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a b s t r a c t

Patient-specific quality assurance (PSQA) of volumetric modulated arc therapy (VMAT) treatment plans
is crucial to enable the plans to be validated for clinical acceptance. However, performing PSQA for
clinical delivery is labor-intensive and time-consuming. The existing prediction models do not take
into account the dynamic delivery process of VMAT plans. To solve the above problems and improve
accuracy of PSQA, this paper presents a multilayer perceptron (MLP) neural network model with
regression and ranking loss to predict the gamma passing rate (GPR). The proposed model combines a
convolutional neural network with multiple MLP blocks for extracting inter-image correlation features
of plan files during dynamic delivery. To focus on the similarity and specificity of multiple VMAT
plans, a regression and ranking loss function with dynamic weights is proposed to optimize the
training process. In addition, a clinical workflow is proposed to combine the designed model with
measurement-based PSQA to screen potential risky plans better. A total of 690 VMAT plans from
multiple treatment sites are collected to validate the performance. For 2%/2 mm, 3%/2 mm and
3%/3 mm, the best result of mean absolute error and max error between measured and predicted
GPR are 2.17%, 1.25%, 0.74%, and 7.89%, 4.29%, 3.05%, respectively. Experimental results demonstrate
that the proposed method has a state-of-the-art performance and can improve the VMAT PSQA process
and reduce PSQA workloads.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Volumetric modulated arc therapy (VMAT) [1] is a commonly
sed modern radiotherapy technique. Compared to conventional
ntensity-modulated radiotherapy, VMAT improves dosimetry and
educes treatment time [2]. However, VMAT plans consist of
ighly modulated apertures with increased dosimetric uncer-
ainty and pose a great challenge to the dosimetric accuracy
f complex RapidArc plans [3,4]. So a safe and comprehensive
uality assurance (QA) must be performed before a patient can
ndergo surgery.
Patient-specific quality assurance (PSQA) is a technique using

amma evaluation for the quantitative evaluation of dose distri-
utions to solve the above problem, and it is of vital importance
n the pretreatment process [5]. In radiation therapy, doctors
arefully design and determine the dose-intensity graphic that
est fits the tumor shape and then use computer-controlled linear
ccelerators to send precise doses of radiation to the malignant
umor or specific areas within the tumor. Normal human tissues
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and organs have a certain tolerance to the radiation dose. A
lower dose may result in a poor tumor treatment effect, while
a higher dose may reduce the survival rate of patients [1]. There-
fore, finding the most appropriate radiation dose intensity is
crucial for patient safety and treatment. PSQA enables the de-
signed radiotherapy plan to be validated for clinical acceptance.
Although PSQA has some problems, such as being insensitive to
errors [6–8], it is still widely used in a number of institutional
guidelines [9].

Gamma analysis [5] are commonly used to assess the integrity
of deliveries in undertaking VMAT PSQA. But the problem occurs
that it is time-consuming and labor intensive and adds a lot
of burden to the clinical treatment [10]. So a number of algo-
rithms and models have been proposed to assist the calculation of
gamma passing rate (GPR) in ensuring that the dose distribution
meets clinical standards [11–16]. These methods can be divided
into two categories: traditional machine learning methods that
use expert-designed features for training, and deep neural net-
work methods that do not require domain knowledge. While
some of these methods perform well, some issues remain and
deserve to be addressed.

https://doi.org/10.1016/j.knosys.2023.110549
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Firstly, most traditional machine learning models are trained
with complex features designed by domain experts. These fea-
tures contain limited information and may overlook some VMAT
plan file information. Secondly, previous deep neural network
models are trained using only regression loss function, ignoring
the correlation and specificity between different plans. Thirdly,
none of these models consider the dynamic delivery process of
the VMAT plan, i.e., the correlation between the multileaf col-
limator (MLC) aperture images of the control points. Finally, it
is unclear how these models can be combined with the clinical
workflow. An explicit integration process needs to be proposed
to assist PSQA better.

To address the aforementioned problems, a multilayer per-
ceptron neural network model is proposed for PSQA of VMAT
treatment plans. The inputs to the model are MLC aperture im-
ages as well as the monitor unit (MU) weights. The model con-
sists of three modules: a feature extraction module, a correlation
extraction module, and a feature fusion module. The feature
extraction module consists of a convolutional neural network
(CNN) for extracting image features. The correlation extraction
module consists of multiple multilayer perceptron (MLP) blocks
for extracting correlation features between aperture images. The
feature fusion module integrates the image features with the MU
features. To focus on the similarity and specificity of different
VMAT treatment plans, a regression and ranking loss function is
proposed to optimize the training process. Meanwhile, we exper-
imentally present a clinical workflow to combine the designed
model with measurement-based PSQA. To validate the proposed
method and the clinical workflow, 690 VMAT plans, including
125580 aperture images, were collected from the West China
Hospital of Sichuan University and used for the experiments. The
major contributions of this paper are summarized as follows:

(1) A MLP network model is proposed for PSQA of VMAT treat-
ment plans. This model takes into account the dynamic nature of
VMAT plans during delivery and is the first to employ MLP blocks
to extract correlation features between MLC aperture images.

(2) A loss function combining regression and ranking is pro-
posed for training. It can minimize the average error while fo-
cusing on the similarity and specificity between multiple VMAT
plans.

(3) A clinical workflow is designed to combine the proposed
prediction model with the measurement-based PSQA, which can
better assist physicians in identifying risky plans.

2. Related works

This section presents the development of MLP networks in
radiotherapy, followed by an overview of previous studies on
PSQA of intensity-modulated radiation therapy (IMRT) or VMAT
plans using traditional machine learning methods and deep neu-
ral network methods.

2.1. MLP networks in radiotherapy

Conventional MLP networks mainly consist of multiple fully
connected layers, and such networks can be used to extract
features from the input data. Sun et al. proposed a three-layer
MLP network for respiratory signals prediction in gated treat-
ment of moving target in radiation therapy [17]. A three-layer
MLP network was also used to predict intrafraction lung tumor
motion [18]. Zhu et al. combined the MLP network with long–
short term memory structure to improve the prediction of grade
4 radiotherapy-induced lymphopenia [19]. However, the ability of
these networks to extract features is unsatisfactory, most notably
because of the small number of layers and the lack of a struc-

tured connection to integrate multiple layers. In addition, MLP

2

networks are often used as feature classifiers rather than feature
extractors [20–22], which discards the ability to extract correla-
tion features. So a deeper MLP network needs to be proposed for
exploring the correlation features of radiotherapy data.

Recently, significant breakthroughs have been made in the
research of MLP network models [23,24]. The structured blocks
make even simple fully connected structures have powerful fea-
ture extraction capabilities. Most importantly, by exploring the
correlation between multiple patches, the MLP model has excel-
lent ability to extract correlation features. Correlations naturally
exist between the MLC aperture maps of VMAT treatment plan
files, and it is worth exploring how to use the MLP model to
extract such features.

2.2. Traditional machine learning methods for PSQA

Before treating, the dose distribution is usually measured in
a phantom. Then the measured dose and dose distribution(s) are
compared with those predicted by the planning system to assess
the agreement of the two distributions [5]. The usual metrics
used include point-by-point percent dose difference, distance-to-
agreement (DTA), and the gamma index, which combines both
DTA and dose evaluation [5,25,26]. But performing PSQA for the
clinical delivery of IMRT/VMAT plans is time-consuming and not
altogether instructive due to the myriad sources that may pro-
duce a failing result. Thus Valdes et al. developed a mathematical
framework using Poisson regression with Lasso regularization to
predict IMRT QA passing rates [11]. This method used 78 met-
rics describing the difference between calculated and measured
values to train the model and identified the correlation between
IMRT plan complexity metrics and GPR. Later, they verified this
method using the data obtained by different measurement ap-
proaches at various institutions, proving that this algorithm can
be accurately applied to the IMRT quality assurance [12].

Inspired by this work, one Poisson Lasso regression model
was developed by Li et al. to assess the accuracy of machine
learning to predict quality assurance results for VMAT plans [27].
This model used 54 metrics for training, and a random forest
classification model was developed to classify QA results as ‘‘pass’’
or ‘‘fail’’. The mean prediction error is 1.81%, 2.39%, and 4.18% at
2%/2 mm, 3%/2 mm, and 3%/3 mm, respectively.

Lam et al. used three tree-based machine learning algorithms
(AdaBoost, Random Forest, and XGBoost) to train the models
and predict GPR values [28]. They demonstrated that the pro-
posed methods allowed physicists to better identify the failures
of IMRT QA measurements and to develop proactive QA ap-
proaches. Granville et al. trained a linear support vector to classify
the results of VMAT plans instead of predicting the GPR val-
ues [14]. They divided the RT plans into three classes based on
median dose variance: >1%, <1%, and within ±1%, achieving a
macro-averaged area under the ROC curve of 0.88.

These machine learning methods use a large number of com-
plexity metrics or features to construct models. But these features
designed by domain experts contain limited information and
may overlook some plan file information. Thus, a new model
automatically extracting more useful information is warranted.

2.3. Deep neural network methods for PSQA

Neural networks have been studied for many years [29–35],
and recently they have achieved important breakthroughs using
CNN models in various medical fields, including breast cancer
diagnosis [36–39], thyroid diagnosis [40], radiotherapy error clas-
sification [41], and medical image segmentation [42–44]. Sahiner
et al. reviewed the development of radiotherapy and concluded
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Fig. 1. Diagram of the overall network architecture of the proposed method. First, the MLC aperture images will be fed individually to the feature extraction module
to extract image features. After that, all features are stacked and sent to the correlation extraction module to extract relevant features. Finally, the extracted features
are concatenated with MU features and sent to the feature fusion module to obtain the predicted GPR.
{

that neural network methods are commonly used in radiother-
apy [45]. But using the deep learning model to evaluate VMAT
plans is still challenging. Wolfs and Bedford et al. used portal
images as input to a neural network to identify treatment errors,
and the results demonstrated the great potential of neural net-
works for PSQA [46,47]. Interian et al. compared the performance
of the proposed deep neural network model against a technique
designed by domain experts in the prediction of GPR for IMRT
quality assurance [13]. They used fluence maps calculated for
each plan as input to the CNN model, and the predicting results
were similar to a system carefully designed by physicist experts.
Similarly, Mahdavi et al. fed fluence maps into an artificial neural
network to validate the dose of the IMRT plans [48].

Tomori et al. trained a CNN model using IMRT plans, which got
he Spearman rank correlation coefficients of 0.62 and the MAE
alue 1.93 in the 2%(global)/2 mm of the test dataset [15]. Their
etwork contained three convolution operations, each specifically
ncluding Con + ReLU + Maxpooling. They also used MU and
olume as additional input information.
Nyflot et al. provided an alternative perspective for qual-

ty assessment of radiotherapy plans [20]. They investigated a
eep learning approach to classify the presence or absence of
ntroduced radiotherapy treatment delivery errors from patient-
pecific QA. The results suggested that the performance of the
eep learning approach is better than the performance of the
andcrafted method with texture features.
Ono et al. used three machine learning models, regression tree

nalysis (RTA), multiple regression analysis (MRA), and neural
etworks (NNs), to predict the dosimetric accuracy using 28 met-
ics [16]. The results showed that NNs performed slightly better
han RTA and MRA.

Although these neural network methods effectively assess the
uality of IMRT/VMAT plans, none of them take into account the
ynamic delivery process of VMAT plans, i.e., the existence of
correlation between MLC aperture images. It is necessary to

ntroduce such correlations in the model to improve performance.
oreover, these models cannot focus on the similarity between
ultiple plans if trained using only the regression loss function,
hich leads to significant prediction errors for individual outlier
lans.

. Method

In this section, the proposed overall network structure is in-
roduced first. Then the structural MLP block is presented. In
ddition, section 3.3 illustrates the details of the proposed regres-
ion and ranking loss function. Finally, how the proposed model
an be combined with clinical workflow to monitor risky VMAT
reatment plans is shown in Section 3.4.
3

3.1. Overall network architecture

The purpose of this work is to predict the GPRs of VMAT
treatment plans to be as close as possible to the measured GPR
labels. Let the training set with N VMAT plans be noted as D =
((xi,mi), yi); i = 1, 2, . . . ,N}, xi = {xi,1, xi,2, . . . , xi,I}. I is the
number of control points of one VMAT plan (I = 182 in this
study). xi,j ∈ Rw×h×c is the jth MLC aperture image of ith RT plan,
where w, h and c represent the width, height and channel (RGB
values) of the image, respectively. mi ∈ RI is the MU values of
ith plan and yi ∈ [0, 1] is the measured GPR label of ith plan. Our
architecture is designed to learn a robust model f (yi|(xi,mi), φ)
that can predict the GPR value which is equal to or very close
to its corresponding label. Here, φ denotes the parameters in the
proposed model.

The overall network structure of the proposed model is shown
in Fig. 1. It consists of the following three parts: the feature
extraction module, the correlation extraction module, and the
features fusion module. The feature extraction module consists of
a pre-trained CNN network, which is designed to extract features
in one single aperture image. These features include intuitive
features such as the shape and size of the aperture as well as
some high-dimensional non-intuitive features. Since there are
sequential relationships between multiple aperture images of one
VMAT plan, the correlation extraction module is proposed to
extract relevant features between them. It consists of several
structural MLP blocks containing only linear layers and activation
functions. Because MU values measure machine output from a
clinical accelerator for radiation therapy, the features fusion mod-
ule fuses the extracted features and the MU features to obtain the
final predictions.

Formulaically, given a training sample (xi,mi), we first feed xi
into the feature extraction module. For brevity, the subscript i has
been removed in the latter part. The image features Vc ∈ RI×I will
be extracted by Vc = fc(x|ϕc), where fc stands for a pre-trained
CNN with parameters ϕc . The dimension is I× I in order to enable
a linear layer of fixed dimension to be applied to both Vc and V T

c .
Then Vc will be fed into the correlation extraction module and
the relevance features vr ∈ RI are obtained by vr = fr (Vc |ϕr ),
where fr is a multilayer perceptron network with parameters ϕr .
The structure of this network is described in the next subsection.
The final features vf ∈ R2I are obtained by concatenating vr and
m. Finally, the predicted GPRs are calculated in the feature fusion
module by Eq. (1):

GPR = σ (vf w
T
+ b), (1)

where w and b are the weights and bias of a fully connected layer,
and σ is a sigmoid activate function that keeps the predictions in
the [0, 1].
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Fig. 2. Diagram of the architecture of an MLP block. W1 , W2 , W3 , and W4 denote the weights of the four fully connected layers, respectively. Given the input V , it
will first be fed into two fully connected layers to be computed in the column direction, after which it will be summed with the original matrix by the residual
structure. The same computation is then performed in the row direction of the matrix, and finally, the output is obtained.
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In contrast to previous studies, our inputs are only MLC aper-
ture images as well as MU weights, and they can both be derived
directly from the planning system. This allows the data pre-
processing process without requiring domain knowledge. Most
importantly, the proposed model combines the advantages of
CNN and MLP, taking into account both the specificity of a single
image and the correlation between images. In this way, the model
can capture deeper features, improving accuracy.

3.2. Multi-layer perceptron network

This section describes the details of the multi-layer perceptron
network. In previous studies, features would be fed directly into
the logistic regression layer to obtain predicted values, but this
approach ignores the correlation between ordered images. Typi-
cally, a VMAT treatment plan contains consecutive control points,
and there may be some similarity between their corresponding
aperture images. The connection between adjacent control points
will be greatly lost if only the features of each aperture image are
extracted separately. Hence, the purpose of the proposed method
is to extract such correlation features using a lightweight and
straightforward network and incorporate these features into the
model. One possible approach is to use recurrent neural networks
(RNNs), such as LSTM [49] or GRU [50]. However, these networks
are too complex and have limited ability to extract long-range
features. Inspired by the work of [23,24], the multi-layer per-
ceptrons are used to extract the correlation features between
the MLC aperture images of VMAT treatment plans. To the best
of our knowledge, we are the first to use the MLP network to
explore correlations between MLC aperture images and use them
to predict GPR values, which provides a new perspective for
future studies.

Specifically, the MLP network consists of multiple repetitive
linear structured blocks. The structure of an MLP block is shown
in Fig. 2. Each block contains four fully-connected layers, two
GERU nonlinearity functions, and two skip connections. After
feeding the aperture images into the feature extraction module,
Vc ∈ RI×I is obtained. Then it is updated by an MLP block
according to

Tc = Vc + (σ (Norm(Vc)TW1)W2)T ,
Vc = Tc + (σ (Norm(Tc)W3)W4),

(2)

where Norm is the layer norm function, σ is the GELU non-
linearity functions [51], and W1,W2,W3,W4 are the weights of
our fully-connected layers, respectively. After computation by
ultiple identical MLP blocks, the features are averaged to obtain

he final features for regression.
Most MLP models first cut images into multiple patches, and

ater extract patch-wise correlation features. Unlike them, the
roposed model does not slice the images, but lets the model
earn the image-wise correlation features directly. The MLC aper-
ure images of VMAT plans are inherently highly correlated with
ach other, and this MLP structure maximizes the ability to cap-
ure these features and use them for prediction. Moreover, single
onvolution can only capture local domain information of ordered
4

images, and capturing long-distance dependencies requires re-
peated local computations, which is inefficient. The distance here
refers to the interval step in the sequence of two different aper-
ture pictures of one plan. In contrast, the MLP model can extract
long-distance dependency features among ordered pictures by
global computation of linear layers, which improves performance.

3.3. Regression and ranking loss function

The task in this paper can be considered as a regression task.
The model can be trained using classical regression loss functions,
such as MSEloss. In clinical PSQA, physicians are particularly
concerned about plans with low prediction values because these
plans are most likely to be risky. However, as described in Sec-
tion 4.1, the distribution of labels is concentrated and using only
the regression loss function to train the model results in more
concentrated predictive values. Moreover, there are similarities
in the design of some plans, and the model will lose the global
view using only the regression loss function. Hence, a regression
and ranking loss (RRLoss) function is proposed to overcome these
problems. Based on regression, the proposed loss function also
treats the sample space as a whole and pulls back a small number
of samples with low GPR values to the space it belongs to by
ranking. The following three subsections describe the proposed
process of RRLoss.

3.3.1. Regression loss
Let define y as the measured labels and y′ as the predicted

labels. According to [15], the Huber loss function [52] can enable
stable training. It is defined as:

Lm =
{ 1

2 (y− y′)2, if
⏐⏐y− y′

⏐⏐ ≤ δ,

δ · (
⏐⏐y− y′

⏐⏐− 1
2δ), otherwise,

(3)

where δ is the empirical parameter (δ = 1 in this study). By
minimizing the distance between y and y′, this loss function can
be well used for the regression task to obtain small mean errors.

3.3.2. Ranking loss
Since the GPR labels are concentrated, using only the regres-

sion loss function to train the model will result in concentrated
predicted GPRs, which leads to edge samples with large errors.
Inspired by ListNet [53], measuring the agreement between the
predicted ranking list and the ground truth labels enables fine-
tuning of individual samples with large deviations, thus improv-
ing model performance. Treating multiple samples as a whole by
ranking also allows the model to learn the similarities between
plans. However, it is impossible to rank all the predicted GPRs
in one batch. So a loss function that only ranks for batch size
samples is proposed to solve the problem.

Assume that the batch size is n. The permutation is written
s π = ⟨π (1), π (2), . . . , π (n)⟩, where π (i) refers to the VMAT
reatment plan at the ith position in the permutation. As afore-
entioned, the predicted GPR of the VMAT plan pointed by π (i)

s y′ . Any permutation is possible, so the set of all possible
π (i)
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ermutations is denoted as Ωn. One permutation probability in
Ωn is defined as Eq. (4).

Py′ (π ) =
n∏

j=1

Φ(y′π (j))∑n
k=j Φ(y′π (k))

, (4)

where Φ(.) is an increasing and strictly positive function. The
top-1 probability Py′ (i) is defined as:

Py′ (i) =
Φ(y′i)∑n
k=1 Φ(y′k)

, (5)

where y′i is the ith predicted GPR in the batch. For convenience,
we use the softmax function to calculate Eq. (5), i.e., Py′ (i) =
oftmax(y′i). Cross Entropy can be used to calculate the distance.
So given two lists of GPRs y and y′, the ranking loss is computed
by:

Lr = −
n∑

i=1

Py(i)log(Py′ (i)). (6)

This ranking loss function introduces relative positions between
the predicted values, thus exploring the correlation between the
samples. Batch-wise ranking also allows the model to treat a
batch of samples as a whole and learn similarities between sam-
ples.

3.3.3. RRLoss
The mean absolute error is an important metric to assess

the performance of the model, so the regression loss function
is particularly important. The idea of loss combination is that
the weights of ranking loss gradually decrease and the weights
of regression loss gradually increase during training. Referring
to [54], the dynamic RRLoss function is designed as follows:

L = τe × Lm + (1− τe)× Lr ,

τe =
1

1+ exp(γ (E/2− e))
,

(7)

where e is the value of the current epoch, E is the total number
f epochs, and γ is a hyper-parameter with a value of 0.01 in this

paper.

Algorithm 1 Training process of the proposed model.

Input:
The input dataset: D = {((xi,mi), yi); i = 1, 2, · · · ,N} Ending
epoch = E

Output:
The predicted GPRs yi′

1: Initializing the CNN with pre-trained parameters
2: for training epoch e = 1 : E do
3: for i-th VMAT plan in dataset D do
4: Calculating image features Vc ← fc(xi|ϕc)
5: Calculating correlation features vr ← fr (Vc |ϕr ) by

Equation (2)
6: Computing final features vf by concatenating vr and mi
7: Computing GPRs yi′ by Equation (1)
8: Computing L by Equation (7)
9: Updating gradients with BP algorithm

10: end for
11: end for

The overall training process of the proposed network is shown
n Algorithm 1. By dynamically adjusting the weight of Lm and Lr
uring training, the model takes into account the specificity of a
ingle sample and the correlation between batch-wise samples.
 c

5

Fig. 3. Diagram of the clinical workflow using the proposed model. Pass-
ing means that the plan will not require further device-based physical
measurements.

3.4. Clinical workflow

This section describes how the proposed model can be ap-
plied to clinical patient-specific QA. Measurement-based PSQA
is labor-intensive and time-consuming, while neural network
models provide instant prediction with high accuracy. The main
idea of the designed workflow is to combine the prediction model
with the measurement-based QA. After the Kolmogorov–Smirnov
test, the p-values of the collected dataset are 0.0287, 6e-5, and 3e-
12 for 2%/2 mm, 3%/2 mm, and 3%/3 mm, respectively. It indicates
that the dataset distribution is a part of a normal distribution
(p < 0.05). According to the AAPM TG-218 report [55], the
olerance and action limits of 0.90% and 0.95% for 2%/2 mm and
%/2 mm criteria in VMAT QA are recommended based on a part
f a normal distribution, respectively. So 0.9 and 0.95 are chosen
s thresholds to judge whether a VMAT plan is safe or not.
The clinical workflow using the proposed model is shown in

ig. 3. Firstly, the VMAT treatment plans are fed into the pro-
osed model to get the predicted GPRs. Then they are compared
ith the threshold (0.9/0.95), and plans with GPRs higher than
he threshold will be considered as safety plans, while plans
ith GPRs lower than the threshold will be considered as risky
lans. On-site physical measurements are required for the risky
lans, and plans with GPRs higher than the threshold will be re-
onsidered as safety plans. Plans that are still risky should be
ixed or re-planed by the dosimetrists or physicists. The proposed
odel acts as a prediagnosis, saving time and increasing effi-
iency. In addition, by adjusting the thresholds or changing the
amma criteria, different institutions can customize the tolerance
f VMAT treatment plans.

. Experiment

.1. Data set

The data used in this experiment included a total of 125580
LC aperture images of 690 VMAT plans collected from the
epartment of Radiation Oncology of the West China Hospital
f Sichuan University from June 2018 to June 2020. The plans
onsist of 37 clinical sites (Rectum (185), Nasopharyngeal Car-
inoma (141), Cervix (67), Prostate (60), Uterus (28), Stomach
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Fig. 4. Distribution of GPR labels for 690 VMAT plans at 3%/3 mm, 3%/2 mm,
nd 2%/2 mm gamma criteria.

27), Brain (22), Larynx (19), Pharynx (10), Pancreas (9), Colon
9), Tongue (8), other diseases (95)). Three types of GPR labels are
alculated by comparing the measured and calculated dose plans
n 3%/3 mm, 3%/2 mm, and 2%/2 mm criteria, respectively. The
ange and distribution of the measured GPR values are shown in
ig. 4.
There are two beams in each VMAT plan file, and each beam

ontains 91 control points (CPs). Therefore, a VMAT plan consists
f 182 CPs. Each CP has corresponding MLC positions and MU
eights. The shape of an MLC aperture depends on the coordi-
ates of the MLC leaf pairs extracted from the VMAT treatment
lan files. The MLC aperture image size of the CP is 400 × 400.
o extract features better, the useless background of each MLC
perture image is removed, and a 112 × 112 image is obtained.
ecause MU values are a factor for assessing beam and overall
lan complexity and deliverability [11,56], they are fed into the
odel as features.

.2. Training details

The proposed model is implemented using the Pytorch frame-
ork, and all experiments are conducted on a workstation with
Linux OS and an NVIDIA GeForce RTX 3090 GPU. The input
ata dimension is 182 × 3 × 112 × 112, i.e., number of control
oints, image channels, image length, and image width. All the
U values are normalized to scalars in [−1, 1] using Z-score
ormalization to ensure that different types of features have the
ame scale. The learning rate and batch size are set as 0.01 and
. The SGD optimizer is adopted with the parameters of weight
ecay, momentum, and dampening set as 0.0001, 0.9, and 0.9,
6

espectively. The loss function used in the experiment is shown
n Eq. (7), where the hyper-parameter τ is 0.01.

All VMAT treatment plans are randomly divided into a 7:3 ra-
io for training and testing. The maximum training epochs is 300,
nd parameters of the network with the best results will be saved
o evaluate the performance. The proposed method is evaluated
n terms of mean absolute error (MAE), standard deviation (SD),
nd max error (ME). The accuracy of the threshold-based clinical
orkflow is also considered.

.3. Comparison among different backbones

In this study, the features of the aperture images will be
xtracted by a feature extraction module, which consists of a pre-
rained network. So some common pre-trained models are com-
ared, such as AlexNet [57], Resnet101 [58], DenseNet121 [59],
GG16 [60]. For a fairer comparison, all parameters are set to be
he same, including learning rate, optimizer, batch size, and the
aximum number of epochs. Also, the number of layers of MLP
odules are eight.
Table 1 shows the performance of different networks under

ifferent criteria. For both MAE and ME metrics, the lower the
alue, the better the performance of the model. DenseNet121
hows superb feature extraction ability and achieves the small-
st MAE and ME values under all three criteria. Therefore, it
s selected as the backbone network for the CNN module in
he subsequent experiments. It is noteworthy that the proposed
ethod can be well combined with various networks, which also
hows its generality.

.4. Comparison among different MLP layers

The MLP network is used in this paper to extract the cor-
elation features between multiple aperture images of a single
MAT treatment plan. Fig. 2 shows how an MLP block is com-
uted, which means the number of MLP blocks may affect the
erformance of the model. So ablation experiments for a different
umber of MLP blocks are performed to illustrate its effect on the
erformance. The results are illustrated in Table 2. The number
f parameters and the throughput of the model are also listed for
omparison.
Despite the different number of blocks, all these models achie-

ed satisfactory performance. As the number of blocks increases,
he performance of the model does not improve significantly. On
he contrary, the performance of the model decreases when the
umber of blocks reaches 32. It may be because an excessive
ocus on the correlation between images affects the performance
f the feature extraction module, and balancing the feature ex-
raction module and the correlation extraction model is the key
o improving the performance. Increasing the number of blocks
lso leads to a rise in the number of parameters as well as a
ecrease in throughput. Considering performance, the number
f parameters, and throughput, a model with 8 MLP blocks has
he most potential. It achieves the lowest MAE and ME for the
%/2 mm criterion while obtaining a competitive performance for
he other two criteria. Most importantly, the smaller number of
arameters and higher throughput of the 8-layer MLP network
akes it more suitable for deployment. Therefore it is used to
alidate the performance of the proposed clinical workflow.

.5. Comparison between 2D and 3D networks

In this paper, an MLP network is proposed to extract the
orrelation features between aperture images. In fact, all aperture
mages of one VMAT plan can also be regarded as time-series
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Table 1
Comparison of different backbones under different criteria.
Method 2%/2 mm (%) 3%/2 mm (%) 3%/3 mm (%)

MAE SD ME MAE SD ME MAE SD ME

AlexNet+MLP 2.24 1.96 9.86 1.37 1.16 4.41 0.75 0.87 4.79
Resnet101+MLP 2.27 1.87 8.04 1.35 1.20 5.20 0.77 0.82 4.61
DenseNet121+MLP 2.17 1.88 7.89 1.25 1.08 4.29 0.74 0.76 3.05
VGG16+MLP 2.21 1.91 8.03 1.27 1.11 4.94 0.75 0.83 4.51

MAE: mean absolute error; SD: standard deviation; ME: max error.
The bold value is the optimal value for a metric.
Table 2
Comparison of different number of MLP Blocks under different criteria.
Number of
layers

2%/2 mm (%) 3%/2 mm (%) 3%/3 mm (%) Parameters
(M)

Throughput
(plans/s)

MAE SD ME MAE SD ME MAE SD ME

4 2.20 2.00 8.91 1.28 1.17 4.79 0.73 0.82 4.35 34.0 56
8 2.17 1.88 7.89 1.25 1.08 4.29 0.74 0.76 3.05 38.7 45
12 2.27 1.97 7.51 1.26 1.19 4.66 0.75 0.79 3.28 43.5 39
24 2.38 1.87 7.46 1.35 1.17 4.98 0.71 0.82 3.33 57.8 38
32 2.23 1.90 8.04 1.31 1.14 5.18 0.75 0.75 3.58 67.3 36

MAE: mean absolute error; SD: standard deviation; ME: max error.
The bold value is the optimal value for a metric.
Table 3
Performance comparison between 2D and 3D models.
Method Convolution 2%/2 mm (%) 3%/2 mm (%) 3%/3 mm (%)

MAE SD ME MAE SD ME MAE SD ME

AlexNet [57] 3D 2.99 2.30 11.88 2.32 1.49 7.29 0.95 0.97 4.43
Resnet101 [58] 3D 2.31 2.01 8.22 1.36 1.22 5.11 0.76 0.86 4.42
DenseNet121 [59] 3D 2.21 1.88 8.47 1.33 1.20 4.89 0.75 0.82 4.06
VGG16 [60] 3D 3.40 3.12 13.18 2.27 2.40 12.57 1.57 2.19 14.42
ResNet101+LSTM 2D 2.81 2.43 12.9 1.71 1.41 6.38 1.04 1.11 5.46
ResNet101+GRU 2D 2.61 2.26 8.80 1.59 1.45 6.43 0.85 0.94 4.62
DenseNet121+LSTM 2D 3.27 3.00 17.28 2.01 2.10 10.13 1.31 1.69 8.07
DenseNet121+GRU 2D 3.21 3.11 16.96 1.96 2.21 12.95 1.14 1.33 6.33
Our model 2D 2.17 1.88 7.89 1.25 1.08 4.29 0.74 0.76 3.05

Convolution: Convolution kernel dimension; MAE: mean absolute error; SD: standard deviation; ME: max error.
The bold value is the optimal value for a metric.
nput, and RNN-based models can be applied to such data. There-
ore, we replace the MLP network with LSTM [49] or GRU [50]
o compare the performance comprehensively, while the feature
xtraction module remains unchanged. On the other hand, stack-
ng images together in a sequence of CPs can form 3D aperture
mages. Directly using 3D networks to extract features from 3D
perture images is also a feasible approach. Therefore, with all
ettings being the same, we modified the convolution kernel of
he commonly used network into a 3D convolution kernel for
omparison with the proposed method. The extracted features
re likewise concatenated with the MU values, and the predicted
PRs are calculated by Eq. (1). The results are shown in Table 3.
It can be seen that the proposed method achieves MAE of

.17%, 1.25%, and 0.74% in 2%/2 mm, 3%/2 mm, and 3%/3 mm,
espectively, showing state-of-the-art performance. For 2D con-
olutional models, the performance of RNN-based models does
ot meet expectations, and some models even obtain high ME. It
ay be because the aperture images are not strictly time-series
ata. Still, a correlation exists, and the MLP network captures
his correlation sufficiently to achieve the desired performance
ompared with RNN-based models. For the models with 3D con-
olution, DenseNet achieves the best performance, followed by
esNet. The more dense the connections between layers of the
etwork, the easier it is to extract the correlation features of
he aperture images. In addition, our model has a substantial
eduction in ME compared to other models, which demonstrates
ts high robustness.
7

4.6. Ablation study with different loss

To verify whether the proposed RRLoss can combine the fea-
tures of regression and ranking, we train the model using regres-
sion loss or ranking loss alone. The results are shown in Table 4.
It illustrates that it is challenging to train the model using only
ranking loss because patient-specific QA is not a ranking task
per se. Focusing only on the relative positions between different
plans can make it difficult for the model to converge. In contrast,
regression loss demonstrates superior performance on this task.
The performance of the model is further improved when com-
bining regression loss with ranking loss. It is possible to train the
model using only the regression loss function, but then each plan
is isolated. The model would only focus on reducing the overall
error and thus ignore the specificity of individual plans. Ranking,
on the other hand, allows the model to expand its field of view
during training by first observing one batch number of plans.
In this case, the model pays extra attention to the correlation
between these plans. By combining regression loss with batch-
wise ranking loss, the model will train steadily while taking into
account the similarity and specificity between plans.

4.7. Analysis of predictions

The prediction results for the three criteria on the test set are
shown in Fig. 5. During training, the model minimizes the overall
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a

Table 4
Performance comparison between different loss functions.
Method 2%/2 mm (%) 3%/2 mm (%) 3%/3 mm (%)

MAE SD ME MAE SD ME MAE SD ME

Ranking loss 21.84 3.57 28.58 56.98 2.10 60.75 21.16 1.61 24.94
Regression loss 2.22 1.91 8.63 1.30 1.17 4.77 0.74 0.80 4.04
RRLoss 2.17 1.88 7.89 1.25 1.08 4.29 0.74 0.76 3.05

MAE: mean absolute error; SD: standard deviation; ME: max error.
The bold value is the optimal value for a metric.
Fig. 5. Scatter plot of predicted GPR values for three gamma criteria on the test set. The yellow or blue lines represent ±3% or ±5% difference between the predicted
nd measured values, respectively.
Fig. 6. ROC curve of 2%/2 mm and 3%/2 mm criteria on the test set. The figures are plotted with two parameters, a fixed threshold (0.90 or 0.95) for determining
whether one plan is a positive or negative sample and a varying threshold (0% to 100%) for calculating the true/false positive rates.
n
p
n
a
o
t

error, which weakens the effect of individual outlier samples, thus
leading to overfitting. Therefore, under the 3%/3 mm criterion, the
prediction values are mostly at a specific level (98%–100%), and
some plans with low measured values have higher prediction er-
rors. In the future, we will collect more plans with low measured
values to alleviate this problem. In addition, the ROC curves for
the 2%/2 mm and 3%/2 mm criteria on the test set are shown
in Fig. 6. With thresholds of 0.90 and 0.95, these two types of
criteria obtained area under curves of 0.69 and 0.64, respectively.
It is worth mentioning that the thresholds are adjustable so that
different thresholds can meet the needs of various institutions for
the tolerance and action limits in QA.

5. Discussion

As shown in Table 3, the proposed model achieves state-of-
the-art results in all evaluation metrics. To better demonstrate
the performance of the model, we visualize the prediction results
on the training and test sets and show them in Fig. 7. It can be
seen that the absolute error between the predicted and measured
GPRs is less than 4% for a large number of plans, and there
are only a few plans with larger errors. For different gamma
8

criteria, the less accurate the measurement criterion, the smaller
the prediction errors. In general, an error less than 5% is within
the acceptable level between predicted and measured GPR. In
Fig. 7(b), the absolute errors of all predictions under 3%/2 and
3%/3 mm criteria are less than 5%. The errors of predictions under
the 3%/3 mm criterion are more significant, which may be due to
data imbalance, and we will collect more low-GPR data in the
future to improve the performance.

In section III-D, a method is proposed for combining our model
with clinical work, and the process is shown in Fig. 3. As sug-
gested by the AAPM TG-218 report [55], 0.90 and 0.95 are set
as the threshold values for the 2%/2 mm and 3%/2 mm criteria,
respectively. In order to verify whether this combined approach
can screen out risky VMAT plans, the prediction results of the
training and test sets are counted and presented in Table 5. The
accuracy is calculated through the process in Fig. 3, i.e., Acc =
um(right)/num(total), where num(right) denotes the number of
lans that are correctly passing and num(total) denotes the total
umber of plans. With both 2%/2 mm and 3%/2 mm criteria, plans
re successfully detected as safe or dangerous with an accuracy
f more than 90%, which meets physician expectations. It indicate
hat the proposed method can be well integrated with clinical
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Table 5
Prediction performance of the proposed model on training and test sets under different criteria.
Metrics 2%/2 mm (n) 3%/2 mm (n) 3%/3 mm (n)

Training Test Training Test Training Test

Abs Err < 3% 445 124 513 151 523 158
3% <= Abs Err < 5% 70 28 13 9 5 2
Abs Err > 5% 15 8 4 0 2 0
Acc 95.8% 92.5% 94.1% 91.2% – –

Abs Err: absolute error; Acc: accuracy in clinical workflow.
m
r

Fig. 7. Distribution of prediction errors in training set and test set. The x-axis
epresents the measured GPR labels, and the y-axis represents the absolute
errors between the predicted and measured values.

workflow to screen out risky plans, which can assist physicians
in better controlling the quality of VMAT plans.

To the best of our knowledge, we are the first to propose a
model to explore the correlation between aperture images and
to apply it to VMAT QA. We are also the first to propose a
combination of regression and ranking loss functions to train
PSQA models. Meanwhile, we try to integrate the proposed model
with clinical work to better screen for risky plans. The results also
proved the validity of this combination, which provides a new
idea for future QA studies.

There are some limitations to this study. First, the data are
all sourced from a single institution, so the generalizability of
the model needs to be verified. Second, the data distribution is
unbalanced, with fewer plans having low measured GPRs. In the
future, more data from different institutions should be collected
to validate the generalizability and performance of the model.

6. Conclusion

In this study, a multilayer perceptron neural network model
with regression and ranking loss is proposed for PSQA of VMAT
treatment plans. This model is made up of a feature extraction
module, a correlation extraction module, and a feature fusion
module. Among them, the correlation extraction model consists
of multiple MLP blocks, which can extract the correlation features
between the MLC aperture images of the VMAT plans. To the
best of our knowledge, we are the first to propose a model to
explore the correlation between MLC aperture images and to
apply it to PSQA. To focus on the similarity and specificity of
9

different VMAT plans, a regression and ranking loss function is
proposed to optimize the training process. The weights of this
loss function are dynamic during training. A clinical workflow
is designed to combine the proposed model with measurement-
based PSQA. It can improve the VMAT PSQA process and reduce
PSQA workloads. In addition, different institutions can adjust the
threshold to meet the needs for tolerance and action limits in
PSQA. The experimental results demonstrate the effectiveness of
the proposed method. In future work, we will collect data from
multiple institutions to validate the generality of the proposed
model. Meanwhile, we will try to combine MLP models with some
powerful models, such as vision transformers, to improve the
performance of GPR prediction.
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