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Abstract

Communication between agents often constitutes a major computational bottleneck
in distributed learning. One of the most common mitigation strategies is to com-
press the information exchanged, thereby reducing communication overhead. To
counteract the degradation in convergence associated with compressed communi-
cation, error feedback schemes—most notably EF and EF21—were introduced.
In this work, we provide a tight analysis of both of these methods. Specifically,
we find the Lyapunov function that yields the best possible convergence rate for
each method—with matching lower bounds. This principled approach yields sharp
performance guarantees and enables a rigorous, apples-to-apples comparison be-
tween EF, EF21, and compressed gradient descent. Our analysis is carried out in
the simplified single-agent setting, which allows for clean theoretical insights and
fair comparison of the underlying mechanisms.

Remark: proof certificates

To consolidate and support our theoretical results, we complement each theoretical statement
with analytical or numerical validation. Specifically, we provide certificates of correctness
generated either with a Computer Algebra System (CAS), using a WolframScript, for symbolic
verification, or using Performance Estimation Problems (PEP) for numerical validation. CAS
enable verification of algebraic identities, while PEP annotations indicate numerical validation
of complete statements. These certificates are highlighted in the paper using and
markers, which are direct links to the corresponding Jupyter notebook or WolframScript in
our public GitHub repository. a

1 Introduction

Over the past decade, distributed optimization has become a cornerstone of large-scale machine
learning. This shift is driven by major increases in the size of models and training data, as well as
increasing societal concerns about data ownership and privacy. Ultimately, solutions in which training
is distributed across a network of n agents, each retaining its own local data, under the coordination of
a central server, have emerged as one of the most natural and efficient solutions to this problem [1, 2].

∗Correspondence to daniel.berg-thomsen@inria.fr
aWhile these certificates do not replace the mathematical proofs presented in the paper, they serve as an

additional layer of transparency and error checking, analogous to unit tests in software development. This
practice provides a reproducible, independently verifiable basis for our theoretical claims, thereby reducing the
risk of oversights in complex derivations.
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Formally, the goal is to solve the following minimization problem:

min
x∈Rd

{
f(x) :=

1

n

n∑
i=1

fi(x)

}
. (1)

Classical methods such as distributed gradient descent and its stochastic variants achieve linear
speedups in iteration complexity with respect to the number of agents. However, they often suffer from
significant communication overhead, as gradients or model updates must be exchanged frequently
over bandwidth-limited channels [3–5]. As the scale of models keep increasing, this communication
bottleneck has been identified early on as a critical limitation, prompting the development of methods
aimed at reducing communication costs. Two main strategies are favored: scarcely communicating
with the central server, known as local iterations [see e.g. 1, 6]—and transmitting compressed
updates, which aim to reduce the size of the exchanged information. Compression mechanisms can
be applied to reduce communication either from agents to the server [3, 7–14] or from the server to
the agents [15–23]. This paper focuses on methods using compression operators, which encompass a
variety of strategies, including selecting only a fraction of the weights to be transmitted (e.g., the top
K coordinates [8]) or communicating low-precision updates via quantization [7].

Algorithm 1 Compressed gradient descent (CGD)

1: initialization: x0 ∈ Rd, η > 0
2: for k = 0, 1, 2, . . . , N do
3: Agent i ∈ [n] compresses∇fi(xk) and communicates m(i)

k := C(∇fi(xk))

4: Server updates xk+1 ← xk − η · 1n
∑n

i=1 m
(i)
k

5: end for

Formally, a compression operator is a possibly random mapping C : X → X , such that C(X)
can be encoded (almost surely or on average) with a lower number of bits than X . The most
natural algorithm leveraging communication compression with a centralized server is the compressed
gradient descent algorithm (CGD), which is described in Algorithm 1. The main idea is to perform
a distributed gradient step, with the compression operator C applied to the gradient of each agent
before communication. Although this compression scheme reduces the communication cost, it comes
at the expense of non-convergence in any practical setting [24].

To assess the general impact of compression schemes on the rate of convergence, one typically
leverages the fact that these compressors all satisfy generic assumptions. These include unbiasedness,
i.e., E[C(x)] = x for any x ∈ X , together with relatively bounded variance, which states that
E[∥C(x) − x∥2] ≤ ω∥x∥2 for any x ∈ X [7, 11, 9, 25–27, 12, 28, 19, 20, 29–31], or contractive-
ness [32–34, 21, 24], defined as follows:

Assumption 1 (Contractive compression operator). The compression operator C is a stochastic
operator such that, for some ϵ ∈ [0, 1),

for all x ∈ Rd, E
[
∥x− C(x)∥2

]
⩽ ϵ∥x∥2. (2)

The standard way to improve CGD is to leverage the asymmetry of information: each agent has access
to the exact gradient before compression and can therefore track the discrepancy between the exact
gradient and the transmitted (compressed) message. This discrepancy can be stored and used as a
correction term in subsequent iterations—a principle that lies at the heart of error feedback techniques.
The most basic mechanism used is known as classic error feedback (EF), where each agent stores the
difference between the true gradient and its compressed version locally, and incorporates this error
into the next round of communication. This method, outlined in Algorithm 2, was first introduced
in [3] and later analyzed in [32, 11, 10, 8, 35]. Notably, this method converges in many practical
settings, effectively addressing the problem of non-convergence for CGD.

More recently, a variant of the classic error feedback mechanism, known as EF21 was introduced
by Richtárik et al. [14], and is presented in Algorithm 3. Unlike classic error feedback, EF21 focuses
on communicating a gradient estimate that is more robust to the variance observed in gradients
received from different agents around the minimum of finite sum objectives. This method has since
been extended in several directions [e.g. 23, 36–38].
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Algorithm 2 Classic error feedback (EF)

1: initialization: x0 ∈ Rd, η > 0, e
(i)
0 = 0 for i = 1, . . . , n

2: for k = 0, 1, 2, . . . , N do
3: Agent i ∈ [n] compresses e(i)k + η∇fi(xk) and communicates m(i)

k := C(e(i)k + η∇fi(xk))

4: Agent i ∈ [n] updates e(i)k ← e
(i)
k + η∇fi(xk)− C(e(i)k + η∇fi(xk))

5: Server updates xk+1 ← xk − 1
n

∑n
i=1 m

(i)
k

6: end for

Algorithm 3 Error Feedback 21 — EF21

1: initialization: x0 ∈ Rd; step size η > 0; d
(i)
0 = C(∇fi(x0)) for i = 1, . . . , n;

2: for k = 0, 1, 2, . . . , N do
3: Server updates xk+1 ← xk − η · 1n

∑n
i=1 d

(i)
k

4: Agent i ∈ [n] compresses∇fi(xk+1)−d(i)k and communicates m(i)
k := C(∇fi(xk+1)−d(i)k )

5: Agent i ∈ [n] updates d(i)k+1 ← d
(i)
k +m

(i)
k

6: end for

Error feedback techniques are widely regarded as highly effective, and EF was described as “com-
pression for free” as early as 2019 [10]. Despite that, and the abundant literature on the topic,
the precise impact of error feedback techniques on performance remains difficult to assess. Com-
parison is complicated by the diversity of settings under which methods are analyzed: different
function classes (smooth, convex, or nonconvex), a range of algorithmic enhancements (acceleration,
adaptivity, variance reduction, etc.), and a variety of performance measures (different Lyapunov
functions) [23, 39, 38, 37, 40–42]. While some works provide insightful counter-examples—e.g.,
Beznosikov et al. [24] show that classic error feedback effectively addresses the limitations of CGD
in distributed settings—many others simply propose a Lyapunov function and establish an upper
bound without demonstrating its tightness. As a result, claims about “compression for free” are
often based on comparisons between potentially loose guarantees, which may not reliably reflect
real algorithmic performance. The length and complexity of the proofs involved typically make it
difficult to ensure the tightness of the results, and most proofs are constructed in an ad hoc manner.
Consequently, it is difficult to determine which methods are actually worst-case optimal based on
upper bounds whose tightness is not always assured.

As a result, even remarkably simple questions remain only partially answered:

What is the optimal convergence rate that each method can attain?
Given an optimization setting, what method should we choose?

How should each method be optimally tuned?

Our goal is to provide definitive answers to parts of these questions. In this paper, we take a
complementary perspective to the existing literature and offer a tight, principled comparison of the
three methods. Specifically, we derive their optimal tuning, identify an optimal Lyapunov function
for each method, and compute the exact optimal convergence rate for any Lyapunov function within
our class of candidate Lyapunov functions.

To make this comparison sharp and transparent, we adopt a deliberately simple yet representative
setup: we consider smooth and strongly convex functions in the single-agent setting (n = 1).
While simple, this regime is widely recognized as a crucial stepping stone—not only for building
intuition, but also as its own theoretical contribution [e.g., 32, 10]. The single-agent setting is also of
independent interest: in the field of sparsity-aware neural-network training, sparse-update methods
have been shown to correspond to error feedback [43]. In this context, tightness means that we
identify the best possible Lyapunov function within a given class and compute the exact worst-case
convergence rate over the class of problems considered.

Our methodology draws on the performance estimation framework [44, 45], which enables the
numerical derivation of exact convergence rates for a wide range of first-order methods. In particular,
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recent advances [46, 47] demonstrate how to automatically search for optimal Lyapunov functions.
While these approaches are primarily numerical, we build upon insights from their underlying proof
structures [48] to derive new analytical results.

Contributions. This work makes the following contributions:

1. From a methodological perspective, this paper shows how to apply the performance estimation
framework to algorithms from the federated learning literature that incorporate compression
schemes. By leveraging this methodology—both analytically and numerically—this work paves
the way for a more precise and reliable understanding of federated and distributed learning
methods.

2. This work provides a tight analysis of EF and EF21, and compare them with compressed gradient
descent in the single-agent setting, on L-smooth, µ-strongly convex functions. In particular, we
give an analytical formula of the best possible contraction rate, by analyzing an optimal Lyapunov
function within a class of candidate Lyapunov functions defined in Definition 1. Furthermore, we
provide the optimal tuning for the step size in both those algorithms.

3. We demonstrate that those rates are achieved, proving that the analysis is tight.
4. We conclude that the complexities of EF and EF21 are perfectly identical in this particular setting.

Moreover, CGD outperforms both methods—both in terms of the range of settings where it
converges and in terms of the optimal convergence rate achieved.

5. Finally, we contribute to the process of deriving simple Lyapunov functions for first-order methods,
and extend known results for fixed-step methods to the setting of methods using compression.

Paper outline. The rest of the paper is organized as follows. In Section 2, we provide background
on the relevant existing results for CGD, EF, and EF21. We also provide the necessary background
on the techniques from the performance estimation literature needed to outline the methodology we
use, as well as the definition of the classes of Lyapunov functions used. Section 3 presents the main
contribution of the paper: tight convergence guarantees for CGD, EF, and EF21, along with matching
lower bounds. Section 4 details the methodology we use to derive the results, and provides references
to the formal results required to justify this approach. It also contains a number of numerical results
that illustrate the equivalence between EF and EF21, and performance characteristics of the three
methods. Section 5 summarizes the results of the paper and provides a discussion of the results in
relation to the points brought up in the introductory section.

Notations: We denote Sℓ the symmetric matrices, and denote Sℓ+ the set of positive semi definite
matrices. For any two matrices A ∈ Sℓ and B ∈ Sd, we denote A⊗B the Kronecker product.

2 Background

In this section, we briefly overview relevant existing results from the field of distributed optimiza-
tion, the necessary background on the performance estimation framework, provide the rest of the
assumptions we will need, and specify the notion of Lyapunov functions used in this paper.

2.1 Theoretical results on CGD, EF, EF21

In the single agent case, we leverage the equivalence between compressed gradient descent (CGD),
under Assumption 1 and the inexact gradient method with relatively bounded gradients. CGD
corresponds to the particular case of Algorithm 1 with n = 1, and relatively bounded gradients means
that for any x, the oracle queried at point x outputs a value g such that ∥g −∇f(x)∥2 ≤ ϵ∥∇f(x)∥2.
Various notions of gradient approximation have been studied [49–51], and a tight analysis for
relatively bounded gradients was given in [52]. Specifically, authors have shown that the inexact
gradient method then enjoys tight convergence guarantees for any step size η > 0, with respect to the
functional residual, Euclidean norm distance to the solution and gradient norm. However, CGD is
known to diverge when applied using stochastic gradient oracles, and to non-smooth functions [10].
Interestingly, it is also known to diverge in the multi-worker setting [24]. Studying CGD is important
in its own right, because when the compression operator is chosen as the sign function, and the
algorithm is applied in the stochastic setting (i.e., signSGD), there is a connection to Adam both in
the convex [53], and non-convex setting [54].
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Convergence rates for EF have been established with strongly convex [32], quasi-convex and non-
convex [10, 35] functions, and using stochastic gradients. Richtárik et al. [14] study EF21 in the
multi-worker setting, with (potentially) randomized compression operators. They establish a O(k−1)
convergence rate on Lipschitz smooth functions, and a linear rate under the additional assumption
that the functions satisfy the Łojasiewicz inequality. These results are obtained using a Lyapunov
function; however, without tightness guarantees—neither for the choice of Lyapunov function, nor
for the convergence rate itself. Extensions of EF21 have been proposed, including adaptations to
stochastic gradients [23], and the introduction of a momentum term to improve sample complexity in
the stochastic setting [36].

2.2 Performance estimation

Performance estimation tools [55, 56, 45] enable to obtain tight (i.e., exact worst-case) numerical
guarantees on convergence rates for various choices of Lyapunov functions. To do so, the estimation
of the worst-case rate is formulated as a semidefinite program (SDP), which is then solved numerically
using standard solvers such as MOSEK [57]. The resulting numerical values approximate the exact
worst-case rate of an algorithm over a class of functions, and should not be confused with quantities
that depend on specific data, initial points, or problem instances.

This framework has been made accessible through software packages in both Python [58] and
Matlab [59], enabling researchers to easily apply these tools. Advanced performance estimation
techniques based on the dual formulation of the aforementioned SDP have been developed within this
framework to construct optimal Lyapunov functions for first-order methods [46, 47, 60]. Particularly
relevant is the approach of [46], which formulates the search for quadratic Lyapunov functions as
a feasibility problem with a candidate contraction rate. By performing bisection on this rate, the
method identifies the smallest contraction rate for which a valid Lyapunov function exists.

Another relevant line of work we leverage to discover the analytical form of the Lyapunov functions
lies in the field of symbolic regression, which aims to solve supervised learning tasks over the space
of simple analytic expressions. Recent advances use genetic programming to search this space, and
software packages have been developed in both Python and Julia [61].

2.3 Definitions & Notation

We have already introduced the notion of a contractive compression operator in Assumption 1. To
position our contribution within the broader literature we now specify that our analysis is restricted to
the setting of smooth, strongly convex functions:
Assumption 2. The function f is L-smooth, i.e., for all x, y ∈ Rd, we have

f(y) ⩽ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2.

Assumption 3. The function f is µ-strongly convex, i.e., for all x, y ∈ Rd, we have

f(y) ⩾ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2.

We will use the notationFµ,L to denote the set of smooth, strongly convex functions with parameters µ
and L. We will denote κ := L

µ the condition number. For any objective function f ∈ Fµ,L, we denote
x⋆ := argminx∈Rd f its minimizer, and f⋆ := minx∈Rd f(x) its minimum value.

Lyapunov functions. We now formally define the class of Lyapunov functions under consideration.

We formally denoteM : Rℓ×d × Rd × F → Rℓ×d × Rd a first-order method acting on a set of
functions F , for an integer ℓ ∈ N. Such a method, given a function f ∈ F , is applied to an initial state
ξ0 ∈ Rℓ×d and iterate x0 ∈ Rd, and generates a sequence {ξk}k⩾0 of states, and a sequence {xk}k⩾0

of iterations. The states represent information summarizing the current point in the optimization
trajectory that the algorithms may depend on beyond the current iterate—for example, error-related
quantities in error feedback algorithms. The integer ℓ is thus typically small, from 0 to 3 in general.
The specific states used in this paper are all specified in Subsection 3.1.
Definition 1 (Candidate Lyapunov function). A function V : Rℓ×d × Rd → R is called a candidate
Lyapunov function for f if it satisfies the following conditions:
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1. (Non-negativity) V(ξ, x; f) ⩾ 0, for any ξ ∈ Rℓ×d, x ∈ Rd,

2. (Zero at fixed-point) V(ξ, x; f) = 0 if and only if x = x⋆ and ξ = ξ⋆ for a unique ξ⋆ ∈ Rℓ×d.

3. (Meaningfully lower bounded) there exists a positive semidefinite matrix A ∈ Sℓ+ and a scalar
a ⩾ 0 such that V(ξ, x; f) ⩾ (ξ − ξ⋆)

⊤(A⊗ Id)(ξ − ξ⋆) + a(f(x)− f⋆) and Tr(A) + a = 1.

The lower bound in item 3 of our definition requires some justification: it ensures that the Lyapunov
function provides control over meaningful quantities in optimization, such as the distance to the fixed
point, gradient norm, algorithm-dependent quantities and the functional residual.

The class of candidate Lyapunov functions is thus given by

Vℓ =
{
(P, p) ∈ Sℓ+ × R+ : Tr(P ) + p = 1

}
. (3)

For any (P, p) ∈ Vℓ we denote V(P,p) the Lyapunov functions of the form:

V(P,p)(ξ, x; f) = (ξ − ξ⋆)
⊤(P ⊗ Id)(ξ − ξ⋆) + p(f(x)− f⋆). (4)

We seek candidate Lyapunov functions V : Rℓ×d × Rd ×F → R that satisfy the recurrence

V(ξk+1, xk+1; f) ⩽ ρ · V(ξk, xk; f), (5)

for some constant ρ < 1 and for all k ⩾ 0, uniformly over F . Finding the optimal Lyapunov function
within a parameterized class, for a methodM, then amounts to solving the following problem:

ρ⋆(M) := min
(P,p)∈Vℓ

 max
f∈Fµ,L,

(ξ0,x0)∈Rℓ×d×Rd

V(P,p)(ξ1, x1; f)

V(P,p)(ξ0, x0; f)
: (ξ1, x1) =M(ξ0, x0; f)

 . (6)

Note that we set k = 0 in order to have a guarantee that is valid for all x ∈ Rd.

3 Main results

In this section, we provide answers to the questions stated in the introduction for our setting. We
begin by showing some numerical results on the performance of each method, and then provide the
precise statements of all of our theoretical results.

3.1 Numerical performance of all methods

In order to compare EF and EF21 with the performance of CGD, we first need to specify the
state-variables under consideration when analyzing each method. Those are given given by:

ξ CGD
k =

[
xk

∇f(xk)
C(η∇f(xk))

]
, ξEF

k =

 xk

∇f(xk)
C(ek + η∇f(xk))

ek

 , ξ EF21

k =

[
xk

∇f(xk)
dk

]
, (7)

where all variables are defined as in Algorithm 1, Algorithm 2 and Algorithm 3, respectively. Note
that all numerical results of this article are using deterministic compression operators.

We are now ready to present the numerical results on the performance of each method. Figure 1
shows contour plots of the contraction factor for each method. That is, for a fine grid of both the step
size η in Algorithms 1 to 3, and the parameter ϵ in Assumption 1, we numerically compute the value
of the best possible worst-case contraction rate in terms of our class of candidate Lyapunov functions,
over Fµ,L, as given by (6). A darker blue point indicates a stronger contraction ρ⋆(M) (i.e., a
better rate). A red point indicates that the method is non-convergent for that choice of (ϵ, η). We
observe that, although the results are purely numerical at this stage, they indicate that EF and EF21

exhibit identical performance in our setting. This numerical equivalence is supported by Table 1: the
maximum absolute difference between contraction factors for EF and EF21 is on the order of 10−5

to 10−7. This first fact is a very surprising observation. Indeed while EF and EF21 are known to
be identical in the very specific case of using a deterministic positively homogeneous and additive
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κ = 2 κ = 4 κ = 10

Absolute error 4.34e-07 6.02e-07 1.21e-06

Table 1: Maximum absolute difference of con-
traction factor for EF and EF21, computed over
grid of ϵ ∈ [0.01, 0.99] and η ∈ [0.01, 2

L+µ ] for
L = 1, and varying µ.

κ = 2 κ = 4 κ = 10

Absolute error 1.14e-06 3.90e-07 5.11e-06

Table 2: Maximum absolute difference of con-
traction factor for CGD when allowing any com-
bination of terms in our Lyapunov function, com-
pared to the contraction achieved by the func-
tional residual. Same grid as Table 1.

compression operator [14, see Section 4.2], EF and EF21 remain grounded in fundamentally different
motivations at first sight: on the one hand, EF accounts for the errors introduced by the compression
step, while on the other hand, EF21 subtracts a control variate from the gradient prior to compression.
Proving that the best possible convergence rate they can obtain, for any tuning ϵ, η, is similar (but
achieved for a different Lyapunov function) was, to the best of our knowledge, never established in
the literature. It thus constitutes a significant step towards better understanding their connections.

A second observation can be made from those plots: the region of non-convergence is by far larger
for EF and EF21 than for CGD. In particular, there exist multiple tunings, for which incorporating
any of the two types of error feedback, actually prevent convergence.

While given for a single (µ,L) in Figure 1 and Table 1, similar results hold for all values of (µ,L)
that were tried numerically, and several examples are given in Appendix D, along with details of the
numerical experiments, including the computation of regions of non-convergence.

Furthermore, we tune each algorithm by picking the optimal step size for each method. We compute
the rate infη ρ⋆(Mη), forM∈ {CGD,EF,EF21}, whereMη corresponds to the method with step
size η. Results are shown in Appendix B for three values of κ, namely 2, 4, and 10. In each setup,
for every level of compression, CGD achieves a rate which is strictly better than EF and EF21. In
Appendix B.1, we also provide a symbolic certifiate of this fact. These results challenge the prevailing
intuition that error feedback ensures convergence comparable to that of uncompressed methods, and
even demonstrate that in the single agent and deterministic gradient regime, error feedback is actually
always detrimental to convergence.

Finally, we note that the functional residual constitutes an optimal Lyapunov function for CGD,
as shown in Table 2. This result is not particularly surprising, given that a tight analysis of the
functional residual with the optimal step size was previously established for inexact gradient descent
by De Klerk et al. [52]. That work also demonstrated the tightness of this rate2. For EF21, Richtárik

2Following the same line of reasoning as in our remark on the tightness of our Lyapunov functions in
Section 5, we can then show that the functional residual is an optimal Lyapunov function for CGD.

0.25 0.50 0.75
ε

0.5

1.0

1.5

η

CGD

0.25 0.50 0.75
ε

EF

0.25 0.50 0.75
ε

EF21

0.720.750.780.810.840.870.900.930.960.99

ρ

Figure 1: Single row of contour plots showing performance of CGD, EF, and EF21 as a function
of step size η and compression parameter ϵ, with regions of non-convergence marked in red. The
regions of non-convergence were computed using PEPit by finding cycles of length 2.

7



et al. [14] proposed another Lyapunov function than the one used here. In Appendix D.5, Figure 12
we compare the complexities of an optimally tuned version of their Lyapunov function with the class-
optimal Lyapunov function numerically. Further comparison of rates can be found in Appendix B. In
Appendix B.2, we prove that our rate is strictly faster than the the aforementioned rate for EF21.

In the next two sections, we provide analytical results on EF and EF21, respectively.

3.2 Exact convergence rate and optimal tuning for EF

We begin by stating the main result of this section, which is a tight rate of convergence for EF.
Theorem 1.

Consider running Algorithm 2, i.e., EF, with a compression operator C satisfying Assumption 1 for
some ϵ ∈ [0, 1] on any function satisfying Assumptions 2, and 3. Let the step size be given by

η⋆ =

(
2

L+ µ

)
·
(
1−√ϵ
1 +
√
ϵ

)
. (8)

Then, we have that
ρ⋆(EFη⋆) =

√
ϵ+ 1

4 (1 +
√
ϵ)(L− µ)λ, (9)

where
λ := η⋆

L+µ

[
(1−√ϵ)(L− µ) + (1 +

√
ϵ)
√
(L− µ)2 + 16Lµ

√
ϵ

(1+
√
ϵ)2

]
. (10)

A Lyapunov function achieving the rate in (9), with ξEF defined in (7), is given by

V(ξEF, x; f) := ∥x−x⋆∥2− 2(x−x⋆)
⊤e+

(
1 +

1√
ϵ

)
· ∥e∥2 = ∥x−x⋆− e∥2 + 1√

ϵ
∥e∥2, (11)

Finally, the step size in (8) is worst-case optimal for EF: ∀η ⩾ 0, we have ρ⋆(EFη) ⩾ ρ⋆(EFη∗) .

Importantly, (9) shows that the rate is tight; that is, there exist f ∈ Fµ,L and (P, p) ∈ Vℓ for which
the rate is exactly achieved. Since the lower bound also applies to any other performance measure
in our state space, our performance measure is optimal. This is formally demonstrated in the proof
provided in Appendix C.1. The proof was written using deterministic compressors, but the same
guarantees hold under expectation with stochastic compressors as is explained in Appendix C.3.

For completeness—and to support both our theoretical results and the tightness of the numerical
results obtained through performance estimation—we provide additional figures comparing the
empirically observed optimal step sizes for worst-case instances with our theoretical step size η⋆,
across different values of ϵ and µ/L. These results are shown in Figure 11, located in Appendix D.4.
The numerical and analytical values match up to numerical accuracy.

3.3 Exact convergence rate and optimal tuning for EF21

We now state our main result on the EF21 algorithm, which is also tight.
Theorem 2.

Consider running Algorithm 3 with a compression operator satisfying Assumption 1 for some ϵ ∈ [0, 1]
on any function satisfying Assumptions 2, and 3. Let the step size be given by η⋆ in (8). Then,

ρ⋆(EF21
η⋆
) = ρ⋆(EFη⋆

). (12)

A Lyapunov function achieving the rate in (12) is given by

V(ξEF21

, x; f) := (1 +
√
ϵ) · ∥g∥2 − 2g⊤d+ ∥d∥2 = ∥g − d∥2 +√ϵ · ∥g∥2. (13)

Finally, the step size η⋆ is worst-case optimal for this algorithm.
Remark 1. The explicit rate for EF and EF21 can be written as

ρ =
√
ϵ+

(
1−√ϵ

2

)(
κ− 1

κ+ 1

)2 [
1−√ϵ+

√
(1 +

√
ϵ)2 +

√
ϵ16

κ

(κ− 1)2

]
, (14)

where κ = L/µ. A detailed comparison between this and the existing rate for EF21 under the
Łojasiewicz inequality [14] is provided in Appendix B.
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The proof of this theorem is given in Appendix C.2 and assumes deterministic compressors, but the
same guarantees hold under expectation with stochastic compressors, as is explained in Appendix C.3.

This second theoretical result analytically confirms the surprising numerical observation from Subsec-
tion 3.1, illustrated in Figure 1: EF and EF21 have the exact same optimal guarantee. Furthermore,
the optimal step size is also the same, and can also be argued to be worst-case optimal in our setting
using the same arguments as in Section 3.2. However, the optimal Lyapunov function is very different.

3.4 Tightness over multiple iterations and choice of state variables

A natural question arising from the above analysis concerns the tightness of the Lyapunov functions
provided in Theorems 1 and 2 over multiple steps. Specifically, for K ⩾ 2, we investigate whether
the convergence rate of a methodM ∈ EF,EF21,CGD can be improved by analyzingMK , the
method run over K iterations, defined as follows:

ρ⋆K(M) :=

(
min

(P,p)∈Vℓ

{
max

f∈Fµ,L,

(ξ0,x0)∈Rℓ×d×Rd

V(P,p)(ξK , xK ; f)

V(P,p)(ξ0, x0; f)
: (ξK , xK) =MK(ξ0, x0; f)

})1/K

.

We provide a numerical answer to that question in Appendix D.2 for all algorithms discussed in the
paper, showing that the analysis of the single-state Lyapunov functions used in this work are tight
even if we consider multiple iterations. To that end, we plot the worst-case contractions for multiple
iterations computed using PEPit [58], on the optimal Lyapunov functions given by (11) and (13).

Lyapunov Tightness. To prove that the Lyapunov functions we use in Theorems 1 and 2 are tight,
one has to show that the rate of convergence for any other candidate Lyapunov function from our
class is lower bounded by the rate we obtain. We consider a quadratic function, used in the latter
sections of our proofs to prove tightness: asymptotic expressions for all the state-variables are the
same, up to an iteration-independent constant. Consequently, when computing ratios between any set
of Lyapunov functions, these constants cancel out. The only thing remaining is the term that actually
depends the iteration count, which is exactly equal to the rate given in Theorems 1 and 2.

4 Methodology

We now present the methodology used to obtain the results in Section 3. The approach builds on
the framework developed by [46]. We extend it to cover methods using deterministic compression
operators under Assumption 1 in Appendix A. Obtaining the proofs of Theorems 1 and 2 required a
combination of advanced performance estimation techniques (finding optimal Lyapunov functions),
several tricks, as well as symbolic computation and symbolic regression frameworks.

To solve problem (6), we begin by addressing the inner maximization problem for a fixed contraction
factor ρ. This amounts to checking the feasibility of a semidefinite program, detailed in Appendix A.
We then apply bisection on ρ to identify the smallest admissible contraction factor. However, the
Lyapunov function given is rarely unique, and most solutions obtained numerically vary significantly
with problem parameters such as the compression factor ϵ. To address this, we use rank minimiza-
tion heuristics—specifically, the logdet heuristic [62]. This enables one to obtain a unique set of
structurally simpler, low-rank Lyapunov functions. Finally, we proceed by eliminating redundant
coefficients in the matrix P and the scalar p, to arrive at the concise forms presented in Section 3.
At the end of this process, the Lyapunov function coefficients were found to be mutually dependent,
reducing the problem to identifying a closed-form expression for any one of them. To estimate such
a coefficient, we applied symbolic regression using the PySR Python package [61]. This approach
proved highly effective at finding simple yet optimal Lyapunov functions. To arrive at simple and
readable proofs, we leverage the computer algebra system of Mathematica [63].

We wish to emphasize that the combined use of log-det heuristics, symbolic regression, and a
computer algebra system turned out to be highly effective at solving this problem, and we believe it
has broad applicability to other problems in machine learning.
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5 Conclusion

In this paper, we provided tight analyses of EF and EF21 using Lyapunov functions, with guarantees
on both the Lyapunov functions themselves and the convergence rates achieved. Notably, both
algorithms exhibit the same convergence rate in our setting, and through a remark made in the
discussion below, this gives us tight rates for any of the candidate Lyapunov functions we considered
in our class. We also observed that their performance is strictly worse than that of compressed
gradient descent—an outcome that, we believe, challenges the intuition of many in the field.

Our analysis is confined to the single-agent setting, both as an interesting problem on its own, and as a
source of intuition for the multi-agent case. CGD cannot serve as a baseline in the multi-agent setting
as it fails to converge with more than one agent [24]. In contrast, EF21 was specifically designed to
improve convergence over EF in the multi-agent setting. Yet, its convergence rate in the single-agent
case matches exactly that of EF. The findings of this paper raise two compelling questions:

• Does the performance of EF and EF21 differ in the multi-agent setting?
• Are there more effective error compensation mechanisms yet to be discovered?

We leave these questions for future work and conclude by emphasizing that the methodology used is
likely applicable to a broad range of problems in optimization for machine learning. We look forward
to seeing it extended and applied in future research.
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This appendix provides additional content and details complementing the paper. In particular,
Appendix A details the general methodology used to search for Lyapunov functions. The complete
missing proofs for the main results of the paper are presented in Appendix C. Appendix D presents
additional numerical results that informally motivate a few choices made in the paper and provide
numerical validation of our claims. Finally, Appendix E discusses our choice of annotating this article
with proof certificates.

A Feasibility problems with compressors

This section presents the methodology used to search for Lyapunov functions. In a nutshell, we
formulate the Lyapunov search problem as a quasi-convex optimization problem involving linear
matrix inequalities. Those problems are typically solved through the use of an iterative procedure
involving a binary search with semidefinite solvers—we use MOSEK [57] throughout. The main steps
taken here can be viewed as a generalization of the procedure proposed in [46] to first-order methods
using compression, in particular Algorithms 2 and 3. We also simplify a few steps that are not needed
for our purposes. We start by reviewing the technique on a simpler example in Appendix A.1 before
detailing the more tricky formulations involving compression.

A.1 Feasibility problem for gradient descent

To introduce the concepts underlying the techniques used to construct Lyapunov functions for
Algorithms 2 and 3, we begin with the simpler case of gradient descent on smooth, strongly convex
functions. That is, we consider the algorithm:

x1 = x0 − η∇f(x0). (GDη)

The goal of this subsection is to review the steps used to compute ρ⋆(GNη), as defined in (6), via a
bisection search in which each iteration involves verifying the feasibility of a convex problem.

Our starting point is to consider the following state variable for GD:

ξGD
k =

[
xk

∇f(xk)

]
(15)

and a natural family of Lyapunov function candidates (which corresponds to a subset of (3)) of the
form

VP (ξGD
k , xk; f) ≡ VP (xk,∇f(xk); f) :=

[
xk − x⋆

∇f(xk)

]⊤
(P ⊗ Id)

[
xk − x⋆

∇f(xk)

]
= P11∥xk − x⋆∥2 + P22∥∇f(xk)∥2
+ 2P12⟨∇f(xk);xk − x⋆⟩,

(16)

where P ∈ Sd is positive semidefinite and we require Tr(P ) = 1. This latter requirement is without
loss of generality due to a normalization argument, and is added to avoid the trivial solution P = 0.

The problem we aim to solve is that of finding the best Lyapunov function among a given set of
candidates—specifically, the one for which the ratio VP (x1,∇f(x1))

VP (x0,∇f(x0))
can be uniformly upper bounded

by the smallest possible constant over all optimization problems in the considered family. In other
words, we seek the Lyapunov candidate function that yields the smallest possible ρ such that

VP (x1,∇f(x1); f)

VP (x0,∇f(x0); f)
⩽ ρ (17)
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is valid for all L-smooth µ-strongly convex functions f : Rd → R (in any dimension d ∈ N) and all
possible x0, x1, x⋆ ∈ Rd compatible with f and x1 = x0 − η∇f(x0). The problem can be phrased
as finding

ρ⋆(GDη) = min
P≽0

(
max
d∈N

f∈Fµ,L

x0,x⋆∈Rd

{VP (x1,∇f(x1); f)

VP (x0,∇f(x0); f)
s.t. Tr(P ) = 1, x1 = x0 − η∇f(x0)

})

(18)
where η > 0 is the step size. One can reformulate this problem directly using tools from the
performance estimation literature [55, 56], but the resulting problem is not convex in the variable ρ.
One way to address this is to reduce it to the problem of finding, for a given contraction factor ρ, some
Lyapunov function that achieves this ρ—if one exists. This problem, on the other hand, is convex,
and we can simply perform bisection search on ρ to find the smallest possible contraction factor.

We now introduce some notation to simplify the statement of finding such Lyapunov functions:

σρ(x1, g1, x0, g0;P ) := VP (x1, g1; f)− ρVP (x0, g0; f). (19)

We will arrive at a way of solving this problem by reasoning through two steps:

1. Step 1: verifying a given Lyapunov function and rate as a convex problem.
2. Step 2: verifying a rate ρ for the optimal candidate Lyapunov functions as a convex problem.

Step 1: verifying a given Lyapunov function and rate as a convex problem.
For a fixed Lyapunov parameter P ∈ V2 and a tentative rate ρ > 0, we can then state the problem of
verifying a given Lyapunov function as that of showing that the minimum value of the following is
non-positive:

0 ⩾ sup
d∈N

f∈Fµ,L

x0,x⋆∈Rd

σρ(x1,∇f(x1), x0,∇f(x0);P ; f)

s.t. x1 = x0 − η∇f(x0)

∇f(x⋆) = 0

(20)

The constraint that f is a smooth strongly convex function is easily encoded using interpolation
conditions [56]. This allows us to work with sampled points from f rather than the infinite dimensional
set Fµ,L. We introduce the notation

ϕij := fi − fj − g⊤j (xi − xj)−
1

2L
∥gi − gj∥2 −

µ

2(1− µ/L)
∥xi − xj −

1

L
(gi − gj)∥2, (21)

where the notation (xi, gi, fi) is used to denote a sampled triplet from f , such that f(xi) = fi and
∇f(xi) = gi for all i ∈ {0, 1, ⋆}. This lets us rephrase our problem as

0 ⩾ sup
d∈N

x⋆,x0,g⋆,g0,g1∈Rd

f0,f1∈R

σρ(x1, g1, x0, g0;P ; f)

s.t. ϕij ⩾ 0 ∀i, j ∈ {0, 1, ⋆}
x1 = x0 − η∇f(x0)

g⋆ = 0

(22)

The above problem is not convex due to the interpolation constraints. To address this, we reformulate
it as a semidefinite program (SDP). Let G = B⊤B where B is the following (3× d) matrix

B = [x0 − x⋆, g0, g1] ,

and let f :=
[
f0 − f⋆
f1 − f⋆

]
. In other words, G ≽ 0 is the Gram matrix of the entries of B: ∥x0 − x⋆∥2 ⟨g0, x0 − x⋆⟩ ⟨g1, x0 − x⋆⟩
⟨g0, x0 − x⋆⟩ ∥g0∥2 ⟨g1, g0⟩
⟨g1, x0 − x⋆⟩ ⟨g1, g0⟩ ∥g1∥2

 ≽ 0.
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We introduce a convenient notation by defining basis (row) vectors in x̄i, ḡi ∈ R3 and f̄i ∈ R2 which
allow us to “select” specific elements in B and f . Specifically, we define them such that

xi − x⋆ = Bx̄⊤
i , gi = Bḡ⊤i , fi − f⋆ = f̄if . (23)

More precisely: x̄i = e⊤1 ∈ R3, ḡ0 = e⊤2 ∈ R3, ḡ1 = e⊤3 ∈ R3, x̄1 = x̄0 − ηḡ0, x̄⋆ = 0⊤
3 ∈ R3

along with f̄0 = e⊤1 ∈ R2, f̄1 = e⊤2 ∈ R2, f̄⋆ = 0⊤
2 ∈ R2. We can conveniently rewrite the different

parts of problem (22) using the notation
∥xi − x⋆∥2 = x̄iB

⊤Bx̄⊤
i = Tr(x̄⊤

i x̄iG),

∥gi∥2 = ḡiB
⊤Bḡ⊤i = Tr(ḡ⊤i ḡiG),

⟨gi, xj − x⋆⟩ = ḡiB
⊤Bx̄⊤

j = Tr ((ḡi ⊙ x̄j)G)

where ḡi ⊙ x̄j = 1
2 (ḡ

⊤
i x̄j + x̄⊤

j ḡi), and ⊙ denotes the symmetric outer product. This notation
allows us to express all relevant quantities in terms of traces involving symmetric matrices. We now
reformulate the necessary terms to derive the desired semidefinite representation of the problem. Let
us begin with

VP (x0,∇f(x0); f) = P11 Tr(x̄
⊤
0 x̄0G) + P22 Tr(ḡ

⊤
0 ḡ0G) + 2P12 Tr((x̄0 ⊙ ḡ0)G)

= Tr(A⊤
0 PA0G),

where A0 :=

[
x̄0

ḡ0

]
. Similarly, we can write VP (x1,∇f(x1); f) = Tr(A⊤

1 PA1G) with A1 :=

[
x̄1

ḡ1

]
and also define the matrices Mij for all i, j ∈ {0, 1, ⋆} such that ϕij = mijf +Tr(MijG):

mij =f̄i − f̄j

Mij =− ḡj ⊙ (x̄i − x̄j)− 1
2L (ḡi − ḡj)

⊤(ḡi − ḡj)

− µ
2(1−µ/L) (x̄i − x̄j − 1

L (ḡi − ḡj))
⊤(x̄i − x̄j − 1

L (ḡi − ḡj))

(24)

This enables a convenient reformulation of (22) as the verification of the following condition, which
corresponds to solving a standard semidefinite program:

0 ⩾ sup
G≽0
f

Tr(A⊤
1 PA1G)− ρTr(A⊤

0 PA0G)

s.t. Tr(MijG) + f⊤cij ⩾ 0 ∀i, j ∈ {0, 1, ⋆}.
(25)

One immediate consequence is that the validity of a given Lyapunov function VP for a specified rate
ρ—satisfying (17) or, equivalently, (20)—can be formulated as the convex problem (25).

Step 2: verifying a rate ρ for the optimal candidate Lyapunov functions as a convex problem.
To derive a convenient condition that formally guarantees the above problem is nonpositive, we
consider its standard Lagrangian dual3—which reduces to verifying the existence of dual variables
λij ⩾ 0 such that

0 ⩾ inf
λij⩾0

0

s.t. A⊤
1 PA1 − ρA⊤

0 PA0 −
∑

i,j∈{0,1,⋆}

λijMij ≽ 0

∑
i,j∈{0,1,⋆}

λijmij = 0.

(26)

The problem has finally reduced to showing that for a given matrix P , the small-sized problem (26)
is feasible.

Key idea: As this problem is linear in P (when ρ is fixed), we can directly use it to search for a
valid P that verifies the decrease condition in (5) for a given ρ:

feasible
P≽0,
λij⩾0



A⊤
1 PA1 − ρA⊤

0 PA0 −
∑
i,j

λijMij ≽ 0

∑
i,j

λijmij = 0

Tr(P ) = 1.

(GD-SDP)

3Strong duality holds in this case due to the existence of a Slater point; see, e.g., [56].
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Conclusion. Problem (GD-SDP) is a convex feasibility problem that encodes the existence of a
candidate Lyapunov function certifying a given rate ρ. By performing a bisection search over ρ, we
can identify the smallest rate satisfied by some Lyapunov function in our class. This approach enables
us to solve the problem numerically using a semidefinite solver.

A.2 Feasibility problem for EF

Using the same ideas as in Appendix A.1, this section states the feasibility problem we solve to
identify Lyapunov functions for Algorithm 2. In short, this requires adapting the two steps presented
in Appendix A.1 to accommodate the compressed message. Practically speaking, Step 1 must be
adapted to a slightly larger problem (with a few more states both in the Gram matrix G and in
the Lyapunov candidates to incorporate compression). Then, Step 2 follows directly by the same
reasoning as before: the condition derived in Step 1 reduces to checking the feasibility of a linear
matrix inequality that is linear in (P, p), which in turn allows us to search for the Lyapunov function
via binary search over ρ.

Recall that we defined our state space for EF in (7) as

ξEF
i =

 xi

∇f(xi)
C(ei + η∇f(xi))

ei

 .

This space has dimension 4, and our normalized set of candidate Lyapunov functions is given by
V4 =

{
(P, p) ∈ S4+ × R+ : Tr(P ) + p = 1

}
.

For any (P, p) ∈ V4 we thus consider V(P,p) Lyapunov functions of the form:

V(P,p)(ξ
EF, x; f) = (ξEF − ξEF

⋆ )⊤(P ⊗ Id)(ξ
EF − ξEF

⋆ ) + p(f(x)− f⋆). (27)
where we impose Tr(P ) + p = 1, again, without loss of generality and to avoid the trivial solution
(P, p) = 0. Similarly to (19), we now define

σEF
ρ (ξEF

1 , ξEF
0 ; (P, p); f) := V(P,p)(ξ

EF
1 , x1; f)− ρV(P,p)(ξ

EF
0 , x0; f). (28)

Again, we say that for (P, p) ∈ V4, a Lyapunov function V(P,p) satisfies rate ρ for the iterates of EF
if we have that

0 ⩾ sup
d∈N

f∈Fµ,L

x0,x⋆∈Rd

σEF
ρ (ξEF

1 , ξEF
0 ; (P, p); f)

s.t. (x1, ξ
EF
1 ) = EF(x0, ξ

EF
0 ; f)

∇f(x⋆) = 0

(29)

Formally, we require the following lemma:
Lemma 1 (EF feasibility problem). Consider running Algorithm 2 with a deterministic compression
operator satisfying Assumption 1 for some ϵ ∈ [0, 1] on any function satisfying Assumptions 2 and 3.
There exists a nonzero candidate Lyapunov function V(P,p) of the form defined in (27), satisfying a
given rate ρ > 0, if and only if the following problem is feasible:

feasible
P∈S4,
p∈R,
λij⩾0,
νi⩾0



0 ≽ ∆VP (ρ) +
∑

i,j∈{0,1,⋆}

λijMij +
∑

i∈{0,1}

νi · CEF
i

0 ⩾2 ∆vp(ρ) +
∑

i,j∈{0,1,⋆}

λijmij

0 ≼ P

0 ⩽ p

1 = Tr(P ) + p

(EF-SDP)

where matrices (Mij)i,j∈{0,1,⋆} are defined as in (24), (CEF
i )i∈{0,1} given below in (36), and

∆VP (ρ),∆vp(ρ) are given below in (33) and (34). Here ⩾2 denotes coordinate-wise inequality in
R2.

Proof sketch. The proof is decomposed into several steps that correspond to adapting the technical
ingredients from Appendix A.1.
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Basis vector encoding We begin by introducing notation analogously to (23) for EF. Define the
following basis vectors x̄i, ḡi, c̄i, ēi ∈ R8:

x̄i := e⊤i+1, ḡi := e⊤i+3, c̄i := e⊤i+5, ēi := e⊤i+7, i ∈ {0, 1}, (30)

where ei is the i-th basis vector in dimension 8. Similarly, let f̄i ∈ R2 be defined by

f̄i := e⊤i , i ∈ {0, 1}, (31)

where ei is the i-th basis vector in dimension 2.

The point of defining these vectors is the same as it was for GD. These vectors allow us to “select”
points from our Gram matrix (see (23)). This, in turn, allows us to express the interpolation conditions
of our feasibility problem in a clean manner.

We also define row vectors that correspond to the fixed-point as:

x̄⋆ := 0⊤
8 , ḡ⋆ := 0⊤

8 , c̄⋆ := 0⊤
8 , ē⋆ := 0⊤

8 ,

f̄⋆ := 0⊤
2 .

Finally, we define our method in terms of our basis vectors:

x̄1 = x̄0 − c̄0,

ē1 = ē0 + ηḡ0 − c̄0.
(32)

Expressing (28) using basis vectors. First, we encode the decrease in the linear and quadratic
terms of (28) as

∆VP (ρ) :=

x̄1 − x̄⋆

ḡ1 − ḡ⋆
c̄1 − c̄⋆
ē1 − ē⋆


⊤

P

x̄1 − x̄⋆

ḡ1 − ḡ⋆
c̄1 − c̄⋆
ē1 − ē⋆

− ρ

x̄0 − x̄⋆

ḡ0 − ḡ⋆
c̄0 − c̄⋆
ē0 − ē⋆


⊤

P

x̄0 − x̄⋆

ḡ0 − ḡ⋆
c̄0 − c̄⋆
ē0 − ē⋆

 , (33)

∆vp(ρ) := p
(
f̄1 − f̄⋆

)
− ρ · p

(
f̄0 − f̄⋆

)
, (34)

where ρ > 0 is the contraction factor to be verified. Note that ∆VP (ρ) ∈ R8×8, and ∆vp(ρ) ∈ R2.

Using these objects, we have that:

σEF
ρ (ξEF

1 , ξEF
0 ; (P, p); f) = Tr

(
(∆VP (ρ))G

EF
)
+ (∆vp(ρ))

⊤FEF, (35)

where GEF = (BEF)⊤BEF is the Gram matrix of vectors

BEF = [x0, x1,∇f(x0),∇f(x1), C(e0 + η∇f(x0)), C(e1 + η∇f(x1)), e0, e1] ,

and FEF = (f(x0), f(x1)).

Interpolation conditions The interpolation conditions that enforce f ∈ Fµ,L are identical to those
we define in (24), but using the new basis vectors we define specifically for EF. We do, however,
need to introduce a new interpolation condition to encode the fact that we are using a contractive
compressor. We do this for deterministic compression operators. Using our basis vectors, this
corresponds to introducing the matrices

CEF
i = (ηḡi + ēi − c̄i)

⊤(ηḡi + ēi − c̄i)− ϵ · (ηḡi + ēi)
⊤(ηḡi + ēi), (36)

for i ∈ {0, 1}.
Finally, following the same reasoning as described in Step 1 and Step 2 of Appendix A.1, and using
the technical modifications we outlined here, we arrive at the feasibility problem described in the
statement of the lemma.
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A.3 Feasibility problem for EF21

As in the previous section, one can now adapt the same ideas as in Appendix A.1 and Appendix A.2
to EF21. This section states the feasibility problem we solve to identify Lyapunov functions in this
context.

Following a parallel line of derivation, we begin by noting that the state space defined in (7) for EF21

was

ξ EF21

k =

[
xk

∇f(xk)
dk

]
, (37)

This space now has dimension 3, and our normalized set of candidate Lyapunov functions is given by

V3 =
{
(P, p) ∈ S3+ × R+ : Tr(P ) + p = 1

}
.

For any (P, p) ∈ V3 we thus consider V(P,p) Lyapunov functions of the form:

V(P,p)(ξ
EF21

, x; f) = (ξEF21 − ξEF21

⋆ )⊤(P ⊗ Id)(ξ
EF21 − ξEF21

⋆ ) + p(f(x)− f⋆). (38)

where we once more require Tr(P )+p = 1 without loss of generality and to avoid the trivial solution
(P, p) = 0. Similarly, to (19) and (28), we define here

σEF21

ρ (ξEF21

1 , ξEF21

0 ; (P, p); f) := V(P,p)(ξ
EF21

1 , x1; f)− ρV(P,p)(ξ
EF21

0 , x0; f). (39)

Again, we say that for (P, p) ∈ V3, a Lyapunov V(P,p) satisfies rate ρ for the iterates of EF21, if we
have that

0 ⩾ sup
d∈N

f∈Fµ,L

x0,x⋆∈Rd

σEF21

ρ (ξEF21

1 , ξEF21

0 ; (P, p); f)

s.t. (x1, ξ
EF21

1 ) = EF21(x0, ξ
EF21

0 ; f)

∇f(x⋆) = 0

(40)

Formally, we prove the following lemma.

Lemma 2 (EF21 feasibility problem). Consider running Algorithm 3 with a deterministic compres-
sion operator satisfying Assumption 1 for some ϵ ∈ [0, 1] on any function satisfying Assumptions 2
and 3. There exists a nonzero candidate Lyapunov function V(P,p) of the form defined in (38),
satisfying a given rate ρ > 0, if and only if the following problem is feasible:

feasible
P∈S3,
p∈R,
λij⩾0,
νi⩾0



0 ≽ ∆VP (ρ) +
∑

i,j∈{0,1,⋆}

λijMij + ν · CEF21

i

0 ⩾2 ∆vp(ρ) +
∑

i,j∈{0,1,⋆}

λijmij

0 ≼ P

0 ⩽ p

1 = Tr(P ) + p

(EF21-SDP)

where matrices (Mij)i,j∈{0,1,⋆} are defined as in Eq. (24), (CEF21

i )i∈{0,1} given below in (44), and
∆VP (ρ),∆vp(ρ) are given below in (45) and (46). Here ⩾2 denotes coordinate-wise inequality in
R2.

Proof sketch. We begin by changing our basis vectors to

x̄i := e⊤i+1, ḡi := e⊤i+3, c̄i := e⊤i+5, d̄i := e⊤i+7, f̄i := e⊤i , i ∈ {0, 1} (41)

where x̄i, ḡi, c̄i, d̄i ∈ R8, and f̄i ∈ R2. Similarly, we define the row vectors corresponding to the
fixed-point as

x̄⋆ := 0⊤
8 , ḡ⋆ := 0⊤

8 , c̄⋆ := 0⊤
8 , d̄⋆ := 0⊤

8 , f̄⋆ := 0⊤
2 , (42)
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We define our method using these basis vectors as

x̄1 = x̄0 + η · d̄0,
d̄1 = d̄0 + c̄0.

(43)

The only difference in the interpolation conditions is that we are compressing a different quantity
now, which we can encode using

CEF21

:= (ḡ1 − d̄0 − c̄0)
⊤(ḡ1 − d̄0 − c̄0)− ϵ(ḡ1 − d̄0)

⊤(ḡ1 − d̄0). (44)

where we only need a single matrix because the compression operator acts on a mixture of the current
and next state.

Next, we encode the linear and quadratic terms in exactly the same way as we did for EF, except
with the state variables

∆VP (ρ) :=

x̄1 − x̄⋆

ḡ1 − ḡ⋆
d̄1 − d̄⋆

⊤

P

x̄1 − x̄⋆

ḡ1 − ḡ⋆
d̄1 − d̄⋆

− ρ

x̄0 − x̄⋆

ḡ0 − ḡ⋆
d̄0 − d̄⋆

⊤

P

x̄0 − x̄⋆

ḡ0 − ḡ⋆
d̄0 − d̄⋆

 . (45)

∆vp(ρ) := p
(
f̄1 − f̄⋆

)
− ρ · p

(
f̄0 − f̄⋆

)
, (46)

Here too, ∆VP (ρ) ∈ R8×8, and ∆vp(ρ) ∈ R2.

Finally, using Step 1 and Step 2 of Appendix A.1, we arrive at the feasibility problem described in
the statement of the lemma.
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B Rate comparison

In this section, we compare the rate given in equation (14) with the convergence rate of CGD and the
standard convergence rate of EF21 [14, see Theorem 2]. We show that CGD is strictly superior to
EF/EF21 using a CAS certificate, that our rate is strictly better than the existing rate for EF21, and
then we visualize the gap in both cases in Figures 2 and 4.

We also compare the "complexity" resulting from either method in Figures 3 and 5. In order to create
a fair and interpretable comparison we used the following metric:

log ρA
log ρB

. (47)

The log-ratio can be motivated by the following example: if ρA = 0.99 and ρB = 0.98, then the
latter will require half the number of iterations of the former before V(ξN , xN ; f) ⩽ ϵ.

B.1 Comparison between CGD and EF/EF21

We now compare the convergence rate when using the optimal step size between CGD and EF
(equivalently, EF21 since the rate is the same). Note that the optimal rate for CGD is given by
[64, 65]

ρCGD =

(
κ√

ϵ − 1

κ√
ϵ + 1

)2

, (48)

where κ√
ϵ = κ

(
1+

√
ϵ

1−
√
ϵ

)
, when using step size [64]

ηCGD =
2

(1−√ϵ)µ+ (1 +
√
ϵ)L

. (49)

The next statement has been verified using a WolframScript:

Certified using WolframScriptCertified using WolframScript CAS 2CAS 2

ρEF − ρCGD =
√
ϵ+

(
1−√ϵ

2

)(
κ− 1

κ+ 1

)2 [
1−√ϵ+

√
(1 +

√
ϵ)2 +

√
ϵ16

κ

(κ− 1)2

]
−
(
κ√

ϵ − 1

κ√
ϵ + 1

)2

> 0.

B.2 Comparison to Richtárik et al. [14]

The rate of [14] for EF21 under the Łojasiewicz inequality, and with the largest possible step size
chosen, is given by

ρ′ := max

{
1− 1−√ϵ

2
, 1− κ−1

(
1−√ϵ
1 +
√
ϵ

)}
(50)

in the single-agent case. We begin by noting that to show that our rate is faster, we only have to show
that it is smaller than one of the terms of equation (50).
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Certified using WolframScriptCertified using WolframScript CAS 2CAS 2

Note that

ρ′ − ρ = 1−√ϵ− 1−√ϵ
(1 +

√
ϵ)κ

−
(1−√ϵ)(κ− 1)2

(
1−√ϵ+

√
1 + ϵ+

2
√
ϵ
(
1 + κ(6 + κ)

)
(κ− 1)2

)
2(κ+ 1)2

Writing this as a single fraction, we see that the sign of this expression is the same as that of

∆ :=
(
1−√ϵ

)(
−2 + κ

(
−3 + ϵ(κ− 1)2 + 2

√
ϵ(κ+ 1)2 + (1 +

√
ϵ)R

+κ
(
4 + κ− (1 +

√
ϵ)R
)))

.

where R :=
√

(κ− 1)2 + ϵ(κ− 1)2 + 2
√
ϵ
(
1 + κ(6 + κ)

)
. Denote the coefficient in front of

R as C(R), and note that is negative. As a result, it just remains to make sure that the rest of the
terms compensate for this term. Rewriting this as an inequality, and squaring to deal with R, our
result follows from the inequality

(∆− C(R) ·R)
2 − (C(R) ·R)

2
= 4(1−√ϵ)2(1 + κ)F > 0,

where

F = 1 + κ
(
1 + κ(−5 + 3κ) + ϵ(1 + κ)(−1 + 3κ) + 2

√
ϵ (−1 + κ)(1 + 3κ)

)
.

The factors other than F are clearly positive, and F is increasing with respect to ϵ. Setting ϵ to 0
shows that it is positive for all valid ϵ.

0.00 0.25 0.50 0.75 1.00
ε

0.00

0.25

0.50

0.75

1.00

ρ

κ = 2
Optimal rate
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Figure 2: Line plot comparing the convergence rate of this paper (blue) with equation (50) (red) for
various κ.
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Figure 3: Line plot comparing the complexity of equation (50) with the rates of this paper for various
κ.
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Figure 4: Line plot comparing the convergence rate of this CGD (blue) with EF/EF21 (red) for
various κ.
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Figure 5: Line plot comparing the complexity of EF/EF21 with CGD for various κ.
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C Missing proofs

This section contains the proofs of Theorems 1 and 2. The proofs were obtained using by observing
numerical results using the Lyapunov search procedure presented in Appendices A.2 and A.3. The
resulting proofs are remarkably compact, and the main technical step consists of verifying an algebraic
reformulation by hand. For ease of verification, we provide the reader with scripts written in Wolfram
Language4 that automatically performs those reformulations using a computer algebra system.

C.1 Proof of Theorem 1

Theorem 1.

Consider running Algorithm 2, i.e., EF, with a compression operator C satisfying Assumption 1 for
some ϵ ∈ [0, 1] on any function satisfying Assumptions 2, and 3. Let the step size be given by

η⋆ =

(
2

L+ µ

)
·
(
1−√ϵ
1 +
√
ϵ

)
. (8)

Then, we have that
ρ⋆(EFη⋆) =

√
ϵ+ 1

4 (1 +
√
ϵ)(L− µ)λ, (9)

where
λ := η⋆

L+µ

[
(1−√ϵ)(L− µ) + (1 +

√
ϵ)
√
(L− µ)2 + 16Lµ

√
ϵ

(1+
√
ϵ)2

]
. (10)

A Lyapunov function achieving the rate in (9), with ξEF defined in (7), is given by

V(ξEF, x; f) := ∥x−x⋆∥2− 2(x−x⋆)
⊤e+

(
1 +

1√
ϵ

)
· ∥e∥2 = ∥x−x⋆− e∥2 + 1√

ϵ
∥e∥2, (11)

Finally, the step size in (8) is worst-case optimal for EF: ∀η ⩾ 0, we have ρ⋆(EFη) ⩾ ρ⋆(EFη∗) .

Proof. We begin by proving the rate given in (9) for our Lyapunov function. Consider the following
inequalities, and associated with each of them the assigned multiplier 5

I
(1)
Fµ,L

:= f(xk)− f⋆ −∇f(xk)
⊤(xk − x⋆) +

1

2L
∥∇f(xk)∥2

+
µ

2(1− µ/L)
∥xk − x⋆ −

1

L
∇f(xk)∥2 ⩽ 0,

: λ

I
(2)
Fµ,L

:= f⋆ − f(xk) +
1

2L
∥∇f(xk)∥2 +

µ

2(1− µ/L)
∥xk − x⋆ −

1

L
∇f(xk)∥2 ⩽ 0, : λ

IC := ∥ek+1∥2 − ϵ∥ek + η∇f(xk)∥2 ⩽ 0, : ν

where λ is defined in (10), and ν := 1√
ϵ
.

Certified using WolframScriptCertified using WolframScript CAS 2CAS 2

Summing these inequalities with their multipliers, plugging in the update rules for xk+1 and
ek+1, and using ρ to denote the contraction factor we got in (9), we can rewrite the resulting
inequality as:

ρ · V(xk, ek) ⩾ V(xk+1, ek+1) + a · ∥ek −
ρ− 1

a
(xk − x⋆) +

2(
√
ϵ− 1)

a(L+ µ)
gk∥2, (51)

where

a := (ρ−√ϵ) ·
(
1 +
√
ϵ√

ϵ

)
. (52)

4Wolfram Language is the programming language used in Mathematica. The scripts can be used to verify our
rates without a paid license using Wolfram Engine.

5These multipliers correspond to closed forms for some of the variables of (EF-SDP) when the Lyapunov
function is fixed as in the statement of the theorem.
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The statement now follows from the simple inequality ρ >
√
ϵ.

We now prove that the announced rate is tight. Consider the one-dimensional quadratic function

fµ(x) =
µ

2
x2. (53)

The proof strategy used here is to show that the contraction for our Lyapunov function asymptotically
matches the convergence rate announced in Theorem 1. We begin by fully exploiting Assumption 1
and set

ck := C(ek + η∇f(xk)) = (1 +
√
ϵ) · (η∇f(xk) + ek). (54)

We can now rewrite the update rule for xk+1 and xk+2 to get an expression for ek and ek+1 respec-
tively:

ek =
1− ηµ(1 +

√
ϵ)

1 +
√
ϵ

xk −
xk+1

1 +
√
ϵ
, ek+1 =

1− ηµ(1 +
√
ϵ)

1 +
√
ϵ

xk+1 −
xk+2

1 +
√
ϵ
, (55)

after which we use the update rule for ek+1 of Algorithm 2 to get a second-order recurrence relation
for the sequence {xk}∞k=1:

√
ϵxk = xk+2 − (1− ηµ−√ϵ(1 + ηµ)) · xk+1 (56)

The solution to this recurrence relation is given by the roots of the characteristic equation, and after
plugging in the initial conditions, we get

xk =
1

T
· (1− ηµ+

√
ϵ(1− ηµ) + T )(1− ηµ−√ϵ(1 + ηµ) + T )k

− 1

T
· (1− ηµ+

√
ϵ(1− ηµ)− T )(1− ηµ−√ϵ(1 + ηµ)− T )k,

(57)

where T :=
√
4
√
ϵ+ (1− ηµ+

√
ϵ(1 + ηµ))2. Note that for

η <

(
1

µ

)
·
(
1−√ϵ
1 +
√
ϵ

)
, (58)

which is strictly larger than the step size given in (8), the above expression is dominated by the first
term in the limit k →∞. If we plug in the resulting asymptotic expression for xk into the definition
of ek, and plug the resulting points into our Lyapunov function we get

V(xk+1, ek+1)

V(xk, ek)

k→∞−−−−→ 1

4
(1− ηµ−√ϵ(1 + ηµ) + T )2 (59)

which, after plugging in the step size given in (8), is exactly the convergence rate announced in
Theorem 1. The fact that our Lyapunov function is tight now follows from the remark made in
Section 3.4.

Finally, we prove that the step size given in (8) is the optimal step size for our Lyapunov function.
Note that the contraction factor

ρ(η) :=
1

4
(1− ηµ−√ϵ(1 + ηµ) + T )2, (60)

that becomes the dominant term in the limit k → ∞ of (59) is strictly decreasing in η. This is
immediate from inspecting the sign of the derivative of the expression with respect to η:

dρ(η)

dη
= −µ(1 +√ϵ) (1− ηµ−√ϵ(1 + ηµ) + T )2

2T
. (61)

The rest of the proof now follows from instead considering the quadratic given by

fL(x) :=
L

2
x2, (62)

and repeating all the arguments stated above, except we instead consider step sizes

η >

(
1

L

)
·
(
1−√ϵ
1 +
√
ϵ

)
, (63)

and show that the contraction for our Lyapunov function is strictly decreasing for these step sizes.
The argument now follows from the fact that the contraction factor on both of these quadratics are the
same for the step size given in (8).
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C.2 Proof of Theorem 2

Theorem 2.

Consider running Algorithm 3 with a compression operator satisfying Assumption 1 for some ϵ ∈ [0, 1]
on any function satisfying Assumptions 2, and 3. Let the step size be given by η⋆ in (8). Then,

ρ⋆(EF21
η⋆
) = ρ⋆(EFη⋆

). (12)

A Lyapunov function achieving the rate in (12) is given by

V(ξEF21

, x; f) := (1 +
√
ϵ) · ∥g∥2 − 2g⊤d+ ∥d∥2 = ∥g − d∥2 +√ϵ · ∥g∥2. (13)

Finally, the step size η⋆ is worst-case optimal for this algorithm.

Proof. We begin by proving the rate given in (12) for our Lyapunov function. Consider the following
inequalities, and associated with each of them the assigned multiplier:

I
(1)
Fµ,L

:= f(xk)− f(xk+1) +
∥∇f(xk+1)−∇f(xk)∥2

2L
+∇f(xk)

⊤(xx+1 − xk)

+
µ

2(1− µ/L)
∥xk − xk+1 −

1

L
(∇f(xk)−∇f(xk+1))∥2 ⩽ 0,

: λ′

I
(2)
Fµ,L

:= f(xk+1)− f(xk) +
∥∇f(xk)−∇f(xk+1)∥2

2L
+∇f(xk+1)

⊤(xk − xk+1)

+
µ

2(1− µ/L)
∥xk+1 − xk −

1

L
(∇f(xk+1)−∇f(xk))∥2 ⩽ 0,

: λ′

IC := ∥∇f(xk+1)− dk − C(∇f(xk+1)− dk)∥2 − ϵ∥∇f(xk+1)− dk∥2 ⩽ 0, : ν

where λ′ is defined as

λ′ :=

√
ϵ

η⋆(L+ µ)

[
(1−√ϵ)(L− µ) + (1 +

√
ϵ)

√
(L− µ)2 +

16Lµ
√
ϵ

(1 +
√
ϵ)2

]
, (64)

and ν := 1.

Certified using WolframScriptCertified using WolframScript CAS 2CAS 2

Summing these inequalities with their multipliers, plugging in the update rules for xk+1 and
dk+1, and using ρ to denote the contraction factor we got in (12), we can rewrite the resulting
inequality as:

ρ · V(gk, dk) ⩾ V(gk+1, dk+1) + a · ∥dk +
1

a
((ϵ+ b)gk+1 − (ρ+ b)gk)∥2, (65)

where

b :=
λ

L− µ
·
(
1−√ϵ
1 +
√
ϵ

)
. (66)

and
a := ρ− ϵ+ 2ηλ(1−√ϵ) Lµ

L− µ
. (67)

The statement now follows from plugging in the value of our multipliers and checking the sign.

We now prove that the announced rate is tight. Consider the one-dimensional quadratic function

fµ(x) =
µ

2
x2. (68)

The proof strategy used here is to show that the contraction for our Lyapunov function asymptotically
matches the convergence rate announced in Theorem 2. We begin by fully exploiting Assumption 1
and set

ck := C(∇f(xk+1)− dk) = (1 +
√
ϵ) · (∇f(xk+1)− dk) (69)
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We can now rewrite the update rule for xk+1 and xk+2 to get an expression for dk and dk+1

respectively:

dk =
xk − xk+1

η
, dk+1 =

xk+1 − xk+2

η
, (70)

after which we use the update rule for dk+1 of Algorithm 3 to get a second-order recurrence relation
for the sequence {xk}∞k=1:

√
ϵxk = xk+2 − (1− ηµ−√ϵ(1 + ηµ)) · xk+1. (71)

Note that this is the exact same recurrence relation as in (9), which means we can reuse the expression
in (57) and the argument that follows. The proof now follows from the definition of our Lyapunov
function in (13). The optimality of our Lyapunov function similarly follows from the same argument
given in the remark made in Section 4.

Lastly, the proof of optimality of our step size follows directly from the same argument given in the
proof of Theorem 1.

C.3 Extension to stochastic compressors

Note that all the results of Theorems 1 and 2 were proven using the deterministic version of Assump-
tion 1. Any deterministic compressor satisfies that assumption, and our lower bounds thus remain
valid in this case. To show that the given rates are tight, we have to replace the inequalities IC from
the respective proofs with their stochastic counterparts:

IEF
C := E

[
∥ek+1∥2

]
− ϵ∥ek + η∇f(xk)∥2 ⩽ 0,

IEF21

C := E
[
∥∇f(xk+1)− dk − C(∇f(xk+1)− dk)∥2

]
− ϵ∥∇f(xk+1)− dk∥2 ⩽ 0.

Certified using WolframScriptCertified using WolframScript CAS 2CAS 2

For EF, we need to show the following:

ρ · EV(xk, ek) ⩾ EV(xk+1, ek+1),

Certified using WolframScriptCertified using WolframScript CAS 2CAS 2

And for EF21 we need to show the following:

ρ · EV(gk, dk) ⩾ EV(gk+1, dk+1).

The same exact proof as used in the deterministic case holds for both due to the linearity of expectation.
Wolfram Language scripts verifying this fact are available in the source code repository for this
article.
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D Additional numerical results

All subsections include details on how the corresponding results were computed. This section is
organized as follows:

• Appendix D.1 presents additional performance plots for all methods and explains how the
plots in the main paper were generated.

• Appendix D.2 provides illustrations demonstrating that our Lyapunov functions remain tight
over multiple iterations.

• Appendix D.3 includes additional tables further confirming the tightness of our Lyapunov
functions.

• Appendix D.4 shows plots illustrating the optimality of our step size.

• Appendix D.5 numerically demonstrates that the type of Lyapunov function used in Richtárik
et al. [14] achieves a worse rate of convergence than the one used in this work.

All experiments were run on a MacBook Pro with an M4 Max processor. While none of the
experiments are computationally demanding by modern standards, they can be scaled by increasing
the resolution of the η and ϵ grid to produce finer plots.

The source code for all the experiments is publically available in the following GitHub repository:
https://github.com/DanielBergThomsen/error-feedback-tight

D.1 Performance plots

This section presents the worst-case performance of all methods studied in this work, plotted as a
function of the step size η and the compression parameter ϵ.

All contour plots were evaluated over a grid with ϵ ∈ [0.01, 0.99], and η ∈ [0.01, 2
L+µ⋆

], where µ⋆ is
the smallest µ specified in the caption of each figure (except for Figure 7, where it is set to 0.1). Each
axis was discretized with a resolution of 200 points.

To generate each non-cyclic point, we used the following procedure:

1. For each method, we computed the optimal Lyapunov function (without additional con-
straints) via bisection on the contraction factor ρ, up to a precision of 10−6.

2. Using the resulting Lyapunov function, we then computed the worst-case contraction factor
using PEPit [58] and the MOSEK solver [57].

We adopt this two-step approach because the feasibility problems used to compute the Lyapunov
functions suffer from numerical instability. By evaluating the contraction factor separately using
PEPit, we ensure that the reported value is an upper bound on the true contraction factor—up to
solver tolerance.

To identify the area of non-convergence in the plots, we check whether a cycle exists for each pair of
η and ϵ. This is done by following the procedure outlined in Goujaud et al. [66]: we compute the
worst-case performance of the metric −∥xk − x0∥2 for CGD, −∥xk − x0∥2 − ∥ek − e0∥2 for EF,
and −∥xk − x0∥2 − ∥dk − d0∥2 for EF21. If this value falls below a threshold (set to 10−3), we
conclude that a cycle is present. In our experiments, cycles of length 2 were successfully identified
for all methods, and these matched precisely with the regions of the contour plots where ρ > 1.

D.2 Multi-step Lyapunov analysis

In this section, we show that our simple Lyapunov functions achieve the claimed convergence rate
over multiple iterations. Specifically, we use PEPit to compute the contraction factor achieved by the
Lyapunov function after k iterations and compare it to the theoretical rate ρk, where ρ is the single-
step contraction factor. The exact match between these quantities in Figures 9 and 10 confirms that
our single-step analysis accurately characterizes the worst-case performance over multiple iterations
on these Lyapunov functions.
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Figure 6: Contour plot showing the performance of CGD as a function of step size η and compression
parameter ϵ, with regions of non-convergence marked in red. The regions of non-convergence were
identified using PEPit by finding cycles of length 2. Each column corresponds to µ = 0.5, 0.25, 0.1,
with L = 1.0 fixed across all plots.
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Figure 7: Contour plot showing the performance of EF as a function of step size η and compression
parameter ϵ, with regions of non-convergence marked in red. The regions of non-convergence were
identified using PEPit by finding cycles of length 2. Each column corresponds to µ = 0.5, 0.25, 0.1,
with L = 1.0 fixed across all plots. The optimal step size setting for a given ϵ is marked in blue.

D.3 Lyapunov function class tightness

In this section, we show that for various conditioning numbers κ, our Lyapunov functions for EF and
EF21 are tight with respect to our class of Lyapunov functions, when using optimal step sizes. We
remark that our Lyapunov functions are actually tight for many step size settings, but notably not step
sizes which are larger than the optimal step size.

The tables report the maximum absolute difference in contraction factors between our Lyapunov
function and the optimal one, over a range of ϵ and η values specified in the captions. All contraction
factors were computed using PEPit, and the procedure for the uncontrained Lyapunov functions is
the one outlined in Appendix D.1. Points where either Lyapunov function yields a contraction factor
greater than 1 were excluded from the computation of the maximum absolute difference.

κ = 2 κ = 4 κ = 10

Absolute error 3.70e-07 4.83e-07 6.60e-07

Table 3: Maximum absolute difference in contraction factor for EF when comparing the general
Lyapunov function—constructed using any combination of state terms specified in Subsection 3.1—to
the simplified Lyapunov function defined in Theorem 1. The results are computed over a line with
ϵ ∈ [0.01, 0.99] and with η set to the optimal step size for L = 1, and µ = 0.5, 0.25, 0.1.
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Figure 8: Contour plot showing the performance of EF21 as a function of step size η and compression
parameter ϵ, with regions of non-convergence marked in red. The regions of non-convergence were
identified using PEPit by finding cycles of length 2. Each column corresponds to µ = 0.5, 0.25, 0.1,
with L = 1.0 fixed across all plots. The optimal step size setting for a given ϵ is marked in blue.
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Figure 9: Multi-step Lyapunov analysis for EF, computed using PEPit. The blue line shows
the contraction factor achieved by the Lyapunov function after k iterations, while the red dashed
line represents the theoretical rate ρk, where ρ is the single-step contraction factor. Each column
corresponds to a different value of ϵ = 0.75, 0.5, 0.25, with L = 1.0 and µ = 0.1 fixed across all
plots.

κ = 2 κ = 4 κ = 10

Absolute error 2.77e-07 1.97e-06 1.65e-06

Table 4: Maximum absolute difference in contraction factor for EF21 when comparing the general
Lyapunov function—constructed using any combination of state terms specified in Subsection 3.1—to
the simplified Lyapunov function defined in Theorem 2. The results are computed over a line with
ϵ ∈ [0.01, 0.99] and with η set to the optimal step size for L = 1, and µ = 0.5, 0.25, 0.1.

D.4 Step size comparison

In this section, we compare the theoretically optimal step sizes we propose for our methods with
empirically optimal step sizes determined through numerical experiments. To compute the empirical
optima, we evaluate a grid of η and ϵ values and select the step size that minimizes the contraction
factor achieved by our simplified Lyapunov functions. The results of that experiment are found in
Figure 11.
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Figure 10: Multi-step Lyapunov analysis for EF21, computed using PEPit. The blue line shows
the contraction factor achieved by the Lyapunov function after k iterations, while the red dashed
line represents the theoretical rate ρk, where ρ is the single-step contraction factor. Each column
corresponds to a different value of ϵ = 0.75, 0.5, 0.25, with L = 1.0 and µ = 0.1 fixed across all
plots.
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Figure 11: Empirically observed optimal step sizes (blue) in comparison with our setting (red, dashed)
as a function of ϵ for different values of µ and L.

D.5 Comparison of Lyapunov functions to previous work

In this subsection, we compare the convergence rates achieved with our Lyapunov function compared
to that of Richtárik et al. [14]. For reference, the Lyapunov function they use is the following:

V(ξEF21

, x; f) := f(x)− f⋆ +
η

θ
∥d− g∥2, (72)

where θ := ϵ
1−

√
ϵ
. We ran an experiment where we measured the best possible contraction factor

ρ′ resulting form this parameterization, and compared it to the ones we achieve with the Lyapunov
function defined in Theorem 2. In order to account for the possibility that there may be a better
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weighting between the two terms of equation (72), we let that the weighting be a free parameter in
the Lyapunov analysis PEP.

The metric used is the complexity metric introduced in the beginning of Appendix B. The result of
this comparison can be found in Figure 12.
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Figure 12: Complexity ratio between the rate achieved by the freely weighted version of equation (72),
and the Lyapunov function used in Theorem 2.
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E Remarks on the importance of proof certificates

The paper and appendix provide machine-checkable certificates for the main claims in the paper. We
include two such complementary certificate types:

Symbolic certificates (WolframScript). Short WolframScript snippets that verify algebraic
identities and intermediary equalities used within proofs. Any suitable Computer Algebra
System (CAS) could be used for these purposes.
Numerical certificates (PEPs). Instances of the PEPs (as defined in the main text) that
validate global inequalities and performance bounds by directly solving the corresponding
optimization problems.

While the proofs resulting from PEP formulations are well suited to CAS for local verification of
individual steps, we use both tools: WolframScript checks the algebraic steps, and PEPs validate the
global statements.

The rationale behind the decision of adding these proof certificates is the following:

• Reviewing efficiency and literature consolidation. Submission volumes at large ML
venues continue to grow, increasing reviewer workload6 and raising challenges in the
community, as acceptance of a paper does not necessarily guarantee that proofs have been
thoroughly checked 7.
While machine-checkable certificates do not replace mathematical proofs, they may shift
effort from re-deriving statements to verifying that appropriate checks were provided, which
is typically easier. They also provide authors with early feedback on correctness before
submission.

• Incremental path to formalization. General-purpose proof assistants (e.g., Lean, Rocq) do
not yet provide all mathematical infrastructure needed to formalize many ML results. As an
interim step, we certify the parts that are currently amenable: symbolic steps via computer
algebra and end-to-end statements via PEPs. This may enable a gradual transition toward
fully formal proofs as libraries mature.

• Clarifying experimental intent. Ultimately, we also believe that this can serve to clarify
the role of experiments in the papers, that are not always described. Some experiments test
hypotheses; while others function as theory unit tests. Declaring the latter explicitly (and
supplying their certificates) helps readers understand how these checks support the claims.

Formalization in Lean or Rocq is our ultimate standard for a guaranteed, machine-checked certificate
of validity. We consider this an ambition for future work and aim to explore it by gradually linking
the symbolic components to Lean (e.g., turning recurring identities into lemmas) and packaging
numerical outputs as checkable witnesses.

6https://blog.neurips.cc/category/2024-conference/
7The NeurIPS 2025 reviewer guidelines indicate specifically that the reviewer is not required to read the

paper’s supplementary material https://neurips.cc/Conferences/2025/ReviewerGuidelines.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Every claim is proven in the paper, and we make the setting and assumptions
clear in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the fact that we are restricted to the single-agent setting in the
discussion. We also make it quite clear that we are working with deterministic compression
operators and smooth strongly convex functions in the background section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions and full theorem statements are in the paper, and the proofs
are in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: Full details about how the plots were generated are given in the appendix. We
also provide the code as part of the submission for the reviewers, and intend on making it
open source afterwards.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code will be made open source after the review process. In the meantime,
the reviewers will get access to the code in an anonymized form.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Necessary details to understand the plots are given in the captions. Details for
how they were generated are given in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper does include experiments, but they are not random and so this
question is not applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
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Justification: The experiments can be scaled arbitrarily to a fine or course grid of points, and
the time to finish is highly dependent on this. Nevertheless, all the experiments were run on
an M4 Max.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have not violated the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The paper only provides tight analysis of already existing methods. The only
impact it will have is on the community of researchers working in distributed optimization.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No data or models are released in this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Citations for the software packages PEPit and PySR are present in paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The only new asset introduced is the code implementing the feasibility prob-
lems themselves, and the utility functions surrounding them. The documentation for these are
given in the form of instructions for reviewers to replicate our findings in the supplementary
material, and in the comments of the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No crowdsourcing or human subjects are involved in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No research with human subjects is involved in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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