8)
and the fact that f is a hypothesis with the properties specified in Theorem D.13 and, in particular,
lies within the subspace neighborhood of f̂ .

Completeness. Combine the completeness guarantee of Theorem D.7 and the fact that
Ex∼Xtest [xx

⊤] has, with probability at least 0.99, bounded maximum eigenvalue whenever Dtest
X

lies within D (for any D in Table 2) and |Stest| ≥ poly(d).

E Testing Boundary Proximity

We now focus on classes of low-dimensional concepts (see Definition D.1) that are locally structured.
In particular, we consider subspace juntas that are locally balanced, meaning that near any point x in
the domain, there are several points with the same label as x. This condition is important to ensure
that there are, for example, no zero measure regions over the (Gaussian) training distribution that
contain significant information about the ground truth. We will show that this condition actually
enables significant improvements for the testing runtime for TDS learning. More formally, we give
the following definition.
Definition E.1 (Locally Balanced Concepts). For R ≥ 1 and r, β ∈ (0, 1), we say that a function
F : Rk → {±1} is (R, r)-locally β-balanced if for any ϱ ≤ r and x ∈ Rk with ∥x∥2 ≤ R, the
following is true.

P
z∼Nk

[F (z) = F (x) | z ∈ Bk(x, ϱ)] > β

For a subspace junta f(x) = F (Wx), we say that f is (R, r)-locally β-balanced on the relevant
subspace if F is (R, r)-locally β-balanced.

For locally balanced concepts, it is possible to obtain efficient localized discrepancy testers with
respect to the disagreement neighborhood, i.e., the neighborhood of concepts that have low disagree-
ment with the reference hypothesis f̂ under the Gaussian distribution (or, in general, the reference
distribution at hand).
Definition E.2 (Disagreement Neighborhood). Let H and C be some concept classes. We define the
(Gaussian) γe-disagreement neighborhood Ne : H → Pow(C) as follows for any f̂ ∈ H.

Ne(f̂) = {f ∈ C | P
x∼N

[f(x) ̸= f̂(x)] ≤ γe}

We also define the boundary proximity tester, which directly tests whether the probability of falling
close to the boundary of some reference hypothesis f̂ is appropriately bounded. This testing problem
can be solved efficiently, for example, for the fundamental class of halfspace intersections.
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Definition E.3 (Boundary Proximity Tester). For σ̂ ≥ 1, ϱ ∈ (0, 1), let H be some class of functions
from Rd to {±1} and let D be some class of distributions over Rd. The tester T is called a (ϱ, σ̂)-
boundary proximity tester for H with respect to D if, upon receiving some f̂ ∈ H and a set X of
points in Rd, the tester either accepts or rejects and satisfies the following.

(a) (Soundness.) If T accepts, then Px∼X [x ∈ ∂ϱf̂ ] ≤ σ̂ϱ.

(b) (Completeness.) If X consists of (at least) mT i.i.d. examples from some distribution in D,
then the tester T accepts with probability at least 99%.

Note that the complexity of boundary proximity testing depends on the simplicity of f̂ and, therefore,
considering applications in TDS learning, where f̂ is the output of the learning algorithm, highlights
the importance of proper learning algorithms that output some simple hypothesis with low error. Since
the hypothesis is simple, disagreement-localized discrepancy testing is tractable and since its error
is low, the ground truth is likely within the disagreement neighborhood and disagreement-localized
discrepancy testing suffices to guarantee low test error.

E.1 Discrepancy Testing Result

In order to obtain a localized discrepancy tester assuming access to a boundary proximity tester, we
first show a simple proposition connecting local balance condition with boundary proximity testing.
In particular, if two functions have low Gaussian disagreement, but one of them is locally balanced,
then all of the points of disagreement are either close to the boundary of the other function, or far
from the origin.

Proposition E.4 (Localization of Disagreement from Locally Balanced Concepts). Let F, F̂ :

Rk → {±1}, where F is (R, ϱ)-locally β-balanced and F, F̂ have disagreement γ =

β inf∥x∥2≤R Pz∼Nk
[z ∈ Bk(x, ϱ)], i.e., Pz∼Nk

[F (z) ̸= F̂ (z)] ≤ γ. Then, for any x with ∥x∥2 ≤ R

and F (x) ̸= F̂ (x), we have x ∈ ∂ϱF̂ .

Proof of Proposition E.4. Suppose, for contradiction, that there exists some x ∈ Rk with ∥x∥2 ≤ R

and F (x) ̸= F̂ (x), for which x /∈ ∂ϱF̂ . Then, it must be that F̂ (z) = F̂ (x) for all z ∈ Bk(x, ϱ)

(otherwise, x ∈ ∂ϱF̂ ). We have that Pz∼Nk
[F (z) ̸= F̂ (z)] ≥ Pz∼Nk

[z ∈ Bk(x, ϱ) and F (z) ̸=
F̂ (z)] and also F (z) ̸= F̂ (z) is equivalent to F (z) ̸= F̂ (x) (because F̂ (z) = F̂ (x)), which, in
turn, is equivalent to F (z) = F (x) (because F (x) ̸= F̂ (x)). Overall, Pz∼Nk

[F (z) ̸= F̂ (z)] ≥
Pz∼Nk

[z ∈ Bk(x, ϱ) and F (z) = F (x)] > γ, by assumption, and we reached contradiction.

Remark E.5. Note that Proposition E.4 is not specialized to the Gaussian disagreement between F
and F̂ , but would also work for any distribution Q, if the local balance (Definition E.1) was also
defined w.r.t. Q.

We combine the boundary proximity tester with a moment matching tester for concentration (to
bound the probability of falling far from the origin) to obtain a non-universal localized discrepancy
tester (Theorem E.6). If we instead use a spectral tester for concentration, we obtain a universal
localized discrepancy tester (Theorem E.7).

Theorem E.6 (Discrepancy Testing through Boundary Proximity). Let p ∈ N, R, σ̂ ≥ 1, r, β ∈ (0, 1)

and 0 ≤ γe ≤ βrk

kk/2 e
−2R2

. Let also H and C be a classes whose elements are k-subspace juntas over
Rd and Ne : H → Pow(C) the γe-disagreement neighborhood. Assume that the elements of C are
(R, r)-locally β-balanced on the relevant subspaces and let T be a (ϱ, σ̂)-boundary proximity tester
for H w.r.t. Nd, requiring mT samples, with ϱ = (γe

β )1/k
√
ke2R

2/k. For any ϵ ∈ (0, 1), there is
a (Ne, ψ + ϵ)-tester for localized discrepancy from Nd with respect to Nd with sample complexity
m = mT +O(dk)4p+1 +O( 1

ϵ2 ), that calls T once and uses additional time O(md2p+1), where the
error parameter ψ is

ψ = 2
(4kp
R2

)p
+ σ̂

√
k
(γe exp(2R2)

β

)1/k
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Proof of Theorem E.6. Let ϱ = (γe/β)
1/k

√
k exp(2R2/k), ∆ = 1

(2kd)2p and let (f̂ , X) be an
instance of the localized discrepancy problem (see Definition 1.1). The algorithm does the following.

1. For each α ∈ Nd with ∥α∥1 ≤ 2p, compute the quantities Mα = Ex∼X [xα] =
Ex∼X [

∏
i∈[d] x

αi
i ] and reject if for some α as such, we have |Mα − Ex∼N [xα]| > ∆.

2. Run the boundary proximity tester T with inputs (ϱ, f̂ ,X) and reject if T rejects.

3. Otherwise, accept.

Soundness. Assume, first, that all of the tests have passed. We will show that for any f ∈ Ne(f̂),
we have Px∼X [f(x) ̸= f̂(x)] ≤ ψ. Since the event that f̂(x) ̸= f(x) is independent for each
x ∈ X , we may apply the Hoeffding bound to show that Px∼D′ [f̂(x) ̸= f(x)] ≤ ψ + ϵ with
probability at least 3/4 whenever |X| ≥ 3

ϵ2 . Since f and f̂ are k-subspace juntas, we have that
f(x) = F (Wx) and f̂(x) = F̂ (V x) for W,V ∈ Rk×d so that WW⊤ = V V ⊤ = Ik. Let
U ∈ R2k×d be a matrix such that UU⊤ = I2k and the span of the rows of U contains the span of the
rows of W and of V taken together. This, together with the fact that WW⊤ = Ik, imply that for any
x ∈ Rd we have Wx =WU⊤Ux and, similarly, V x = V U⊤Ux (the part of x that falls within the
subspace spanned by the rows of W does not change by applying the projection matrix U⊤U and the
remaining part is irrelevant). Moreover, we have that ∥U∥2 = ∥U⊤∥2 = ∥W∥2 = ∥V ∥⊤2 = 1. Let
F ′(z) = F (WU⊤z) and F̂ ′(z) = F̂ (V U⊤z).

We have that Px∼N [F ′(Ux) ̸= F̂ ′(Ux)] ≤ γe, by assumption. By Proposition E.4, applied on
F ′, F̂ ′, and since γe ≤ βrk

kk/2 e
−2R2

, we have that for any x ∈ Rd such that F ′(Ux) ̸= F̂ ′(Ux)

(i.e., F (Wx) ̸= F̂ (V x))) at least one of the following is true: (a) ∥Ux∥2 ≥ R or (b) Ux ∈ ∂ϱF̂
′.

According to Proposition E.8, Ux ∈ ∂ϱF̂ ′ implies that V U⊤Ux ∈ ∂ϱF̂ , which, in turn, implies
that V x ∈ ∂ϱF̂ , since V x = V U⊤Ux and therefore, by Proposition E.8 we also have that x ∈ ∂ϱf̂ .
Therefore, overall, we have

P
x∼X

[f(x) ̸= f̂(x)] ≤ P
x∼X

[∥Ux∥2 ≥ R] + P
x∼X

[x ∈ ∂ϱf̂ ]

In order to bound the term Px∼X [∥Ux∥2 ≥ R], we use the fact that the test of step 1 of the al-
gorithm has passed. In particular, by applying Markov’s inequality appropriately, we obtain that
Px∼X [∥Ux∥2 ≥ R] ≤ 1

R2p Ex∼X [∥Ux∥2p2 ]. Note that the expression ∥Ux∥2p2 corresponds to a
polynomial of degree at most 2p and corresponding to coefficient vector whose absolute (ℓ1) norm
is bounded by (4kd2)p. In particular, we have that (for all x ∈ Rd) ∥Ux∥2p2 =

∑
α∈Nd cαx

α

(recall that xα =
∏

i∈[d] x
αi
i ), where

∑
α∈Nd |cα| ≤ (4kd2)p and cα = 0 whenever ∥α∥1 >

2p. Therefore, by linearity of expectation, we have Ex∼X [∥Ux∥2p2 ] =
∑

α cα Ex∼X [xα] =∑
α cα(Ex∼N [xα] + ∆α) = Ex∼N [∥Ux∥2p2 ] +

∑
α cα∆α, where |∆α| ≤ 1

(2kd)2p for any α with

∥α∥1 ≤ 2p. Hence, overall, we have Ex∼X [∥Ux∥2p2 ] ≤ Ex∼N [∥Ux∥2p2 ] + 1 ≤ 2(4kp)p, which
implies that Px∼X [∥Ux∥2 ≥ R] ≤ 2 (4kp)p

R2p .

For the term Px∼X [V x ∈ ∂ϱF̂ ], we use the fact that the tester T has accepted and hence we have
Px∼X [x ∈ ∂ϱf̂ ] ≤ σ̂ϱ ≤ σ̂(γe exp(2R2)

βk−k/2 )1/k. We have shown that Px∼X [f(x) ̸= f̂(x)] ≤ ψ, as
desired.

Completeness. Suppose now that X consists of i.i.d. examples from the Gaussian distribution Nd.
To ensure that with probability at least 9/10, the tests of step 1 pass, we pick |X| ≥ (Cdk)

∆2 , for some
sufficiently large C. This is because the Gaussian moments concentrate (e.g., due to Chebyshev’s
inequality) as well as a union bound. For step 2, it suffices that |X| ≥ mT .

We now give our universal discrepancy tester though testing boundary proximity.
Theorem E.7 (Universal Discrepancy Testing through Boundary Proximity). In the setting of
Theorem E.6, if the tester T works with respect to a class D of distributions over Rd such that for
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some µc ≥ 1 we have supv∈Sd−1 Ex∼D[(v·x)4] ≤ µc for all D ∈ D, then there is a (Ne, ψ+ϵ)-tester
for localized discrepancy from Nd with respect to D with sample complexity m = mT + 20d4 + 3

ϵ2 ,
that calls T once and uses additional time O(md2 + d3), where the error parameter ψ is

ψ =
4kµc

R2
+ σ̂

√
k
(γe exp(2R2)

β

)1/k
Proof of Theorem E.7. Let ϱ = (γe/β)

1/k
√
k exp(2R2/k) and let (f̂ , X) be an instance of the

localized discrepancy problem (see Definition 1.1). The algorithm is similar to the one used in
Theorem E.6, but for the first step, instead of matching low degree moments, we compute the
maximum eigenvalue of the second moment matrix.

1. Compute the maximum eigenvalue of the matrix M = Ex∼X [xx⊤] and reject if the
computed value is larger than 2µc.

2. Run the boundary proximity tester T with inputs (ϱ, f̂ ,X) and reject if T rejects.

3. Otherwise, accept.

Soundness. For the proof of soundness, we use a similar argument to the one for Theorem E.6, but
we instead bound the term Ex∼X [∥Ux∥2p2 ] for p = 1 and as follows

E
x∼X

[∥Ux∥22] =
2k∑
i=1

E
x∼X

[(ui · x)2] ≤ 2k sup
v∈Sd−1

E
x∈X

[(v · x)2] ≤ 4kµc ,

where ui denotes the vector corresponding to the i-th row of U .

Completeness. The completeness for step 1 follows by an application of Chebyshev’s inequality to
the random variables corresponding to each of the entries of the matrix M and a union bound, to show
that the Frobenius norm (and hence the operator norm) of the matrix M − Ex∼D[xx

⊤] is sufficiently
small (where D is some distribution in D and X consists of independent draws from D).

In the proofs of Theorems E.6 and E.7 we have used the following usedul proposition.

Proposition E.8. Let f : Rd → {±1} be a k-subspace junta, i.e., f(x) = F (Wx), where F : Rk →
{±1} and W ∈ Rk×d with WW⊤ = Ik. Then, we have x ∈ ∂ϱf if and only if Wx ∈ ∂ϱF .

Proof. Note, first that since WW⊤ = Ik and k ≤ d, we have that ∥W∥2 = 1. Consider x ∈ ∂ϱf .
Then, by Definition D.3, we have that there exists z ∈ Rd with ∥z∥ ≤ ϱ and f(x + z) ̸= f(x).
Note that for the same x and z we have F (Wx+Wz) ̸= F (Wx). Since ∥W∥2 = 1, we have that
∥Wz∥2 ≤ ∥z∥2 ≤ ϱ. Let z̃ = Wz ∈ Rk. We have ∥z̃∥2 ≤ ϱ and F (Wx + z̃) ̸= F (Wx), i.e.,
Wx ∈ ∂ϱF .

For the other direction, suppose that Wx ∈ ∂ϱF . Then, there is z̃ ∈ Rk with ∥z̃∥2 ≤ ϱ such that
F (Wx+ z̃) ̸= F (Wx). We have that z̃ = Ikz̃ = WW⊤z̃. Let z = W⊤z̃. We have z̃ = Wz and
∥z∥2 = ∥W⊤z̃∥2 ≤ ∥W⊤∥2∥z̃∥2 = ∥W∥2∥z̃∥2 ≤ ϱ. We have that f(x+ z) = F (Wx+Wz) =
F (Wx+ z̃) ̸= F (Wx) = f(x). Hence, x ∈ ∂ϱf .

E.2 Application to TDS Learning

We now focus on the class of balanced intersections of halfspaces, which is formally defined as
follows.

Definition E.9 (Balanced Halfspace Intersections). A concept f : Rd → {±1} is called a β-balanced
intersection of k halfspaces if it is β-balanced (see Definition A.1) and there are w1,w2, . . . ,wk ∈
Sd−1 and τ1, τ2, . . . , τk ∈ R such that f(x) = 2

∏k
i=1 1{wi · x ≥ τi} − 1 for all x ∈ Rd.
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We will now combine Theorems E.6 and E.7 with results from robust learning ([DKS18b]) to obtain
the following theorem regarding TDS learning balanced intersections of halfspaces with respect to
Gaussian training marginals. Our results indicate a trade-off between the training runtime and testing
runtime and are robust to some amount of noise (in terms of the parameter λ).

Theorem E.10 (TDS Learning of Balanced Halfspace Intersections). For β ∈ (0, 1/2), d, k ∈ N, let
C be the class of β-balanced intersections of k halfspaces Rd. For any ϵ ∈ (0, 1) with ϵ = O( β

k2 ),
there is a D-universal ψ-TDS learner for C w.r.t. Nd in the agnostic setting for each of the cases
listed in Table 3.

Class D over Rd Training Time Testing Time Error Guarantee ψ

Gaussian Nd poly(d)( k
ϵβ )

O(k3) (dk)O(log(1/ϵ)) ( k
ϵβ )

O(1)λ
1

12k + ϵ

Fourth Moments Bound:
E[(v · x)4] ≤ C∥v∥42 &
Dimension-1 Marginal

Densities Bounded by C

poly(d)( kβ )
k3

2O( k3

ϵ ) poly(d, k, 1/ϵ) ( kβ )
O(1)2O( 1

ϵ )λ
1

12k + ϵ

Table 3: Specifications for D-universal ψ-TDS learning of β-balanced k-halfspace intersections. The
properties that define the class D in line 2, hold for some given universal constant C ≥ 1, for all
members of D, for all v ∈ Rd and the density bound holds for all one-dimensional projections of any
member of D.

For the learning phase of the algorithm of Theorem E.10, we use an algorithm from [DKS18b] in the
context of learning with nasty noise. Since the algorithm works under nasty noise, it will also work
in the agnostic setting. The following result follows from [DKS18b, Theorem 5.1].

Theorem E.11 (Reformulation of Theorem 5.1 in [DKS18b]). Let C be some hypothesis class that
consists of intersections of k halfspaces. For any γ ∈ (0, 1), there is an algorithm that, upon
receiving a number of i.i.d. examples from some labeled distribution Dtrain

XY whose marginal is Nd,
runs in time poly(d)( kγ )

O(k2) and returns, w.p. at least 0.99, some intersection of k halfspaces

f̂ : Rd → {±1} such that for any distribution Dtest
XY over Rd × {±1}, if f∗ ∈ C is the intersection

that achieves λ = minf∈C(err(f ;Dtrain
XY ) + err(f ;Dtest

XY )), then we have f∗ ∈ Ne(f̂), where Ne is
the (Ckλ

1
12 + γ)-disagreement neighborhood (see Definition E.2), where C is some sufficiently large

universal constant.

Note that for the above reformulation of Theorem 5.1 in [DKS18b], we used the following reasoning.
Their algorithm returns f̂ with the guarantee that err(f̂ ;Dtrain

XY ) ≤ O(kopt
1
12

train)+γ, where opttrain =

minf∈C err(f ;Dtrain
XY ) ≤ err(f∗;Dtrain

XY ) ≤ λ. Therefore Px∼Nd
[f̂(x) ̸= f∗(x)] ≤ err(f̂ ;Dtrain

XY ) +

err(f∗;Dtrain
XY ) ≤ Ckλ

1
12 + γ, which implies that f∗ ∈ Ne(f̂).

Our plan is to use the discrepancy testers of Theorems E.6 and E.7. To this end, we have to show
that (1) balanced halfspace intersections are locally balanced and (2) there is a boundary proximity
tester (see Definition E.3) for the class. It turns out that any convex set that is globally balanced (see
Definition A.1), is also locally balanced (see Definition E.1), as we show in the following lemma.

Lemma E.12 (Globally Balanced Convex Sets are Locally Balanced). For β ∈ (0, 1), let F :
Rk → {±1} be the indicator of a (globally) β-balanced convex set K ⊆ Rk, let C ≥ 1 some
sufficiently large universal constant and let R ≥ 1. Then, F is (R, β

Ck log k )-locally β′-balanced for

β′ =
βk exp(− 1

2R)

(Ck2R ln( 1
β ))k

.

Proof of Lemma E.12. Let ϱ ≤ β
Ck log k . We will first show that for any x ∈ Rk with ∥x∥2 ≤ R

and F (x) = −1, we have Pz∼Nk
[F (z) = −1 | z ∈ Bk(x, ϱ)] ≥ 1

2e
−ϱR. We have that x ̸∈ K

and, therefore, there is a separating hyperplane between x and K, due to the convexity of K. This
hyperplane does not pass through x and, hence, at least half of Bk(x, ϱ) is outside K. We obtain the
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following.

P
z∼Nk

[F (z) = −1 | z ∈ Bk(x, ϱ)] =
Pz∼Nk

[F (z) = −1 and z ∈ Bk(x, ϱ)]

Pz∼Nk
[z ∈ Bk(x, ϱ)]

≥
1
2 vol(Bk(x, ϱ))

vol(Bk(x, ϱ))
·
infz∈Bk(x,ϱ) Nk(z)

supz∈Bk(x,ϱ)
Nk(z)

≥ 1

2
·
exp(− 1

2 (∥x∥2 + ϱ)2)

exp(− 1
2 (∥x∥2 − ϱ)2

≥ 1

2
e−

1
2ϱ∥x∥2 ≥ 1

2
e−

1
2ϱR

For the case where F (x) = 1, we first prove the following claim, which states that when a convex set
is (globally) balanced, it must contain some Euclidean ball with non-negligible mass.

Claim. Since K is β-balanced and convex, there is xc ∈ Rk such that Bk(xc, r) ⊆ K, where
r = β

Ck log k , ∥xc∥2 ≤ Rc = (2k ln( 8kβ ))1/2 and C ≥ 1 is a sufficiently large universal constant.

Proof. Since K is balanced, we have Px∼Nk
[F (x) = 1] > β. We now use Lemma B.8 to obtain that

Px∼Nk
[x ∈ ∂rF ] ≤ C

2 rk log k. We have the following.

P
x∼Nk

[F (z) = 1,∀z ∈ Bk(x, r)] = P
x∼Nk

[F (x) = 1 and F (x+ z) = 1,∀z with ∥z∥2 ≤ r]

= P
x∼Nk

[F (x) = 1]− P
x∼Nk

[F (x) = 1 and ∃z : ∥z∥2 ≤ r and F (x+ z) ̸= 1]

≥ P
x∼Nk

[F (x) = 1]− P
x∼Nk

[∃z : ∥z∥2 ≤ r and F (x+ z) ̸= F (x)]

= P
x∼Nk

[F (x) = 1]− P
x∼Nk

[x ∈ ∂rF ]

> β − C

2
rk log k =

β

2

Moreover, since Px∼Nk
[∥x∥2 > Rc] ≤ 4ke−

R2
c

2k = β/2, we overall have that

P
x∼Nk

[F (z) = 1,∀z ∈ Bk(x, r) and ∥x∥2 ≤ Rc] > 0

Since the probability of such an x is positive, by the probabilistic method, there is some xc as
desired.

We have shown that for some xc with ∥xc∥2 ≤ Rc, we have Bk(xc, r) ⊆ K. Let now x ∈ Rk with
∥x∥2 ≤ R and F (x) = 1 (x ∈ K). Since K is convex, if K′ is the convex hull of {x} ∪ Bk(xc, r),
we have K′ ⊆ K. We will show that K′ ∩ Bk(x, ϱ) contains some cone R′ with non-trivial mass (see
Figure 3).

Let y be any point on the surface of Bk(xc, r) such that the tangent hyperplane of Bk(xc, r) on y
passes from x. Then, if we let θ to be the angle ŷxxc, we have sin θ = ∥y − xc∥/∥x − xc∥2 =
r/∥x− xc∥2, because x̂yxc = π/2, by definition of y. Note that the triangle defined by x,y and xc

lies within K′ and hence within K as well. Since this is true for any y as defined above, we have that
K contains a rotational cone R with vertex x, angle θ and height h ∈ [∥x−xc∥2−r, ∥x−xc∥]. Note
that the volume of K′ ∩ Bk(x, ϱ) is decreasing in ∥x− xc∥2, as long as ϱ ≤ r. Therefore, we may
assume that ∥x−xc∥2 = R+Rc (which implies that h ≥ 1 ≥ ϱ ≥ ϱ cos θ). Let R′ = R∩Bk(x, ϱ).
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Figure 3: If x ∈ K, then there is a cone R′ ⊆ Bk(x, ϱ) ∩ K

By observing that R′ contains a cone of angle θ, height ϱ cos θ, where cos θ ≥ 1/2 and ϱ ≤ R, we
overall have the following.

P
z∼Nk

[F (z) = 1 | z ∈ Bk(x, ϱ)] =
Pz∼Nk

[F (z) = 1 and z ∈ Bk(x, ϱ)]

Pz∼Nk
[z ∈ Bk(x, ϱ)]

≥ vol(R′)

vol(Bk(x, ϱ))
·
infz∈Bk(x,ϱ) Nk(z)

supz∈Bk(x,ϱ)
Nk(z)

≥ ϱ cos θ(ϱ sin θ)k−1(2π)(k−1)/2k−((k−1)/2+1)

ϱk(2π/k)k/2
· exp(−ϱR/2)

≥ (sin θ)k−1

2
√
2πk

· e− 1
2ϱR ≥

( β

Ck2R ln(1/β)

)k
e−R/2

Combining the two cases considered (F (x) = −1 and F (x) = 1), we obtain the desired result.

Finally, we show that there is a boundary proximity tester for the class of halfspace intersections.

Lemma E.13 (Boundary Proximity Tester for Halfspace Intersections). Let D be some class of
distributions over Rd such that for each distribution in D, any one-dimensional marginal has density
upper bounded by C > 0. Then, for any ϱ ∈ (0, 1), there is a (ϱ, 3Ck)-boundary proximity tester for
the class of intersections of k halfspaces over Rd with time and sample complexity poly(d, k, 1/ϱ).

Proof. The tester receives some intersection of halfspaces f = 2
∏k

i=1 1{wi · x− τi} − 1 and mT
samples X from some unknown distribution over Rd and does the following.

1. If for some i ∈ [k] we have Px∼X [|wi · x− τi| ≤ ϱ] > 3Cϱ, then reject.

2. Otherwise, accept.

Soundness then follows from the fact that Px∼X [x ∈ ∂ϱf ] ≤
∑

i∈[k] Px∼X [|wi · x− τi| ≤ ϱ] and a
Hoeffding bound. Completeness follows from the fact that under any distribution D in D, we have
Px∼D[|wi · x− τi| ≤ ϱ] ≤ 2Cϱ, due to the density upper bound in the direction wi and a Chernoff
bound.

All of the ingredients of the proof of Theorem E.11 are now in place.

Proof of Theorem E.11. The theorem follows by combining either Theorem E.6 or Theorem E.7
with Theorem E.11, Lemma E.12 and Lemma E.13. Note that since the parameter λ is unknown
to the algorithm, we will run the corresponding discrepancy tester (either of Theorem E.6 or of
Theorem E.7) for all possible values of the parameter ϱ (of the discrepancy tester) within an O(ϵ/k2)-
net of the interval [0, β

Ck log k ], where we know that the tester has to accept with high probability
(we can amplify the success probability for each fixed value of ϱ through repetition). We accept if
the (amplified) discrepancy tester accepts for all the values of ϱ in the net. In total, we will need
poly(k, 1/ϵ) repetitions.
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F NP-Hardness of Global Discrepancy Testing

In this section, we prove that there exist worst case pairs of distributions such that testing the
globalized discrepancy between them with respect to the class of halfspaces is hard. These results
also extend to the class of constant degree polynomial threshol functions. This motivates our study of
localized notions of discrepancy. We now define the notion of discrepancy (globalized).
Definition F.1 (Discrepancy). Let D1, D2 be two distributions on Rd and let F be a set of boolean
functions on Rd. We say that the discrepancy between D1 and D2 with respect to F , denoted by
discF (D1, D2) is,

discF (D1, D2) = sup
f1,f2∈F

(∣∣∣ P
x∼D1

[f1(x) ̸= f2(x)]− P
x∼D2

[f1(x) ̸= f2(x)]
∣∣∣)

We prove our hardness result by reducing the following problem of learning constant degree PTFs
with noise to the problem of identifying if the discrepancy between two distributions is large/small.
Definition F.2. For constants ϵ > 0, k ∈ N, let PTF−MA(k, ϵ) refers to the following promise
problem: Given a set of tuples {xi, yi}i∈[n] where xi ∈ Rd and yi ∈ {±1} for all i ∈ [n], distinguish
between the following two cases:

• There exists a halfspace h such that 1
n

∑n
i=1 1{h(xi) = yi} ≥ 1− ϵ,

• For every degree k PTF g, we have that 1
n

∑n
i=1 1{g(xi) = yi} ≤ 1

2 + ϵ

This problem is known to be NP hard through a reduction from label cover.
Lemma F.3 ([BGS18]). For any constant k ∈ N, ϵ > 0, PTF−MA(k, ϵ) is NP-hard.

Given a set S ⊆ Rd, let US denote the uniform distribution on that set. We define decision version of
the problem of discrepancy testing for which we prove our NP-hardness result.
Definition F.4. For constants ϵ > 0 and a class F of boolean functions on Rd, let DISC(F , ϵ) be the
following promise problem: Given sets S, S′ ⊆ Rd, distinguish between the two cases:

• discF (US , US′) ≥ 1− ϵ

• discF (US , US′) ≤ ϵ

We are now ready to state and prove our result on the NP-hardness of DISC(F , ϵ) when F is the class
of constant degree polynomial threshold functions.
Theorem F.5. Let k ∈ N and ϵ > 0. Let F be the class of PTFs of degree k. The problem DISC(F , ϵ)
is NP-hard.

Proof. We give a reduction from PTF−MA(2k, ϵ) to DISC(F , 8ϵ). The input to PTF−MA(2k, ϵ)
is a set of tuples {xi, yi}i∈[n] where xi ∈ Rd and yi ∈ {±1} for all i ∈ [n]. Let S+ = {xi | yi =
+1, i ∈ [n]} and S− = {xi | yi = −1, i ∈ [n]}. We assume that

∣∣ |S+|
n − 1

2

∣∣ ≤ ϵ and
∣∣ |S−|

n − 1
2

∣∣ ≤ ϵ.
Otherwise, there exists a trivial halfspace(taking constant value) that achieves success probability
greater than 1

2 + ϵ and this can easily be checked in polynomial time. We say that S+, S− are
ϵ-unbiased if the above property holds. We now complete the proof by proving the following two
claims and using Lemma F.3.

Claim (Completeness). Let S+, S− be ϵ-unbiased. If there exists a halfspace h such that
1
n

∑n
i=1 1{h(xi) = yi} ≥ 1− ϵ, then discF (US+ , US−) ≥ 1− 8ϵ.

Proof. We have that |S+|
n Px∼US+ [h(x) = 1] + |S−|

n Px∼US+ [h(x) = 0] ≥ 1− ϵ. Thus, simplifying
some terms, we obtain that

1− ϵ ≤ |S−|
n

+
|S+|
n

· P
x∼US+

[h(x) = 1]− |S−|
n

· P
x∼US−

[h(x) = 1]

≤ 1

2
+

1

2
·
(

P
x∼US+

[h(x) = 1]− P
x∼US−

[h(x) = 1]
)
+ 3ϵ
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where the last inequality follows from the fact that S+, S− are ϵ-unbiased. Thus, we obtain that
(Px∼US+ [h(x) = 1] − Px∼US− [h(x) = 1]) ≥ 1 − 8ϵ. Let g be the the halfspace that always
outputs −1. Clearly, we have that discF (US+ , US−) ≥ (Px∼US+ [h(x) ̸= g(x)]− Px∼US− [h(x) ̸=
g(x)]) ≥ 1− 8ϵ.

Claim (Soundness). Let S+, S− be ϵ-unbiased. If there exists no degree 2k PTF h such that
1
n

∑n
i=1 1{h(xi) = yi} ≥ 1

2 + ϵ, then discF (US+ , US−) ≤ 8ϵ.

Proof. Say discF (US+ , US−) ≥ 8ϵ. Since F is closed under complements, we obtain without loss
of generality that there exist two PTFs h1, h2 of degree d such that Px∼US− [h1(x) ̸= h2(x)] −
Px∼US+ [h1(x) ̸= h2(x)] ≥ 1

2 + ϵ. Consider the function g(x) = h1(x) · h2(x). We have that g is a
degree 2k PTF. Thus, we obtain that

1

n

n∑
i=1

1{g(x) = y} =
|S−|
n

· P
x∼US−

[g(x) = −1] +
|S+|
n

· P
x∼US+

[g(x) = 1]

=
|S−|
n

· P
x∼US−

[h1(x) ̸= h2(x)] +
|S+|
n

· (1− P
x∼US+

[h1(x) ̸= h2(x)])

≥ 1

2
+

1

2

(
P

x∼US−
[h1(x) ̸= h2(x)]− P

x∼US+

[h1(x) ̸= h2(x)
)
− 3ϵ

≥ 1

2
+ ϵ

where the penultimate inequality follows from the fact that S+, S− are ϵ-unbiased and the last
inequality follows from our lower bound on the discrepancy. Since there exists no PTF of degree 2k
that succeeds with probability 1

2 + ϵ, we have a contradiction.

This concludes the proof of Theorem F.5.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: Our paper does not have any experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: Our paper does not have any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Our paper does not have any experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our paper does not have any experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read the code of ethics and strongly believe that our work conforms with
stated code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a discussion on the broader impacts of our work at the end of the
main paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data and models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use any existing code, data or models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowd-sourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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