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ABSTRACT

We study cooperative temporal-difference (TD) learning with heterogeneous
agents, in which a collection of agents interacts with different environments and
jointly learns their respective value functions. We focus on the setting where there
exists a shared linear representation and the agents’ optimal weights collectively
lie in an unknown linear subspace. Two competing intuitions exist: On the one
hand, the existence of a common structure, even if unknown, may accelerate the
learning of individual agents. On the other hand, heterogeneity in state transition
kernels can lead to misaligned learning signals across agents, which may signifi-
cantly hinder convergence and impair generalization. This raises a natural ques-
tion: do the benefits of collaboration outweigh the drawbacks — or is it the other
way around? In this paper, we take a step toward answering this question. Inspired
by the recent success of personalized federated learning (PFL), we study the con-
vergence of cooperative single-timescale TD learning in which agents iteratively
estimate the common subspace and local heads. We showed that this decomposi-
tion can filter out conflicting signals, effectively mitigating the negative impacts
of “misaligned” signals. The main technical challenges lie in the heterogeneity,
the Markovian sampling, and their intricate interplay in shaping error evolutions.
Specifically, not only are the error dynamics of multiple variables are closely in-
terconnected, but there is also no direct contraction for the principal angle distance
between the optimal subspace and the estimated subspace. We hope our analytical
techniques can be useful to inspire research on deeper exploration into leveraging
common structures.

1 INTRODUCTION

In many real-world applications, ranging from simple assistive robotics to autonomous vehicles, au-
tonomous agents operate in different local environments. For example, consider the simple robot
vacuums. Their interacting environments are mostly shaped by the household conditions, which can
vary significantly in floor plans, obstacle types (e.g., moving humans and furniture), and spatial con-
figurations. Similarly, autonomous vehicles deployed across different regions of a metropolitan area
may encounter substantial variability in road conditions and traffic patterns. Such environmental
heterogeneity can lead to misaligned learning signals across agents, which may significantly hinder
convergence and impair generalization of jointly learning. Nevertheless, applying standard single-
agent reinforcement learning (RL) solutions may lead to overall intensive, yet possibly redundant,
computation and sample collection. This is because the cumulative knowledge obtained by one
agent may still be partially useful to others when some common structure (though unknown) exists.
These two competing intuitions raise a natural question:

Question: Do the benefits of collaboration outweigh the drawbacks — or is it the other way around?

In this paper, we take a step toward answering this question by focusing on mitigating the negative
impacts, while deferring a deeper exploitation of the common structure for future work, for which a
fundamental fine-grained problem setup may be necessary — see Section [6|for a detailed discussion.

Existing studies of multi-agent RL (MARL) with heterogeneous environments are mostly restricted
to training a common policy or value-/Q-function (Jin et al.| [2022; Wang et al.| 2023} Xie & Song,
2023} [Zhang et al.||2023a), and the optimality is often described with respect to some imaginary en-
vironment constructed as a weighted average of the agents’ state-transition kernels Jin et al.| (2022).
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Though this approach has practical value — particularly when environmental heterogeneity is mild
— in many applications (such as on-device recommender systems (Maeng et al.| |2022) and smart
healthcare (Nguyen et al., 2021))), heterogeneity is often moderate to severe, which can significantly
degrade the performance of a common policy. In a parallel line of research on multi-agent Markov
games or competitive MARL, learning personalized (or localized) policies or value-/Q-functions has
recently garnered considerable attention (Filar & Vriezel 2012; Zhang et al.l 2018; [Qu et al., [2022
Zhang et al.| 2023b; |Daskalakis et al., 2023)). Specifically, in their setting, agents interact with one
another within a shared environment, and the rewards received by individual agents are determined
by the joint actions of all agents. It is easy to see that in such a setup, the more agents there are, the
more complicated an agent’s decision problem becomes. In fact, this line of work often suffers from
the so-called curse of multi-agents—the sample complexity increases linearly or even exponentially
(Song et al.;, 2022} Jin et al., 2024; Zhang et al., 2018) with respect to the number of agents.

In this paper, we take a step toward addressing the above question by studying cooperative temporal-
difference (TD) learning, where a collection of agents collaboratively learn their heterogeneous
value functions through local TD updates. Inspired by the recent success of personalized feder-
ated learning (PFL), we focus on the specific underlying common structure that the agents’ optimal
weights under a shared linear representation collectively lie in a low-dimensional linear subspace
(Collins et al.| 2021 Niu et al [2024). We propose and analyze the convergence of a cooperative
single-timescale TD method in which agents iteratively estimate the common subspace and agent-
specific heads. We showed that this decomposition can filter out conflicting signals while amplifying
shared structures. Extending the analysis from the PFL to the TD is fundamentally nontrivial. In ad-
dition to the Markovian sampling noises that are typically encountered in RL analysis, a unique and
major difficulty that arises from environmental heterogeneity lies in the fact that the errors caused
by the principal angle distance between the underlying true subspace and the estimated subspace get
further distorted and in an unstructured, heterogeneous way.

Our main contributions are summarized as follows:

* We propose and analyze the convergence of a cooperative single-timescale TD method
in which agents iteratively estimate the common subspace and agent-specific heads. We
provide a finite-time analysis under Markovian sampling. We show that the overall reward
estimate errors decay at a rate of O(log T'/ \/T), and subspace estimation errors decay at a
rate O(%), where r is the dimension of the common subspace.

* On the positive side, these rates do not decrease in the number of agents, implying that
our method is resilient to the environmental heterogeneity. under the heterogeneity. Never-
theless, no clear acceleration is shown. We conjecture that this may stem from the widely
adopted bounded feature assumption (Assumption [3). In PFL, the existence of a shared
common subspace helps to reduce the local learning problem from a d-dimensional prob-
lem to an r-dimensional problem. When r» < d, this simplification can be substantial.
Under Assumption [3| however, the dependence on d is obscured, which may explain the
absence of an explicit speedup in our bound. Relaxing this assumption, however, requires
a fundamental rethinking of the problem, which we leave to future work.

* We extend the theoretical understanding of personalized value function learning by provid-
ing guarantees under commonly used step sizes (i.e., ©(1/v/T)). A detailed discussion of
related work on personalization in heterogeneous environments can be found in Section[2]

 Technically, the Markovian sample of TD error makes it difficult to obtain a direct con-
traction for the principal angle distance between the optimal subspace and the estimated
subspace, but only an indirect subtraction in terms of the local weights error. To address
this challenge, we show that the local weights error can be lower-bounded by the principal
angle distance times a constant that depends on the diversity of the optimal local weights.

2 RELATED WORK

Convergence speedup of MARL under homogeneous environments. When the environments of
all agents are homogeneous, it has been shown that the federated version of classic reinforcement
learning algorithms can significantly alleviate the data collection burden on individual agents (Woo
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et al.|[2023; Khodadadian et al.| 2022). Specifically, the per-agent sample complexity decreases lin-
early in terms of the number of agents — an effect commonly referred to in existing literature as linear
speedup. Recent work has made significant progress in understanding fed RL under homogeneous
environments. Woo et al.|(2023) studied federated Q-learning. In addition to a linear speedup,|Woo
et al.[ (2023) uncovered the blessing of heterogeneity in terms of state-action exploration — a com-
pletely different notion of heterogeneity from our focus. [Salgia & Chi (2025) studied the sample-
communication complexity trade-off, and developed a new algorithm that achieves order-optimal
sample and communication complexities.

MARL under heterogeneous environments. There is an emerging interest in mathematically un-
derstanding the role of environmental heterogeneity in the performance of the federated versions of
classic reinforcement learning algorithms (Jin et al.l 2022; |Wang et al., [2023} Xie & Song, 2023;
Zhang et al.,[2023a)), yet most existing studies focus on training a common policy or approximating
a common function. Jin et al| (2022) studied federated Q-learning and policy gradient methods,
assuming known transition kernels. Wang et al.| (2025) studied federated Q-learning with unknown
transition kernels, and found that, in the presence of environmental heterogeneity, the eventual con-
vergence rate may depend solely on the number of communication rounds — multiple updates within
each round cannot accelerate convergence. \Wang et al.| (2023) proposed FedTD(0) with linear func-
tion approximation, and linear convergence speedup in a low-heterogeneity regime. Xie & Song
(2023) used the KL-divergence to penalize the deviation of local update from the global policy, and
proved that under the setting of heterogeneous environments, the local update is beneficial for global
convergence using their method. Yet, no convergence rate is provided. Zhang et al.| (2024) proposed
FedSARSA and proved that the algorithm can converge to a near-optimal solution. Neither (Xie &
Song| 2023)) nor (Zhang et al.,|2024) characterized sample complexity.

Model/Policy personalization. In FL, model personalization (often referred to as PFL) has garnered
significant attention in recent years. The success of personalization techniques depends on balanc-
ing the bias introduced by using global knowledge that may not generalize to individual clients,
and the variance inherent in learning from limited local datasets. Popular PFL techniques include
regularized local objectives (T Dinh et al., |2020; |Li et al., 2021), local-global parameter interpola-
tion (Deng et al., 2020), meta-learning (Fallah et al., [2020; Jiang et al.l 2019), and representation
learning (Collins et al., 2021} Xu et al., 2023). Extending these ideas of PFL to RL introduces an
even greater level of difficulty that arises from the inherent sample correlation induced by sequential
decision-making, and the non-stationarity of sample quality as the policy evolves.

In the RL literature, training personalized (or localized) policies has recently garnered considerable
attention in the context of multi-agent Markov games or competitive MARL [Filar & Vrieze|(2012);
Zhang et al.| (2018)); |Qu et al.| (2022); |[Zhang et al.| (2023b); Daskalakis et al.| (2023)), which depart
fundamentally from our focus. Specifically, in their setting, agents interact with one another within
a shared environment, and the rewards received by individual agents are determined by the joint
actions of all agents. Each agent aims to learn a localized policy that contributes to a joint policy
across all agents, with the goal of maximizing its own welfare. A commonly adopted objective
among the participating agents is to learn some form of equilibrium, such as a Nash Equilibrium.
Departing from Markov games, we focus on cooperative MARL, where we try to avoid the curse of
heterogeneity in the joint learning.

Personalization in heterogeneous environments. Training personalized policies in cooperative
multi-agent systems in the presence of environment heterogeneity remains largely underexplored.
Yang et al.| (2024) studied the training of personalized policies in the context where each agent has
a private reward function but shares a common transition kernel for the environment. The analysis
focused solely on the convergence of the global policy, defined as the average of the local poli-
cies. Jin et al.[(2022) proposed a heuristic deep FedRL method, where the policy network can be
decomposed into a shared subnetwork and environment embedding layer. [ XIONG et al.| studied
personalized TD learning with two timescales and established a linear convergence speedup. How-
ever, under their notation, the validity of the error contraction in Eq. (54) appears to rely on the
assumptions D7 = o(f3;) and Ds = o(cy), which may be challenging to satisfy in practice due to

the involvement of the stepsize ratios % and S
t [e TN
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3 PROBLEM SETUP AND PRELIMINARIES

MARL. In this work, we consider a multi-agent system that consists of one parameter server and
K agents. The parameter server can orchestrate the learning at the agents through iteratively col-
lecting and aggregating the updates at the agents. We consider MARL with heterogeneous envi-
ronments, where the agents are modelled as Markov Decision Processes (MDP) {M* | MF =<
P S, A R> fork=1,2,..., K}, where S = R is the state space , A is a finite action space, Pkg
are the transition kernels, and R is the reward function: S x A — [-U,., U,.]. Slightly departing from
existing work on federated reinforcement learning, we consider undiscounted rewards—specifically,
the time-averaged expected reward (Tsitsiklis & Van Royl [1999).

Let 7 be a given policy. For each agent k, we assume that the limiting state distribution of agent k
under the transition kernel P* and the given policy 7 exists and is denoted as y*. The time-average
expected reward at agent k is defined as:

1
k N 1
J¥(m) ;== lim —TE

T—o00 i—0 SN,Lk,aNTr

T-1
Z R(staat)‘| = E [R(Saa’)]a (1)

where the first expectation is taken over the state-action trajectories generated under the Markov
chain, while the second is taken over their stationary distribution. The value function is defined as

VET(s) =E,, p

ZR(st,at)—Jk(w) | sozs] . (2)
t=0

We focus on learning the value function for each agent k& under the given 7 based on their collective
experience with their environments. For ease of exposition, we drop the index and function argument
in 7. That is, for each k, J* (1) is written as J*, and V¥ (s) as V*(s) for short.

Linear function approximation via TD learning. Let ) be a function space that V¥ belongs to.
Let ¢ : S — L?(N) be a feature map of V. Denote the coefficients of the value V* with respect to
¢ as z*, where z** € L2(N). For simplicity, in this paper, we assume ¢ is known and has finite
dimension d, i.e., ¢ : S — R%. We consider the following linear function approximation:

V(s;zk) = gf)(s)Tzk.

To drive the approximation ‘7(5; z) to V¥ TD learning (particularly TD(0)) update is applied at an
agent to learn its value function:
-
2o = 2+ B (Rl sb) = 0 + (0(sky0) — 6(sh) " 2F)
My =0t + e (Rlaf, st) —1r)

where [3; and -; are the stepsizes. It is well-known that under some standard technical assumptions
lim; o0 zf — zF* (Tsitsiklis & Van Roy} |1999; Sutton & Barto, [2018)).

3)

Common structure: Low-dimensional subspace. To capture the potential gains of learning fed-
eration compared with learning individually, following (Collins et al.| (2021); Niu et al.| (2024)), we
assume that {z** : k = 1,--- K} belongs to and fully span an r-dimensional subspace of R.
That is, there exists an orthonormal matrix B* € R%*" such that

2 = B*wk*, where wh* € R". 4

To see the generality of this formulation: r = 1 when z** = 2K for all k, k' (i.e., homogeneous
transitional kernels P¥); r = K when zF* 1 z¥"* for all K # k — which is possible when K < d.

4 ALGORITHM: FEDERATED SINGLE-TIMESCALE TD

We propose and analyze a natural collaborative TD algorithm, wherein the local linear estimates z*
are decomposed into the product of the subspace estimate B € R?X", which is common over all
agents, and an agent-specific head w € R"; formally, z*¥ = Bw* for all k. A formal description of
the algorithm can be found in Algorithm T}
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The algorithm can be roughly understood as follows. K agents try to estimate their value functions
via a joint linear approximation'

1 wK 3 ZE [(VE(s;w®, B) — VF(5))?], where VF(s;0", B) = ¢(s) Bw.  (5)

A natural stochastic gradient descent of Eq. (5) updates of B and w* for all & are:
Wi = Wy + B [VE(s) = olst) " Bewy] By (st), (©6)
By, =By + G [VH(s) — o(st) " Buwt] 6 (sy) (@) @
where 5, and (; are stepsizes of w and B, respectively; the specific choices of stepsizes can be found
in Section [S| However, V¥ is unknown for each k. Following the semi- gradient method TD(0), we
use R(sF,al) — J¥ + VF(sk,;wF, By) to estimate V¥ (sF), and use ¥ (the same as in Eq. (3 ) to

estimate J* in a stochastic approximation manner. For ease of exposition, we define the TD error at
each agent as

0f =i —nf + (9(s511) — &(st)) " Bewr. )
In addition, we use the projection operator Iy, () to ensure the boundedness (with respect to £o
norm) of the local heads w, where U, is some known constant. In each round, the agents communi-
cate only their local subspace estimates B to the parameter server, which then performs averaging
followed by a QR decomposition to ensure that B; has orthonormal columns (Collins et al., [2021]).

Algorithm 1 Federated Single-Timescale TD (FSTTD)

1: Input: Initial critic parameter {w}}X |, orthonomal By € R*", B, for local heads, ¢; for
subspace, and ~; for reward estimator, 7', and U, the projection upper bound.

2: fork=1,2,...,K do

3: k=0

4: Draw sk from some initial distribution independently
5: end for

6: fort =0,1,2,...,T —1do

7: fork=1,2,...,Kdo

8: Take action af ~ 7(-|s¥).

9: Observe next state sk~ ”P’g 7) and reward r} = R(sF, ak).
10: of =71f —np + (¢(3t+1) ) ' Buwt.

11: 77t+1_77t.+’7t(rt — 7).

12: Wt+1 Iy, (wf + BBy 6(s7))-

13: end for

14: fork=1,2,...,K do

15: Bt+1 Bt + o d(st)(wr)

16: end for

17: Bt+1 74 Zk 1 t+1’

18: Bii1, Riy1 = OR(By11)

19: Server sends current By ; to agents.
20: end for

5 CONVERGENCE ANALYSIS

5.1 ASSUMPTIONS

We present some technical assumptions adopted in our convergence analysis. Assumptions|[I} [2] and

[3are widely adopted in the RL literature. Assumption [4]is introduced to control the heterogeneous

distortion of the matrix A* on the pr1nc1pal angle distance evolution. Assumptlon quantifies how
well spread the underlying truth z** is in covering the r-dimensional subspace of B*.

For each MDP M¥, it is well-known that given the feature representation ¢(s) and policy 7, there
exists a TD fixed point z** minimizing the projected Bellman error if the following assumption
holds (Sutton & Bartol [2018)).
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Assumption 1 (Exporation). The matrix A* = E(, , o)wuraners [0(s)(d(s') — ¢(s)) '] is negative
definite and its largest eigenvalue is upper bounded by —A.

This assumption is widely adopted in the literature. Intuitively, A captures the exploration of the
policy 7 under the transition kernel P*. For the tabular setting, Assumptionholds when the policy
7 explores all state-action pairs.

Recall that p* is the stationary distribution induced by policy 7 and the transition probability P*, V.
Uniform ergodicity is often assumed in the literature to characterize the noise induced by Markovian
sampling (Chen & Zhaol 2024; Olshevsky & Gharesifard} 2023; Zou et al.,|2019; |Wu et al., 2020).

Assumption 2 (Uniform ergodicity). Let P§_(-|sk = s) denote the state distribution after T steps
. k _ .
given s; = s for agent k. There exist m > 0 and p € (0, 1), such that

dTV(HDIS:T('|S§ = S)a,u’k(')) < mpTa Vr>0,Vs €S, Vk € [KL 9

where dry/ is the total variation distance.

We further define (Chen & Zhao) [2024)
1
VT

which will be used in our formal results statements. Explicitly,

7 = min{i | mp ™! < ,Vi>0.}, (10)

_ log(mp™1) logT
T log(p~—1) + 2log(p~1) O(log(T)).

Furthermore, it is assumed that the shared features are bounded. Formally,
Assumption 3. ||¢(s)|| < 1foreachs € S.

In PFL, the existence of a shared common subspace helps to reduce the local learning problem from
a d-dimensional problem to an r-dimensional problem. When r < d, this simplification can be
substantial. Under Assumption [3] however, the dependence on d is obscured, which may explain
the absence of an explicit speedup in our bound. Relaxing this assumption, however, requires a
fundamental rethinking of the problem, which we leave to future work.

Though popular, we conjecture that this assumption may hide the benefits of shared subspace.
The following assumption is imposed to ensure the negative drift of the principal angle distance
| BT By||, which is used in deriving Lemma
Assumption 4. The subspace span(B*) is A*-invariant for all k& € [K]. That is, if v € span(B*),
then A¥v € span(B*).
Let

Z* € R™K  with 28 as the k-th column. (11)

By Eq. l| we know that the rank of Z*Z*T is 7. Let A\T. denote the smallest nonzero eigenvalue

of Z*Z*'. We require that each of the r dimensions of B* is well-covered by {zk’*}szl, formally
stated in Assumption [5]

Assumption 5. %X”

min

> « for some absolute constant o > 0.

5.2 MAIN CONVERGENCE RESULTS

In Algorithm I} three groups of variables are updated: the common subspace estimate B, the local
heads wf, and estimates of local time-averaged rewards (defined in Eq. ). In this subsection, we
characterize their evolutions over time. For ease of exposition, we introduce a set of notation:

zf = Buwy — 2", m; = B1'By, vt =nf —J", (12)
of =wf + By B, ¢(st), T =By — M, m, =BT B, (13)
In addition, let
& = (rf — I+ (d(st41) — 8(57)) ' Bewy )o(st)
— By pr[(rf = TF 4 (8(s141) — 0(s7)) " Buwr )b (s,

which can be viewed as the Markovian noise of the TD error of agent k at time ¢. The following
rewriting appears repeatedly in our analysis.

(14)
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Proposition 1. For any t and agent k, ¥ ¢(sF) can be rewritten as

5f¢(5t )= §t + Akxt + Yy ¢(5t )-
Lemma 5.1 (Upper bound of local head errors). Let P* = B*(B*) ", and P, = B;B] for each t.
In addition, let Us = 2U,. + 2U,,. For each agent k and time t, it holds that

E[[&5,, ]2 < (1 - 208, — 4GU2)E|af|” + 28E(af, Pock) + 163U, \/Enxt 2Bl 2
K
) 1 ; 2¢, i
+ 280 Bt B +46UE 5 3 VEIz 2Bl + 2 Zw,st(wt)w
2
L Z\/Ellxt 2\ [R|yil2 + 4G BUUZ + 382U2 + 3CURUS + 362UV,

kHQ

Intuitively, when E|m;||? < E||z The above upper bound is somewhat similar to the traditional
single-agent setting [Chen & Zhao|(2024). We further show (in Lemma[5.2)) that it is impossible for
Ellme|* > B[]

Deriving Lemma [5.1]is highly nontrivial and requires a fundamental detour from the existing analy-
sis|Chen & Zhao|(2024). Furthermore, existing analysis in PFL |Collins et al.|(2021]) is not applicable
to our problem due to the Markovian sampling, the TD updates, and the lack of responses. Roughly
speaking, the main drift of the decay in ||z || may arise from 23;(z¥, B; B/ ¢(sF)dF). However, the
environmental heterogeneity significantly complicates the characterization of this term. Specifically,
by Proposition |1} it can be written as:

28, (¥, BB/ ¢(sF)oF)
=20, (af Py ARZF) + 28, (af, Pi&l) + 28, (af , Pryl o(s))).

Zooming into this expression, the main negative drift arises from the term (xt P ARy > Intu1t1ve1y,
in traditional single-agent or homogeneous environment settings, (z¥, P, AFzF) ~ (mt,A;vt>
which is mainly controlled by the spectrum of A, with the desired property directly assumed in
Assumption [T, However, in the presence of environmental heterogeneity, Assumption [I] does not
directly guarantee a negative drift of the ¥ due to the existence of P; and its intricate interplay
with the heterogeneous A*. Specifically, (1) P; is not of full rank, (2) the local head error will be
distorted in a different manner due to the product P, A*, and (3) P, varies over time.

Lemma 5.2 (Lower bound of local head errors). Suppose that d > 2r. It holds that

]E||mt\|2 o EllmeZ
ZEH o7 > Amin = TF)\LH

r

Intuitively, Lemma [5.2] says that when the principal angle distance between Bt and B* is large,
the well coverage of all the r directions by the underlying truth {z1* ... 2%*} ensures that the
aggregate errors in the local head estimates remain bounded away from zero In other words, the
local heads cannot be learned significantly faster than the subspace itself.

For the convergence result, we choose our target to be the time average expected error bound. There-
fore, we define

T-1 T
1

Yk = E k|2 Xk = E k112
T T—7r tZ lvel®, T 7T_TTtZ =17,
=TT =TT
K
1 k
=2 > XI,
k=1 T 4= T

Lemma 5.3 (Reward analysis). Choose the stepsize v, = % fort < T, where c is some absolute
constant. It holds that
T—1
1 VT 2U2  cympAUZ +4U2  2¢,U2
E k|2 < T i T T Y-r
T 2 Bl + +

= -~ T—7r Cy \/T \/T ’
where T is defined in Eq. (I0).
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Lemma says that the time-averaged reward estimation error decays at the rate of (’)( \F) The
average starts from time index 77 to address the Markovian sampling noise.

Lemma 5.4 (Principal angle distance analysis). Choose stepsize (; = c—\/%, where c¢ is some abso-
lute constans. It holds that,

VT r2 2rce Uzy2 4rCy 4rU,
My < o —w 2N MpYE
T‘T—TTAac<+ VTAKa VT AKaZ T
where C; = [(8U3 + 4UwUT) 10¢ccmrUsUy, + (8U, + 4Uy)cpmrUsUs + (4U, + 4Uw)Uw], and

77 is defined in Eq. (I0).
Lemma 5.5 (Local weight analysis). Choose stepsize 3; = C—\/‘% and ¢ = % where c¢,cg are

some absolute constans. It holds that,

Xk < O(k’g ) + 16U, 1/X’“MT+7\/X’fY’f
L2021 U2 -
Z;A KZ«/X% CAK;MXéiYTJrO(l)

Theorem 1 (Convergence). Consider Algorithm!with Br = %,Q = %,% = % where

g, C¢, Cy are absolute constants depending on problem parameters. We have for T' > 21, r <

log(T),

lef = O(loig)>7XT = O(l)aMT = O(rlog\/%T))

For X7, there is an unavoidable O(1) error which arises from the gap between the raw updates and
the updates after QR decomposition and projection (see equation 25). When this gap is neglible,

then X7 = O(%) as can be seen from equation

5.3 PROOF SKETCH

The challenge of single-timescale convergence analysis for this problem is that the estimation errors
of the time-average reward, the critic, and the subspace misalignment are strongly coupled, whereas
in double-loop or two-timescale analysis, these error terms are usually naturally decoupled.

However, as shown in Lemma [5.3] Lemma [5.4] and Lemma [5.3] the reward error is independent of
the other two error terms, the subspace misalignment error is only coupled with the reward error,
and the critic error is coupled with the other two errors. Therefore, we can sequentially solve the
coupled system. We now provide an overall proof sketch for each error terms.

Reward estimation error analysis.
By Eq. and the update of 7* in Algorithm m we can decompose the reward error into:
(yren)? = (1= 2%) (ur)* + 2yeyr () = J*) + (re(rf = ).

The first term is a contraction term, the second term is a Markovian bias term, which decays to 0 in
expectation, and the last term is a variance term of order O(v?).

Principal angle distance analysis.
Using the update rule in Algorithm[I] we can decompose the squared error into

Imesa |7 < IIW’%HII?wHR{JflH2

. LG
e 13 < a2+ 152 ZB TSt (wh) TIE + 2(my, 2 ZB
k 1

G G
B*T Ak T
mt,gkz:: (bst ) +2mt,Ekz:: Axt wt) ).
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For the first inequality, we will show in Lemma B.1|that [|R;}; || < % and can be absorbed
into the contraction term we get from the last inner product of the second inequality. Turning to
the second inequality, the second-order terms will decay very fast, and we focus on the three inner
products. The first inner product is a Markovian noise term which decays in expectation, and the
second inner product is coupled by the reward error y¥ and m;, which decays eventually as long as
ﬁdecays and there are no other non-decaying terms. For the last inner product, we invoke Lemma
5

mme |

and it can be bounded by — |m¢||%, giving us a contraction.

Critic error analysis. Using the update rule in Algorithm (I} we can decompose the squared error
into

Iz 17 <l |* + 2ﬂt<xf, BtBT¢(8f)5k>

+ 2 mta Z¢5t 51 Wt t>
+ 20,8y <xt, . Z5§¢(Si)(w§)T) (6B, ¢<sf))>
=1

K
1 S
+ 367 IBu(6; B/ o (st)|I” + SCEIIE > dio(s)) (wh) Twf])?
=1

1&
+387CE (5 D dto(si)(wi) 1) (97 B/ o(st) I1*
i=1

The key operation here is to push out a negative drift of the main error term, i.e., a contraction, and
to show the remaining term decays. For ease of comprehension, we omit the specific terms and only
talk about what terms can be pushed out. The detailed explanation can be found in Section

The first inner product can give us a negative drift of —2\/3;||z¥||?, and the remaining terms are
Markovian noise and errors coupled by ||m;|| and ||z ||. The second inner product can be decom-
posed into Markovian noise, a term coupled by ||z¥|| and ||xi||,i € [K], and a term coupled by ||z¥|
and ||y¥||. The second-order terms decay even faster.

6 CONCLUSION AND DISCUSSIONS

In this work, we studied cooperative TD learning in heterogeneous environments, where agents share
a low-dimensional common structure but face diverse local dynamics. By combining subspace esti-
mation with personalized value function updates, we established finite-time convergence guarantees
under Markovian sampling and clarified the limitations imposed by standard assumptions. We hope
that our analysis framework and insights provide a foundation for future work on exploiting com-
mon structures in multi-agent reinforcement learning while balancing the benefits and drawbacks of
collaboration.

Limitations. While our analysis demonstrates resilience to heterogeneity, the absence of explicit
acceleration highlights the need for understanding the benefits of cooperative learning of shared
structure. Specifically, in PFL, the existence of a shared common subspace helps to reduce the local
learning problem from a d-dimensional problem to an r-dimensional problem. When r < d, this
simplification can be substantial. Under Assumption [3| however, the dependence on d is obscured,
which may explain the absence of an explicit speedup in our bound. Relaxing this assumption, how-
ever, requires a fundamental rethinking of the problem, which we leave to future work. Furthermore,
we need a deeper understanding of error due to QR decomposition and projection when analyzing
the convergence of local critics.
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Appendices

A PROOF OF PROPOSITION 1]

3 e(sy) =(rf —nf + (&(si11) — o(s1)) " By )(s7)
=(rt — J* +(8(st41) — 8(s1)) ' Bawt)o(st) + (J* — 1) o (s1)
=Epup e pe[(rf = J* 4+ (0(s541) — 0(s7)) T Bewr)d(s7)]
+(rf = I+ (¢(Sf+1) = ¢(st)) " Bt )o(st)
= Byt pr[(r =I5+ (8(s541) — 6(57)) " Bt )9 (s7)]
+ (I =) o(st)
=By, pr[(rf = T 4 (&s511) = &(s1)) " Buwy)d(s7)]
+ ft + Y ¢(5t )-
Recall that, by definition, that z** = B*w®* is the TD limiting point of agent k. Hence,
By e (7 — J5 + (6(5,1) — 6(58)) TB*wb*)(sk)] = 0. So, we have
SEO(5E) =By e (= T 4 (8(ski0) — 6(5) Busoh)o(s})]
— By r prl(rf = T+ (8(s841) — 0(s7)) B W )o(s)]
+ &+ uro(sy)
=B, pre[(0(st11) = 0(s)) T (Bewr) = B*w™™) 6(sp)] + €F + yf o (st)
DBk [S(5E)(B(sk 1) — 0(55)) 7] (Bewf) — Brwh) + €8 + yfo(s})
=AMBuwi = B'Wh) + £ + g o(st),
where equality (a) holds because of the fact that (¢(sf, ) — ¢(sF)) T (Bywf) — B*w*) is a scalar.

(

B BOUND ON QR DECOMPOSITION

Recall from Algorithm the update of B:
K
= LG
By = E kZ:

For ease of exposition, let

K
p= S ST (1)
k=1

The following lemma enables us to bound the “distortion” caused by the QR decomposition in
terms of ||Qg||. It is worth noting that, in the traditional PFL |Collins et al.| (2021), such distortion
can be well controlled by the number of i.i.d. local samples that are freshly drawn in each iteration.
However, their analysis does not apply to our setting due to the Markov sampling. We fundamentally
depart from the analysis in (Collins et al.|(2021) in deriving upper bounds on those distortions via
constructing a fixed-point iteration.

Lemma B.1 (Perturbation of QR). For eacht > 1, when UsU,,(; < 1/2, it holds that

IRi+1 — I)l2 < 4)1Qll (16)
1 1

R Y| < < : (17

Rl < T =1, = T aiqu]

IR — T2 < 8)Qu- (18)
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Proof. Recall that Byy1 = By 1Ryy1. We rewrite R/, ; Ry as
R/, Ri41 =B/ By41=B/B, +B/Q: +Q/B; +Q/ Q.
=1+B/Q,+Q/B,+Q/ Q..
It can also be rewritten as
R/ 1 Rip1 = (IT+Rep1 =D (I+Reps = 1)
=I+ Ry D"+ Rep1 — D) + (R — )T (Regr — ).
Thus, we get
Rirt =D+ Rt D =B/ Q: +Q/B, +Q/ Q, — (Re1 —I) T (Re1 —I). (19
We construct a fixed-point iteration to “solve” Ry, 1 — I in terms of B/ Q; + Q, B; + Q/ Q; under
Eq. . Toward this, we decompose the symmetric matrix B Q; + Q/ B; + Q/ Q, into
B,/Q:+Q/B:+Q/ Q. =Ry + Ry,
where Ry is upper triangular. Let A1 = Ry, — I — Ry. Then Eq. is equivalent to
Al 4+ A = —(AL At + AL Ro + Ry A1 + R Ro). (20)

Next, we define a sequence of A;q,; fori > 0. Let Ay 9 = 0for¢ > 1 and let A;y;; be an
upper triangular satisfying

AtTJrl,i + Ay, = _(AtT+1,i71At+17i—1 + AtT+1,i71R0 + R Ars1,i-1 + Ry Ro).

We first show the boundedness of the sequence. Note that
1A 1ll2 < NAL L+ Avrrlla < A1 3 + 2 Roll2l| Avsriallz + [Roll3, @D
where the second inequality applies the triangle inequality, and the first inequality holds because

T
At+17i - At-‘,—l,i

.
A1+ A,

A s <
80l < || =1 ;
2
T T
~ ax HAt+1,i+At+1,ix 4 max AR AV
llz]l2=1 2 l|z]]2=1 2
< 2 max |xHAt+1,ix\
lz]l2=1
= max |xH(At+17i —|—A;r+17i)a:|
[|z]l2=1
<A+ ALl (22)

Since ||[Rollz < 1/4, for any [|Ayp1,-1]l2 < 1/4, we have |Ayp ;]2 < 1/4 by Eq. 21). By
induction, the entire sequence satisfies || Ay 41 ;||2 < 1/4 for all ¢ > 0.

Next, we show the convergence of the sequence A, 1 ;. By definition,
(A:+1,i+1 + Apt1iv1) — (A;:»l,i + Apt1i)
= - (ALLZ-(AHM —Apric1) F (D — Aegrio1)  Avria
+ (Apg1,i — Ap1im1) ' Ro + Ry (A — Avrim1))-
By taking the norm on both sides, we obtain

2 < (Aviritt — Degri) T 4 (Dgtyivr — Avrri)ll2

A

||At+1,i+1 - At-{-l,i

IN

1 1
Z||At+1,i = Appriall2 + ZHAHM — Ay1i-ll2
+ 2[[Roll2[[At+1,i — Atgr,i-1l2-
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Therefore, since |Rol|2 < i, the difference || A¢41,i+1 — A¢t1,4/|2 geometrically converges to zero,
which implies that the sequence A; 1 ; converges.

The limit of the sequence satisfies the fixed-point Eq. (20). Taking norm on both sides of equation[20]
yields
1Ae+allz < AL+ Avrallz < Al +2[Roll2 Atz + [Roll3.

Since ||Aty1]]2 < 1/4, we obtain that

1 - 2||IR, — /1 —4||R
JAplly < L= 2Bolle = V1= diRoll e

2

‘We conclude that
IRit1 =Tz = [Ro + Asyillz < [[Roll2 + 4 Roll3 < 2[|Rol2.
Since B, Q; + Q/ B; + Q/ Q; = R¢ + R{ , we have when U;U,,(; < 1/2,

Roll> < 1Qul + 3 1Qe]” < Q] + Qe 202 < 2.
Moreover,
Omin(Ret1) = 1 — ||Rey1 — IfJ2, by Weyl’s inequality,
Omax(Ret1) <1+ [|Rip1 —I||2, by triangle inequality,
and
IR = Tlo = [R5 (T = Res)ll2 < [R5 [l2lT = R [fo-
Therefore,

[Rer —Ifl2 < 4]|Q¢l,
1 1

< b
1—[Repr — I = 1—4[Qqll,
IR, —Il|2 < 8)1Qull.

For the last inequality, we used 4UsU,,(; < 1/2 so that HR;}1 I <2.

IR <

15
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C BOUNDS ON LoCAL HEAD ERRORS

C.1 UPPER BOUND: PROOF OF LEMMA [3.1]
Recall thatwf, ; = Iy, (wf+B:0 B ¢(sF)), Bea1 = Bepi Ry, and 0F = wfi+B:6FB] ¢(sh).
We have
|2 | =IBrswiiy — 2]

=By, (@F,,) — Zk*”

*|‘Bt+1Rt+1wf+1 — 2" 4+ Byl (@F) — Biyi R @fy |

=[Bi1&fs — 2" + Bepally, (0f1) — Bia R &f |

=71 + Bepall, (@71) — BeiRepa @y ||
Taking the square on both sides, we get

||35i€+1||2 =Hwt+1\|2 + Bl (wt+1) Bt+1Rt+1°~Jf+1||2

e 23)
+2(By 1 My, (@), 1) — Besi Rep1@f 1, T54)-

We bound ||By1 Iy, (@F, 1) — Biy1Rep1@y, 1|2 as follows:
We have

B4 1Mo, (@4 1) — By Rea@p |
=1y, (wf—i-l)
=1y, (Wt+1) wt+1 +Wt+1 Rt+1w:’:€+1”
<|Mu, @¢1) = Ol + 1T = Ren) |
<[18:6¢ B ¢(st)| + [T = Res1 )k |
<BUs + 8U2Us¢s,

where the last inequality follows from Eq.(L6) and we use UsB3; < U, for large T such that
[&F, ;]| < 2U.,. Then, the second term in Eq. (23 can be bounded as

Rt+1@f+1||

IBesaTly, (@f41) = BeriRea@fs |2 < (UsBe + 8USUsG)® < 2U5 57 + 128USUFGE. (24)

To bound the third term, requiring UsU,,(; < 1, we have

K

~ Gt , ~
178 all < 1Be + 32 > 07 o(s7) (i) TII@F | < 4Ue.

k=1

Then, by Cauchy-Schwarz, we have
2(Byilly, (@F, ) — BeaRepa@f 1, )

<2||Bis1Ily, (@) 1) — Begr Regr@py 174 |

<(2B:Us + 6U2Us¢,)AU.,. (25)
Then, equation @ can be written as
fo+1H2 §||5t+1||2 +2U3 7 + 18ULUS 7 + (2B:Us + 6U2UsC) AU, (26)

We bound [|z¢, , || as follows:

1Z5 1| = IBeafyy — 227

K
= [I(B: + %Z 0i(sp)(wi) 1) (wr + Be0y By d(s7)) — 27|
i=1

N\“

K
= [|Buwf — 25" + BiBi(0 B/ 6(s})) Z )Twp

+GBi(= Zél sp)(w) ) (35 B o(sh)) |-
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Squaring both sides, we have

175117 =IBraadtyy — 2|2

<|Bewy — 2|2 + 2ﬂt<Btwf — 2 BBy ¢(s7)5t)

K
+ 2¢ (Bywl — 2* Z (5961 (W) Twh)
k ko, 1 = ) ) T kpT k
+ 2GSt <Btwt -z a(gzét‘ﬁ(st)(wt) ) (6t By ¢(5t))>
i=1
+367Be (6 B/ o(sy))|I* +3¢E | = 252 (st) (wp) Twr®

K
+367¢2 1 (5= Z 10(s) (W) ") (67 B, ¢(st)) 17

Note that
IB:(6f B/ o(s))|1* < [16F]1> < U3,

where the last inequality follows from Lemma[G.2]and Us = 2U, + 2U,, as defined in Lemma[G.2}
Similarly,

K
1 9 A A
I3 Z5t¢(5t)(wt)TWf||2 < U3 UG,

2(5’ o(si)(wh) ") (67 B ¢(sF)) 1> < USUZ.

So, ||ZF, 1||? is upper bounded as
K

~ 1 7
ZEl* < | + 280w, BB, é(s7)07) + 2¢ xt,KZoﬁ sp)0;(wi) Twr)

+2<tﬂt<xt, Zaz s))(wi) ") (0F B/ (s} >)>+3ﬂtU5+3<tU5U4+36t<tUaU2.
27)

Roughly speaking, the maln drift of the decay in ||z || may arise from 23; (zF, B;B/ ¢(s¥)F) — the
first inner product in Eq. (27). However, the environmental heterogeneity significantly complicates
the characterization of this term Specifically, by Proposition[T]} it can be written as:

25t<xth BT¢(5t )5k>
=20 (x}, BB/ &) + 28, (xf BB A¥af) + 28, (z}, BB/ y/ ¢(s}))
=28, (xy , Py AFa}) + 2B, (xf , PL&)) + 28, <xt Py o(s)), (28)

reca]lmg that P, = B;B/ . Inside the first term of Eq. (27), the main negative drift arises from the
term (zF, P, A*zF). Intu1t1vely, in traditional single- agent or homogeneous environment settings,
(xk, P AF2F) ~ (zF, AxF), which is mainly controlled by the spectrum of A, with the desired
property dlrectly assumed in Assumption[I} However, in the presence of environmental heterogene-
ity, Assumption |1{does not directly guarantee a negative drift of the xf due to the existence of P,
and its intricate interplay with the heterogeneous A*. Specifically, (1) P, is not of full rank, (2) the
local head error will be distorted in a different manner due to the product P, A%, and (3) P; varies
over time. To address this, we further decompose (z¥, P, A*zF) as

<Z‘f,PtAk$f>
=(ay, (P, — P*)A"zf) + (af, P* AFay)
=(zk, AkaPy + (aF (P, — P*) ARzl — (aF P AFR). (29)
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The first term of Eq. (29) is a contraction by Assumption[I] the second term can be controlled via the
principal angle distance between the subspace estimate B; and the underlying truth B*. The third
term can be bounded as

(ok, P AaE) = (PLak)T Abak = (P (Buwok — B'wb))T Akl
= (B1B (Bl — B'wh*)) ' Akat
= (B1BY Bywy) " AFay, (30)
wherein the local head error 2 and the principal angle distance ||B* " By|| are also coupled. It is
worth noting that when HB*TBt |l = 0,i.e., when B, and B* span the same r-dimensional subspace,

the second and the third terms in Eq. (29) become zero, and Eq. (29) reduces to the standard negatlve
drift term. We postpone the characterization of the convergence of ||B* " B,|| to Lemma

Combining Eq. (28), (29), and (30), we get
26, (zF BB, 6(sF)oF)
=28, (xF, Ak zky 28, (aF, (P, — P*)AF2F) — 258,(BY B Bwl) T Ak zk
+ 25t<$t ) Ptft )+ 26t<xt ) Ptyt ¢(5t ) 31

By definitions of A*, z¥, the orthonormahty of B; and B*, the projection operation of HU , and
Assumptlon' 3l it holds that | A¥z¥|| < 4U,,. Invoking Assumptlonl we have

26, (z¥, BB/ ¢(s%)6F)
< = 2B\ ||2f |7 + 8ULBe |} ||| P — P*|| + 8UL,B:|BL By |||} |
+ 2Bt<xt ,Ptft ) + QBtHx |Hyt | (32)

By Proposition[T} the second inner product of Eq. (27) can be written as,

2% K o
DI AL CANEY
i=1

K K
_2G (b ZAixi(wi)ka>+LQ<xk Zgi(wi)'l'w 24: (ah Z i (s) (w!) Twk)
= e t\Wi t K o t Wt t to Y o(sp) (Wi t
i=1 7
K K
2<t( Z Atz (whH Twh) (zF Z§ Z (s8)(wi) Twh)
K t\ Wt ) Lt s Z/t )(wt) wy
i=1,i#k i=1
26 - & T4 2y 2§ T
Sf Z ||$ A%l t|H( ¢ |+ fz tvft fzxtvyt(é St wt) wy)
i=1,i#k i=1 i=1
K
4G 2¢ ; 2C
<UZ Kt > et il + % : <xf,§i( P w : ZH tllyil, (33)
i=1,i#k i=1

where the last inequality holds because || A < 2 by definition.
In addition, the third inner product term of Eq. (Z7) can be upper bounded as

2Ctﬁt<xt, 251 o(si)(wp) ") (6F By (s ))><2Ctﬁtllfvfllll 251 st)(wp) 167 B ¢(s)

1 il
< 4<tBtUwE Z 10t llwt 116F |
i=1

< 4G BULUE, (34)

where the last inequality follows from the boundedness of w and Lemma[G.2}
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Plugging the upper bounds in Eq. (32), (33), and (34) back to Eq. (27), we have

1ZE1 1 < (1= 2780) |y ||2+2ﬂt<xtth§t>+8BtU [E4 III\Pt*P*II+8BtU £ /1B Be |

L 240,
+ 28|z f [[|yr| + 4GU, KZII 1| tH+ < 5w w : wZII il
i#£k i=1
+ 4GB URUZ 4 38202 + 3C2U2UL + 382CRULU2
4
<(1-2A8, - C;{ E t||2+26t<xt,Ptft>+16ﬁtU [l
k k &1 T,k 2CtUu.21 i k 7
+ 28| 2F || |yr | + 4G, KZII |||z t\|+ <xt,£t(wt) wt>+TZ|lxtlllyt|
=1 =1
+4GBU2U; + 3B7U; + 3¢RUF U, + 387 GRUSUZ. (35)

Taking expectation and invoking Cauchy—Schwarz inequality, we have

~ 4
E[|Z7, [I* < (1 2A8; - Ct )EH || + 2B E (@, Po&y) + 165U\ El|2f |2 v/ El|me >
+2/Bt\/]E||mt \/E|yt 2 +4Ct W Z\/EHZ’?” \/Eth”Q Z tagt Wt T f>

2
Kl Z\/Enxt 12 /Eli[2 + 4GB UZU2 + 36202 + 3CURUL + 382 CRULUR.

N

Putting equation [33]back to equation 26 we get

\|$§+1||2 < |#, 417 + 20587 + 18ULUZCE + (2B:Us + 6U2Us(,) AU,

4
<(1-2ap - 200 ) ||2+2m<xt,Ptet>+16ﬁtU b ][P, — ¥

L2
+ 282 |lyf | + 4G, KZII All[E: tH+ < £ & wp) w ul “ZII £ 2]

+4G8U2U; + 3B87U; + 3¢CUS UL + 357 (7 U Ui +2U3 7 + 18ULUZ ¢ + (25tU5 + 6U2U5¢,)AU,

Taking expectation and rearrange, we get

4GU;
K

2, 2C 2
+ 2B, El|f |y | + 4¢.U, KZEH ay |llt] + tZE ay, & (w : ZEII il
+4CtﬁtU2U52 +3B2UZ + 3CCUZUL + 382¢2UY Uf, +2U56t + 18UAUZ¢2 + (2ﬁtU5 +6U2U5§t)4U :
4C
=206 + 2 )EH PP < Bllaf|? = Bllaf, 1?) + 28E (@), Pif) + 168U/ Ellaf |2 /E|my |2

K
1 » 2¢ i i
+2ﬂt\/Eufo2\/E\ny+4@U3g2¢E||xf||2w@nx;n2+?tZE@f,ft(wt)wa
2
Ct Z\/Euwt 2\Elyi[? + 468,USU3 + 367UF + 3G UFUS + 367 U US

+2U3 67 + 18UfU5 (7 + (28Us + 6UZUsC,) AU,

EHIt+1||2 (1 =23 —

)EH tI? + 28 E(at, Po&) + 165ULE[2f || [P — P*|
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2
We can drop 4@[‘{% since it does not help much, then,

< o, Elles I - Enxiuln?) LE(f Pigt) + 80, 2\/E\|xt 2VE[m|?
2 U2 c ir i
Ellof|2y/Elyf2 + =52 El|zf||2/Ef|zi|2 + —= E<xf,st<wt>w>
cgAK
=1
cU
C Z\/EH% 2\ Elyi|? + (2QU2U5 +2B8,U3 +2Ct7<U6U4+2ﬁtCtU5U2

+ U3 By + 9U§U§QC—‘ +(Us + 3U3,U52<)4Uw).
B B

Ellat]* <

Taking time average from 7 to T' — 1, and applying Cauchy-Schwartz, we get

T

1 1
Z (E||m§||2 IE||$t+1|| Ptft
— 2\Bt
f TT t—TT t =TT
11 12
R 1 <&
+8UL2 | > Ellf)? > Ellmel|?
Tt:TT t:TT
N S B
t=71r
T T
QC(U 1 1 .
E k|2 Ellzt 2
P KZ - 2 Eletl?y 7= 3 Bl
=TT =TT
K
E(
_TthT:TCﬁ/\KZ (@f, & (wp) Twr)
I3
U2 1 &
¢ k|2 Elvi |2
05)\KZ il T—7r Z |y
t=11
1 C¢ rr27r2 CB rr2 & 4 2
—| 2—= 2—— 2—— 2
+ )\< \FUMU(; + \FU(; + JT s U5U + fCtU(;U
+U57 +9U4U57— + (Us +3U2U5—)4U ) (36)

For I, we notice it is a telescoping sum since we pick 8; = f’ therefore,

T
1 1 ,
T—7rr > 25; (Bllzy|* - Ellef s 1)
t=1r

VT A
=T )@yl ~ Ellet )

VT >
= (T —1r)Aeg™ &7

For I, we invoke Lemma[G.5]and Lemma[G.3] and choose 7 = 7,
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T

1
T 77 Z )\E oy, Pi&f)
=TT
T
1 (20U U. +28U)
B B;_
ST 2 S 1B — By
t=11
(4U +12U) 8U, (U +U)
_~_%Hw5_wf_7”+%
(20U U, +28U) c¢ (4U —|—12U) 8Uw(U7.+Uw)
10—~mUsU, + ———= rUs + . 38

Similarly, for I5, we invoke Lemma[G.6|and Lemma|[G.3] and pick 7 = 7, that is,

1 ce 1
IS:T*TTZ — ZExta‘ft Wt t>

T
Z (<8U4+4<U +U.)U2)|B; — By, ||
05>\

1
<
_T—TT

K
1 ) )
+ (120,02 + 1208) ok — ||+ 2= S (16U3 + 8U,U)lJwi — wi_,| +4U3m/f-1)
=1

SU + 4(U, + U\ U105 1 UsU,, + (12U,U2 + 12U03) L 1pU,
<5 (U440, + VU0 rr U, + 9-Lrel

K
1 cg
+ 2 ;_: (16U + 8U,U)—LrpUs + AU

VT \F) &

Putting equation [37] equation [38] equation [39]back to equation [36] and omitting the constant terms,

we get
VT
Xk< - op? (9 16U/ XEMp + </ XEYE
T_(T_TT)/\% + )+ \/ T+ \/
ZCcU 1 . CgU
XkVi+ 01
o KZ\/ Z\/ +

Since 7 = O(log(T")), we further have

log(T 1
Xk <0 O\g}%)) + 16U\ XMy + 5/ X5V
K
QCCU 1 k CC 2 kv
R § VXEXG ;:1 VXEY 4+ 0(1). (40)
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C.2 LOWER BOUND: PROOF OF LEMMA [5.2]

Recall that ¥ = Bywl — 2%* = BywF — B*w**. By definition, B;w] lies in the subspace spanned
by B;. As illustrated in Fig the distance between Byw) and z¥* is no smaller than the distance
between z¥* and the subspace spanned by B,.
Hence, it holds that

—

[2f [l = Bowf — 2% > [Py, 02|
— o k|| — x k,*
=[(I-Py)z kl [(P* = Py)2™"| B0 4
=[Py = P7)2"7|.

Figure 1: Geometry illustration.
Recall that P, = B,B; and P* = B*(B*)". We
first rewrite P, — P* to relate it to the cross terms B, B and B, | B*. Observe that

B;r T xRk | * *] B:Bj 0
[BIL] (B:B, —B*B*')[B} B*]= 0 _BILB*
It is easy to check that
s BTB* 0 B*T
BB/ -B*B*" =B, B, ] { to L —BLB*} {Bﬁ}

We can do singular value decomposition for the diagonal blocks; for ease of exposition, we drop the
time index ¢ in the decomposition. That is

B/Bl =X;%:Y,, and —B{ B*=X,;%,Y,.

Then, we have

T *T
sy -wn o w5 0[5 2] 8] B

0 Xo| |0 =50 vj||BT
_ = 0] [B1Y)T
—[thl Bthg}{o 22:| I:(B*YQ)T .
So,
x " by 0 B*Y;)" "
I, - Pyl = B B[ 3 ][]+
[ 0 [BIY)T] ke
0 3| |[(B*Yy)'

From the proof of (Chen et al., |2021, Lemma 2.4), we know that when d > 2r, 3; and X5 are
identical up to permutation. Let o denote the largest singular value. From (Chen et al. 2021}
Lemma 2.5), we know that

o1 =B/ B[l =B/ B"| = [|BB/ —B*B"| = |m]. @1

Let v; and v denote the corresponding right singular vectors of B, BY and B, | B*. It is easy to
see that v; € span(B*) and v} € span(B? ). Hence, we get

m-re-|[5 3[ER)

>\ J(ovT 252 + (o (vi) Tk
Izk,* ,

:U1|V

where the last line follows from z** € span(B*) and thus (v%) T z%* = 0, Vk.
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Averaging the reconstruction error across all agents, we get

K
—ZmWfKijw*— Z’”*

_UIK H IZ*
1
:(ﬁEVIZ*Z*Tvl

Recall from Eq. (4) that z¥* = B*w®*. Then,

2
o X gk E s £3
flvfz Z' vy > IéAjnm(z z+").

Therefore, we have
KZH fHQ 01)\+ (Z*Z*T) Hth )\+ (Z*Z*T>,

min K min

where the last equality follows from Eq. (#1). Taking expectation, we have

min

E|m s E|m N
Zmuw Bl ey = Bl (2o

completing the proof of the lemma.
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D BOUNDS ON PRINCIPAL ANGLE DISTANCE

Recall from Algorithm the update of B:

C K
Bipi=Bi+ 52> 00
k=1

Proof of Lemma[5.4] Now we are ready to decompose the error.
IBL Besal[f = IBL BeraR |17 < B Bega [ HIRZ 12
That is,
e l|F < Nl | IR 12

For |41 ||%, we have
o &
_ *T 1D *T t *T ¢k k ENT
el = B Besallf = BB + - ZBJ_ 5t o(si)(wr) "I h

~IBY" B/ +2(B1 By, & ZB*T6k¢(St) )Ty + | ZB wi) " IIE

K

(a) * C * C *
=B By|% + ||§t > B re(sH)(wh) T IE + 2B By, Ié ZBjﬁf(Wf)T>
k=1 k=1

+2 B*TBt, ZB*jy{: )>—|—2(Bth,§é B ARk Wk, (42)
k=1

where equality (a) follows from Proposition [I] It turns out that the last inner product of Eq. (#2)) is
related to the negative drift of the m;. Specifically,

K
(BB, L3 B AR ()T

k=1

K
_ B*TB & B*TAk P* P* k kNT
(BB, LY BT ANP 4 P (wf)T)

k=1

<B>|<'I'Bt7 Ct ZB*TAk:B B*Tl't (UJ?) > <B Bt7 Ct ZB*TAkBJ_Bj_Tl'f(Wf)T>
k 1 k: 1

G

(a)<B*TBt, BT ABY BYT (Bw! — B ™) (wh)T)

k 1

(B*TB w! )TB*TAkB* B*T(Btwt B*wk’*)
(BT (B} — B*wb)T (BT A*B1 )BT (B} — B'wh)

K
A Z T(BwF — B*W"*))TBY (Buw! — B*w™)
k

(a) holds because we assume span(B*) is A*-invariant, i.e., A*v 6 span(B*),Vv € span(B*).
Consequently, P* AFP* = 0. The first two inner products in Eq can be bounded similarly to
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the derivation in the proof of Lemma[5.1] Thus, we have

||mt+1HF<||mt||F+CfU5U2+2 t,c‘fZB Wb

2\
2, 3BT - <th 7

Applying Lemma|5.2|~ the lower bound of -+ Z,Ile ||z%]|2, we get
_ 22\ ¢ ¢?
a3 < (1 — =020y | 3 + 2L - USU
rK
C K
t * *
+2(m, 3 ;ngf«u D)+ 2(my, ZBJyf¢ wi) ).
By assumption 5] we further have
2 ¢?
e llF < (1 - mall + 22 UFUZ
¢ G\
t *
+2<mt,Kk 1BLT£i]E€(w ) +2 mf,KkZ fd) St wf)—r>

Recall that [|m41[|% < [[mer1|| %R ||, we have

2 a(
[mes s < (1 - Tt

- %
B IR 112 + S UF USRI

Gt . _
2(my, - > BY DRI + 2(my, = Znyfsb (w) DRI
k=1

For the first term, we use Eq. that || R +11 I < (W)Q, and for the remaining terms, we
use a crude bound that ||Rt_+11 I <(

iog)? < 2 when 4Us U, ¢, < &, then,

2)\0[@5 1

C2
Imesal3 < (1 - = ><1_4U5UC)?Hmtn%w—tvgvf,

K
+alme, SES BT )T + Alm, 5 ZB*Jyf HhT).

k=1

Moreover, since 4UsU,(; < %, we have (mf <14 12UsU,¢;.

Suppose 22 > 12U5U,,,,

2)\0{(,5 1 2
1 —
( RS ST
<(1— 2% (14 12050,6) < (1 - AiCt).
Then,
Aag ¢?
[meallf < (U= =25l 7 + 255 U302

L
L

K K
mt,?; *Tft Wt ) + 4 mt,?; f@b 5t Wf)—r>-

Taking expectation, we have
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pYe"
AR t|\F+2<f U2

G . GUw :
- 4B, 3BT+ 452 S R R
k=1

k=1

Elmegll7 < (1 -

which implies

o =1
T —— Z Z(EHthQF — E|lmenllE)
t TT t:TT t
Iy
T-1
1 27"Ct 2712
UsU
JrT—TTt:TT MK °Tw
I
1 T-1 K 47’
t=11 k=1

13

1 4rU,,
+T_7Tt; v Zwﬁ:nmt PVElER.

1y

For I, we have

VT 7
I, = E|m,.||% —E 2
L= T g Bl [ = Ellmr )
VT o
T — 17 Aoee
2
-
=0(—).
()

The last line holds because T > 277.
For I, we have

1 2’/‘<t

2rccURUZ r
U U2 C ) O
T—1r A= AKa°

Y~ JVTAKa (T\/T
For I3, we invoke Lemma[G.3]and LemmalG.4}
E(m, BT € (wf) ")
< (8U3 + 4UWUT) IB: — B || + (8U,, + 4UT)||<,‘)éC — wf_TH + (4U, 4 4U,)U,mp™
< (S8U2 + AULU,) 106 7UsUsy + (8U,, + 4U,) By 7UsUp + (AU, + AU, Uymp™ .
Then, choosing 7 = 71, we get,

).

T-1 K

ZZA E(mq, BY ¢f (wf) ")

t=1r k=1

_7-T

= \F [(8U2 + 4U,U,.) 10ccrUsU,, + (8U,, + 4U,)esmrUsUs + (AU, + 4U,,)U, ]
«
(T

).

rlog
VT

=0(
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For 1, by Cauchy-Schwartz, we have

— Z T wamt NG

4rU, & 1
<op ; Z E||rmy|? Ti Z Elyf|.

t=1r

Combining the above, we have,

t TT
VT 2 2rc¢U52U2 4rC1 47‘Uw
< + w oy g \/ MYk,
T —71pXacc  VTAKa  Ao/T T Ka Tir

where Cy = [(8U2 + 4U,U,.) 10¢cmrUsU,, + (8U,, + 4U,~)CBTTU5UB + (40U, + 4U,)U,] .
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E PROOF OF LEMMA 5.3

By Eq. and the update of nk in Algorithm |1} we have
Yo =t — I =0+ =) = JF =y (= ).
Thus,
(W1)? = W) + 29%ur (rf = ) + (e (rf —n1))?
= () 4+ 2nyy (rf = + JF = T5) + (u(rf —nf))?
= (1=29)(yf)” + 2nur (rf = J*) + (n(rf —nf))*.
Taking the expectation and rearranging the terms, we get

1 Y
Elyf|? < T%(EWfF — Elyf 4 ?) + Elyy (rf — J5)] + éE[(rf —n)?).

Taking the time-average over t from 7 to T' — 1, we get,

1 T-1
E k|2
T_TT t:ZTT |yf|
1 =1
ST—TT Z g(E|yt| E‘yt+1| Z Ey;
t_T t TT
Tt
Z 'E —771:)}
T—1p =
() 1 T-1 1
< —(Ely;|© — Ely U?
T_TT t; 2,}%( | t| ‘ t+1| t ~ t ~
VT 2U? 1 = o 20,U2
T E —J -yer 43
_T—TT Cy +T—7—T Z [yt( )] \/T ’ ( )

t=1r

where inequality (a) follows from the boundedness of rf and Lemma and the last inequality
follows from the choice of stepsize ;.

Z:TlT E[yk(rF — J*)]. Here, the expectation is taken with respect to
the Markovian sampling of the state-action trajectories. We will leverage the uniform ergodicity
assumed in Assumption [2 to relate this quantity to the stationary distribution. In the remaining
proof, we write out the underlying randomness in the expectation. Toward this, let v, denote the
Markovian trajectory at agent k:

k _ .k &k k Kk k k k _k Jk
Vot = (SOaamslvala e sthH,athH, ey Sty Gy St+1)7

and vg.; denote the collection of the trajectories:
k \K
Vot = {V0,4 =1

Let PF _,(-,-) denote the probability distribution over state-action pairs (s,a) € S x A at time ¢
given the past trajectory vg.;—r.

Ep, (5 — Ty = I = By [0 — i) (rf = T*) + By [(nf— — J*)(rf = J*)]

< 2UT’Ev§:tH77t - ntf'rH + Evk: [E,x [(m T Jk)(rt Jk) | vo -]
By the update of 7* in Algorithm and Lemma|G.1| we know that

0:t—7 t—7+1:t

C
2UTEU(’}{HT]§ - 77?77” < 7’}/74(]7“2

VT

In addition, we know under the steady-state distribution ;.*,

E;L’“@ﬂ'[(nf—T ‘]k)(rt Jk(ak ))|U03t—7'] =0.
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Thus
Ex [ =T T8 -0
—]Evg;t By O, = TROE)) (rf = TE(0F-,))vo:e—r]
~ Epranl(f—r = J*(07_))(rf = J*(07_1))|vose—r]]
<4UZdrv (PE (-, -), 1" @ )
<4UZmp™ ",

where the last inequality follows from Assumption 2] Thus,

X C. T—
By, [ = J9)(rf = J9)] < Z5rdU? 44U mp" " (44)
Plugging the bound in Eq. @#4) with 7 = 71 back to Eq. (3)), we get
T-1
1 \/T 202 c 2¢,U?
Ely|* < 4 TLrpdU? 4 4UPmpTm 4
T_TTtZT:T g ST—rroe, VT g vT

proving the lemma.

29



Under review as a conference paper at ICLR 2026

F PROOF OF THEOREM [

From Lemma[5.3] Lemmal[5.4] and Lemmal[3.3] we have,
VT 2U? ¢ mpAU? +4U? N 2¢,U?
T—r1r ¢ VT VT '

VT 2 2rccURUZ 4rCy LY I
M < 0~ w w M~+YE
ST Aac< T UTAKa | aavT | AKa Z e

YF <

QZ;Z ;{Z,/ KZ\/X’CYH—O

where C; = [(8Uf, + 4UwUT) 10¢ccmrUsU,, + (8U,, + 4U, )cgrrUsUs + (4U, + 4Uw)Uw}.

By the definition of 77, and T' > 277, we conclude

v} = o))

VT
A <(’)(—2)+(’)( r )+0(rlog 4erZ [Ny
! \/T KT " XKa o
XT<(9( ) + 16U, ,/X’CMT+7\/X’“Y’€

2cU 1 ccUS i
R R

Then, for M, we have

T VT K~ Aa

r? rlog(T) 1 &My 1 & YE (4rU, 2
<O(— _ Ly T
*O<\/T)+O( ﬁ)+K;2+K;2(M>

We use Young’s inequality for the second inequality to hold.

Then, by moving % to the left and then multiply 2 for both sides, we have,

rlog(T) log(T)
Mr <O(—=)+0 + O(——==~
rlog(T)
=0 when r < lo
() 8(T).
Finally, for X7, we have
| X | X 11 K

k k kv k
Xr=—Y Xh<16U,— > XpMr + 52 >/ XY

k
2. U2 1 1& = 21 & 1o /o,
i Z;AWEZMEZM+C§B;?ZMKZ Yi+0(1). (45
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By Cauchy Schwartz, we have

1 & 1
T2V XE <
k=1

Then, equation 45| can be written as:

=l

K

_ 1
1< 2 30 XM (16U,)2 +
k=1
2¢c:U,
+ e
05)\
1 & Xk Mp(16U
Ly
K 2
k=1
QCCU‘% —
05/\
We can choose E—; < 20’}]3 such that 22;[13 ;ig; < %, then,
= 7S rlog(T) log(T)
Xr < =Xr+0 + O + O(1 46

= X7 < O(1) by rearrangement.
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G SUPPORTING PROPOSITIONS AND LEMMAS

G.1 BOUNDEDNESS

Lemma G.1. Foranyt > 0,k € [K], it holds that n} € [~U,,U,] - recalling that U, is the bound
on the reward.

Proof. We prove this by induction. The algorithm initializes n% = 0;
Assume 0¥ € [~U,,U,] for 0 < i <t — 1. Then,

ne =ty + (i —niy)
=(1 =iy +yerty

<1 =9)Uy + U,

=U,.

Similarly, it can be shown that nf > —U,..

O

Lemma G.2. Suppose that Assumptionholds. For any t > 0,k € [K], it holds that |6F| < Us,
where Ugs := 2U,. + 2U,,,.

Proof.

T T T T
6F] = [rf —nf +wi (BF) o(siyy) —wi (Bf) oé(sp)]
T T T T
<Prf =i+ lwf (BY) ¢(stih) —wf (BF) ¢(s)]
< 2U, +2U,,.

Lemma G.3. Forany j >t — 7 > 0,k € [K], where §8; and (; are non-increasing for i > 0.

lwf = wi |l < Bi—r(j — t + 7)UsUs,

IBY =By || < 10G—-(j — t + 7)UsUs.

Proof.

j—1
ok —wf I < D ok — wfll

i=t—T

J—1
= D Mo, (@f + 867 (Bi) Té(sf)) — o, (wf)]

1=t—T
J—1
< Z 18:0F (Bi) " p(s7) |

i=t—T

gﬂtf‘r(j —t+ T)Ué-
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Moreover,
j—1
B, =B~ < > [Biy1 — By
i=t—T
j—1
= > I®Bi+Gofo(s) @) DREL — BREL + BRY, — By
i=t—T
j—1
< D lIGoFe(sh) @) TR+ IIBRZY — B
i=t—T
j—1
< 3 6@ TIRAL | + IR, — 1)
i=t—T
§2Ct—7'(j —t+ T)UéUw + (] —t+ T)8U6Uwgt—7'
=10¢—-(j — t + 7)UsU,,.
The last inequality follows from equationand IR +11 I <2. O

G.2 MARKOVIAN NOISES

In this section, we are dealing with Markovian noises. We introduce some useful notations for the
proofs.

First recall that
& = (ry — T+ (d(st41) — 8(57)) " Bewy )o(st)
— By r pr [(rF = T+ (8(s541) — 0(sF)) T Biwy)d(s7)]-
We further introduce
gk(Oﬂva) = (R(S7a) - Jk ( ( ) S))TBw) ( )
7" (B,w) = By r pr [(R(s,a) = J* + (¢(s") — ¢(s)) ' Bw)g(s)] ,

where O is the sample we get from the Markov chain generated by the algorithm. For example,
OF = (s§,ak, sk, ;). Then,

gf = gk(OfﬂBt’Wf) - gk(Btawf)'

Furthermore, we define

@1 (07, By, wy) = E(my, B (w)) ),
05 (0, By, wy) = E(ay, Pity),
®3(0f, By, wy,wp) = E(af, & (wp) Twr).
Lemma G.4. Foranyt > 7 > 0,Vk € [K], we have
E(m, B1 & (wi) ")
< (8UZ +4U,U,) || By — By—r || + (8U., + 4U, ) lwy — wi_ || + (4U, + AU, U,mp™ .

Proof of Lemma

Proof. We prove this Lemma in three steps, the first step is to show ®, (O, B,w) is Lipschitz w.r.t.
B, the second step is to show the target term is Lipschitz w.r.t. w, and the third step is to use the
uniform convergence of the Markov chain to show a decaying total variation distance.
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Specifically, We decompose the target term into three subtraction terms
E(m;, B1 & (w)) ")
:®1(0£€7 B, wf)
:q)l(ofa Bta wf) - (I)l(Ofa Bt—‘rvwf)
+ @1(057 Bt,,,-,(,g)f) - @1(057 Bt*’l’a wf—fr)
+ (I)l(Ofv B -, wzlti'r)'
Step 1: for this step, we show that

(I)I(Ovat’wf) (OtaBt ‘rawt)

(8U2 +4U,U,) |B; — By
By the definition of ®;(OF, By, wF), we have

(1)1(057Bt7w1]5€) - (bl(Ovat—T7wf)

=E(B B, B (¢"(Of, By, wy) — g* (B, wf)) (wi) ")
- E<B1TB75—T7 B*LT (gk(of? Bt vaf) - gk(Bt—Ta Wf)) (wf)—r>
=E(B''B;, B (¢"(0y,By,w;) — G (Br, wp)) (wi) ")

—E(B1'B_,,BY" (¢"(0), By, w;) — §"(Bs,wy)) (wf) )
+EB1 ' B,_,,B}" (¢"(0F, B, w})

— 5" Br,wp)) (W)")
—E(B1'B;,,B1 (¢"(0},Bi+,w}) — (Bf mwp)) (W) ")
<E|B1"(B: — B[ B (¢"(OF, By, wf) — g* (B, wf)) (wi) |l
+E(BY'B,_,,B1" (¢*(OF, B, wy) — g"(

OtaBt Tawt)) (W ) )
—E(B1 B, B (¢°(Br,wf) = 3" (Bi—r,wy)) (w) ")
<E[IB1" (B, — B,—)|[[IBL" (¢"(Of, By, wy) — 3" (Br.wy)) (wp) |l
+E|IBL BB (6(st11) — ¢(s1)) T (By = Byr)wio(st)(w) ||
+EIBL By B Epr ry v [(0(5711) = 0(s5)) T (B — Ber )y | ¢(st)(wr) " |
< (8UZ +4UU,) 1By — By
Step 2: We show that

q)l(Ot By -,—,wt)

Py (Ot B T’wt T)
By definition, we have

< (8U., +4U,)|Jwf — wf__|.

‘I’l(OtaBt Ta‘%) <I>1(Ot,Bt vat )
=E(BY B,_,, B} (¢"(0F,By_r,wf) — " (Be_r,wf)) (wf) ")
—E(B1'B;,, B\ (¢"(07,Bi—r,wi_,) = " (Bir,wp,)) (wi,)")
=E(B1'B; -, Bl (¢"(Of, By —r,w;) = §"(Bi—r,wf)) (w)")
—EB1'B; B (¢"(0F, B, wf ;) = 7" (Bi_r,wi_,)) (wf) ")
+EBY'B,_,,B1" (¢*(OF,Bi_r,w}

;
tf'r) - (Bt ‘r7wt T)) ( )T>
—E(B1'B_,, B} (¢"(0),Bi_r,w;_ -

t T)i (Bt ""wt 7')) w 7') >
:E<Bj_TBt*T7B*T( (Of’Bt vaf) (OﬁvBt T’wf T))( k)T>
—E(B1'B;_,, B} ("B, wf) -

7" (Bi—r,wf1)) (W) )
+EB B, B (6"(0F, Bi—rywi ) — g (Bi—r,wf,)) (wf —wi)T)
<(8U, + 40U, )||wf — wi_, |-

Step 3:
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We show that conditioning on past trajectory vg.;_,, the only random part is the sample OF we
draw from the Markov chain at current timestep, and the sample we draw from the steady-state
distribution p* ® m ® P*. Consequently,

d1(OF, By_r,wl ) < (4U, +4U, ) Uymp™ L.
By definition, we have

@I(Ofv Bt*ﬂwf—r)
=E(BY'Bi_-,B1" (¢"(OF,Bi_r,wi ;) — 5" (Bi—r,wf ) (wf ) ")
=E [E [<Bj_TBt,.,., B’ (gk(Of,Bt,T,wé{T) - gk(Btfﬂwf—r)) (wer) ™) | UO:thH
—E [(BY B, BLE [(4(0F, Bior,wl_,) — 3 (Ber b)) | vus] () T)]
<(4U, + AU Uy dpy (PF (.-, ), 1* @ 7 © P*)
<(4U, + 4U,)Uymp™ .

Combining the above steps, we get,

E(m, BT & (wy) )
< (8UZ +4U,U,) |Bt — By—r || + (8U, + 4U,) |wf — wf || + (4U, + AU, )Uymp™ .

Lemma G.5. Foranyt > 7 > 0,Yk € [K|, we have

E<.’L‘?, Pt£f>
<(20U,U, + 28U2)||B; — By, || + (4U, + 12U,,)||wF — wF__|| + 8UL (U, + U,)mp™ .

Proof of Lemma

Proof. Similarly, we show ®;(O,B,w) is Lipschitz w.r.t. B and w respectively for the first two
steps, and utilize uniform convergence property of the Markov chain for the last step.

We first decompose it into three steps:

]E<l‘f, Pt€f>

:(p?(ofa Bta wf)

:®2(Of7 B, w?) - (1)2(05’ Bt*‘rawf)
+ ©5(0F, Bi_r,w}) — ©2(0F, By, wf )
+ (I)Q(Ofv Bt*‘rvwz]&t'r)'

Step 1:
We show

Oy (OF, By, wl) — ®3(0F, By, wk) < (20U,,U, +28U2)|B; — B;_,|.
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By definition, we have
¢)2(Ofa Bta wf) - (1)2(0?’ Bt—vaf)
:IE<B25W{EC - Zkﬁka BtB;r (gk(Ofa Bta Wf) Btawt ))>
_E<Bt—‘rwf - Zk7*7Bt—TB;rf ( (Of7Bt Tawf) gk(Bt—T7wf>)>

WE(Bwk — 25 BB/ (¢F(0F, By, wk) — g" (B, wh)))

— E(Byw} — 2", BB/ (¢"(0),B;_ T,wt) §"(Bi—r,w})))
+E(Bwy — 2", BB/ (¢"(0),Bi—r,wi) — 7" (Bi—r,w;)))

—E(Bwy — 2", BB/, (¢"(0f,By_r,wf) = §"(Bi_r, wf)))
+E(Bwy — 2, BB, (6"(0f, Bt—r,wf) — 8" (Bi—r,w})))

—E(Bw; — 2", B, B/, (¢"(OF, Bi_r,wf) — 5" (Bi_r,w})))
+EBuw; — 2" BB/, (¢"(0F,Bir,w}) — " (Bi—r,wyf)))

—EBi_rw; — 2" BB/, (¢"(OF ,Bi—r,wf) — 5" (Bi—r, w})))

=E(Bswf — "% BB/ (¢*(Of,By,w)) — ¢"(OF , B_r,w})))

— EBuw; — 28, BB/ (7"(Bs,wf) — §"(Bi—r,wf)))
+EBw; — 2" BB — B, ;)" (¢ (Ovat—ﬂwf) — 7" (Bi—r,w;)))
+EBuw; — 2", (B, — B, -)B/_, (¢"(OF, Bi—7,wf) — 5" (Bi—+,w})))
+E((B; — Bi—r)wi,Bi—B/_ (4"(OF,Bi_r,w}) — 5" (Bi—r, w})))

(b)
<20U, (U, + U,)||B: — By, || + 8U2||B; — By, ||
=(20U,,U, + 28U2)||B; — Bi_.||.

For (a), we add and subtract the term that replace each occurrence of B, by B;_, sequentially,
and there are three such addition and subtractions in total since there are three ocurrence of B; in
<I>2(Ot ,Bt,wt) For (b), we use (¢"(OF, By, wf) — ¢*(OF, By_-,wf)) < 2U,,|B; — Bi—-|, and
(7*(Be,wf) — 7" (Bi—r,wf)) < 2U,|B; — By |.

Step 2:
We show that
(I>2(OtaBt 'rth) @2(Otht T7wt +) < (4U- + 12Uw)||"~’£7€ _Wffr||~
By definition, we have
05(0f, Bi—r,wr) — ©2(0F, By—r, wi_,)
=E(B;_,w; — 2", B, B/, (¢"(Of, By —r,w;) — §*(Bi—r,w;)))
—E(Birwi_, — 2" BiB, (¢"(0F,Bt—r, i) — " (Bir,wp,)))
=E(B;_,w; — 2" B, B/, (¢"(Of, By —r,w;) — " (Bi—r,w;)))
—E(B—rw; — 2", BB/, (¢"(07,Bi—r,wi,) = 3" (Bir,wi_,)))
+E(Brw — 2", By, B, (¢°(0F, Bi—r ;) — 5" (Bir, i)
—EB—rwi, — 2 Bi B/ (¢"(0F, Bior,wi ) = 5 (Bi—r,wi,)))
CB{By- sk — 5%, BeBL, (4408, Be_rsh) — (05, Bo_r.ist))
—E(B;rw; — 2", BB, (§"Bi—r,wf) = " (Br—r,wi,)))
+EBi—r(wf —wi.), BB, (6°(0F, Bi—r,wi_,) = 5" (Bir,wi_,)))
<8Uu[|wf = wi—r || +4(Uy + Us)llwf — wi, |
=(4U, +120,)lwf — wf_|.
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Step 3:

Conditioning on the past trajectory vg.;_,, the only random part is the sample OF we draw from
the Markov chain at current timestep, and the sample we draw from the steady-state distribution
u* ® ™ @ P*. By the uniform ergodicity assumption, we can bound the total variation distance:
E(Bi—rwi_, — 2 BB/ (¢"(0F, Bi—r,wi” ) = §° (Bir,wi,)))
=E [E [<Bt*7'w1{€77' -z". By, B, (gk(of’ Bir,wp ;) = gk(Bthan—'r)» | ”O:t”
=E [<Bt—7wf—r - Zk’*7Bt—TBtT—T]E [(gk(Ofa Bt—ﬁwf—r) - gk(Bt—Tan—-r)» | ”0:t”
<8U,(Ur + Uw)dTV(Ptk—r:t('7 ), Nk QT Pk)
<8U,(Uy + Uy)mp™ L.
Combining the above, we get,
E(a;, Pigf)
< (20U,U, + 28U2) By — By—r || + (AU, + 12U, ||lwf — wy_ || + 8UL(Uy + Uy, )mp™ .
O

Lemma G.6. Foranyt > 7 > 0,Vk € [K], we have

K
1 L .
7o 2Bt & (w)) Twp) < (SUL + AUy + Un)UZ) By — By |
=1
1 & A ,
+ (12U,U7 + 1208wy’ = wf || + 2 D (16U3 +8U,U) |wi — wi || +4UZmpT".
=1

Proof of Lemma

Proof. We show for any i, k, ®3(OF, B;,wF, wi) can be bounded using | B; —B;_ .||, lwF —wfF ||,
|lwé — wi__ || and the total variation distance between the steady state distribution and the Markov
chain given past information.

We first decompose ®3(OF, By, wf, wi) into four parts:
03(0;, By, wi', wp)
=03(0F, By, wk wi) — @3(0F, By, wr, wh)
+ ®3(0f, Bir,wi,wi) — P3(OF, By, Wi, )
+ @307, Beor,wp_p,wp) = 2307, Beor,wf_p 0 _)
+ ®3(0f, Brr, Wiy wi_p)-

Step 1: We will show that
®3(0F, By, wi,wi) — ©3(0F By, wF, wi) < (8UL 4+ 4(U, + U,)U2)|B; — By, ||.

By definition, we have
O3(0;, By, wi', wp) — ®3(0f, By 1, ), wp)
=E(Buwf — 2", (¢' (O}, By, wj) — §' (B, wp)) (wf) " wy)
—E(B;rw; — 2%, (¢'(0}, Bi—7,w}) — §'(Bi—r,w})) (w)) Twp)
=E(Buwf — 2", (¢' (0}, By, w}) — §' (B, wp)) (wf) "wy)
—E(Buwf — 2%, (9"(0}, By —r,w)) — §'(By—r,wy)) (wi) Tewr)
+E(Buwi — 2%, (9"(0f, Bi—r, i) — §'(Bi—r, 7)) (W) Twp)
—E(B;rw; — 2%, (¢'(0}, Bi—7,w}) — §'(Bi—r,w})) (w)) "wy)
<S(8US +4(Ur + U)UZ) By — By |l.
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Step 2:
We show
®3(07, Bi—r,wi @) = 3(0F, Bir,wi'_p,wp) < (120,07 + 12U3) |lwf — wi .||
By definition, we have,
E(B;- wa - 2" ( (Otht Tawt) 4(Bt ‘rvwé)) (wi)TWf
—E(B,- rwf ;=2 *(6"(0}, By—r,w}) — §' (By—r,w}))
E<Bt T‘Uf — 2 ( (O;7Bt T7Wt) (Btfﬁwt)) (wi)—rwb
—E(B;_,w; — 2", (¢'(0}, Bi—r,w() — §'(Bi—r,w})) (w) "wi,)
+ E<Bt7‘rwf - zk,*’ (gi(Oi, Bt*‘rawz) - gi(Bt,T,wéD (Wz%,
- ]E<Bt_7-wé€—‘l' - Zk’*, (gi(Oiv Bt—an) - gi(Bt—‘ra Wt.
<(120,U3 + 1205) |lw; — wi_.|.
Step 3:
We show
03(0F, Bi—r, wir,w}) — 23(0F, Byr,wi_r 0y ) < (16U + 8U U )||w; — wi_||-

S
~—
—
&
e
~—
_'
&
T??‘
3
~

By definition, we have
BBenratr = 4, (600 Buopof) = 6Bero) ) T o
—E(B,- TWf =2 (90 Bior wi_p) = G (Bi—r,wi ) (Wio,) Wi )
BBty =4, (0L Buorf) = B )T o
CEBi sk, — 2, (0L Brrwi) — 5 (Be_r i) (
+EB i, — 2, (60} Bir,wi_;) = §'(Bior,wf ) (w)) Twi,)
BBk = (0] Bt ) B ) ()T )
=E(B;—-wi_, — 2%, (¢'(0}, Bi—r,w}) = ¢'(0}, Bs—r,wi_.)) (w)) "wi_,)
—EBi—rwi, — 2 (7' (Bi—r,w) = §'(Bior,wi_r)) () "wi,)
FE(Br sl — 25, (0L Brrw ) — 5 (Bropoi ) (wh — i) Tk )
<(16U3 + 8U,US) |lwi — wi—||-

Step 4:

Conditioning on the past trajectory vg.;_,, the only random part is the sample OF we draw from
the Markov chain at the current timestep, and the sample we draw from the steady-state distribution
pt @7 ® P'. By the uniform ergodicity assumption, we can bound the total variation distance:

E(B;—,wp_, — 2* ( (0}, Birywi_;) — 71’(Bt—nw§77)) (wip) Twbr)
=E [E [(Bi—rwi_, — 2", (¢'(0}, Bi—r,wi_;) = §'(Bi—rswi_.)) (Wi—r) wir) | vou]]
=E [<Bt th T 2 E [(g (Ot,Bt,T,wth) - gi(Bthawz—T» | UO:t] (wLT)wa -r”
<4USdry (Pl (s ), it @ m@ PY)
<4U3mp™ 1.
Combining the above, we get

K
1 o
7o 2Bt € (w) Twp) < (SUS + 4(Us + Us)UD) By — By ||

=

1 ) .
+ (120,02 +1208) ot — ||+ 2= S (1603 + 80Ul — wi_, | + 4U3mp" .
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