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Abstract

We propose an extremely simple approach to regularize a single deterministic
neural network to obtain improved accuracy and reliable uncertainty estimates.
Our approach, on top of the cross-entropy loss, simply puts an entropy maximiza-
tion regularizer corresponding to the predictive distribution in the regions of the
embedding space between the class clusters. This is achieved by synthetically
generating between-cluster samples via the convex combination of two images
from different classes and maximizing the entropy on these samples. Such a data-
dependent regularization guides the maximum likelihood estimation to prefer a
solution that (1) maps out-of-distribution samples to high entropy regions (creating
an entropy barrier); and (2) is more robust to the superficial input perturbations. We
empirically demonstrate that Mix-MaxEnt consistently provides much improved
classification accuracy, better calibrated probabilities for in-distribution data, and
reliable uncertainty estimates when exposed to situations involving domain-shift
and out-of-distribution samples.

1 Introduction

A particularly thriving sub-field of research in Deep Neural Networks (DNNs) concerns devising
efficient approaches towards obtaining reliable predictive uncertainty. NNs are known to be overcon-
fident for both, in- and out-distribution samples (i.e. for samples coming from the same distribution
from which the training distribution has been sampled (IND samples) and for samples not coming
from such distribution), leading to highly unreliable uncertainty estimates [Guo et al., 2017, Taori
et al., 2016, Ovadia et al., 2019]. The overconfidence problem becomes even more concerning
when just slight changes in illumination, atmospheric conditions or in the image capturing process
(domain-shift) can severely damage the actual accuracy of the model [Taori et al., 2016]. A desirable
property of any model is to be robust to such superficial changes that do not affect the label of the
classified image, and to become uncertain (or indecisive) when exposed to samples from a distribution
different from the training distribution.

Based on our analyses and observations about how out-of-distribution (OOD) and data-shifted (DS)
inputs are mapped by Neural Networks, we design a simple entropy maximization regularizer (called
Mix-MaxEnt) enforced for samples synthesized using the convex combination of a pair of samples
from two different classes of the in-distribution training data. When combined with the cross-entropy
loss, this regularizer prefers a maximum likelihood solution such that the uncertainty of the network
increases while moving away from the embeddings of one class in the direction of another, and
learns features that are robust to local input perturbations. Through extensive experiments using
WideResNet28-10 and ResNet50 architerctures on CIFAR10 and CIFAR100 datasets, we demonstrate
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that our method outperforms all existing single model baselines in providing clean data accuracy. On
Domain-Shift experiments, it provides remarkably improved accuracy compared to all the baselines
including Deep Ensembles (DE) [Lakshminarayanan et al., 2017].

2 Analysis and observations

Figure 1: Histograms of the Euclidean distance
of the embeddings (model trained on CIFAR-10).
(Left) CIFAR-10 vs CIFAR-10-C. (Right) CIFAR-
10 (IND) vs CIFAR-100 (OOD) and SVHN (OOD).
Note, both corrupted and OOD embeddings lie
within the hypersphere S as their histograms are
left shifted relative to the histogram of CIFAR-10.
Also, the SVHN histogram is more shifted towards
the center than that of CIFAR-100, showing an
implicit ordering.

Consider the supervised task of learning a
predictive distribution p(y|x; θ), where y ∈
{1, · · · ,K} is the set of K-classes, x ∈ X ⊂
Rp is the space of input data, and θ respresents
the parameters of the underlying model (e.g. a
neural network). To obtain an optimal θ, the
standard approach is to collect a training data
set D = {xi, yi}ni=1 , and maximize the log-
likelihood p(y|x ∈ X ; θ) under D. Therefore,
the nature of the predictive distribution heavily
relies on the training data and the model under
consideration. In practice, however, because of
the high dimensionality of the input spaceX , the
training dataD is normally collected from a sub-
set XI ⊂ X , where XI denotes the in-domain
data manifold. Let us denote the out-domain
data manifold as XO = X \ XI .

Where do neural networks map XO? Modern softmax-based neural classifiers operate under two
essential assumptions: (1) a closed-world assumption [Bendale and Boult, 2015]; (2) an implicit
clustering assumption [Hess et al., 2020, Lee et al., 2018]. The closed-world assumption implies
that the classifier must select one out of K classes fixed at training time, even if the input belongs to
none of them. The clustering assumption depends on the presence of the softmax layer: the authors
of [Hess et al., 2020] have shown that softmax neural classifiers perform K-means clustering (which,
we recall, can be interpreted as a limit subcase of Expectation-Maximisation under Gaussian Mixture
Model (GMM) assumptions [Hastie et al., 2001, Bishop, 2006]) with K centroids at equal distance
from the center of the embedding space. The authors of [Lee et al., 2018] observed the embeddings
of modern neural network do empirically adapt well to GMM assumptions.

Following the above insights, we consider a WideResNet (WRN) trained on CIFAR-10 (XI ) and
obtain the smallest hypersphere S in the feature space that contains all the in-domain test samples.
Note, as already mentioned in Hess et al. [2020], we also found the mean of the embeddings of XI to
be very close to a zero vector, therefore, S is practically centred at zero. Given S, we would like to
understand where do XO (CIFAR-100 and SVHN) and data-shifted samples (corrupted CIFAR-10
test samples denoted as CIFAR-10-C) lie with respect to S. We empirically notice the NN maps all
(except one) out-of-distribution (XO) and data-shifted samples (corrupted) inside the hypersphere S
that was obtained using the test data belonging to XI , as shown in Figure 1. This implies OOD and
DS samples are either mapped closer to the center of the embedding space, in the space between the
class clusters or are projected within the class clusters.

Forcing classifiers to be uncertain where it truly matters Recall that an ideal classifier’s predic-
tive distribution p(y|x ∈ X ; θ) would assume the following form

p(y|x ∈ XI ; θ)p(x ∈ XI)︸ ︷︷ ︸
maximum likelihood estimate

+ p(y|x ∈ XO; θ)p(x ∈ XO)︸ ︷︷ ︸
unknown during training

.

Since XO is unknown during the maximum likelihood estimation (MLE) of θ, the model is completely
unaware of the second part of the predictive distribution that depends on the presence of XO.
Therefore, in order for the model to be indecisive for out-of-distribution and domain-shifted samples
(assuming they are away from the in-distribution data), it is desirable that the model’s uncertainty
increases proportionally to the test sample distance from the training data XI .

Given the observations from our analysis, we find that the OOD and domain-shifted samples are
mapped to a specific embedding space S where the network tends to concentrate all its embeddings.

2



This indicates that correcting its uncertainty estimates within this space S could be sufficient to
achieve better performance, rather than trying to increase entropy everywhere away from the training
data (i.e. mostly in regions where the network never projects its inputs). This is precisely the
motivation behind our work. In what follows, we present an extremely simple approach to regularize
the embedding space S such that entropy barriers are being created between different classes.

3 Methodology

Mix-MaxEnt Motivated by the evidence we collected, we define a simple regularization approach
to make the maximum likelihood estimate aware (increasing the uncertainty and becoming less
confident) of what is unknown to it during the training by simply putting a maximum entropy
regularizer [Pereyra et al., 2017] on synthetically generated samples that leverage the knowledge
of XI to drift towards XO. Specifically, since XO is unknown during the training, we take a simple
approach where we synthetically create samples x̄ ∈ X as follows:

x̄ = λ0xi + (1− λ0)xj , if yi 6= yj . (1)

Here, {xi,xj} ∈ XI , and λ0 ∼ Beta(α, β), where α and β are the parameters of the beta distribution.
Note, we only choose pair of samples belonging to two different classes (yi 6= yj), so that x̄ will
mix features mimicking an off-data manifold image that has intermediate properties between those
of each class. We further ensure this by picking α = β >> 1 as, in this case, the beta distribution
will have the peak in the middle and the sharpness of the peak increases as α grows. Let us call the
collection of such synthetic intermediate samples X̄O. Then, our final objective function adds to the
usual cross-entropy optimisation term, an entropy maximisation term on such samples:

min
θ
− log p(y|x ∈ XI ; θ)−Hȳ(p(.|x ∈ X̄O; θ)), (2)

where,Hȳ(.) is the entropy defined over the label support set ȳ = {yi, yj}. It is important to observe
that since the input image will contain features coming from the inputs of the two classes, it is
reasonable to maximise the entropy only over such classes while keeping the probability assigned
to the other classes to zero (since no input features endorses the presence of these classes). Since
we increase the entropy only for mixed (interpolated) samples from different classes, we call our
approach Mix-MaxEnt.

4 Experimental Results

Training Datasets and Network Architectures We employ WideResNet28-10 (WRN)
[Zagoruyko and Komodakis, 2016] and ResNet50 (RN50) [He et al., 2016] architectures that
have been shown to produce state-of-the-art classification accuracies on real-world datasets. We
train them on CIFAR-10 (C10) and CIFAR-100 (C100). For Domain-Shift experiments, we resort
to the widely used CIFAR10-C and CIFAR100-C, corrupted versions of C10 and C100 [Hendrycks
and Dietterich, 2019]. For Out-of-Distribution detection experiments, following SNGP [Liu et al.,
2020], we use C100 and SVHN as OOD for models trained on C10. Similarly, for models trained on
C100, we use C10 and SVHN as OOD. For an exaustive description of the experimental settings,
refer to Appendix A.

Evaluation Metrics For calibration (i.e. measuring overconfidence or underconfidence), we em-
ploy: (1) the widely used Expected Calibration Error (ECE) [Guo et al., 2017], and (2) the recently
proposed Adaptive ECE (AdaECE) [Mukhoti et al., 2020]. For all the methods, the ECE and
AdaECE are computed after performing temperature scaling [Guo et al., 2017] with a cross-validated
temperature parameter.

Accuracy and Calibration on Clean Data Our first set of experiments evaluates the accuracy
of the proposed method on the test sets of C100 and C10. As it can be observed from the ‘Clean
Data’ column of Tables 1 and 2, our method provides a remarkable increase in accuracy compared
to recently proposed approaches for improved uncertainty estimation. In terms of calibration, our
method remarkably improves the ECE and AdaECE outperforming all the baselines.
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Clean Data Domain-Shift Out-of-Distribution
CIFAR100 (Test) CIFAR100-C CIFAR10 SVHN

Methods Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)
DNN 81.58 ± 0.13 3.88 ± 0.25 3.84 ± 0.24 52.54 ± 0.31 9.96 ± 0.21 9.94 ± 0.21 81.06 ± 0.29 77.35 ± 0.39 79.68 ± 4.81 88.46 ± 2.53

DNN-SN 81.60 ± 0.15 3.94 ± 0.23 3.81 ± 0.21 52.61 ± 0.23 11.62 ± 0.41 11.59 ± 0.41 81.10 ± 0.35 77.34 ± 0.19 83.43 ± 3.63 91.01 ± 2.05
DNN-SRN 81.38 ± 0.23 3.82 ± 0.27 3.71 ± 0.26 52.54 ± 0.17 11.04 ± 0.77 11.00 ± 0.78 81.26 ± 0.18 77.36 ± 0.30 85.51 ± 1.18 91.84 ± 1.12

Deep Ensembles 83.85 ± 0.13 3.31 ± 0.12 3.29 ± 0.08 55.58 ± 0.14 12.43 ± 0.13 12.36 ± 0.15 83.26 ± 0.14 79.82 ± 0.27 85.07 ± 1.58 91.65 ± 0.97
SNGP 79.20 ± 0.21 1.95 ± 0.25 1.94 ± 0.28 57.23 ± 0.25 10.45 ± 1.56 10.43 ± 1.56 79.05 ± 0.29 75.09 ± 0.34 86.78 ± 1.90 93.30 ± 1.05

KFAC-LLLA 81.56 ± 0.07 2.20 ± 0.31 2.30 ± 0.32 52.57 ± 0.27 8.97 ± 0.21 8.99 ± 0.21 81.04 ± 0.35 77.36 ± 0.34 80.32 ± 4.41 89.05 ± 2.30

Mixup 82.60 ± 0.37 1.77 ± 0.49 1.98 ± 0.43 56.99 ± 0.54 10.32 ± 0.64 10.45 ± 1.57 78.37 ± 1.20 75.95 ± 0.56 78.68 ± 4.29 88.27 ± 1.89

Mix-MaxEnt 83.23 ± 0.22 1.67 ± 0.59 1.76 ± 0.62 59.39 ± 0.72 7.93 ± 0.84 7.93 ± 0.84 81.04 ± 0.48 77.28 ± 0.35 89.32 ± 1.61 94.45 ± 0.90

Table 1: WideResNet28-10 trained on C100. See Appendix A for the cross-validated hyperparameters.

Clean Data Domain-Shift Out-of-Distribution
CIFAR10 (Test) CIFAR10-C CIFAR100 SVHN

Methods Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)
DNN 96.14 ± 0.08 1.26 ± 0.05 1.34 ± 0.03 76.60 ± 0.28 12.64 ± 0.77 12.62 ± 0.77 88.61 ± 0.34 88.91 ± 0.21 96.00 ± 1.10 98.08 ± 0.66

DNN-SN 96.22 ± 0.11 0.71 ± 0.14 1.12 ± 0.16 76.56 ± 0.24 11.13 ± 0.33 11.15 ± 0.33 88.56 ± 0.36 89.01 ± 0.34 95.59 ± 0.49 97.85 ± 0.22
DNN-SRN 96.22 ± 0.10 1.24 ± 0.08 1.36 ± 0.15 77.21 ± 0.39 11.97 ± 0.40 11.96 ± 0.4 88.46 ± 0.36 88.84 ± 0.37 96.12 ± 1.61 98.10 ± 0.81

Deep Ensembles 96.75 ± 0.05 0.81 ± 0.16 1.04 ± 0.08 78.32 ± 0.06 10.11 ± 0.17 10.31 ± 0.10 91.25 ± 0.14 91.12 ± 0.15 97.53 ± 0.69 98.84 ± 0.28
SNGP 95.98 ± 0.11 0.84 ± 0.13 0.87 ± 0.16 78.37 ± 0.22 11.33 ± 0.38 11.34 ± 0.39 90.61 ± 0.07 90.39 ± 0.12 95.25 ± 0.55 97.98 ± 0.18
DUQ 94.7 ± 0.02 3.4 ± 0.2 - 71.6 ± 0.02 18.3 ± 1.1 - - 85.4 ± 1.0 - 97.3 ± 1.0

KFAC-LLLA 96.11 ± 0.04 1.06 ± 0.08 1.12 ± 0.07 76.56 ± 0.48 11.69 ± 0.76 11.67 ± 0.76 89.33 ± 0.23 88.52 ± 0.20 94.17 ± 1.38 96.99 ± 0.94

Mixup 97.01 ± 0.11 0.94 ± 0.21 1.16 ± 0.13 81.68 ± 0.62 7.54 ± 0.83 7.83 ± 1.2 83.17 ± 0.87 85.47 ± 0.45 87.53 ± 6.07 95.08 ± 2.12

Mix-MaxEnt 97.44 ± 0.06 0.63 ± 0.08 0.50 ± 0.08 83.10 ± 1.48 10.13 ± 1.59 10.08 ± 1.59 89.13 ± 0.18 88.12 ± 0.37 96.22 ± 0.49 98.01 ± 0.41

Table 2: WideResNet28-10 trained on C10. See Appendix A for the cross-validated hyperparameters.

Accuracy and Calibration on Corrupted Data (Domain-Shift) To evaluate the behaviour of
various models under domain-shift, we resort to the widely used CIFAR-100-C and CIFAR-10-C
datsets, corrupted versions of the C10 and C100 datasets [Hendrycks and Dietterich, 2019]. The
dataset is made by applying 15 synthetically generated but realistic corruptions at 5 degrees of
intensity on the test sets of C100 and C10, respectively. The desired behaviour would be to preserve
the classification accuracy as much as possible as these corruptions do not impact the underlying
label, and to have an appropriate reduction in the confidence when the accuracy of the model degrades
so that it is not incorrect with very high confidence. We report the expected accuracy, ECE and
AdaECE, averaged over all the corruptions and degrees of intensities in the column ‘Domain-Shift’
of Tables 1 and 2. It is evident that our approach produces a remarkable improvement in the average
accuracy compared to all the baselines. Similarly, the ECE and AdaECE are greatly improved.

Performance when exposed to Out-Of-Distribution Samples Following the standard evaluation
methodology [Liu et al., 2020], we report the performance in terms of Area Under Receiver Operating
Characteristic (AUROC) and Area Under Precision-Recall (AUPR) curves for the binary classification
problem between in- and out-distribution samples. We use the Dempster-Shafer [Sensoy et al., 2018]
uncertainty metrics in the tables, except for Mixup (for which we observe Entropy to work better).
Mix-MaxEnt either outperforms all other models or is a runner-up.

Mix-MaxEnt encourages compact and separated clusters We use the well known Fisher crite-
rion [Bishop, 2006, Chapter 4] to quantify the compactness and separatedness of the feature clusters
for various models. Let Ck denotes the indices of samples for k-th class. Then, the overall within-class
covariance matrix is computed as SW =

∑K
k=1 Sk, where Sk =

∑
n∈Ck(φ(xn)−µk)(φ(xn)−µk)>,

µk =
∑
n∈Ck

φ(xn)
Nk

, and φ(xn) denote the feature vector. Similarly, the between-class covariance

matrix can be computed as SB =
∑K
k=1Nk(µk−µ)(µk−µ)>, where µ = 1

N

∑K
k=1Nkµk, and Nk

is the number of samples in k-th class. Then, the Fisher criterion is defined as α = trace(S−1
W SB).

Note, α would be high when the within-class covariance is small and between-class covariance is
high, thus, a high value of α is desirable. In Figures 5, 6 and 7 in Appendix C, we compute α over
the C10 dataset with varying degrees of domain-shift. As the amount of corruption increases, α
gradually decreases for all the models, indicating that the model is not able to differentiate different
classes anymore and is projecting them too close to each other. This also explains why the accuracy
and the calibration of all the models decreases as the domain-shift increases. However, Mix-MaxEnt
consistently provides the best α. This also explains why Mix-MaxEnt performed so well under
domain-shift.
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5 Conclusion

We proposed Mix-MaxEnt, an extremely simple approach that regularizes a neural network to be
uncertain in regions of the data manifold that are unknown during training. We conducted a wide
range of experiments to show that Mix-MaxEnt significantly improves the reliability of uncertainty
estimates of deep neural networks, while also providing a notable boost in the accuracy. A potential
extension of our work regards the possibility of mixing features using more sophisticated methods.
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A Experiment Details

Methods considered for comparisons We consider both deterministic and Bayesian approaches
for comparison. Following [Liu et al., 2020], we also create two additional strong and simple
baselines where a ResNet is enforced to be bi-Lipschitz using Spectral Normalization (SN) [Miyato
et al., 2018] and Stable Rank Normalization (SRN) [Sanyal et al., 2020]. Therefore, we compare our
approach with the following baselines:

• DNN: Standard deterministic neural network trained using cross-entropy loss.
• DNN-SN: DNN with SN [Miyato et al., 2018].
• DNN-SRN: DNN with SRN [Sanyal et al., 2020].
• SNGP: Spectrally Normalized Gaussian Process [Liu et al., 2020].
• DUQ: Deterministic Uncertainty Quantification [van Amersfoort et al., 2020].
• Mixup: Standard Mixup training [Zhang et al., 2018].
• KFAC-LLLA: KFAC-Laplace Last Layer Approximation [Kristiadi et al., 2020]. A method

that makes a model Bayesian at test time by taking Laplace approximation of the last layer
using a Kronecker-Factored approximation [Ritter et al., 2018].

• DE: Deep Ensembles [Lakshminarayanan et al., 2017] with 5 members. Note, it is almost
5x slower than all other approaches mentioned above.

Optimization and Hyperparameters We use SGD with Nesterov momentum 0.9 and a weight
decay of 5 × 10−4. For WRN, we apply a dropout p = 0.1 at train time. We perform extensive
cross-validation of all the hyperparameters for all the baselines.

Hyperparameters For all our experiments we set the batch size to 1281. At training time, we apply
standard augmentation (random cropping and horizontal flipping, similarly to [Liu et al., 2020]). The
data is appropriately normalized before being fed to the network both at train and test time.

• for DNN-SN, DNN-SRN and Mix-MaxEnt the set of SN clamping factors we considered
in our experiments are c ∈ {0.5, 0.75, 1.0}, the target of stable rank r ∈ {0.3, 0.5, 0.7, 0.9}
(as r = 1 for SRN is the same as applying SN with c = 1.0).

• for Mixup, we considered the Beta distribution hyperparameters to be α ∈
{0.1, 0.2, 0.3, 0.4, 0.5}, as suggested in the literature [Thulasidasan et al., 2019].

• for Mix-MaxEnt we considered the Beta distribution hyperparameters to be α ∈
{5, 10, 15, 20, 30}. In both cases we set α = β in Beta(α, β).

• for the KFAC-LLLA, we took 1000 samples. Although the number might seem quite high,
we could not notice significant improvements using a lower number of samples. We tuned
the prior variance σ0 needed for the computation of the Laplace approximation minimising
the ECE on the validation set. We also tried using the theoretical value σ0 = 1/τ [Kristiadi
et al., 2020], where τ represents the weight decay, but it produced inferior results with
respect to our cross-validation procedure.

• for Deep Ensembles we use 5 members.

• when temperature scaling is applied, the temperature T is tuned on the validation set,
minimising the ECE (we considered values ranging from 0.1 to 10, with a step size of
0.01). For Deep Ensembles, we first compute the mean of the logits, then scale it by the
temperature parameter before passing it through the softmax.

All the hyperparameters we chose are reported in Table 3. Such hyperparameters have been selected
performing cross-validation with stratified-sampling on a 90/10 split of the training set to maximise
Accuracy2. Indeed, it is important to observe that:

• optimising the hyperparameters based solely on the ECE can prefer models with lower
Accuracy but better calibration. However, Accuracy is commonly considered of primary
importance, and any method improving calibration should avoid degrading it.

1For SNGP and DUQ, we use the hyperparameters suggested in their original papers.
2Except for the σ0 of the KFAC-LLLA, as we could not observe significant differences in Accuracy between

hyperparameters optimising the Accuracy and ECE
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Training Set Hyp C10 C100
Architecture WRN R50 WRN R50

DNN T 1.3 1.5 1.3 1.4

DNN-SN c 0.5 0.5 0.5 0.5
T 1.4 1.5 1.2 1.4

DNN-SR r 0.3 0.3 0.3 0.3
T 1.3 1.4 1.2 1.4

DE T 1.3 1.4 1.1 1.2
SNGP T 1.4 - 1.5 -

Mixup α 0.3 0.3 0.3 0.3
T 0.7 0.8 1.09 1.2

Mix-MaxEnt α 20 20 10 10
T 1.1 1.3 1.2 1.2

Mix-MaxEnt-SN
α 20 20 20 20
T 1.23 1.23 1.09 1.19
c 0.5 0.5 0.5 0.5

Mix-MaxEnt-SRN
α 20 30 20 10
T 1.2 1.3 1.09 1.09
r 0.9 0.9 0.9 0.9

KFAC-LLLA samples 1000 1000 1000 1000
σ0 1 0.6 4 0.1

Table 3: Hyperparameters selected via cross-validation (90/10 split with stratified sampling) for
all the methods we trained from scratch. We tuned T and σ0 by minimising the ECE. All other
hyperparameters have been tuned to maximise the Accuracy.

• Optimising considering any of the corrupted experiments and OOD detection metrics would
be equivalent to overfitting the test set (indeed, both corruptions and OOD datasets are
assumed to be unknown at training time by all the considered methodologies, and so they
should be during the hyperparameter selection procedure).

For all of our experiments we train the methods initialising the networks with 5 different seeds
and report the average and standard deviation in percentage for all the metrics. For the hyperpa-
rameter search, we trained approximately 350 models. For the final tables (five seeds), we trained
approximately 250 models.

Code For fair comparisons, we developed our own code base for all the approaches mentioned
above (except SNGP and DUQ) and performed an extensive hyperparameter search to obtain the
strongest possible baselines. For SNGP, we used the available code and made sure that we follow
exactly the same procedure as mentioned in their original paper. For DUQ, the original paper did not
perform large scale experiments similar to ours. Unfortunately, we could not manage to make their
code work on C100 as it exhibited unstable behaviour. For this reason, we borrowed numbers for
DUQ from the SNGP paper. Please note that the authors of SNGP performed non-trivial modifications
to the original DUQ methodology to make it work on C100. For the SNGP method we use the official
code-base with the suggested hyperparameters and training procedures. The code diverges slightly
from the procedure described in their paper, hence the slight differences in the performance. The only
modification we performed to the official code-base was to make the inference procedure consistent
with the one described in the paper: indeed, in their code they implement a mean-field approximation
to estimate the predictive distribution [Lu et al., 2020], while in their paper they use Monte Carlo
Integration with a number of samples equal to the number of members in the ensembles they use as a
baseline, which provides better calibration. The rationale is that we could not find an obvious way to
tune the mean-field approximation hyperparameters to improve at the same time both the calibration
and OOD detection performance (indeed, the mean-field approximation imposes a trade-off between
calibration and OOD detection performance). Additionally, since the standard KFAC-LLLA uses
the same Monte Carlo Integration procedure, we opted for the latter for a fair comparison. For
the KFAC-LLLA we leverage the official repository3 [Hobbhahn et al., 2021] and the Backpack

3https://github.com/19219181113/LB_for_BNNs
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Methods Clean Corrupted CIFAR100 SVHN
Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓) AUROC (↑) AUPR (↑) AUROC (↑) AUPR (↑)

DNN 95.19 ± 0.23 1.38 ± 0.19 1.45 ± 0.19 75.18 ± 0.69 12.31 ± 0.84 12.29 ± 0.85 88.61 ± 0.66 88.05 ± 0.52 93.20 ± 1.98 96.43 ± 0.95
DNN-SN 95.20 ± 0.15 1.11 ± 0.09 1.27 ± 0.10 74.88 ± 0.96 11.75 ± 0.48 11.74 ± 0.49 88.19 ± 0.36 87.72 ± 0.32 93.46 ± 3.41 96.56 ± 1.87

DNN-SRN 95.39 ± 0.20 1.23 ± 0.08 1.27 ± 0.13 75.40 ± 0.67 12.22 ± 0.64 12.20 ± 0.64 88.82 ± 0.40 88.15 ± 0.31 93.54 ± 2.41 96.63 ± 1.27

Deep Ensembles 96.23 ± 0.05 1.27 ± 0.05 1.28 ± 0.03 77.63 ± 0.36 13.12 ± 0.32 12.68 ± 0.32 91.38 ± 0.21 90.75 ± 0.13 96.90 ± 0.07 98.27 ± 0.09
KFAC-LLLA 95.21 ± 0.26 0.79 ± 0.26 0.69 ± 0.24 75.18 ± 0.89 10.26 ± 0.97 10.23 ± 0.97 89.54 ± 0.41 88.30 ± 0.41 93.13 ± 1.01 96.25 ± 0.63

Mixup 96.05 ± 0.15 0.59 ± 0.39 2.17 ± 0.51 78.63 ± 0.72 10.17 ± 0.91 10.35 ± 0.95 84.24 ± 2.95 85.35 ± 1.76 89.40 ± 4.35 95.57 ± 1.41

Mix-MaxEnt 96.69 ± 0.17 0.65 ± 0.11 0.94 ± 0.21 81.16 ± 1.48 12.61 ± 1.77 12.52 ± 1.78 87.63 ± 0.67 85.85 ± 0.83 94.39 ± 0.72 96.31 ± 0.49

Table 4: ResNet50 trained on C10. The cross-validated hyperparameters are provided in Appendix A.

Methods Clean Corrupted CIFAR10 SVHN
Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓) AUPR (↑) AUROC (↑) AUPR (↑) AUROC (↑)

DNN 79.19 ± 0.44 3.05 ± 0.29 2.94 ± 0.31 50.62 ± 0.42 19.80 ± 0.31 19.76 ± 0.31 79.33 ± 0.70 75.20 ± 0.61 82.45 ± 3.21 89.92 ± 1.99
DNN-SN 79.27 ± 0.25 3.15 ± 0.12 3.13 ± 0.15 50.55 ± 0.39 12.19 ± 0.47 12.16 ± 0.47 79.20 ± 0.17 75.22 ± 0.13 80.78 ± 1.08 88.87 ± 0.84

DNN-SRN 78.96 ± 0.42 2.98 ± 0.24 2.95 ± 0.24 50.48 ± 0.37 12.62 ± 0.58 12.59 ± 0.58 78.77 ± 0.14 74.87 ± 0.15 82.39 ± 2.83 89.52 ± 1.75

Deep Ensembles 82.09 ± 0.33 3.15 ± 0.10 2.98 ± 0.19 53.91 ± 0.37 12.53 ± 0.31 12.36 ± 0.31 81.93 ± 0.28 77.65 ± 0.34 85.08 ± 1.60 91.49 ± 0.88
KFAC-LLLA 79.41 ± 0.44 1.30 ± 0.09 1.19 ± 0.24 50.85 ± 0.49 10.59 ± 0.56 10.57 ± 0.56 79.30 ± 0.41 75.27 ± 0.38 82.80 ± 3.84 90.38 ± 2.17

Mixup 80.12 ± 0.28 7.49 ± 0.32 7.47 ± 0.35 53.96 ± 0.21 13.57 ± 0.38 13.52 ± 0.38 77.02 ± 0.41 74.40 ± 0.43 76.86 ± 3.40 87.36 ± 1.62

Mix-MaxEnt 81.49 ± 0.31 1.57 ± 0.18 1.53 ± 0.21 57.62 ± 0.30 13.42 ± 0.93 13.39 ± 0.94 79.44 ± 0.33 75.80 ± 0.14 88.68 ± 0.69 93.48 ± 0.34

Table 5: ResNet50 trained on C100. The cross-validated hyperparameters are provided in Appendix A.

library [Dangel et al., 2020] for the computation of the Kronecker-Factored Hessian. For the SNGP
ResNet50 experiments, we tried running the official implementation. The official implementation for
ResNet50 is specifically fine-tuned for ImageNet, and has not been used for experiments on CIFAR.
We could not make SNGP converge to SOTA accuracy values both on CIFAR-10 and CIFAR-100.
All the other methods were implemented by us in PyTorch and the training, cross-validation and
evaluation code will be made publicly available upon acceptance of the paper.

B Additional Results

B.1 ResNet50 Experiments

In Tables 4 and 5 we report the experimental results for ResNet50.

B.2 Calibration Metrics without Temperature Scaling

For completeness, we report the calibration metrics over all the methods and considered datasets
without temperature scaling [Guo et al., 2017] in Table 6. We can observe that temperature scaling
leaves the ranking among methods mostly unchanged. Details about the cross-validation procedure
used and the temperature T used are in Section A.

C Detailed analysis of the corruption experiments

In this section, we report detailed plots that break down the aggregated metric reported in Table 2 for
CIFAR-10-C and WideResNet28-10. Specifically, in Figures 2, 3 and 4 we show how the Accuracy,
ECE and AdaECE vary across all the corruption types and intensity values (horizontal axis) over 5
seeds. As it can be seen, in most cases our method achieves better Accuracy than any other method.
In terms of calibration, our method is sometimes outperformed by Mixup, but we observe that Mixup
exhibits lower Accuracy whenever this happens. As the intensity of the corruption increases, all the
metrics deteriorate for all the methods (as expected). However, our method still achieves superior
performance in most of the cases also in these circumstances.

To support our claim that better clustering behaviour induces better classification performance, we
report the Fisher criterion, ||SW ||F and ||SB ||F (we defined in Section 4) plots for all corruptions
and all intensity levels in Figures 5, 6 and 7.

The observed pattern is similar for all considered architectures and corrupted datasets, hence we
report these plots only for WideResNet28-10 on CIFAR-10-C.
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Figure 2: (Part 1 of 3) Accuracy, ECE and AdaECE for all corruptions and intensity values of
CIFAR-10-C, architecture WideResNet28-10. A similar pattern can be observed in all other cases.
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Figure 3: (Part 2 of 3) Accuracy, ECE and AdaECE for all corruptions and intensity values of
CIFAR-10-C, architecture WideResNet28-10.
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Figure 4: (Part 3 of 3) Accuracy, ECE and AdaECE for all corruptions and intensity values of
CIFAR-10-C, architecture WideResNet28-10.
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Figure 5: (Part 1 of 3) Fisher criterion, ||SW ||F and ||SB ||F for all corruptions and intensity values
of CIFAR-10-C, architecture WideResNet28-10. A similar pattern can be observed in all other cases.
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Figure 6: (Part 2 of 3) Fisher criterion, ||SW ||F and ||SB ||F for all corruptions and intensity values
of CIFAR-10-C, architecture WideResNet28-10.
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Figure 7: (Part 3 of 3) Fisher criterion, ||SW ||F and ||SB ||F for all corruptions and intensity values
of CIFAR-10-C, architecture WideResNet28-10.
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Methods Clean Corrupted
ECE (↓) AdaECE (↓) ECE (↓) AdaECE (↓)

C10 R50

DNN 3.06 ± 0.20 3.02 ± 0.19 17.31 ± 0.73 17.30 ± 0.73
DNN-SN 2.92 ± 0.11 2.90 ± 0.11 17.41 ± 1.02 17.40 ± 1.02

DNN-SRN 2.85 ± 0.16 2.82 ± 0.16 17.18 ± 0.62 17.17 ± 0.62

Deep Ensembles 2.12 ± 0.01 2.10 ± 0.03 14.01 ± 0.32 13.99 ± 0.32
KFAC-LLLA 0.84 ± 0.26 0.76 ± 0.24 11.59 ± 0.62 11.52 ± 0.62

Mixup 2.84 ± 0.54 2.87 ± 0.46 11.17 ± 0.91 11.35 ± 0.95

Mix-MaxEnt (Ours) 1.64 ± 0.15 1.42 ± 0.13 12.21 ± 1.84 12.12 ± 1.84

C100 R50

DNN 9.51 ± 0.58 9.47 ± 0.60 25.18 ± 1.46 25.17 ± 1.47
DNN-SN 9.47 ± 0.44 9.44 ± 0.46 25.06 ± 0.73 25.04 ± 0.73

DNN-SRN 9.63 ± 0.23 9.59 ± 0.23 25.51 ± 0.69 25.50 ± 0.69

Deep Ensembles 6.65 ± 0.12 6.50 ± 0.04 19.80 ± 0.31 19.76 ± 0.31
KFAC-LLLA 1.56 ± 0.09 1.49 ± 0.24 12.11 ± 1.12 12.18 ± 1.12

Mixup 7.49 ± 0.32 7.47 ± 0.35 21.53 ± 0.38 21.52 ± 0.38

Mix-MaxEnt (Ours) 4.33 ± 0.43 4.17 ± 0.39 14.06 ± 1.81 14.03 ± 1.80

C10 WRN

DNN 2.30 ± 0.11 2.27 ± 0.11 15.94 ± 0.66 15.92 ± 0.66
DNN-SN 2.25 ± 0.12 2.21 ± 0.13 15.55 ± 0.23 15.53 ± 0.23

DNN-SRN 2.25 ± 0.12 2.23 ± 0.13 15.13 ± 0.44 15.11 ± 0.44

Deep Ensembles 1.76 ± 0.02 1.74 ± 0.03 13.54 ± 0.19 13.52 ± 0.18
SNGPGood 1.62 ± 0.09 1.51 ± 0.06 11.36 ± 0.37 11.33 ± 0.36

KFAC-LLLA 1.06 ± 0.08 1.12 ± 0.07 11.69 ± 0.76 11.67 ± 0.76

Mixup 2.02 ± 0.72 2.23 ± 0.64 7.88 ± 0.94 7.93 ± 0.97

Mix-MaxEnt (Ours) 0.92 ± 0.06 0.71 ± 0.13 8.93 ± 0.70 8.87 ± 0.69

C100 WRN

DNN 5.34 ± 0.38 5.30 ± 0.42 17.43 ± 0.75 17.38 ± 0.75
DNN-SN 5.15 ± 0.25 4.97 ± 0.24 16.39 ± 0.44 16.35 ± 0.45

DNN-SRN 5.12 ± 0.17 5.05 ± 0.25 15.75 ± 0.85 15.71 ± 0.85

Deep Ensembles 4.03 ± 0.16 3.92 ± 0.16 13.51 ± 0.28 13.47 ± 0.29
SNGPGood 5.68 ± 0.26 5.65 ± 0.28 10.97 ± 1.52 10.89 ± 1.52

KFAC-LLLA 2.20 ± 0.31 2.30 ± 0.32 8.97 ± 0.21 8.99 ± 0.21

Mixup 3.44 ± 1.08 3.60 ± 0.99 16.53 ± 1.52 16.54 ± 1.49

Mix-MaxEnt (Ours) 2.66 ± 0.07 2.47 ± 0.09 10.54 ± 1.49 10.49 ± 1.49

Table 6: Calibration metrics for all networks and all datasets, without temperature scaling
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