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Transformer Efficiently Learns Low-dimensional Target Functions In-context
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Abstract

Transformers can efficiently learn in-context
from example demonstrations. We study ICL of
a nonlinear function class via transformer with
a nonlinear MLP layer: given a class of single-
index target functions f∗(x) = σ∗(〈x,β〉),
where the index features β ∈ Rd are drawn from
a rank-r � d subspace, we show that a non-
linear transformer optimized by gradient descent
learns f∗ in-context with a prompt length that
only depends on the dimension of function class
r. In contrast, an algorithm that directly learns
f∗ on the test prompt yields a statistical com-
plexity that scales with the ambient dimension
d. Our result highlights the adaptivity of ICL to
low-dimensional structures of the function class.

1. Introduction
Transformers (Vaswani et al., 2017) possess the remark-
able ability of in-context learning (ICL) (Brown et al.,
2020), whereby the model constructs a predictor from a
prompt consisting of pairs of labeled examples without up-
dating any parameters. A common explanation is that the
trained transformer can implement a learning algorithm,
such as gradient descent on the in-context examples, in its
forward pass (Dai et al., 2022; Von Oswald et al., 2023).

Many recent theoretical works focus on learning linear
functions using linear transformers, and it can be shown
that minima of the pretraining loss implements one (pre-
conditioned) gradient descent step on the least squares ob-
jective computed on the test prompt (Zhang et al., 2023;
Ahn et al., 2023; Mahankali et al., 2023).

The motivation of our work is the observation that the sim-
ple setting of learning linear models with linear transform-
ers does not fully capture the statistical efficiency and adap-
tivity of ICL. Specifically,
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• A linear transformer has limited expressivity: specif-
ically, the pretrained linear transformer cannot outper-
form directly solving linear regression on the test prompt.
Thus, we ask the following question: With the aid of
MLP layer, can a pretrained transformer learn a non-
linear function class in-context, and outperform simple
baselines such as one gradient step on the test prompt?

• A key feature of ICL is the adaptivity to structure of the
function class; for example, prior empirical results have
shown that transformers may match the performance of
ridge regression or LASSO, depending on sparsity of
the pretrained task distribution (Garg et al., 2022). Such
adaptivity cannot be fully explained by the one gradient
step algorithm on the test prompt, which does not take
into account the “prior” distribution of target functions.
Hence a natural question to ask is that, “Can a pretrained
transformer adapt to certain structures of the target func-
tion class, and how does such adaptivity contribute to the
statistical efficiency of ICL?”

1.1. Our Contributions

Gaussian single-index models. To address the above
questions, we study the in-context learning of the single-
index function class, where the t-th pretraining task is
constructed as x1, . . . ,xN ,x

i.i.d.∼ N (0, Id), yi =
σt
∗(〈xi,βt〉) + ςi, where σt

∗ : R → R is the link function,
and βt ∈ Rd is the index feature vector which is randomly
drawn from some fixed rank-r subspace for some r ≤ d.
Thus, outputs only depend on the direction of βt in the d-
dimensional input space (See Section 2 for details). Due to
the nonlinear link function, single-index targets cannot be
learned by linear transformers.

For this function class, the statistical efficiency of simple
algorithms that can be implemented on the in-context ex-
amples has been extensively studied: given a link function
with degree P and information exponent k (defined as the
index of the smallest non-zero coefficient in the Hermite
expansion of σ∗), we know that kernel methods can learn
the function with n ≳ dP samples (Ghorbani et al., 2021;
Donhauser et al., 2021), whereas two-layer neural network
trained by gradient descent can achieve a better sample
complexity n ≳ dΘ(k) (Ben Arous et al., 2021; Bietti et al.,
2022). These serve as a baseline for comparing the statisti-
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cal efficiency of ICL.

Moreover, in our problem setting, there is a low-
dimensional structure: the subspace from which βt is
drawn is low-dimensional. In particular, when r � d, we
expect the transformer to efficiently extract the rank-r sub-
space during pretraining, and hence outperform baseline al-
gorithms that directly learn the target function from the test
prompt, which cannot make use of such information.

Transformer learns single-index models in-context.
We characterize the sample complexity of learning the
single-index model in-context, using a transformer with a
nonlinear MLP block and linear self-attention module, op-
timized by gradient descent.

Informally speaking, our main theorem states that the
length of the test prompt N∗ required to achieve suffi-
ciently small generalization error (See (2.1) for the defi-
nition) is rΘ(P ), where P is the highest degree of the link
function. Most importantly, it does not depend on the am-
bient dimension d (up to polylogarithmic term), but only
the dimension r of the feature subspace. When r � d, we
see a separation between ICL and algorithms that directly
learn the single-index function from the test prompt such
as gradient descent (where the sample complexity scales
with d). This highlights the benefit of ICL in adapting to
low-dimensional structures of the target function class, by
featuer extraction via pretraining.

1.2. Related Works

Recent works (Zhang et al., 2023; Ahn et al., 2023;
Mahankali et al., 2023; Wu et al., 2023; Zhang et al., 2024)
studied the training of linear transformer to learn lin-
ear target functions in-context. Similar theoretical works
are also established for transformers with SoftMax atten-
tion (Huang et al., 2023; Nichani et al., 2024; Chen et al.,
2024). Our setting closely resembles (Kim & Suzuki,
2024), where a nonlinear MLP block is followed by a lin-
ear attention layer; the main difference is that we establish
learnability for a concrete nonlinear function class, whereas
(Kim & Suzuki, 2024) focused on global convergence of
optimization. Finally, (Cheng et al., 2023) showed that
transformers learn nonlinear functions in-context via a
functional gradient update, but no statistical guarantees or
optimization complexity were given.

The statistical and computational complexity of learn-
ing low-dimensional functions has been extensively stud-
ied. Typical target functions include single-index mod-
els (Ben Arous et al., 2021; Ba et al., 2022; Bietti et al.,
2022; Mousavi-Hosseini et al., 2023; Damian et al., 2023;
Ba et al., 2023) and multi-index models (Damian et al.,
2022; Abbe et al., 2022; 2023; Bietti et al., 2023).

2. Problem Setting
Notations. We use boldface to represent vectors, matri-
ces, and tensors. Let N be a nonnegative integer. Then,
[N ] denotes the set {n ∈ Z | 1 ≤ n ≤ N}. For a non-
negative integer i, the i-th Hermite polynomial is defined

as Hei(z) = e
z2

2
di

dzi e
−z2

2 . For a set S, Unif(S) denotes
the uniform distribution over S. We denote the unit sphere
{x ∈ Rd | ‖x‖ = 1} by Sd−1. Õ(·), Ω̃(·) represent O(·)
and Ω(·) notations where polylogarithmic terms are hidden.
If necessary, we specify the targeted variables in O,Ω, Õ
and Ω̃, as Od(·) for example. We write a ≲ b when there
exists a constant c such that a ≤ cb holds.

2.1. Data Generating Process

First, we introduce the basic setting of in-context learning
(Brown et al., 2020) of simple function classes as investi-
gated in (Garg et al., 2022; Akyürek et al., 2022). In each
inference (test) task, learners are fed a sequence of inputs
and outputs (x1, y1, . . . ,xN , yN ,x) referred to as prompt,
where xi,x ∈ Rd and yi ∈ R. The labeled examples
X =

(
x1 · · · xN

)
∈ Rd×N , y =

(
y1 · · · yN

)⊤ ∈
RN are called context, and x is the query. We assume that
the output yi can be expressed as yi = f∗(xi) + ςi,where
f∗ is the true function describing input-output relation and
ςi is label noise. The task is to predict the response y =
f∗(x) + ς corresponding to the query x given the context,
without updating model parameter. We specify the distri-
bution of inputs and outputs as follows:
Assumption 1. The prompt (x1, y1, . . . ,xN , yN ,x) and

the response y is generated as x1,x2, . . . ,xN ,x
i.i.d.∼

N (0, Id), yi = f∗(xi) + ςi, y = f∗(x) + ς, where

ςi, ς
i.i.d.∼ Unif({−τ, τ}), and the true function f∗ is gener-

ated from the following distribution.

• Let S be an r ≤ d-dimensional linear subspace of Rd.
Draw a vector β uniformly from the unit sphere in S ,
i.e., from {β | β ∈ S, ‖β‖ = 1}.

• Draw Hermite coefficients {ci}Pi=2 from a distribution
satisfying E[c2] 6= 0,

∑P
i=2 c

2
i = Θd,r(1) (a.s.), and

(c2, . . . , cP ) 6= (0, . . . , 0) (a.s.). Then, we define
f∗(xi) = σ∗(〈xi,β〉), where σ∗(z) =

∑P
i=2 ciHei(z).

Throughout the paper, we assume that P � d, r and
r � d: specifically, we take P = Od,r(1). This entails that
the class of target functions is low-dimensional, and such
structure should be adapted by the transformer via pretrain-
ing. As mentioned in the introduction section, the difficulty
to learn a single-index model is governed by the informa-
tion exponent of the link function σ∗: when we conduct
the Hermite expansion as σ∗(z) =

∑
i≥0 ci

Hei(z)
i! , then the

information exponent is defined by min{i | ci 6= 0}. In

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Transformer Efficiently Learns Low-dimensional Target Functions In-context

the case of Assumption 1, this is equal to the minimal i
such that ci 6= 0. Therefore, our case allows that exponent
changes across the tasks, and models the situation where
the difficulty to learn f∗ varies across tasks.

Let f(X,y,x) be an estimator for y. We evaluate the
model performance by the expected ICL risk defined as

RN (f) := EX,y,x,y[|f(X,y,x)− y|], (2.1)

where the expectation is taken over prompts with length N
and responses.

2.2. Student Model: transformer with Nonlinear MLP
Layer

As a learning model capable of in-context learning, we
consider a transformer composed of a single-layer self-
attention module preceded by an embedding module us-
ing a nonlinear two-layer perceptron. Let E ∈ Rde×dN

be an embedding matrix constructed using a prompt
(x1, y1, . . . ,xN , yN ,x). Using single-layer SoftMax-
based self-attention module (Vaswani et al., 2017), the
predinction of y is constructed as the right-bottom entry
of E + W PW V E · softmax

(
(WKE)⊤WQE

ρ

)
, where ρ

is a normalization constant and WK ,WQ ∈ Rdk×de ,
W V ∈ Rdv×de and W P ∈ Rde×dv are parameters called
key, query, value and projection matrix, respectively. In
this paper, we take E as

E =

[
σ(WX + b) σ(Wx+ b)

y⊤ 0

]
. (2.2)

Now σ(WX + b) is a m × N matrix whose (i, j)-
th element is σ(w⊤

i xj + bi) and σ(Wx + b) is a m-
dimensional vector whose i-th element is σ(w⊤

i x + bi),
where w1, . . . ,wm ∈ Rd and b1, . . . , bm ∈ R are param-
eters and σ : R → R is a nonlinear activation function. In
this paper, we use σ(z) = ReLU(z) = max{z, 0}.

In other words, we consider a two-layer neural network
whose width is m, and take the output of each neuron
σ(w⊤x + b) at the hidden layer as the embedding. Using
the output of a neural network as an embedding is adopted
in some recent works (Guo et al., 2023; Kim & Suzuki,
2024). This MLP layer can extract features of the ground
truth efficiently.

We further simplify the original self-attention module fol-
lowing the same line as (Wu et al., 2023; Zhang et al.,
2023): we omit the softmax activation, set ρ = dN − 1 =
N , merge some parameter matrices and let some entries in
the merged matrices as zero. We can show that the predic-
tion of the output for x by the simplified transformer can

Algorithm 1 Pretraining of transformer with MLP layer

1: Input: Learning rate η1, weight decay rate λ1, λ2,
prompt length N1, N2 and number of tasks T1, T2.

2: Draw data {(xt,1, yt,1, . . . ,xt,N1
, yt,N1

,xt, yt)}T1
t=1

with prompt length N1 and
{(xt,1, yt,1, . . . ,xt,N2

, yt,N2
,xt, yt)}T1+T2

t=T1+1 with
prompt length N2.

3: Initialize MLP weights as w
(0)
j ∼ Unif(Sd−1) (j ≤

m/2) and w
(0)
j = w

(0)
m−j (j > m/2), biases as

bj = 0 (j ∈ [m]), and the attention matrix diago-
nally as Γ

(0)
j,j ∼ Unif({±1}) (j ≤ m/2) and Γ

(0)
j,j =

−Γm−j,m−j (j > m/2).

4: w
(1)
j ← w

(0)
j − η1

[
∇wj
R̂(f) + λ1w

(0)
j

]
5: Re-initialize b as bj ∼ Unif([−1, 1]) (j ∈ [m])

6: Find the minimizer Γ∗ of minΓ
1
T2

∑T1+T2

t=T1+1(yt −
f(Xt,yt,xt;W

(1),Γ, b))2 + λ2‖Γ‖2F
7: Output: parameters (W (1),Γ∗, b)

be written as

f(X,y,x;W ,Γ, b) =

〈
Γσ(WX + b)y

N
,σ(Wx+ b)

〉
(2.3)

where Γ is a parameter matrix. See Appendix E for the
derivation of equation (2.3). We call Γ the attention matrix.

2.3. Pretraining: Empirical Risk Minimization via
Gradient Descent

We pretrain parameters of the transformer (2.3) by
the gradient-based algorithm, written in Algorithm 1.
Throughout the paper, we assume that the width m is even.

In Algorithm 1, we first conduct one-step gradient descent
for regularized empirical risk R̂(f) := 1

T1

∑T1

t=1(yt −
f(Xt,yt,xt;W ,Γ, b))2 + λ1‖w‖2 and update the MLP
weight w. Secondly, we conduct standard ridge regres-
sion with respect to the attention matrix Γ. Note that the
minimizer can be efficiently found because the optimiza-
tion problem is convex with respect to Γ. The symmetric
initialization (line 3 in Algorithm 1) ensures that the out-
put of the transformer is zero at initialization and removes
the interaction between neurons: it is used in some recent
works (Chizat et al., 2019; Damian et al., 2022).

3. Main Result: Transformer Learns
Single-index Models In-context

3.1. Main Theorem

We state our main theorem to describe ICL ability of trans-
formers. See Appendix D.3 for the proof.

3
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Theorem 1. Assume that the data distribution is specified
as Assumption 1. Consider pretraining transformer (2.3)
via Algorithm 1 with m ≳ rP ,T1 = Ω̃(d4), N1 = Ω̃(d2),

η1 = Ω

(√
d3

r
1

poly log d

)
and λ1 = η−1

1 . Then, with prob-

ability at least 0.99 over the data distribution and the ran-
dom initialization, there exists λ2 > 0 such that the ICL
risk with prompt length N∗ is upper bounded as

RN∗(f)− τ ≲r3P/2

√
m

+ polylog(T2)
r5P/2

√
T2

d
√
d

+
√
r5P

√
r2

N2
+

r2

N∗ ,

where f = f(X,y,x;W (1),Γ∗, b) and dependence on
poly log(d) in the right-hand side is ignored.

We can evaluate the sample and prompt-length complexity
of Algorithm 1 using Theorem 1: to achieve RN∗(f) ≤
τ + ϵ for given ϵ > 0, it is sufficient to set m = Ω̃(r3P ),
T2 = Ω̃(r5P d3) and N2, N

∗ = Ω̃(r5P+2). Most impor-
tantly, at the test time, the required prompt length N∗ only
depends on the inner dimension r, up to polylogarithmic
terms. We emphasize that the nonlinear link function σ∗
and the true direction β ∈ S varies across tasks, and then
the difficulty to learn the input-output relation varies. Nev-
ertheless, Theorem 1 shows that transformers can learn the
relation on a short prompt which does not scale with d.

As we have nonlinearlity in our model, empirical risk mini-
mization problem becomes nonconvex and establishing op-
timization guarantee via gradient descent becomes more
difficult than the linear setting. We established the guaran-
tee by making use of one-step gradient descent, which has
been considered in literatures of feature learning (Ba et al.,
2022; Damian et al., 2022) and which has successfully
yielded end-to-end optimization guarantee. Now we have
to extend these results utilizing discussions specific to ICL
as we have an attention layer.

Comparison against baseline methods. Another aspect
specific to our result is that we can say transformers can
outperform learning algorithms that directly act on test
prompts: a lot of works (Zhang et al., 2023; Ahn et al.,
2023; Mahankali et al., 2023; Wu et al., 2023; Zhang et al.,
2024) discussed linear transformers, but due to the linear-
ity of the studied transformer, ICL cannot outperform linear
estimators on the test prompt.

Let us concretely compare our result with algorithms act-
ing on the test prompt: these algorithms read each con-
text (x1, y1, . . . ,xN , yN ) and update their parameters,
then make a prediction of the response y for the query
x. This is simply a regression problem to estimate a
single-index model f∗(x) = σ∗(〈x,β〉) using samples

(x1, y1, . . . ,xN , yN ). Thus, the required prompt length is
equal to the number of samples needed to learn the single-
index model. Sample complexities for various algorithms
to learn single-index models were shown: for linear meth-
ods such as kernel methods, dΩ(P ) samples are necessary
to achieve ϵ-error, that is, to achieve Ex[|f(x)−y|] ≤ τ+ϵ
for given ϵ > 0 where f is the estimator (Ghorbani et al.,
2021; Donhauser et al., 2021). On the other hand, neural
networks can learn single-index models with dΩ(k∗) sam-
ples (Ben Arous et al., 2021; Bietti et al., 2022) by gradient
descent, where k∗ is the information exponent of σ∗, i.e.,
the minimal i such that ci 6= 0. However, for the easiest
case where c2 6= 0 and thus k∗ = 2, the sample complexity
is at least linear in the ambient dimension d. Moreover,
a lower bound is known for a general framework of al-
gorithms called CSQ algorithm, which includes stochastic
gradient descent on neural networks: any CSQ algorithm
needs Ω(dk

∗/2) samples to achieve ϵ-error (Damian et al.,
2022). Therefore, if we run these learning algorithms on
each test prompt, they require the prompt length which de-
pends on poly(d). Thus when r � d, pretrained transform-
ers can capture the input-output relation in-context with a
significantly shorter prompt length.

Discussion on the Mechanism. The proof of Theorem 1
is composed of several parts. First, we show that after one-
step gradient descent, w(1) aligns with S , i.e., w(1) is al-
most contained in S (See Appendix B for details). Sec-
ondly, we show in Appendix C that there is an attention
matrix Γ such that the entire transformer approximates the
true function well, which is crucial in the generalization er-
ror analysis (Appendix D). Thus, we can say that the MLP
layer succeeds in “memorizing” the low-dimensional fea-
ture space even with the single step gradient descent, and
the attention matrix works to approximate the link function
correctly.

4. Conclusion and Future Direction
In this work, we studied the ICL ability of transformers and
showed that they can adapt to the intrinsic low-dimensional
structure of nonlinear true functions, and then outper-
formed algorithms working directly on the test prompt, in
that the required prompt length only scaled with the inner
dimension r � d.

There are several important future challenges. It is intrigu-
ing to explore the regime r ≈ d, where memorizing the
feature space S by pretraining is no longer meaningful. Ex-
tending our result to multi-index models is also an inter-
esting future direction. Finally, we used a nonlinear MLP
layer with a linear self-attention module, but it is important
to study the ICL on nonlinear functions via nonlinear self-
attention such as softmax-based self-attention modules.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Transformer Efficiently Learns Low-dimensional Target Functions In-context

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Preliminaries
By coordinate transformation, without loss of generality we can assume that S = {(x1, . . . , xr, 0, . . . , 0) | x1, . . . , xr ∈
R} and β ∼ Unif(Sr−1), i.e., β ∼ Unif({(β1, . . . , βr) | β2

1 + · · · + β2
r = 1}). Therefore, we assume this in the entire

proof. For a vector w, we use wa:b for a ≤ b to denote the vector [wa, wa+1, . . . , wb]
⊤.

A.1. Definition of the Term “With High Probability”

We sometimes use the term “an event A occurs with high probability”. Now we explain the definition of this.
Definition 2. We say that an event A occurs with high probability when there exists a sufficiently large constant C∗ which
does not depend on the ambient dimension d and

Pr[A] ≥ 1− poly(d)d−C∗

holds.

Note that if A1, . . . , AM occurs with high probability where M = poly(d), then A1∩· · ·∩AM occurs with high probability.

A.2. Tensors

In this paper, a k-tensor is a multidimensional array which has k indices: for example, matrices are 2-tensors. Let A be a
k-tensor. Ai1,...,ik denotes (i1, . . . , ik)-th entry of A. Let A be a k-tensor and B be a l-tensor where k ≥ l. A(B) denotes
k − l tensor whose (i1, . . . , ik−l)-th entry is

A(B)i1,...,ik−l
=

∑
j1,...,jl

Ai1,...,ik−l,j1,...,jlBj1,...,jl ,

and is defined only when sizes are compatible. If k = l, we sometimes write A(B) as A ◦ B. Let v ∈ Rd be a vector and
k be a positive integer. Then, v⊗k ∈ Rd×···×d denotes a k-tensor whose (i1, . . . , ik)-th entry is vi1 · · · vik .

Let f(x) : Rd → R be a d-variable function. A k-tensor ∇kf(x) is defined as(
∇kf(x)

)
i1,...,ik

=
∂

∂xi1

· · · ∂

∂xik

f(x).

A.3. Hermite Polynomials

We frequently use (probablists’) Hermite polynomials, which is defined by Hei(z) = e
z2

2
di

dzi e
−z2

2 , where i is a non-
negative integer. Hermite polynomials have orthogonality, in that Ez∼N (0,1)[Hei(z)Hej(z)] = i!δi,j . The Hermite ex-
pansion for σ : R → R is defined as σ(z) =

∑
i≥0

ai

i! Hei(z) where ai = Ez∼N (0,1)[σ(z)Hei(z)]. Similarly, the
multivariate Hermite expansion for f : Rd → R is defined as f(z) =

∑
i1≥0,...,id≥0

ai1,...,id

(i1)!···(id)!Hei1(z1) · · ·Heid(zd),
where ai1,...,id = Ezi,...,zd∼N (0,1)[f(z)Hei1(z1) · · ·Heid(zd)]. The coefficient ai1,...,id can also be obtained by ai1,...,id =

Ezi,...,zd∼N (0,1)

[
∂i1

∂z
i1
1

· · · ∂id

∂z
id
d

f(z)

]
.

The lemma below is useful to find a basis of the set of true functions.
Lemma 3. Suppose β ∈ S . Then,

Hep(〈x,β〉) =
p1+···+pr=p∑
p1≥0,...,pr≥0

(p1 + · · ·+ pr)!

p1! · · · pr!
· βp1

1 · · ·βpr
r ·Hep1

(x1) · · ·Hepr
(xr)

holds.

Proof. Note that Ezi,...,zr∼N (0,1)

[
∂i1

∂z
i1
1

· · · ∂ir

∂zir
r
Hep(〈x,β〉)

]
is nonzero only when i1+· · ·+ir = p. When i1+· · ·+ir =

p, then Ez1,...,zr∼N (0,1)

[
∂i1

∂z
i1
1

· · · ∂ir

∂zir
r
Hep(〈x,β〉)

]
= p!βi1

1 · · ·βir
r holds. Then, from the multivariate Hermite expansion

we obtain the claim.
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B. Proofs for MLP Layer

First, note that f(Xt,yt,xt;W
(0),Γ(0), b) = 0 at initialization. Then, from line 4 of Algorithm 1, for each j ∈ [m],

w
(1)
j = 2η1

1

T

T∑
t=1

yt∇w
(0)
j
f(Xt,yt,xt;W

(0),Γ(0), b)

= 2η1Γ
(0)
j,j

( T∑
t=1

1

T
ytσ(w

(0)
j

⊤
xt)

1

N

N∑
i=1

yt,iσ
′(w

(0)
j

⊤
xt,i)xt,i

+

T∑
t=1

1

T
ytσ

′(w
(0)
j

⊤
xt)xt

1

N

N∑
i=1

yt,iσ(w
(0)
j

⊤
xt,i)

)

holds because we assumed η1 = λ−1
1 (for simplicity let T := T1 and N := N1 in this section). Here xt,i is the i-th column

of Xt and yt,i is the i-th element of yt. Now let

gT (w)

:=

(
T∑

i=1

1

T
ytσ(w

⊤xt)
1

N

N∑
i=1

yt,iσ
′(w⊤xt,i)xt,i +

T∑
i=1

1

T
ytσ

′(w⊤xt)xt
1

N

N∑
i=1

yt,iσ(w
⊤xt,i)

)

and g(w) = E[gT (w)], where the expectation is taken with respect to the data distribution. Note that w
(1)
j =

2η1Γ
(0)
j,j gT (w

(0)
j ).

In this section we make

• asymptotic expansion of g(w), and

• uniform upper bound for the difference ‖g(w)− gT (w)‖.

Asymptotic Expansion of g(w). First, note that

g(w) = 2Ey[Ex[yσ
′(w⊤x)x]Ex[yσ(w

⊤x)]],

where Ey[·] means the expectation with respect to the distribution of β and {ci}.

Now let σ(z) =
∑

i≥0 ai
Hei(z)

i! be the Hermite expansion of student activation. The asymptotic expansions of
Ex[yσ

′(w⊤x)x] and Ex[yσ(w
⊤x)] are known as follows:

Lemma 4. It holds that

Ex[yσ
′(w⊤x)x] =

P∑
k=1

ak+1Ex[∇k+1f∗(x)](w
⊗k)

k!
+w

P∑
k=2

ak+2Ex[∇kf∗(x)](w
⊗k)

k!
,

Ex[yσ(w
⊤x)] =

P∑
k=2

akEx[∇kf∗(x)](w
⊗k)

k!
.

Proof. It is obtained from the proof of Lemma 7 in (Damian et al., 2022).
Then, g(w) can be expanded as

g(w) = 2Ey

[( p∑
k=1

ak+1Ex[∇k+1f∗(x)](w
⊗k)

k!

+w

p∑
k=2

ak+2Ex[∇kf∗(x)](w
⊗k)

k!

)( p∑
k=2

akEx[∇kf∗(x)](w
⊗k)

k!

)]

8
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=: 2Ey

[
a2Ex[∇2f∗(x)](w)

a2Ex[∇2f∗(x)](w
⊗2)

2
+ s(y,w)

]
= a22Ey[Ex[∇2f∗(x)](w)Ex[∇2f∗(x)](w

⊗2)] + 2Ey[s(y,w)].

The main term is proportional to Ey

[
(Hf∗w)(Hf∗ ◦w⊗2)

]
, where

Hf∗ = Ex[∇2f∗(x)] = 2c2ββ
⊤

be the expected Hessian of f∗. Let us calculate this main term explicitly. Recall that we assumed that β ∼ Unif(Sr−1).
Note that by letting β′ ∼ N (0,Σβ) where

Σβ =

(
Ir 0
0⊤ Od−r

)
,

and z ∼ χr independent from β, then β′ ∼ βz holds.

Now it holds that

Ey

[
(Hf∗w)(Hf∗ ◦w⊗2)

]
= Eβ,c2

[
4c22(ββ

⊤w)(ββ⊤ ◦w⊗2)
]

= 4E[c22]Eβ

[
β⊗4

]
w⊗3.

Furthermore, as

Eβ[βiβjβkβl] =



3

Ez∼χr
[z4]

(i = j = k = l ≤ r)

1

Ez∼χr [z
4]

(i = j ≤ r, k = l ≤ r, i 6= k or i = k ≤ r, j = l ≤ r, i 6= j

or i = l ≤ r, j = k ≤ r, i 6= j)

0 (otherwise)

,

it follows that

(
E[c22]Eβ

[
β⊗4

]
w⊗3

)
i
=


E[c22]

3

r(r + 2)
wi

r∑
j=1

w2
j (i ≤ r)

0 (i > r)

.

Then, we arrive at

Ey

[
(Hf∗w)(Hf∗ ◦w⊗2)

]
= E[c22]

12

r(r + 2)
‖w1:r‖22w1:r.

Next, we upper bound the residual term Ey[s(y,w)].

Lemma 5.

sup
w∼Sd−1

‖Ey[s(y,w)]‖ = O

(√
r2

d4

)
holds.

Proof. Note that

sup
w∼Sd−1

‖Ey[s(y,w)]‖ ≤ sup
w∼Sd−1

Ey[‖s(y,w)‖2]1/2.

9
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Then, by Minkowski’s inequality, it suffices to show that

Ey

[∥∥∥∥ak+1E[∇k+1f t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

∥∥∥∥2
]1/2

≲
√

r2

d4
(k ≥ 1, l ≥ 2, (k, l) 6= (1, 2))

and

Ey

[∥∥∥∥wak+2E[∇kf t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

∥∥∥∥2
]1/2

≲
√

r2

d4
(k ≥ 2, l ≥ 2).

The former is obtained by

Ey

[∥∥∥∥ak+1E[∇k+1f t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

∥∥∥∥2
]1/2

≤Ey

[∥∥∥∥ak+1E[∇k+1f t](w⊗k)

k!

∥∥∥∥4
]1/4[∥∥∥∥alE[∇lf t](w⊗l)

l!

∥∥∥∥4
]1/4

≲
√

r⌊k/2⌋

dk

√
r⌊l/2⌋

dl
.

Now, for deriving the last line, we used Corollary 9 and Lemma 24 in (Damian et al., 2022). The latter can be derived by
following the same line.

Bounding the Difference between Empirical and Population Gradient. We upper bound ‖gT (w)−g(w)‖ by extend-
ing Lemma 19 in (Damian et al., 2022). In the paper they bound the difference between empirical and population gradient
of a two-layer fully-connected neural network. However, in our case we have an attention module and nonlinear activation
appears twice in the gradient. This yields the need for using concentration argument in a “nested” way.
Lemma 6. Let

z1(w) =

T∑
t=1

1

T
ytσ(w

⊤xt)
1

N

N∑
i=1

yt,iσ
′(w⊤xt,i)xt,i

and

z2(w) =

T∑
t=1

1

T
ytσ

′(w⊤xt)xt
1

N

N∑
i=1

yt,iσ(w
⊤xt,i).

Then, with high probability over the data distribution,

sup
w∈Sd−1

‖z1(w)− E[z1(w)]‖ = Õ

((√
1

d
+

√
d

N

)√
d

T

)
,

sup
w∈Sd−1

‖z2(w)− E[z2(w)]‖ = Õ

((
1

d
+

√
d

N

)√
d

T

)
holds.

Proof. First, consider z1(w). Let ι = C logN , where C is a sufficiently large constant. From Lemma 19 in (Damian et al.,
2022), with probability at least 1− 2Ne−ι it holds that

1

N

N∑
i=1

yt,iσ
′(w⊤xt,i)xt,i ≤ E[yt,iσ′(w⊤xt,i)xt,i] + Ct

√
dιP+1

N
for all w ∈ Sd−1 (B.1)

with fixed t, where Ct is a constant which only depends on t and P . Let Rt be the right hand side of (B.1). Note that Rt =

Õ

(√
1
d +

√
dιP+1

N

)
with high probability. Moreover, from Lemma 17 in (Damian et al., 2022), yt ≤ (C ′

tι)
P/2 =: R′

t

holds with high probability. In the following, we assume that

10
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• (B.1) holds,

• yt ≤ R′
t holds with all t, and

• ‖xt,i‖, ‖xt‖ ≤ a
√
d holds for all t and i, where a is a sufficiently large constant.

which occurs with high probability. Let

z̃1(w) =
1

T

T∑
i=1

ytσ(w
⊤xt)vt(w)1[vt(w) ≤ Rt ∧ yt ≤ R′

t],

where vt(w) := 1
N

∑N
i=1 yt,iσ

′(w⊤xt,i)xt,i. From the assumption above, z̃1 = z1 holds uniformly over all w ∈ Sd−1.
Let us bound supw∈Sd−1 ‖z1(w)−E[z1(w)]‖ following the same line as the proof of Lemma 19 in (Damian et al., 2022).
As

z1(w)− E[z1(w)] = (z̃1(w)− E[z̃1(w)])− (E[z1(w)]− E[z̃1(w)]),

it suffices to bound supw ‖z̃1(w)− E[z̃1(w)]‖ and supw ‖E[z1(w)]− E[z̃1(w)]‖. First,

sup
w
‖E[z1(w)]− E[z̃1(w)]‖

= sup
w

∥∥E[ytσ(w⊤xt)vt(w)1[vt(w) > Rt ∨ yt > R′
t]
]∥∥

≤ sup
w

√
E[‖vt(w)‖2] · sup

w

√
E[y2t σ(w⊤xt)21[vt(w) > Rt ∨ yt > R′

t]
2]

≤ sup
w

E
[
‖vt(w)‖2

]1/2 · sup
w

E[y4t ]1/4E[σ(w⊤xt)
8]1/8P[vt(w) > Rt ∨ yt > R′

t]
1/8.

Then, as supw E
[
‖vt(w)‖2

]1/2
, supw E[y4t ]1/4 and supw E[σ(w⊤xt)

8]1/8 are polynomial in d, by setting C sufficiently
large, it follows that supw ‖E[z1(w)]− E[z̃1(w)]‖ = O(d−C∗

) for any C∗ ≥ 1 with high probability.

Second, let us bound supw ‖z̃1(w)−E[z̃1(w)]‖. From Lemmas 18 and 19 in (Damian et al., 2022), there exists ϵ-covering
Nϵ of Sd−1 with |Nϵ| ≤ eC1d log(NT/ϵ) and 1/4-covering N1/4 of Sd−1 with |N1/4| ≤ eC2d such that for all w ∈ Sd−1,
there exists π(w) ∈ Nϵ such that ‖w − π(w)‖ ≤ ϵ and vt(w) = vt(π(w)) holds for all t. Then

sup
w
‖z̃1(w)− E[z̃1(w)]‖

≤ sup
w∈Nϵ

‖z̃1(w)− E[z̃1(w)]‖+ sup
w
‖z̃1(w)− z̃1(π(w))‖+ sup

w
‖E[z̃1(w)]− E[z̃1(π(w))]‖

≤ sup
w∈Nϵ

‖z̃1(w)− E[z̃1(w)]‖+ sup
w
‖z̃1(w)− z̃1(π(w))‖+O(d−C∗

+ ϵd)

≤ sup
w∈Nϵ

‖z̃1(w)− E[z̃1(w)]‖+O(RR′ϵ
√
d) +O(d−C∗

+ ϵd)

Let us bound the first term in the right-hand side. Notice that

sup
w∈Nϵ

‖z̃1(w)− E[z̃1(w)]‖ ≤ 2 sup
w∈Nϵ

sup
u∈N1/4

u · [z̃1(w)− E[z̃1(w)]].

Now, z̃1(w) is RR′-sub Gaussian and then with probability 1− 2e−z , it holds that

u · [z̃1(w)− E[z̃1(w)]] ≤ RR′
√
2z/T ,

where R = maxt Rt and R′ = maxt R
′
t. Therefore, with probability at least 1− 2eC3d log(NT/ϵ)−z we have

sup
w∈Sd−1

‖z1(w)− E[z1(w)]‖ = O

(
RR′

√
2z

T
+RR′ϵ

√
d+ ϵd+ d−C∗

)
.
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By taking z = C3d log(NT/ϵ) + ι and ϵ = O(d−C∗
), we arrive at

sup
w∈Sd−1

‖z1(w)− E[z1(w)]‖ = O

(
ιP/2

(√
1

d
+

√
dιP+1

N

)√
2z

T
+ ϵd+O(d−C∗

)

)

= Õ

((√
1

d
+

√
d

N

)√
d

T

)
with high probability.

Bounds for supw∈Sd−1 ‖z2(w) − E[z2(w)]‖ can be obtained by the same procedure, noting that E[yt,iσ(w⊤xt,i)] =
O(1/d).

Combining Lemmas 5 and 6, we immediately obtain the following:

Corollary 7. Asuume T = Ω̃(d4) and N = Ω̃(d2). Then, ‖gT (w)‖ = Õ(
√

r
d3 ) and ‖gT (w)r+1:d‖ = Õ(

√
r2

d4 ) holds
with high probability.

It is used to derive prompt length-free generalization result (Appendix D.2).

C. Construction of Attention Matrix
In this section, we construct Γ which satisfies the following approximation property:
Theorem 8. With high probability (see Section A.1 for the definition), there exists Γ such that∣∣∣∣∣∣∣∣

〈
Γσ(W (1)Xt + b)y

dim(yt)
,


σ(w

(1)
1

⊤
xt + b1)
...

σ(w
(1)
m

⊤
xt + bm)


〉
− yt

∣∣∣∣∣∣∣∣− τ ≲ poly log(d)

(
r5P/2

√
N2

+
r3P/2

√
m

)

for all t ∈ {T1 + 1, . . . , T2}, where {w(1)
j }j are neurons obtained by line 4 of Algorithm 1 with η1 =

Ω

(√
d3

r
1

poly log d

)
,m ≳ rP and b is re-initialized in Line 5 of Algorithm 1. Moreover, ‖Γ‖ = Õ(

√
r5P /m2) is sat-

isfied.

We give an intuitive explanation of the way to construct such Γ. First, recall that the true function satisfies f∗(x) =∑P
i=2 ciHei(〈x,β〉). Let F∗ = {f∗ :

∑P
i=2 ciHei(〈x,β〉) | β ∈ S, ci ∈ R}. We can find an orthogonal basis of F∗: let

{β1, . . . ,βr} be an orthonormal basis of S . Then, we can show that G = {
∏r

j=1 Hepj
(〈βj , ·〉) | 2 ≤ p1 + · · · + pr ≤

P, p1 ≥ 0, . . . , pr ≥ 0} forms a basis for F∗ and Ex∼N (0,Id)[g(x)g
′(x)] = 0 is satisfied if g 6= g′.

Let q = |G|(= O(rP )). Assign numbers to the functions in G arbitrarily as G = {g1, . . . , gq}. We can show that there
exists a1, . . . ,aq ∈ Rm such that

∑m
j=1 a

i
jσ(w

⊤
j x + bj) ' gi(x) for each i ∈ [q]. This comes from the approximation

property of two-layer fully-connected neural networks.

A key fact is that we can construct attention matrix using this a1, . . . ,aq . Let A =
(
a1 · · · aq

)
∈ Rm×q and

D = diag{α1, . . . , αq} where αi = E[gi(x)2]−1. Then, letting dim(y) = N and Γ = ADA⊤, we notice that〈
Γσ(WX + b)y

dim(y)
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉

=

q∑
i=1

αi

 1

N

N∑
j=1

(
m∑

k=1

ai
kσ(w

⊤
k xj + bk)

)
yj

( m∑
k=1

ai
kσ(w

⊤
k x+ bk)

)

'
q∑

i=1

αiE[gi(x)σ∗(〈β,x〉)]gi(x) = σ∗(〈β,x〉). (C.1)

12
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The most essential point is that the self-attention architecture approximately calculates E[gi(x)σ∗(〈β,x〉)], i.e., the inner
product between the true function and a base gi. If N is sufficiently large, then we can approximate the true label well.
Recall that we defined G = {

∏r
j=1 Hepj (〈βj , ·〉) | 2 ≤ p1 + · · · + pr ≤ P, p1 ≥ 0, . . . , pr ≥ 0} where {βj} is a

basis of S and this forms a basis of the set of true functions. We let |G| = q and number the elements of G arbitrarily as
G = {g1, . . . , gq}. Importantly, q ≲ rP holds.

Note that, to derive (C.1), there are two types of “approximation error”: one is the error by a two-layer neural network∑m
j=1 a

i
jσ(w

⊤
j x+ bj) to approximate each basis gi(x). The other is discrepancy between average 1

N

∑N
j=1 gi(xj)yj and

its expectation E[gi(x)σ∗(〈β,x〉)]. In Appendix C.1 we bound the former error, and the latter is evaluated in Appendix C.2.
Finally, we prove Theorem 8 in Appendix C.3.

C.1. Approximation Result for Two-layer NN

We use the following proposition stating approximation ability of two-layer fully-connected neural networks:

Proposition 9. Let {w(1)
j }j be neurons obtained by line 4 of Algorithm 1 with m ≳ rP , η1 = Ω

(√
d3

r
1

poly log d

)
and

assume b is initialized as in Line 5 of Algorithm 1. Then, with high probability over the data distribution, there exists
a1, . . . ,aq ∈ Rm such that for each i ∈ [q], m∑

j=1

ai
jσ(w

(1)
j

⊤
x+ bj)− gi(x)

2

= Õ

(
rP

m
+

1

N2

)

holds for all x = xt (t ∈ {T1 + 1, . . . , T2}) and x = xt,n (t ∈ {T1 + 1, . . . , T2}, n ∈ [N2]). Moreover, ‖ai‖2 =

Õ
(

rP

m

)
(i ∈ [q]) holds.

This is almost a counterpart of Lemma 13 in (Damian et al., 2022) and the proof is almost the same. However, there are
slight differences as the property of w(1)

j differs: specifically, the statement of Lemmas 10 and 11 in (Damian et al., 2022)
to derive Lemma 13 in the paper should be slightly changed. Here we describe the counterparts of these lemmas.

Lemma 10 (counterpart of Lemma 10 in (Damian et al., 2022)). Let r(w) = gT (w)− a22E[c22] 12
r(r+2)‖w1:r‖22w1:r. Then,

Ew∼Sd−1

[
‖ΠSr(w)‖j

]1/j ≲ Õ

((√
1

d
+

√
d

N1

)√
d

T1

)
+O

(√
r2

d4

)

holds with high probability, where ΠS be the orthogonal projection onto S (recall that we assumed that S be the subspace
spanned by first r standard basis: that is, ΠSv = v1:r).

Proof. Since Ew∼Sd−1

[
‖ΠS [gT (w)− g(w)]]‖j

]1/j
= Õ

((√
1
d +

√
d
N1

)√
d
T1

)
from Lemma 6, it suffices to upper

bound

Ew∼Sd−1

[∥∥∥∥ΠS [g(w)− a22E[c22]
12

r(r + 2)
‖w1:r‖22w1:r

∥∥∥∥j
]1/j

= Ew∼Sd−1 [‖Ey[ΠSs(y,w)]‖j ]1/j .

Then it is sufficient to show that

Ew∼Sd−1

[∥∥∥∥Ey

[
ak+1E[∇k+1f t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

]∥∥∥∥j
]1/j

≲
√

r2

d4
(k ≥ 1, l ≥ 2, (k, l) 6= (1, 2))

and

Ew∼Sd−1

[∥∥∥∥Ey

[
ΠSw

ak+2E[∇kf t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

]∥∥∥∥j
]1/j

≲
√

r2

d4
(k ≥ 2, l ≥ 2).

13
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First,

Ew∼Sd−1

[∥∥∥∥Ey

[
ak+1E[∇k+1f t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

]∥∥∥∥j
]1/j

≤Ey

[
Ew∼Sd−1

[∥∥∥∥ak+1E[∇k+1f t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

∥∥∥∥j
]]1/j

≤Ey

Ew∼Sd−1

[∥∥∥∥ak+1E[∇k+1f t](w⊗k)

k!

∥∥∥∥2j
]1/2

Ew∼Sd−1

[∥∥∥∥alE[∇lf t](w⊗l)

l!

∥∥∥∥2j
]1/21/j

≲
√

r⌊k/2⌋

dk

√
r⌊l/2⌋

dl
≲
√

r2

d4
.

Similarly,

Ew∼Sd−1

[∥∥∥∥Ey

[
ΠSw

ak+2E[∇kf t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

]∥∥∥∥j
]1/j

≤ Ey

[
Ew∼Sd−1

[
‖ΠSw‖2j

]1/2
Ew∼Sd−1

[∥∥∥∥ak+2E[∇kf t](w⊗k)

k!

∥∥∥∥4j]1/4
Ew∼Sd−1

[∥∥∥∥alE[∇lf t](w⊗l)

l!

∥∥∥∥4j]1/4]1/j
≲
√

r

d

√
r⌊k/2⌋

dk

√
r⌊l/2⌋

dl
≲
√

r2

d4
.

Then we obtain Ew∼Sd−1

[
‖ΠSr(w)‖j

]1/j ≲ Õ
((√

1
d +

√
d
N1

)√
d
T1

)
+O

(√
r2

d4

)
as desired.

To derive the counterpart of Lemma 11 in (Damian et al., 2022) we need the following statement:

Lemma 11 (Tensor expectation lower bound). Let T be a k < P -symmetric tensor which has support on S and let
w̄ = w1:r‖w1:r‖2. Then

Ew∼Sd−1 [T (w̄⊗k)2] ≳ r2i

d3i
E[‖T (w̄⊗k−i)‖2F ].

Proof. Let u ∼ N (0, Id), z ∼ χ(d) and ū = u1:r‖u1:r‖2. Then we can decompose as ū = z3w̄. Therefore

E[T (ū⊗k)2] = E[z6k]E[T (w̄⊗k)2]

holds.

On the other hand, let x ∼ Sr−1 and z′ ∼ χ(r). Then we can decompose as ū = (z′)3x. Thus

E[T (ū⊗k)2] = E[(z′)6k]E[T (x⊗k)2]

holds. It implies that

E[T (w̄⊗k)2] =
E[(z′)6k]
E[z6k]

E[T (x⊗k)2].

Similarly,

E[‖T (w̄⊗k−i)‖2F ] =
E[(z′)6(k−i)]

E[z6(k−i)]
E[‖T (x⊗(k−i))‖2F ]

is satisfied. Now from Corollary 13 in (Damian et al., 2022),

E[‖T (x⊗(k−i))‖2F ] ≲ riE[T (x⊗k)2]

14
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holds. Therefore we obtain

E[T (w̄⊗k)2] =
E[(z′)6k]
E[z6k]

E[T (x⊗k)2]

≳ r−iE[(z′)6k]
E[z6k]

E[‖T (x⊗(k−i))‖2F ]

= r−iE[(z′)6k]
E[z6k]

E[z6(k−i)]

E[(z′)6(k−i)]
E[‖T (w̄⊗k−i)‖2F ]

=
r2i

d3i
E[‖T (w̄⊗k−i)‖2F ].

Corollary 12. Let T be a k < P -symmetric tensor which has support on S and let ŵ = 1
r(r+2)w1:r‖w1:r‖2. Then

Ew∼Sd−1 [T (ŵ⊗k)2] ≳ 1

d3i
E[‖T (ŵ⊗k−i)‖2F ].

Using Lemma 10 and Corollary 12 in the proof of Lemma 11 in (Damian et al., 2022) yields the following Lemma:

Lemma 13 (counterpart of Lemma 11 in (Damian et al., 2022)). Suppose r2 ≲ d, T1 ≳ d3 and N1 ≳ d2. Let T be
k < P -symmetric tensor with ‖T ‖F = 1 and assume T has support on S . Then,

Ew∼UnifSd−1 [(ΠSgT (w))
⊗2k](T ,T ) ≳ d−3k

holds.

Now we have Lemmas 10 and 13. By letting η = Ω

(√
d3

r
1

poly log d

)
and following the same line towards the proof of

Lemma 13 in (Damian et al., 2022), we obtain Proposition 9.

C.2. Concentration of Correlation between a Label and a Base

In this subsection, we give an upper bound for∣∣∣∣∣∣ 1N
N∑
j=1

yjg(xj)− E[yg(x)]

∣∣∣∣∣∣
as follows:

Proposition 14. Let g ∈ G. With high probability,∣∣∣∣∣∣ 1N
N∑
j=1

yjg(xj)− E[yg(x)]

∣∣∣∣∣∣ ≲ r3P/2

√
N

(log d)P/2

holds.

Without loss of generality, we assume that S = {(β1, . . . , βr, 0, . . . , 0) | β1, . . . , βr ∈ R} and g(x) can be written in the
form as g(x) = Heq1(x1) · · ·Heqr (xr), satisfying q1 + · · ·+ qr ≤ P . Note that

1

N

N∑
j=1

yjg(xj)− E[yg(x)] =
1

N

N∑
j=1

ςjg(xj) +
1

N

N∑
j=1

σ∗(〈xj ,β〉)g(xj)− E[σ∗(〈x,β〉)g(x)],

where σ∗(z) =
∑P

i=2 cpHei(z). First we give an upper bound for 1
N

∑N
j=1 σ∗(〈xj ,β〉)g(xj)− E[σ∗(〈x,β〉)g(x)].

15
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Lemma 15. Let D = deg 1
N

∑N
j=1 σ∗(〈xj ,β〉)g(xj) ≤ 2P . For all t > 0,

P(| 1
N

N∑
j=1

σ∗(〈xj ,β〉)g(xj)− E[σ∗(〈x,β〉)g(x)]| ≥ t)

≤ 2 exp

− 1

CD
min

1≤k≤D

(
t
√
N

Mk‖E[∇k(σ∗(〈x,β〉)g(x))]‖F

)2/k


holds, where CD and M are absolute constants.

Proof. Let F (x1, . . . ,xN ) = 1
N

∑N
j=1 σ∗(〈xj ,β〉)g(xj). It is a polynomial for x11, . . . , x1d, . . . , xNd, which are stan-

dard Gaussian variables. For the standard Gaussian X ∼ N (0, 1), its Orlicz norm ‖X‖Ψ2 is bounded; there exists M such
that ‖X‖Ψ2 ≤M . Moreover,

‖E[∇kF (x1, . . . ,xN )]‖F =
√
N

−1
‖E[∇k(σ∗(〈x,β〉)g(x))]‖F

is satisfied. Then, Theorem 1.2 in (Götze et al., 2021) yields the lemma.

Then, our goal is to bound ‖E[∇k(σ∗(〈x,β〉)g(x))]‖F .

Lemma 16.
‖E[∇k(σ∗(〈x,β〉)g(x))]‖F = O(r3P )

holds.

Proof. First,

‖E[∇k(σ∗(〈x,β〉)g(x))]‖2F

=‖
P∑

p=2

cpE[∇k(Hep(〈x,β〉)g(x))]‖2F

≤
P∑

p=2

cp‖E[∇k(Hep(〈x,β〉)g(x))]‖2F

≤(c22 + · · ·+ c2P )

(
P∑

p=2

‖E[∇k(Hep(〈x,β〉)g(x))]‖2F

)

≲
P∑

p=2

‖E[∇k(Hep(〈x,β〉)g(x))]‖2F

≤
P∑

p=2

 p1+···+pr=p∑
p1≥0,...,pr≥0

(
(p1 + · · ·+ pr)!

p1! · · · pr!
· βp1

1 · · ·βpr
r

)2


·
p1+···+pr=p∑
p1≥0,...,pr≥0

‖E[∇k(Hep1(x1) · · ·Hepr (xr)g(x))]‖2F

holds. Noting that
(

(p1+···+pr)!
p1!···pr!

· βp1

1 · · ·βpr
r

)2
≤ p! under p1 + · · · + pr = p and the number of the combination of

(p1, . . . , pr) ≥ 0 such that p1 + · · ·+ pr = p is at most rp, there exists a constant CP depending only on P such that

‖E[∇k(σ∗(〈x,β〉)g(x))]‖2F ≤ CP r
P

P∑
p=2

p1+···+pr=p∑
p1≥0,...,pr≥0

‖E[∇k(Hep1
(x1) · · ·Hepr

(xr)g(x))]‖2F . (C.2)
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Next, let us bound ‖E[∇k(Hep1
(x1) · · ·Hepr

(xr)g(x))]‖2F , where g(x) = Heq1(x1) · · ·Heqr (xr). It holds that

∇k(Hep1
(x1) · · ·Hepr

(xr)g(x)) =
k∑

i=0

(
k

i

)
∇iHep1

(x1) · · ·Hepr
(xr)∇k−iHeq1(x1) · · ·Heqr (xr). (C.3)

Let s = |p1 − q1| + · · · + |pr − qr| and t =
∑r

i=1 |pi − qi|1pi>qi . Let us first consider the case where k = s to simplify
the explanation; in this case, each element of E[∇k(Hep1

(x1) · · ·Hepr
(xr)g(x))] can be decomposed into the terms as

E[∂u1
x1
· · · ∂ur

xr
Hep1(x1) · · ·Hepr (xr)∂

v1
x1
· · · ∂vr

xr
Heq1(x1) · · ·Heqr (xr)], (C.4)

where u1 + · · · + ur + v1 + · · · + vr = s. However, this expectation becomes nonzero only when ui = |pi − qi|1pi>qi

and vi = |pi − qi|1pi<qi . Therefore, by seeing (C.3), we can notice that

E[∇iHep1(x1) · · ·Hepr (xr)∇k−iHeq1(x1) · · ·Heqr (xr)] (C.5)

is nonzero tensor only when i = t and E[∇tHep1(x1) · · ·Hepr (xr)∇k−tHeq1(x1) · · ·Heqr (xr)] has only one nonzero
element. It implies that ‖E[∇s(Hep1(x1) · · ·Hepr (xr)g(x))]‖2F ≲

(
s
t

)2
.

Let us consider the other cases: obviously, ‖E[∇k(Hep1(x1) · · ·Hepr (xr)g(x))]‖2F = 0 if k < s. Moreover, if k − s is
odd, one can confirm that ‖E[∇k(Hep1(x1) · · ·Hepr (xr)g(x))]‖2F = 0. Consider the case where k − s = 2l > 0. The
expectation (C.4) under u1 + · · · + ur + v1 + · · · + vr = l = s + 2l is nonzero when ui = |pi − qi|1pi>qi + li and
vi = |pi − qi|1pi<qi + li, where l1 + · · · + lr = l. It implies that (C.5) is nonzero only when i = t + l, and in this case,
the tensor (C.5) has at most rl nonzero entries. As a consequence,

‖E[∇s(Hep1
(x1) · · ·Hepr

(xr)g(x))]‖2F ≲ rl
(
s+ l

t+ l

)2

holds. Overall, ‖E[∇k(Hep1
(x1) · · ·Hepr

(xr)g(x))]‖2F ≤ C ′
P r

P is satisfied where C ′
P depends only on P . Plugging this

bound into (C.2), we arrive at

‖E[∇k(σ∗(〈x,β〉)g(x))]‖2F ≤ CPC
′
P r

P
P∑

p=2

p1+···+pr=p∑
p1≥0,...,pr≥0

rP ≲ r3P ,

as desired.

Plugging the result above and t = Θ( r
3P/2
√
N

(log d)P/2) into Lemma 15 yields the following corollary.

Corollary 17. With high probability,∣∣∣∣∣∣ 1N
N∑
j=1

σ∗(〈xj ,β〉)g(xj)− E[σ∗(〈x,β〉)g(x)]

∣∣∣∣∣∣ ≲ r3P/2

√
N

(log d)P/2

holds.

Proof. [Proof of Proposition 14] Now we have Corollary 17, then it remains to show that 1
N

∑N
j=1 ςjg(xj) ≲

r3P/2
√
N

(log d)P/2 with high probability. This is obvious from Lemma 18.

C.3. Proof of Theorem 8

We prove Theorem 8 using the preparations above. It suffices to show the theorem in the case where T = 1, as long as T
is polynomial in d. Then, we drop the subscript t.

Note that, from Lemma 3, we can expand f∗(x) as f∗(x) =
∑q

i=1 αiEx∼N (0,Id)[ygi(x)]gi(x), where αi =

Ex∼N (0,Id)[gi(x)
2]−1. Note that αi = Od,r(1) and α−1

i = Od,r(1). Now let A =
(
a1 · · · aq

)
∈ Rm×q and

17
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D = diag{α1, . . . , αq}. First,

〈
ADA⊤σ(WX + b)y

dim(y)
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉− y

=

q∑
i=1

αi(gi(x) + ϵi(x))

E[ygi(x)] +

 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+
1

N2

N2∑
j=1

yjϵi(xj)


− σ∗(〈x,β〉)− ς

=

q∑
i=1

αi(gi(x) + ϵi(x))

E[ygi(x)] +

 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+
1

N2

N2∑
j=1

yjϵi(xj)


−

q∑
i=1

gi(x)αiE[ygi(x)]− ς

holds, where ϵi(x) =
∑m

j=1 a
i
jσ(w

(1)
j

⊤
x+ bj)− gi(x).

Then, it follows that∣∣∣∣∣∣∣
〈
ADA⊤σ(WX + b)y

dim(y)
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉− y

∣∣∣∣∣∣∣
≤

q∑
i=1

αi|ϵi(x)E[ygi(x)]|+
q∑

i=1

αi

∣∣∣∣∣∣gi(x)
 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+ gi(x)
1

N2

N2∑
j=1

yjϵi(xj)

∣∣∣∣∣∣
+

q∑
i=1

αi

∣∣∣∣∣∣ϵi(x)
 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+ ϵi(x)
1

N2

N2∑
j=1

yjϵi(xj)

∣∣∣∣∣∣+ τ.

To bound these terms, we need to bound gi(x) and 1
N2

∑N2

j=1 yjϵi(xj), whose expectations are zero.

Lemma 18. Let s = deg gi. Then
|gi(x)| ≲ (log d)s/2

with high probability for each i ∈ [q].

Proof. Note that E[∇dgi(x)] has only one nonzero element only when d = s. Then, from Theorem 1.2 in (Götze et al.,
2021),

P(|gi(x)| ≥ t) ≤ 2 exp

(
− 1

C

(
t

Ms

)2/s
)

holds. Plugging t = Ω((log d)s/2) yields the result.

Lemma 19. ∣∣∣∣∣∣ 1

N2

N2∑
j=1

yjϵi(xj)

∣∣∣∣∣∣ ≲ rP/2(log d)P/2

√
m

+
(log d)P/2

√
N2

with high probability.

Proof. From Lemma 17 in (Damian et al., 2022), σ∗(〈β,xj〉) ≲ (log d)P/2 holds with high probability. Then, the lemma
follows immediately from Proposition 9.
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In addition to the lemmas above, we know that E[ygi(x)] = O(1) from Lemma 3 and q = O(rP ). Note that as we assumed
m ≳ rP , ϵi(x) = O(poly log(d)) holds. Then, we arrive at∣∣∣∣∣∣∣

〈
ADA⊤σ(WX + b)y

dim(y)
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉− y

∣∣∣∣∣∣∣
≤

q∑
i=1

|ϵi(x)E[ygi(x)]|+
q∑

i=1

∣∣∣∣∣∣gi(x)
 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+ gi(x)
1

N2

N2∑
j=1

yjϵi(xj)

∣∣∣∣∣∣
+

q∑
i=1

∣∣∣∣∣∣ϵi(x)
 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+ ϵi(x)
1

N2

N2∑
j=1

yjϵi(xj)

∣∣∣∣∣∣+ τ

≲rP
(
rP/2

√
m

+
1√
N2

)
+ poly log(d)

(
rP · r

3P/2

√
N2

+ rP ·
(
rP/2

√
m

+
1√
N2

))
+ τ

≲poly log(d)

(
r5P/2

√
N2

+
r3P/2

√
m

)
+ τ.

For ‖Γ‖, we obtain

‖Γ‖ ≤ ‖A‖‖D‖‖A‖

≤
q∑

i=1

‖ai‖2 · √q

= Õ

(√
r5P /m2

)
.

D. Generalization Error Analysis and Proof of Theorem 1
D.1. Rademacher Complexity Bound

Let

FN,G,W,B =

{
(X,y,x) 7→

〈
Γσ(WX + b)y

N
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉∣∣∣∣
‖Γ‖F ≤ G, ‖w1‖2, · · · , ‖wm‖2 ≤W, |b1| · · · |bm| ≤ B

}
be the set of transformers whose parameter norms are constrained, and let

RadT (FN,G,W,B) = EX,y,x,ϵ

[
sup
f∈F

1

T

T∑
t=1

ϵtf(Xt,yt,xt)

]

be its Rademacher complexity, where ϵi ∼ Unif({±1}).

We evaluate the Rademacher complexity as follows:

Proposition 20.

RadT (FN,G,W,B) = O

(
polylog(T )

mG√
T

(
rP/2
√
d+ d

√
d
))

.

holds, when B = Od,r(1) and W = Od,r(1).
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Proof.

First,

RadT (FN,G,W,B)

= EX,y,x,ϵ

[
sup
f∈F

1

T

T∑
t=1

ϵtf(Xt,yt,xt)

]

= EX,y,x,ϵ

 sup
Γ,W ,b

1

T

T∑
t=1

ϵt

〈
Γσ(WXt + b)yt

N
,

 σ(w⊤
1 x

t + b1)
...

σ(w⊤
mxt + bm)

〉


≤ EX,y,x,ϵ

 sup
Γ,W ,b

1

T
‖Γ‖F

∥∥∥∥∥∥∥∥
T∑

t=1

ϵt
σ(WXt + b)yt

N

 σ(w⊤
1 x

t + b1)
...

σ(w⊤
mxt + bm)


⊤
∥∥∥∥∥∥∥∥
F



≤ Gm

T
EX,y,x,ϵ

sup
W ,b

∥∥∥∥∥∥∥∥
T∑

t=1

ϵt
σ(WXt + b)yt

N

 σ(w⊤
1 x

t + b1)
...

σ(w⊤
mxt + bm)


⊤
∥∥∥∥∥∥∥∥
∞


≤ Gm

TN
EX,y,x,ϵ

[
sup

w,b,w′,b′

∣∣∣∣∣
T∑

t=1

ϵt
N∑
i=1

σ(w⊤xt
i + b)ytiσ(w

′⊤xt + b′)

∣∣∣∣∣
]

≤ Gm

TN
EX,y,x,ϵ[ sup

w,b,w′,b′

T∑
t=1

ϵt
N∑
i=1

σ(w⊤xt
i + b)ytiσ(w

′⊤xt + b′)

+ sup
w,b,w′,b′

−
T∑

t=1

ϵt
N∑
i=1

σ(w⊤xt
i + b)ytiσ(w

′⊤xt + b′)]

≤ 2Gm

TN
EX,y,x,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵt
N∑
i=1

σ(w⊤xt
i + b)ytiσ(w

′⊤xt + b′)

]

≤ 2Gm

T
Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵtσ(w⊤xt + b)ytσ(w′⊤x′t + b′)

]
.

≤ 2Gm

T
ER,R′

[
Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵtσ(w⊤xt + b)ytσ(w′⊤x′t + b′)

∣∣∣∣∣AR,R′

]]
,

where
AR,R′ := {max{‖xt

1:r‖2, ‖x′t
1:r‖2}Tt=1 = R2,max{‖xt

r+1:d‖2, ‖x′t
r+1:d‖2}Tt=1 = R′2}.

We utilize multivariate contraction inequality (Maurer, 2016) to bound the last line.

Lemma 21. Let f(x, y, z) = σ(x)yσ(z), whose domain is restricted to |x| ≤ R1, |y| ≤ R2, |z| ≤ R3. Then, f is√
R2

1R
2
2 +R2

2R
2
3 +R2

3R
2
1 ≤ R1R2 +R2R3 +R3R1-Lipschitz continuous.

Lemma 22. There exists a polynomial g such that

2Gm

T
Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵtσ(w⊤xt + b)ytσ(w′⊤x′t + b′)

∣∣∣∣∣AR,R′

]

≤2
√
2GmL

T
Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

(
ϵt,1(w⊤xt + b) + ϵt,2yt + ϵt,3(w′⊤x′t + b′)

)∣∣∣∣∣AR,R′

]
,

where L = 2(W (R + R′) + B)(g(R) + τ) + (W (R + R′) + B)2. Moreover, g(z) is at most of degree P , increasing in
the region z ≥ 0, and its coefficient is O(

√∑
i c

2
i ).
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Proof. First, as ‖xt‖ ≤
√
R2 + (R′)2, |w⊤xt + b| ≤W

√
R2 + (R′)2 +B ≤W (R+R′) +B holds. Secondly,

|yt| ≤ |
P∑
i=2

ciHei(β
⊤xt

1:r)|+ τ

≤

√√√√ P∑
i=2

c2i

√√√√ P∑
i=2

Hei(β
⊤xt

1:r)
2 + τ

holds. Let Hei(z) =
∑P

j=0 hijz
j . Define f(z) as f(z) =

∑P
j=0 cjz

j where cj = maxPi=2 |hij |. Then, one can show that
Hei(z)

2 ≤ f(|z|)2 for all i and z. Moreover, f(z) is increasing in the region z ≥ 0. Using this f , we can obtain

|yt| ≤

√√√√ P∑
i=2

c2i

√√√√ P∑
i=2

f(R)2 + τ

=

√√√√ P∑
i=2

c2i
√
P − 1f(R) + τ

Then, the lemma immediately follows from vector-value contraction inequality (Maurer, 2016), by letting g(z) =√∑P
i=2 c

2
i

√
P − 1f(z).

Moreover, we can observe that

Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

(
ϵt,1(w⊤xt + b) + ϵt,2yt + ϵt,3(w′⊤x′t + b′)

)∣∣∣∣∣AR,R′

]

≤Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵt,1(w⊤xt + b) +

T∑
t=1

ϵt,2yt + sup
w,b,w′,b′

T∑
t=1

ϵt,3(w′⊤x′t + b′)

∣∣∣∣∣AR,R′

]

=Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵt,1(w⊤xt + b) + sup
w,b,w′,b′

T∑
t=1

ϵt,3(w′⊤x′t + b′)

∣∣∣∣∣AR,R′

]

=2Ex,y,x′,ϵ

[
sup
w

w⊤
T∑

t=1

ϵtxt

∣∣∣∣∣AR,R′

]
+ 2Ex,y,x′,ϵ

[
sup
b

T∑
t=1

ϵtb

∣∣∣∣∣AR,R′

]

≤2WEx


√√√√∥∥∥∥∥

T∑
t=1

ϵtxt

∥∥∥∥∥
2
∣∣∣∣∣∣∣AR,R′

+ 2BEϵ


√√√√( T∑

t=1

ϵt

)2


≤2WEx

√√√√√
∥∥∥∥∥

T∑
t=1

ϵtxt

∥∥∥∥∥
2
∣∣∣∣∣∣AR,R′

+ 2B

√√√√√Eϵ

( T∑
t=1

ϵt

)2


≤2W
√
T (R+R′) + 2B

√
T .

Finally we should evaluate

ER,R′

[
2
√
2GmL

T

(
2W
√
T (R+R′) + 2B

√
T
)]

=
mGC ′

W,B√
T

ER,R′
[
2(R+R′)(W (R+R′) +B)(g(R) + τ) + (R+R′)(W (R+R′) +B)2

]
+
mGC ′

W,B√
T

ER,R′
[
2(W (R+R′) +B)(g(R) + τ) + (W (R+R′) +B)2

]
21
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=
mG√
T
O
(
ER

[
RP+1

]
+ ER′ [R′]ER

[
RP
]
+ ER,R′ [(R+R′)3]

)
,

where C ′
W,B is a constant which only depends on W and B. in order to do so, it suffices to evaluate ER

[
Rk
]

and where
ER′

[
(R′)k

]
.

Lemma 23.
Ez1,...,z2T∼χ(r)

[
max
t∈[2T ]

zkt

]
= Or,T

((
r +
√
8r
)k/2

(1 + log T )k/4
)

holds. Note that we regard k as Or,T (1).

Proof. From the concentration inequalty for chi-squared distribution (Wainwright, 2019)[Example 2.11],

z2t ≤ r +
√

8r log(1/δ) (D.1)

holds with probability at least 1 − δ for each t. Then, equation (D.1) holds uniformly over all t with probability at least
1−2Tδ. Let Ai = (r+

√
8r log(2T · 2i))k/2. Then, with probability at least 1−2−i, maxt∈[2T ] z

k
t ≤ Ai holds. Therefore

we can divide the certain event into events with probability 1/2, 1/4, . . . , where maxt∈[2T ] z
k
t ≤ A1,maxt∈[2T ] z

k
t ≤

A2, . . . holds. It implies that

Ez1,...,z2T∼χ(r)

[
max
t∈[2T ]

zkt

]
≤

∞∑
i=1

2−i(r +
√
8r log(2T · 2i))k/2

≤ 2

∫ 1/2

0

(
r +

√
8r log

2T

t

)k/2

dt

≤
(
r +
√
8r
)k/2 ∫ 1/2

0

(√
log

2T

t

)k/2

dt

≤
(
r +
√
8r
)k/2

(1 + log T )k/4
∫ 1/2

0

(√
log

2

t

)k/2

dt.

From Lemma 23, we arrive at

RadT (FN,G,W,B) = O

(
polylog(T )

mG√
T

(
rP/2
√
d+ d

√
d
))

.

D.2. Prompt Length-free Generalization Bound

Let the ICL risk for prompt length N be

RN (Γ,W , b) = EX,y,x,y[|f(X1:N ,y1:N ,x;W ,Γ, b)− y|],

where the length of X1:N and y1:N is fixed to N . In this section, we upper bound |RN (Γ,W , b)−RM (Γ,W , b)| under
the condition N,M ≳ rΘ(P ).

Proposition 24. Assume that ‖wj,1:r‖ = O(1),‖wj,1:r‖ = O(
√

r/d) and |bj | = O(1) for each j ∈ [m]. Then,

|RN (Γ,W , b)−RM (Γ,w, b)| = Õ
(
‖Γ‖F

√
r2m2/N + r2m2/M

)
holds.
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Proof. Note that

|RN (Γ,W , b)−RM (Γ,w, b)|
≤E[|f(X1:N ,y1:N ,x;W ,Γ, b)− f(X1:M ,y1:M ,x;W ,Γ, b)|]

=E


∣∣∣∣∣∣∣
〈
Γ

(
σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉
∣∣∣∣∣∣∣


≤‖Γ‖FE

∥∥∥∥(σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)∥∥∥∥
∥∥∥∥∥∥∥
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


∥∥∥∥∥∥∥


≤‖Γ‖FE

[∥∥∥∥(σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)∥∥∥∥2
]1/2

E


∥∥∥∥∥∥∥
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


∥∥∥∥∥∥∥
2

1/2

First let us bound E
[∥∥∥(σ(WX1:N+b)y1:N

N − σ(WX1:M+b)y1:M

M

)∥∥∥2].

E

[∥∥∥∥(σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)∥∥∥∥2
]

≤
m∑
j=1

E

( 1

N

N∑
i=1

σ(w⊤
j xi + bj)yi −

1

M

M∑
i=1

σ(w⊤
j xi + bj)yi

)2


For simplicity, we drop the subscript j and obtain

E

( 1

N

N∑
i=1

σ(w⊤xi + b)yi −
1

M

M∑
i=1

σ(w⊤xi + b)yi

)2


≤2E

( 1

N

N∑
i=1

σ(w⊤xi + b)yi − E
[
σ(w⊤xi + b)yi

])2


+2E

( 1

M

M∑
i=1

σ(w⊤xi + b)yi − E
[
σ(w⊤xi + b)yi

])2


≤ 2

N
E
[(
σ(w⊤xi + b)yi

)2]
+

2

M
E
[(
σ(w⊤xi + b)yi

)2]
≤ 2

N
E
[(
(w⊤xi + b)yi

)2]
+

2

M
E
[(
(w⊤xi + b)yi

)2]
≤ 4

N
E
[
(w⊤xi)

2y2i + b2y2i
]
+

4

M
E
[
(w⊤xi)

2y2i + b2y2i
]

≤ 4

N
E
[
(w⊤xi)

2y2i
]
+

4

M
E
[
(w⊤xi)

2y2i
]
+O(1/N + 1/M).

Then, we need to evaluate E
[
(w⊤xi)

2y2i
]
; we need to be careful to obtain a tight bound for this value. Using the fact that

pretrained w almost aligns to the true subspace S , we obtain

E
[
(w⊤xi)

2y2i
]
≤ E

[
(w⊤

1:rxi,1:r +w⊤
r+1:dxi,r+1:d)

2y2i
]

≤ 2‖w1:r‖2E
[
(xi,1:r)

2y2i
]
+ 2‖wr+1:d‖2E

[
(xi,r+1:d)

2y2i
]
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= O(1) · E
[
(xi,1:r)

2y2i
]
+ Õ(r/d) · E

[
(xi,r+1:d)

2y2i
]
.

Moreover,

E
[
x2
1y

2
]

≤2Ec,β,ς

[
x2
1(

P∑
i=2

c2i )(

P∑
i=2

Hei(β
⊤x)2)

]
+ 2Ec,β,ς

[
x2
1ς

2
]

≲
P∑
i=2

Ec,β,ς

[
x2
1Hei(β

⊤x)2
]
+O(1)

≤
P∑
i=2

E
[
x4
1

]1/2E[Hei(β⊤x)4
]1/2

+O(1) = O(1).

Then, we obtain E
[
(w⊤xi)

2y2i
]
= Õ(r). Thus, an upper bound

E

[∥∥∥∥(σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)∥∥∥∥2
]
= Õ(rm/N + rm/M)

is obtained.

Second, we bound E


∥∥∥∥∥∥∥
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


∥∥∥∥∥∥∥
2
 as

E


∥∥∥∥∥∥∥
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


∥∥∥∥∥∥∥
2
 ≤ 2

m∑
j=1

E[(w⊤
j x)

2 + b2j ]

≤ 2

m∑
j=1

(b2j + 4‖wj,1:r‖2E[‖x1:r‖2] + 4‖wj,r+1:d‖2E[‖xr+1:d‖2])

= Õ(mr).

Putting all things together, we arrive at

|RN (Γ,W , b)−RM (Γ,w, b)|

≤‖Γ‖FE

[∥∥∥∥(σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)∥∥∥∥2
]1/2

E


∥∥∥∥∥∥∥
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


∥∥∥∥∥∥∥
2

1/2

=Õ
(
‖Γ‖F

√
r2m2/N + r2m2/M

)
.

D.3. Proof of Theorem 1

Finally we are ready to prove our main theorem.

Proof. [Proof of Theorem 1] Let Γ̄ be the attention matrix constructed in Theorem 8 and let Γ∗ be the minimizer of the
ridge regression problem (line 6 in Algorithm 1). By the equivalence between optimization with L2 regularization and
norm-constrained optimization, there exists λ2 > 0 such that

‖Γ∗‖F ≤ ‖Γ̄‖F = O(
√
r5P /m),
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1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)2

≤ 1

T2

T1+T2∑
t=T1+1

(yt − f(Xt,yt,xt;W
(1),Γ∗, b))2

≤ 1

T2

T1+T2∑
t=T1+1

(yt − f(Xt,yt,xt;W
(1), Γ̄, b))2.

Then, from Theorem 8,

1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)| − τ ≲ poly log(d)

(
r5P/2

√
N2

+
r3P/2

√
m

)
holds.

We first evaluateRN2
(f)− τ where f = f(Xt,yt,xt;W

(1),Γ∗, b): First,

RN2
(f)− τ

=
1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

+

(
RN2

(f)− 1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)
− τ

≲ poly log(d)

(
r5P/2

√
N2

+
r3P/2

√
m

)
+ sup

f∈FN,G,W,B

(
RN2

(f)− 1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)

holds, noting that f(Xt,yt,xt;W
(1),Γ∗, b) ∈ FN,G,W,B with W = O(1), B = O(1) and G = Õ(

√
r5P /m2). We can

evaluate the expectation value of the second term of the last line using the Rademacher complexity as

E

[
sup

f∈FN,G,W,B

(
RN2

(f)− 1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)]

= EX,y,x,y

[
sup

f∈FN,G,W,B

(
EX,y,x,y[|y − f(X,y,x;W (1),Γ∗, b)|]

− 1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)]

≤ 2EX,y,x,y,ϵ

[
sup

f∈FN,G,W,B

1

T2

T1+T2∑
t=T1+1

ϵt|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

]
(ϵt

i.i.d.∼ Unif{±1})

≲ RadT2
(FN,G,W,B) + Ey,ϵ

[
1

T2

T1+T2∑
t=T1+1

ϵtyt

]
(∵ Eq.(1) in (Maurer, 2016))

≲ RadT2
(FN,G,W,B) + Ey,ϵ

( 1

T2

T1+T2∑
t=T1+1

ϵtyt

)2
1/2

≤ RadT2(FN,G,W,B) +
1√
T2

E
[
y2
]1/2

= Õ

(
polylog(T2)

r5P/2

√
T2

(
rP/2
√
d+ d

√
d
))

by Proposition 20 and E[y2] = O(1) from Assumption 1. Then, from Markov’s in-
equality, we have supf∈FN,G,W,B

(
RN2

(f)− 1
T2

∑T1+T2

t=T1+1 |yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)
=
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Õ
(
polylog(T2)

r5P/2
√
T2

(
rP/2
√
d+ d

√
d
))

with probability at least 1 − δ where δ is a sufficiently small constant.
Then, we obtain

RN2
(f)− τ = poly log(d)

(
r5P/2

√
N2

+
r3P/2

√
m

+ polylog(T2)
r5P/2

√
T2

(
rP/2
√
d+ d

√
d
))

.

Now we have done the upper bound for RN2
(f). For RN∗(f), we can use Proposition 24 because we have Corollary 7

and can ensure that the assumptions of Proposition 24 are satisfied.

E. Derivation of Simplified Self-attention Module
We derive equation (2.3), following the same line as (Zhang et al., 2023). Recall that the prediction of y by the original
self-attention module is defined as the right-bottom entry of

fAttn = E +W PW V E · softmax

(
(WKE)⊤WQE

ρ

)
,

where the embedding matrix is given as (2.2). As mentioned in Section 2.2, we set ρ = N , omit softmax and merge
W PW V as W PV ∈ R(m+1)×(m+1) and (WK)⊤WQ as WKQ ∈ R(m+1)×(m+1).

Now, we further assume that W PV WKQ are in the form as

W PV =

[
∗ ∗

01×m v

]
,WKQ =

[
K ∗

01×m ∗

]
.

Then, we obtain the simplified form

f̃Attn(E;WK ,WQ,W V ,W P ) = E +

[
∗ ∗

01×m v

]
E ·

E⊤
[

K ∗
01×m ∗

]
E

N
. (E.1)

Note that we adopt the right-bottom entry
(
f̃Attn(E;WK ,WQ,W V ,W P )

)
m+1,N+1

as prediction for a response of a

query. Then, by (E.1), we obtain

(
f̃Attn(E;WK ,WQ,W V ,W P )

)
m+1,N+1

=

[01×m v
]
E ·

E⊤
[

K ∗
01×m ∗

]
E

N


m+1,N+1

=
[
01×m v

]
E ·

E⊤
[

K ∗
01×m ∗

]
σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)
0


N

=v
[
y1 · · · yN 0

]
·

E⊤

K
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


0


N
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= v
[
y1 · · · yN

]
·

σ(WX + b)⊤K

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)


N

=

〈
vK⊤σ(WX + b)y

N
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉.
Letting Γ = vK⊤ yields equation (2.3).
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