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Abstract

Representation learning has been central to deep learning’s evolution. While interpretable
structures have been observed in pre-trained models’ representations, an important ques-
tion arises: Do networks develop such interpretable structures during in-context learning?
Using synthetic sequence data derived from underlying geometrically structured graphs
(e.g., grids, rings), we provide affirmative evidence that language models develop internal
representations mirroring these geometric structures during in-context learning. Further-
more, we demonstrate how in-context examples can override semantic priors by constructing
a representation in dimensions other than the one used by the prior. Overall, our study
demonstrates that models can form meaningful representations solely from in-context ex-
emplars.

Keywords: Interpretability, In-context learning

1. Introduction

Researchers have found various geometric representations in the activations of language
models, such as linear representations for “truthfulness” (Marks and Tegmark, 2024), “re-
fusal” (Arditi et al., 2024), or even “world models” (Li et al., 2022; Nanda et al., 2023),
as well as non-linear features including circular representations (Engels et al., 2024) for
periodic concepts, or “onion” representations for a simple token repetition task (Csordás
et al., 2024) (see Appendix A for a more comprehensive background).

Meanwhile, language models are also able to solve new tasks that are specified solely
by inference time exemplars. This ability is often referred to as in-context learning (ICL)
(Brown et al., 2020). A natural questions which arises is: “Do models create task dependent
representations solely from in-context exemplars?”

In this work, we demonstrate that language models can construct geometric represen-
tations of activations reflecting the structure of the given in-context tasks. We design
synthetic data generating processes (DGP) with an underlying geometrical graph. We then
sample tokens from this DGP with a rule defined on the graph. Given enough exemplars,
we evaluate whether the model follows the rules and extract the hidden activations of the
model to examine the representations of tokens involved in the task.

We intentionally choose tokens that do not contain any relationship that pertains to
the graphical structure (ex: “apple”, “opera”) and find that with a sufficient number of
exemplars, the model not only learns the task (i.e., infers the newly specified relationship
amongst the tokens), but more importantly captures the newly specified task geometry in
the first few principal components.

Interestingly, we find that if we use tokens that already have a semantic geometry (e.g.,
days of the week (Engels et al., 2024)), the model can override this semantic prior to
perform the task. In this case, we find that the largest principal components still capture
the semantic prior, while lower principal components capture the newly specified geometry.
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Figure 1: Llama constructs a grid from observations of a traversal of a 4x4 board.
We randomly order a set of tokens in a 4x4 grid, and randomly traverse the grid,
resulting in a sequence of tokens. From observing such a sequence, the model can
represent the ground truth shape of the grid in the first two principal components
of the tokens’ mean activations. We use random tokens that do not inherently
carry the 4x4 geometry to represent nodes in the graph. With more examples
and in deeper layers (Fig. 4), we see a clearer representation of the grid appear.

Overall, we discover that large language models can create task specific struc-
tured representations from solely in-context exemplars, which can live in lower
principal components if there already exists a strong semantic representation.

2. Experiment Setup

For our experiments, we use Llama3.1-8B (Dubey et al., 2024). We experiment with tasks
defined on two geometrical graphs: a ring and a grid. For each task, we assume a set of
tokens T . In our grid task, we arrange 16 tokens with no strong semantic structure in a 4x4
grid, with edges between horizontal and vertical neighbors. In our ring task, we randomly
order 10 tokens on a circle and define edges between neighboring tokens including a link
between the first and the last token.

After defining these graphs, we apply a sampling rule on each graph to construct an
in-context task. For the grid task, we perform a random walk on the graph, emitting the
words on the visited nodes as a sequence (Fig. 1). For the ring task, we simply sample
random pairs which are neighbors on the graph (Fig. 2).

For both tasks, the model successfully learns the rules from in context exemplars.

3. Uncovering Geometric Representations

Each of our tasks presents a sequence of tokens that originates from an underlying graph
with a certain topology. To find the geometric relationship between tokens, we first compute
each token’s mean activations from the hidden layers. Namely, for a given layer ℓ and token
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t, we collect all activations corresponding to the token t across N timesteps at layer ℓ. We
then compute the mean activations per token t ∈ T , notated as x̄ℓt.

Given mean activations x̄ℓt for tokens t ∈ T , we run PCA on our set of mean activations.
We then visualize 2-dimensional projections using our two main principal components.

3.1. Grid Representation

Fig. 1 demonstrates the representational geometry for the 4x4 grid task. We observe that
Llama-3.1-8B’s internal representation indeed forms a 4x4 grid at deeper layers when given
enough exemplars, preserving the ground truth neighboring structure. This demonstrates
that models can organize semantically unrelated words into a geometric repre-
sentation that reflects the in-context task, given enough exemplars. Interestingly,
the corners of the board are collapsed inwards. We believe this is because of a natural under
exploration of corner regions (see Fig. 5 in Appendix).

3.2. Ring Representation

Next, we ask: Will a global structure of a knowledge graph emerge only by observing tiny
subgraphs? We construct a task where the given input sequence is a concatenation of
multiple 1-step moves on a ring. The first token of the step is chosen in random, so that
each exemplar only reveals one edge of the ring. Fig. 2 shows the results for this task (see
Fig. 7 in Appendix for task accuracy). Here, we find again that semantically unrelated
token representations organize into a ring structure adhering the specified ordering defined
in the task. Recall again that the tokens have no a priori reason to be organized in a ring.

Figure 2: LLMs can construct a representation of a global graph from many
small in-context subgraphs Given randomly sampled pairs on a ring graph,
the model representation reconstructs the ring in its principal components.
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Figure 3: Models can Override Semantic Priors using Representations in Higher
Dimensions We observe the semantic ring in the first two components, however
the model forms the in-context ring in the two subsequent lower components.

3.3. Semantic Prior Inversion

Prior work has found sets of tokens already carrying a representational geometry (Engels
et al., 2024). How would this geometry interfere with an in-context task when the task
disagrees with a semantic prior? To answer this question, we repeat the previous experiment
with a set of tokens that already has a semantically induced circular representation as shown
in Engels et al. (2024): {Mon, Tue, Wed, Thu, Fri, Sat, Sun}. We then define a new
ordering to define the in-context task: {Mon, Thu, Sun, Wed, Sat, Tue, Fri}.

The model still solves the task despite the need of more exemplars (Fig. 7, 10). However,
in this case, we only see the semantic ring in the first two principal components. Interest-
ingly, the lower third and fourth principal components forms a ring which adheres to the
new ordering specified in-context (Fig. 3).

4. Conclusion

In this work, we demonstrate preliminary findings that geometric representations for tasks
can also be formed in-context. Interestingly, when tokens with a semantic prior is used as
the in-context prompt, we see the larger principal components encode the original semantic
prior, while lower principal components encode the geometry specified in the context. While
our work adds to our understanding of neural network representations, we also pose an
interesting question: which representations are induced by model weights, and which are
induced in-context? We view this line of work as an exciting area for further study.

5. Limitations

A primary limitation is the lack of a causal study. Currently it is unclear if the representa-
tions have a correlational or causal relationship with the model’s predictions. Our results
could also be made robust by testing on different language models and different sets of
tokens.
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Appendix A. Related Work

Researchers have recently discovered numerous representations for human concepts. Park
et al. (2024b) suggests that a language models consist of linear representations, and indeed
numerous researchers have found concrete examples. These include “truthfulness” (Marks
and Tegmark, 2024; Burns et al., 2022; Li et al., 2023), “refusal” (Arditi et al., 2024),
toxicity (Lee et al., 2024), sycophancy (Rimsky et al., 2024), or even “world models” (Li
et al., 2022; Nanda et al., 2023). Park et al. (2024a) finds that hierarchical concepts are
represented with a tree-like structure consisting of orthogonal vectors.

A relevant line of work includes that of Todd et al. (2023) and Hendel et al. (2023).
Both papers find that one can compute a vector from in-context exemplars that encode the
task, such that adding such a vector during test time for a new input can correctly solve
the task.

Language models do not always form linear representations. Perhaps most relevant to
our work, Engels et al. (2024) finds circular feature representations for periodic concepts,
such as days of the week or months of the year, using a combination of sparse autoencoders
and PCA. An important distinction to make is that while they find non-linear, circular
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representations for concepts with a circular semantic prior, we demonstrate that even ran-
dom tokens that have no reason to be organized as a ring a priori can form ring
structures when given a circular relationship in-context.

Other non-linear feature representations include that of Csordás et al. (2024), in which
they finds that recurrent neural networks trained on token repetition can either learn an
“onion”-like representation or a linear representation, depending on the model’s width.

Unlike prior work, we find that in-context tasks with a specified structural pattern can
be induced in-context.

Appendix B. Experimental Details

B.1. Activation collection

We generate synthetic sequence data from custom code. To run Llama-3.1 models, we use
nnsight and compute provided by NDIF (Fiotto-Kaufman et al., 2024).

B.2. Evaluation

Accuracy We evaluate the accuracy by calculating the next token probabilities on the
restricted set of tokens we operate on. In App. C, we show the rescaled accuracy, summing
up all valid token probabilities.

Average Activation calculation We calculate the average activation of each token by
collecting activations from a 200 token window for the board task and a 100 token window
for the ring task. The labelled context length corresponds to the maximum context length of
this window. This window had to be large to allow every token’s activation to be collected.

2D projection of activations We use principcal component analysis (PCA) to find the
dimensions ordered by their variances.

Appendix C. Additional Result

C.1. Additional Results on the grid

Fig. 4 shows the result in Fig. 1 over different layers.
Fig. 5 shows the visit count at each board position indice. The red lines denote corner

grid points, which are visited less. We suspect this as the reason for seeing collapsed corners
in representation space.

C.2. Additional Results on Ring

We show the result over different layers for the ring task in Fig. 6
We show the rescaled accuracy (rule following) of the ring task in Fig. 7.

C.3. Additional Results on the Semantic Ring

Fig. 8 shows the semantic ring of days of week extracted from Llama-3.1-8B.
We show the result over different layers for the semantic ring task in Fig. 9.
The accuracies on the semantic ring task is in Fig. 10.
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Figure 4: Detailed depiction of PCA projections with increasing context size
(rows) and deeper layers (columns). As we increase the number of examples,
and in deeper layers, we see a more distinct grid representation show up. Note
that the legend indicates the ordering of the groundtruth grid – i.e., apple (red)
is in the top left of the grid, with house (brown) and bird (blue) as its neighbors.

Figure 5: Board position visit histogram
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Figure 6: Results on the Ring task at different layers
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Figure 7: Rescaled next token accuracy on a ring graph. We plot the rescaled ac-
curacy in all panels. The rescaled next token accuracy sums up the predicted
probabilities of all valid output tokens defined in the DGP. Accuracy on a syn-
thetically constructed ring of 10 words. After 100 tokens, the model learns almost
perfectly to follow the rule and output tokens from neighbors on the ring
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Figure 8: Semantic Ring from Llama-3.1-8B A ring of days of the week discovered in
Llama3.1-8B(Dubey et al., 2024)’s representation space (layer 10 output), similar
to Engels et al. (2024)
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Figure 9: Semantic ring override task results across multiple layers (a) PCA di-
mension 1,2 (b) PCA dimension 3,4
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Figure 10: Rescaled next token accuracy on a semantic ring graph. We plot the
rescaled next token accuracy on the semantic ring task. The rescaled next
token accuracy sums up the predicted probabilities of all valid output tokens
defined in the DGP. The semantic accuracy shows the next token accuracy on the
semantic continuation, e.g. (“ Tue” following “ Mon”). The semantic accuracy
quickly drops as the model figures that the given task is not a simple semantic
continuation. The shuffled accuracy, evaluated on the task given in-context
slowly rises and reaches nearly 100% give 500 exemplars.
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