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Abstract

This paper introduces text2midi, an end-to-end model
to generate MIDI files from textual descriptions. Leveraging
the growing popularity of multimodal generative approaches,
text2midi capitalizes on the extensive availability of tex-
tual data and the success of large language models (LLMs).
Our end-to-end system harnesses the power of LLMs to gen-
erate symbolic music in the form of MIDI files. Specifically,
we utilize a pretrained LLM encoder to process captions,
which then condition an autoregressive transformer decoder
to produce MIDI sequences that accurately reflect the pro-
vided descriptions. This intuitive and user-friendly method
significantly streamlines the music creation process by allow-
ing users to generate music pieces using text prompts. We
conduct comprehensive empirical evaluations, incorporating
both automated and human studies, that show our model gen-
erates MIDI files of high quality that are indeed control-
lable by text captions that may include music theory terms
such as chords, keys, and tempo. We release the code and
music samples on our demo page for users to interact with
text2midi.

Code — https://github.com/AMAAI-Lab/Text2midi

Introduction
The rapid advancements in large language models (LLMs)
have revolutionized the way we interact with and leverage
various forms of media, including text, images, and audio.
Researchers have been able to build systems that demon-
strate remarkable capabilities in both analyzing diverse in-
put texts as well as generate highly precise text, image,
video, as well as audio output (Touvron et al. 2023; Ramesh
et al. 2022, 2021; Melechovsky et al. 2024) This has paved
the way for a wide array of downstream applications such
as question-answering systems (Touvron et al. 2023), im-
age generation tools (Ramesh et al. 2021), and even music
generation platforms (suno.com 2024). These breakthroughs
have ushered in a new era of multimodal intelligence, where
the integration of multiple data sources and modalities can
be harnessed to enhance our understanding, creativity, and
problem-solving abilities across a wide range of domains.
While prior work has explored generating audio music from
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Figure 1: Overview of our approach. We use a pretrained
LLM encoder to encode input captions. This is passed to the
trained transformer decoder which generates encoded MIDI
tokens autoregressively.

text, the potential of large language models has not yet been
fully realized for symbolic music generation. In this pa-
per, we introduce text2midi, a system that leverages the
power of LLMs to generate symbolic music in the form of
MIDI files from textual descriptions.

In Music Information Retrieval (MIR), MIDI is a cru-
cial format that provides a symbolic representation of music
(Schedl et al. 2014; Herremans, Chuan, and Chew 2017). Its
symbolic nature has established it as a popular format for
music creation, which is used by music producers and com-
posers in popular Digital Audio Workstations (DAWs).

In recent times, there is a growing emphasis on the cre-
ation of music based on unstructured text instructions (Copet
et al. 2023; Melechovsky et al. 2024; Huang et al. 2023).
These models leverage large language models to transform
textual descriptions of musical attributes into concrete audio
compositions. This process requires a precise alignment be-
tween textual content and musical features to ensure that the
resulting music accurately reflects the provided text guide-
lines. However, the majority of existing methodologies pri-
marily focus on directly producing audio music. In contrast,
symbolic music representation, particularly in MIDI format,
has not received sufficient attention from researchers within
the community. The lack of text-to-midi models can largely



be attributed to the lack of a large-scale dataset of MIDI
files annotated with text captions. Recently, (Melechovsky,
Roy, and Herremans 2024) expanded upon the Lakh MIDI
dataset—which includes 168,407 MIDI files—by incorpo-
rating free-form text captions that provide musical insights;
referred to as MidiCaps. To date, the only significant con-
tribution comes from (Lu et al. 2023), which adopts an in-
direct methodology by deriving musical features from tex-
tual captions for use as conditions. This approach involves
two distinct stages: initially focusing on understanding and
extracting musical attribute values from plain text during a
comprehension phase; subsequent to this extraction process,
these attributes are fed into a generator network designed to
produce symbolic music in a second pass. It should be noted
that both training and inference phases associated with such
a dual-stage process can prove time-consuming.

In this work, we propose text2midi, the first end-to-
end model for generating high quality MIDI files directly
from text (see Figure 1). Our goal is to create an intuitive
and accessible solution that caters to both technical and non-
technical musicians alike. We employ a transformer archi-
tecture based on an encoder-decoder framework capable of
processing any unstructured text (caption) as its input. This
process involves utilizing a pretrained large language model
(LLM) encoder to embed the provided caption, which sub-
sequently acts as conditional data for the decoder to generate
MIDI sequences in an autoregressive manner. To maximize
our architecture’s potential, we implement semi-supervised
pretraining using the SymphonyNet dataset (Liu et al. 2022)
containing 46,359 MIDI files. During data preprocessing,
we create pseudo captions that encapsulate the musical at-
tributes present in the MIDI files and use the pseudo caption-
MIDI pair for pretraining. Subsequently, we leverage Mid-
icaps—a specialized dataset aimed at facilitating text-to-
MIDI generation to fine-tune our model and enhance perfor-
mance. To assess the effectiveness of our training method-
ology, we conduct subjective human evaluations to gauge
the overall musical quality of the MIDI output. Additionally,
we also perform objective assessments to verify alignment
between musical attributes specified in input captions and
those present in the resultant MIDI files. We expect that our
efforts will assist both laymen, musicians, and music pro-
ducers alike, as they can express their concepts through free-
flowing text and utilize the generated MIDI files as a foun-
dational element for their compositions, or just as they are.
Furthermore, we are confident that our work will motivate
researchers within the Music Information Retrieval (MIR)
domain to explore MIDI generation tasks more thoroughly.

The main contributions of our work are as follows:

• We present text2midi, the first end-to-end model for
the task of generating MIDI files from text captions. Our
model leverages the power of pretrained large language
models to encode the provided textual descriptions and
then utilizes an autoregressive transformer decoder to
generate the corresponding MIDI sequences.

• We utilize a semi-supervised pretraining approach using
symphonynet (Liu et al. 2022) - a dataset with complex
multi-track and multi-instrument MIDI files. We first ex-

tract relevant musical attributes from this dataset, such
as instruments, tempo, and time signature, and generate
pseudo captions from these attributes to create caption-
MIDI pairs for pretraining our model.

• We are the first to train on the MidiCaps dataset, a curated
large-scale collection of MIDI-caption pairs, for the task
of text-to-MIDI generation. This dataset allows us to fur-
ther fine-tune and evaluate our model’s performance in
generating MIDI compositions from textual descriptions.

Related Work
The first generative symbolic music model, developed by
Funk (2018), composed the famous string quartet ‘the Illiac
Suite’ using rules and Markov chains. The field of automatic
composition has slowly grown since then, gaining new pop-
ularity with the introduction of various types of deep net-
works such as recurrent neural networks (RNNs), which re-
searchers quickly discovered helped to maintain long-term
structure in their models (Chuan and Herremans 2018). For
instance, BachBot (Liang 2016) and DeepBach (Hadjeres,
Pachet, and Nielsen 2017) are two of the popular models
based on long-short term memory models (LSTMs) that
generate music sequences in the style of Bach. With the
introduction of the Transformer as well as steadily grow-
ing MIDI datasets, more powerful models such as Music
Transformer (Huang et al. 2018) and the recent Museformer
model (Yu et al. 2022) were developed. The latter leverages
the fine-grained and coarse-grained attention in Transform-
ers (Vaswani 2017) to generate fairly long and high quality
music sequences. For a more complete overview of this evo-
lution and currently remaining challenges, the reader is re-
ferred to Herremans, Chuan, and Chew (2017) and Ji, Yang,
and Luo (2023).

To make generative music models really useful, they
should be controllable by the user. This way, they provide
a way to augment the human composer rather than just re-
place them. In the literature, we find models that allow the
generated MIDI files to be controlled based on an input emo-
tion (Makris, Agres, and Herremans 2021), chords (Zixun,
Makris, and Herremans 2021), lyrics (Yu, Srivastava, and
Canales 2021), tension (Herremans and Chew 2017; Guo
et al. 2020), among others. Typically, these models work by
feeding an input label with the desired condition, which are
processed through cross attention in transformer networks,
or other types of conditional neural networks.

In a recent evolution of the field of generative audio, a
number of text-to-music models have been developed in the
last two years (Melechovsky et al. 2024; Copet et al. 2023;
Huang et al. 2023). These models generate audio directly
based on a free-form text prompt. They typically leverage
pretrained large language text encoders, such as FLAN-T5
(Chung et al. 2024), and feed the resulting embedded text
representation as input to the audio decoder. Some mod-
els generate shorter fragments using diffusion (Melechovsky
et al. 2024), whereas others allow longer fragments through
an autoregressive transformer approach (Copet et al. 2023).
In this paper, we follow a similar approach as the latter, ex-
cept on symbolic music.



In the field of generative MIDI models, we have not
yet seen such an evolution. The only text to MIDI model
currently is MuseCoco (Lu et al. 2023). MuseCoco gener-
ates symbolic music from text descriptions by leveraging
a two-stage framework that constitutes text-to-attribute un-
derstanding and attribute-to-music generation. It provides
more control over music elements which has always been a
pain point for previous models. The recently released chat-
GPT4o1 is also able to generate MIDI files based on a text
prompt, however, after a quick examinations, the files are
mostly nonsensical or barely contain notes. A similar con-
clusion was drawn by Lu et al. (2023). Another attempt
at developing symbolic music from text captions is due to
(Zhang et al. 2020), who developed the BUTTER (Better
Understanding of Text To Explanation and Recommenda-
tion) model. This model generates music in ABC format
2based on a text caption. Like MuseCoco, the model also
takes a two-stage approach and predicts key words such as
music attributes from the text caption to generate folk mu-
sic. Finally, Wu and Sun (2022) explores how pretrained lan-
guage models can be used to generated ABC format music.
However, the ABC format is limited in terms of representing
polyphonic multitrack music.

In this work, we aim to take a holistic approach and train
an end-to-end model directly on the recently released Mid-
iCaps dataset (Melechovsky, Roy, and Herremans 2024).
This dataset contains 168,385 MIDI files that have been an-
notated with rich text captions. In the next section we discuss
out model architecture, which is followed by results of our
experiments and discussion.

Method
Here, we first discuss the mathematical formulation for our
problem followed by the transformer architecture used and
the semi-supervised pretraining.

Mathematical Formulation
The input text T is first encoded using a pretrained Flan T5
encoder E, as HT = E(T ), where HT is an n × d di-
mensional vector, n is the token or text sequence length,
and d is the T5 feature dimension. MIDI data M is tok-
enized using the REMI tokenizer to generate the sequence
SM = Mtok(M). The decoder D(HT , SM ) utilizes the se-
quence SM and HT as hidden states to predict the next MIDI
token at time step m:

P (Sm+1 | HT , Sm) = softmax(D(HT , Sm))

where Sm represents MIDI tokens up to time step m. Fi-
nally, a REMI decoder Mdetok converts the generated tokens
back to MIDI:

Mgen = Mdetok(D(E(T ), SM ))

Architecture
Transformer Conditioning With Text As shown in Fig-
ure 2, the proposed text2midi model consists of an

1chatgpt.com
2https://abcnotation.com/

encoder-decoder transformer architecture. We use the pre-
trained FLAN T5 model (Chung et al. 2024) as our encoder
to embed text captions before passing them to the Trans-
former (Vaswani 2017) decoder layers with cross attention.
Flan T5 advances the T5 model (Raffel et al. 2020) through
instruction fine-tuning on a diverse set of tasks. The instruc-
tion fine-tuning approach enables FLAN T5 to generalize
better to unseen tasks, allowing it to perform tasks more ef-
fectively based on natural language instructions. As Flan T5
offers strong language understanding, evident from the zero
shot and few shot learning benchmarks over regular T5, we
postulate that its embeddings can effectively capture the se-
mantic richness of text captions, translating textual descrip-
tions into musical concepts accurately without re-training.
Thus, we freeze the weights of the Flan T5 model during the
training process.

Figure 2: Overview of our model’s architecture. The FLAN
T5 encoder weights are frozen. The transformer decoder ac-
cepts the encoder’s hidden states via cross attention before
generating the REMI+ encoded tokens autoregressively.

MIDI Tokenizer We use the MidiTok library (Fradet et al.
2021) to encode multi-track multi-instrument MIDI files
with the REMI+ tokenizer (von Rütte et al. 2023), an ex-
tension of the REMI encoding (Huang and Yang 2020). The
REMI tokenizer represents musical notes in a tokenized for-
mat, using tokens for tempo, pitch, velocity, duration, bar,
onset, and positions within bars. This tokenizer is extended
to REMI+ by adding MIDI program and time signature to-
kens, allowing it to handle multi-track and multi-instrument
compositions with varying time signatures.



Transformer Decoder Given that we have represented the
MIDI sequence as tokens, we can use a transformer decoder
to generate these tokens autoregressively, much like a lan-
guage generation task. We implemented the flash attention
(Dao et al. 2022) algorithm in the Transformer Decoder,
over the vanilla attention mechanism from the original study
(Vaswani 2017) so as to speed up the computation as well as
reduce the memory usage of the model, particularly for long
sequence tasks such as this one.

We utilize vanilla positional embeddings to encode the or-
der of tokens in the sequence. After the final decoder layer, a
linear projection layer is employed to map the decoder out-
puts to the vocabulary size. During training, we optimize the
model using the categorical cross-entropy loss, defined as:

LCCE(y, ŷ) = −
N∑
i=1

yi log(ŷi) (1)

where yi is the true label and ŷi is the predicted probabil-
ity for class i.

Semi-Supervised Pretraining
The proposed text2midi model aims to generate music
sequentially (from the beginning) based on textual prompts,
which necessitates using the first n encoded tokens per MIDI
file rather than randomly cropping from the middle. This ap-
proach, however, limits our training data as we cannot uti-
lize information beyond the model’s context window. To ad-
dress this limitation, we implement a two-stage training pro-
cess. First, we pretrain on a larger dataset using placeholder
text captions. For this pretraining dataset, which lacks prede-
fined captions, we extract objective attributes from the MIDI
files using the Music21 library(Cuthbert and Ariza 2010).
These attributes are: time signature, key signature, beats
per minute (BPM), and instruments. We construct 10 dif-
ferent placeholder sentences incorporating these attributes,
which are then processed by the Flan T5 encoder. An ex-
ample of a placeholder caption is “Played at 114 beats per
minute in 4/4 time signature and the key of G# minor, clas-
sical piece with the following instruments: clarinet, English
horn, flute, horn, piccolo, trombone, and trumpet.”, where
the text in bold are the placeholders.

Following the pretraining phase, the model is fine-tuned
on a dataset with more detailed captions that include both
the objective attributes used during pretraining and subjec-
tive elements such as style and mood. This allows the model
to learn sophisticated text-to-music mappings. During fine-
tuning, a sentence omission technique is applied at each it-
eration, where 20%-50% of sentences are randomly omitted
with a 50% probability. This technique regularizes the model
by exposing it to a more varied and unpredictable training
set, preventing overfitting and enhancing its generalization
to unseen data. Additionally, it serves as implicit data aug-
mentation by creating a larger and more diverse set of train-
ing examples, helping the model learn to fill in gaps and
generate coherent outputs from incomplete inputs. Finally,
it prepares the model for real-world scenarios where users
may provide minimal or incomplete captions, enhancing its
practical effectiveness.

Experimental Setup
Evaluating generative models is a challenging task (Agres,
Forth, and Wiggins 2016). In order to establish the effective-
ness of text2midi, we conduct both an objective evalua-
tion of the results as well as a subjective evaluation in the
form of a listening test. This allows us to thoroughly test
both the resulting musical quality as well as how much the
generated MIDI adheres to the input caption. In this section,
we first detail the datasets and model configurationused to
train the model in the experiments, followed by experimen-
tal configuration and evaluation metrics. Finally, we discuss
results and findings of our experiments.

Training Datasets
We work with two datasets during our training process:
SymphonyNet for semi-supervised pretraining and Midi-
Caps for finetuning towards MIDI generation from captions.

MidiCaps is a dataset of 168,401 unique MIDI files with
text captions (Melechovsky, Roy, and Herremans 2024).
The MIDI files were originally provided in the Lakh MIDI
dataset (Raffel 2016), released under the CC-BY 4.0 license.
Each MIDI file is paired with a music feature-rich caption.
An example caption in the dataset: “A melodic and happy
pop song with a Christmas vibe, featuring piano, clean elec-
tric guitar, acoustic guitar, and overdriven guitar. The song
is in the key of A major with a 4/4 time signature and
a moderate tempo. The chord progression revolves around
D, E6, D, and E, creating a motivational and loving atmo-
sphere throughout the piece.” We use the provided training
set ( 90% of the data) to train the model in our experiments.

SymphonyNet (Liu et al. 2022) is a comprehensive
dataset of symphonic music. It comprises 46,359 multi-
instrument, multi-track MIDI files, predominantly sym-
phonic, with an average duration of 4.26 minutes per file.
We selected SymphonyNet for semi-supervised pretraining
due to its high-quality, multi-track data, which aligns well
with our model’s requirements. The SymphonyNet MIDI
files were augmented with pseudo-captions as described in
the methods section.

Model Configuration
We use an encoder-decoder transformer architecture for pre-
training on SymphonyNet and finetuning on MidiCaps. As
mentioned earlier, our encoder is a pretrained FLAN T5
model (Chung et al. 2024). Our transformer decoder con-
sists of 18 layers and 8 attention heads, with 159M trainable
parameters. Our architecture consists of 272M parameters in
total. We observe that the MIDI tokenizer contains on aver-
age 4-5 minutes length of data per 2,000 tokens. Since the
average length of tracks in SymphonyNet as well as Midi-
Caps is 4-5 minutes, we configured the input to the trans-
former decoder to be 2,048 MIDI tokens. Any smaller se-
quences in dataset are padded. For pretraining, we train for
100 epochs, with a batch size of 4 and gradient accumula-
tion set to 4. For finetuning on MidiCaps, we trained for 30
epochs. For both runs, we use the Adam optimizer (Kingma
and Ba 2014) coupled with a cosine learning rate schedule



with a warm-up of 20,000 steps. For pretraining, our base
learning rate is 1e−4 whereas for finetuning, we use a re-
duced base learning rate of 1e−6. Our models are trained on
6 NVIDIA L40S 48 GB GPUs.

Test Datasets and Baselines
In order to maintain fairness with subjective results (based
only on five generated examples), we consider 100 (5%) ran-
domly selected samples from the MidiCaps test set (Mele-
chovsky, Roy, and Herremans 2024). We compare the MIDI
generated by text2midi to the ground truth MIDI file
from the MidiCaps dataset, as well as with MIDI generated
by the MuseCoco model (xlarge) (Lu et al. 2023)3.

Objective Evaluation Metrics
In the objective evaluation of our model, we address three
questions - how much long-term structure and patterns the
music contains, how similar the input text and generated mu-
sic are and how close some of the important musical features
are to that of the ground truth. To answer these, we use three
types of evaluation metrics as discussed below:

Compression ratio uses the COSIATEC algorithm
(Meredith 2013) as used by (Chuan and Herremans 2018)
to measure the long-term structure and repeating patterns
in music. We measure the compression ratio MIDI files to
quantify amount of long-term structure in them.

CLAP or Contrastive Language-Audio Pretraining (Wu*
et al. 2023) enables the extraction of joint latent representa-
tions of audio and text samples. We use an improved CLAP
checkpoint (LAION CLAP4), specifically trained on music
and speech. We extract the latent representations of an input
text (caption) and the synthesized audio of the MIDI file. We
then use the cosine similarity between these latent represen-
tations as a measure of similarity between text (caption) and
MIDI (synthesized audio). This enables us to evaluate how
closely MIDI files fit their text caption.

Feature wise comparison consists of four features ex-
tracted from generated MIDI files and their related ground
truth MIDI files as used by Melechovsky et al. (2024):
• Tempo Bin (TB): the ratio of files of which the extracted

tempo (in terms of beats per minute (bpm)), falls within
the tempo bin extracted from the ground truth MIDI file,
with bin borders defined at 40, 60, 70, 90, 110, 140, 160,
210 bpm. The tempo is extracted with music21 (Cuthbert
and Ariza 2010).

• Tempo Bin with Tolerance (TBT): this metric allows for
slightly more tolerance than the previous one. It is cal-
culated as the ratio of MIDI files of which the predicted
bpm falls into the ground truth tempo bin or a neighbor-
ing one, compared to all files.

• Correct Key (CK): the ratio of MIDI files of which the
extracted key (using music21 (Cuthbert and Ariza 2010))
matches the extracted of the ground truth key MIDI file.
3For detailed and latest results, readers are invited to visit our

demo page https://github.com/AMAAI-Lab/Text2midi
4https://huggingface.co/laion/larger clap music and speech

• Correct Key with Duplicates (CKD): this metric allows
for slightly more tolerance than the previous one. It is
calculated as the ratio of generated MIDI files for which
the extracted key matches the key of the extracted key of
the ground truth MIDI key or an equivalent key (i.e., a
major key and its relative minor).

Listening Test
For the subjective assessment of our model, we conducted
a listening study utilizing PsyToolkit (Stoet 2010). Partic-
ipants were invited to listen to 15 rendered MIDI files: 5
randomly selected captions from the MidiCaps test dataset
with their accompanying ground truth MIDI, 5 generated by
text2midi using the text captions of the above 5 MIDI
files from MidiCaps as input, and 5 generated by MuseC-
oco using the same text captions. We did not cherry pick
the generated samples. These 15 samples were randomly or-
dered for each participant. Listeners evaluated these tracks
across six criteria:

• Musical quality of the music
• Overall match between the music and the caption
• The genre of the music matches the caption
• The mood of the music matches the caption
• The key of the music matches the caption
• The chords in the caption are prominent in the music
• The tempo of the music matches the caption

Results and Discussion
We assess various aspects with a particular focus on how the
generated music reflects the captions, both in an objective
experiment as well as a listening study. For all our evaluation
tasks, we generate MIDI with 2,000 tokens. All our gener-
ated MIDI files typically last between 30-40 seconds when
played back. For a fair comparison, while comparing with
ground truth (gt) data, we only consider the first 40 seconds
of the latter.

Objective Results
Table 2 shows the results of the objective evaluation. Evalua-
tion metrics are computed on MIDI files generated (from the
same caption) by both text2midi, MuseCoco (Lu et al.
2023), and the original MIDI files (ground truth) from the
data set (MidiCaps).

Generating music with long-term structure is a known
challenge (Bhandari and Colton 2024). We use the com-
pression ratio, as done by Chuan and Herremans (2018),
to evaluate the presence of repeated patterns in the MIDI
files. text2midi achieves an average compression ratio
of 2.31, significantly higher than MuseCoco’s 2.12 (p <
0.0001). This result demonstrates that text2midi outper-
forms MuseCoco in creating long-term structure and repeat-
ing patterns.

To evaluate the match between text caption and MIDI,
we calculate the CLAP score. In Table 1, we see that
text2midi’s CLAP score (0.22) beats that of MuseCoco
(0.21), which is quite encouraging. However, both models



Generated by: MidiCaps text2midi MuseCoco
Question Avg. rating (1-7)

Musical Quality 5.79 4.62 4.40
Overall matching 5.42 4.67 4.07
Genre matching 5.54 4.98 4.40
Mood matching 5.70 5.00 4.32
Key matching 4.61 3.64 3.36
Chord matching 3.20 2.50 2.00
Tempo matching 5.89 5.42 4.94

Table 1: Results of the listening study. Each question is rated on a Likert scale from 1 (very bad) to 7 (very good). The table
shows the average ratings per question for each set of generated music.

Figure 3: A piano roll representation of a generated MIDI using the following caption “A haunting electronic ambient piece that
evokes a sense of darkness and space, perfect for a film soundtrack. The string ensemble, trumpet, piano, timpani, and synth pad
weave together to create a meditative atmosphere. Set in F minor with a 4/4 time signature, the song progresses at an Andante
tempo, with the chords F, Fdim, and F/C recurring throughout.”

fall below the ground truth CLAP score (0.26), showing
room for further improvement. We observed that, for the
specific examples where the similarity between the text and
ground truth MIDI is high (i.e. high CLAP score), the CLAP
score for generated MIDI is also high. We thus posit that our
model is able to adhere to the prompts and achieve better
text-music alignment compared to our baseline.

While the CLAP score provides a general indication of
how well the text and MIDI align, we further analyze spe-
cific aspects in which the generated MIDI resembled the
ground truth MIDI. It is important to note that as these
metrics compare the generated MIDI with the ground truth

MIDI, they cannot be computed for MidiCaps, which serves
as the ground truth here. We show that in terms of both
tempo and key attributes, text2midi outperforms the
MuseCoco model. The tempo bin (TB) metric reaches 39.70
compared to 21.71 for MuseCoco, and the TBT reaches
65.80 compared to 54.63 for MuseCoco. These ratios indi-
cate that about 66% of the tempo instructions are very close
to the desired tempo. The CKD ratios for text2midi are
also higher than MuseCoco (35.60% vs 14.59%), indicating
better key matching. We note that both CK and CKD are
statistically significant (p < 0.0001). In terms of inference
speed, we notice that text2midi is much faster compared



text2midi MidiCaps MuseCoco P-Val
CR ↑ 2.31 3.43 2.12 < 0.0001
CLAP ↑ 0.22 0.26 0.21 0.0102

TB (%) ↑ 39.70 - 21.71 0.1102
TBT (%) ↑ 65.80 - 54.63 0.2051
CK (%) ↑ 33.60 - 13.70 < 0.0001
CKD (%) ↑ 35.60 - 14.59 < 0.0001

Table 2: Summary of our objective evaluations. Numbers are
average results for all captions from the MidiCaps test set.
CR: Compression ratio; CLAP: CLAP score; TB: Tempo
Bin; TBT: Tempo Bin with Tolerance; CK: Correct Key;
CKD: Correct Key with Duplicates; ↑: higher score better.

to MuseCoco as a result of unifying the text-to-attribute and
attribute-to-music models into a single holistic approach.
Based on our observation, text2midi takes around 55
seconds to generate a 40-second long MIDI file, compared
to 120 seconds for MuseCoco (inference performed on GPU
in both cases). This comprehensive evaluation demonstrates
that text2midi consistently surpasses MuseCoco on all
objective metrics, despite training on a data set of only one
fifth of the size used to train MuseCoco.

Subjective Results
A total of 11 participants participated in the listening test, of
these, 3 individuals reported being able to recognize chords
and keys with absolute pitch capabilities, while 6 individuals
reported receiving more than one year of musical training
experience.

The results of our subjective test are shown in Table 1. In
general, all ratings for the ground truth MidiCaps examples
gravitate towards ‘good’ (score 5) and that of text2midi
and MuseCoco generated examples, towards ‘neutral’(4) to
‘good’ (5). On questions where the MidiCaps files receive
lower scores, the generated examples also tend to score
lower. The similar lower scores indicate a close alignment
between the trained model and the original MidiCaps data.
On average, although for all evaluation criteria MidiCaps
examples fare better, they don’t outperform text2midi
generated examples by a large margin. text2midi gener-
ated examples also scored better in all questions compared
to MuseCoco generated examples. This shows the effective-
ness of text2midi’s ability to better follow the musical-
ity of the MidiCaps ground truth. We have kept the listening
test open for participation. Readers are requested to visit our
GitHub page5 for updated results.

Discussion
The text2midi model exhibits strong capabilities in gen-
erating music with long-term structure and repeating pat-
terns that make compositional sense, while still being able
to break out of those repetitions, and to then make use of the
same motifs from earlier in the composition. Figure 3 shows
the piano roll representation of a generated piece. An exam-
ple of a repeated motif is shown in the red boxes, which

5https://github.com/AMAAI-Lab/Text2midi

first occurs at 3 seconds in, being used again with varia-
tions at 14 seconds, before switching to a different repeat-
ing pattern with a similar theme at 33 seconds (highlighted
in blue). Such translated motifs would be recognized as pat-
terns with COSIATEC (Meredith 2013) and hence leads to a
higher compression ratio. The example also nicely shown
that appropriate instrument tracks are generated to match
the example (classical piece). The notes also appear ‘long’
on the piano roll, indicating a match with the desired ‘slow
and emotional’ character. text2midi still struggles with
instrumentation, which is apparent in this example: where
a ‘classical’ piece is asked for, the instruments definitely
match this (e.g. trombone, french horn), however, the ad-
ditional instruction of ‘church organ’ is ignored. This could
be due to the fact that the captions describe the entire song,
whereas we only used part of the song for training, hence
some instruments may have not started played. In future
work, it would be interesting to explicitly focus on encod-
ing instrumentation.

Conclusion
In this paper, we introduce text2midi, the first end-to-
end model for generating MIDI files directly from textual
descriptions. The text2midi model leverages the power
of pretrained large language models (LLMs) and combines
it with an autoregressive transformer decoder to generate
expressive MIDI files. The model is trained using semi-
supervised learning on large-scale datasets including Mid-
iCaps and SymphonyNet. In a detailed analysis, our analyt-
ical experiment shows that text2midi is able to generate
MIDI pieces that have a long-term structure with repeating
patterns, and show that the requested features in the input
text caption are indeed adhered to in the generated MIDI.

This work not only advances the state-of-the-art in text-
to-MIDI generation but also opens up new avenues for intu-
itive music composition, by both making it accessible to a
broader audience through the use of simple text prompts, as
well providing a user-friendly tool for expert composers and
producers to generate musical ideas. In future, we believe
this model may be further trained to increase its output qual-
ity as well as be expanded to include more complex tasks
including midi editing guided by text prompts. Another cur-
rent limitation is the data quality, with higher quality creative
commons MIDI files, model quality would further increase.
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