
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Transformer Efficiently Learns Low-dimensional Target Functions In-context

Anonymous Authors1

Abstract

Transformers can efficiently learn in-context
from example demonstrations. We study ICL of
a nonlinear function class via transformer with
a nonlinear MLP layer: given a class of single-
index target functions f∗(x) = σ∗(〈x,β〉),
where the index features β ∈ Rd are drawn from
a rank-r � d subspace, we show that a non-
linear transformer optimized by gradient descent
learns f∗ in-context with a prompt length that
only depends on the dimension of function class
r. In contrast, an algorithm that directly learns
f∗ on the test prompt yields a statistical com-
plexity that scales with the ambient dimension
d. Our result highlights the adaptivity of ICL to
low-dimensional structures of the function class.

1. Introduction
Transformers (Vaswani et al., 2017) possess the remark-
able ability of in-context learning (ICL) (Brown et al.,
2020), whereby the model constructs a predictor from a
prompt consisting of pairs of labeled examples without up-
dating any parameters. A common explanation is that the
trained transformer can implement a learning algorithm,
such as gradient descent on the in-context examples, in its
forward pass (Dai et al., 2022; Von Oswald et al., 2023).

Many recent theoretical works focus on learning linear
functions using linear transformers, and it can be shown
that minima of the pretraining loss implements one (pre-
conditioned) gradient descent step on the least squares ob-
jective computed on the test prompt (Zhang et al., 2023;
Ahn et al., 2023; Mahankali et al., 2023).

The motivation of our work is the observation that the sim-
ple setting of learning linear models with linear transform-
ers does not fully capture the statistical efficiency and adap-
tivity of ICL. Specifically,

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

• A linear transformer has limited expressivity: specif-
ically, the pretrained linear transformer cannot outper-
form directly solving linear regression on the test prompt.
Thus, we ask the following question: With the aid of
MLP layer, can a pretrained transformer learn a non-
linear function class in-context, and outperform simple
baselines such as one gradient step on the test prompt?

• A key feature of ICL is the adaptivity to structure of the
function class; for example, prior empirical results have
shown that transformers may match the performance of
ridge regression or LASSO, depending on sparsity of
the pretrained task distribution (Garg et al., 2022). Such
adaptivity cannot be fully explained by the one gradient
step algorithm on the test prompt, which does not take
into account the “prior” distribution of target functions.
Hence a natural question to ask is that, “Can a pretrained
transformer adapt to certain structures of the target func-
tion class, and how does such adaptivity contribute to the
statistical efficiency of ICL?”

1.1. Our Contributions

Gaussian single-index models. To address the above
questions, we study the in-context learning of the single-
index function class, where the t-th pretraining task is
constructed as x1, . . . ,xN ,x

i.i.d.∼ N (0, Id), yi =
σt
∗(〈xi,βt〉) + ςi, where σt

∗ : R → R is the link function,
and βt ∈ Rd is the index feature vector which is randomly
drawn from some fixed rank-r subspace for some r ≤ d.
Thus, outputs only depend on the direction of βt in the d-
dimensional input space (See Section 2 for details). Due to
the nonlinear link function, single-index targets cannot be
learned by linear transformers.

For this function class, the statistical efficiency of simple
algorithms that can be implemented on the in-context ex-
amples has been extensively studied: given a link function
with degree P and information exponent k (defined as the
index of the smallest non-zero coefficient in the Hermite
expansion of σ∗), we know that kernel methods can learn
the function with n ≳ dP samples (Ghorbani et al., 2021;
Donhauser et al., 2021), whereas two-layer neural network
trained by gradient descent can achieve a better sample
complexity n ≳ dΘ(k) (Ben Arous et al., 2021; Bietti et al.,
2022). These serve as a baseline for comparing the statisti-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Transformer Efficiently Learns Low-dimensional Target Functions In-context

cal efficiency of ICL.

Moreover, in our problem setting, there is a low-
dimensional structure: the subspace from which βt is
drawn is low-dimensional. In particular, when r � d, we
expect the transformer to efficiently extract the rank-r sub-
space during pretraining, and hence outperform baseline al-
gorithms that directly learn the target function from the test
prompt, which cannot make use of such information.

Transformer learns single-index models in-context.
We characterize the sample complexity of learning the
single-index model in-context, using a transformer with a
nonlinear MLP block and linear self-attention module, op-
timized by gradient descent.

Informally speaking, our main theorem states that the
length of the test prompt N∗ required to achieve suffi-
ciently small generalization error (See (2.1) for the defi-
nition) is rΘ(P), where P is the highest degree of the link
function. Most importantly, it does not depend on the am-
bient dimension d (up to polylogarithmic term), but only
the dimension r of the feature subspace. When r � d, we
see a separation between ICL and algorithms that directly
learn the single-index function from the test prompt such
as gradient descent (where the sample complexity scales
with d). This highlights the benefit of ICL in adapting to
low-dimensional structures of the target function class, by
featuer extraction via pretraining.

1.2. Related Works

Recent works (Zhang et al., 2023; Ahn et al., 2023;
Mahankali et al., 2023; Wu et al., 2023; Zhang et al., 2024)
studied the training of linear transformer to learn lin-
ear target functions in-context. Similar theoretical works
are also established for transformers with SoftMax atten-
tion (Huang et al., 2023; Nichani et al., 2024; Chen et al.,
2024). Our setting closely resembles (Kim & Suzuki,
2024), where a nonlinear MLP block is followed by a lin-
ear attention layer; the main difference is that we establish
learnability for a concrete nonlinear function class, whereas
(Kim & Suzuki, 2024) focused on global convergence of
optimization. Finally, (Cheng et al., 2023) showed that
transformers learn nonlinear functions in-context via a
functional gradient update, but no statistical guarantees or
optimization complexity were given.

The statistical and computational complexity of learn-
ing low-dimensional functions has been extensively stud-
ied. Typical target functions include single-index mod-
els (Ben Arous et al., 2021; Ba et al., 2022; Bietti et al.,
2022; Mousavi-Hosseini et al., 2023; Damian et al., 2023;
Ba et al., 2023) and multi-index models (Damian et al.,
2022; Abbe et al., 2022; 2023; Bietti et al., 2023).

2. Problem Setting
Notations. We use boldface to represent vectors, matri-
ces, and tensors. Let N be a nonnegative integer. Then,
[N] denotes the set {n ∈ Z | 1 ≤ n ≤ N}. For a non-
negative integer i, the i-th Hermite polynomial is defined

as Hei(z) = e
z2

2
di

dzi e
−z2

2 . For a set S, Unif(S) denotes
the uniform distribution over S. We denote the unit sphere
{x ∈ Rd | ‖x‖ = 1} by Sd−1. Õ(·), Ω̃(·) represent O(·)
and Ω(·) notations where polylogarithmic terms are hidden.
If necessary, we specify the targeted variables in O,Ω, Õ
and Ω̃, as Od(·) for example. We write a ≲ b when there
exists a constant c such that a ≤ cb holds.

2.1. Data Generating Process

First, we introduce the basic setting of in-context learning
(Brown et al., 2020) of simple function classes as investi-
gated in (Garg et al., 2022; Akyürek et al., 2022). In each
inference (test) task, learners are fed a sequence of inputs
and outputs (x1, y1, . . . ,xN , yN ,x) referred to as prompt,
where xi,x ∈ Rd and yi ∈ R. The labeled examples
X =

(
x1 · · · xN

)
∈ Rd×N , y =

(
y1 · · · yN

)⊤ ∈
RN are called context, and x is the query. We assume that
the output yi can be expressed as yi = f∗(xi) + ςi,where
f∗ is the true function describing input-output relation and
ςi is label noise. The task is to predict the response y =
f∗(x) + ς corresponding to the query x given the context,
without updating model parameter. We specify the distri-
bution of inputs and outputs as follows:
Assumption 1. The prompt (x1, y1, . . . ,xN , yN ,x) and

the response y is generated as x1,x2, . . . ,xN ,x
i.i.d.∼

N (0, Id), yi = f∗(xi) + ςi, y = f∗(x) + ς, where

ςi, ς
i.i.d.∼ Unif({−τ, τ}), and the true function f∗ is gener-

ated from the following distribution.

• Let S be an r ≤ d-dimensional linear subspace of Rd.
Draw a vector β uniformly from the unit sphere in S ,
i.e., from {β | β ∈ S, ‖β‖ = 1}.

• Draw Hermite coefficients {ci}Pi=2 from a distribution
satisfying E[c2] 6= 0,

∑P
i=2 c

2
i = Θd,r(1) (a.s.), and

(c2, . . . , cP) 6= (0, . . . , 0) (a.s.). Then, we define
f∗(xi) = σ∗(〈xi,β〉), where σ∗(z) =

∑P
i=2 ciHei(z).

Throughout the paper, we assume that P � d, r and
r � d: specifically, we take P = Od,r(1). This entails that
the class of target functions is low-dimensional, and such
structure should be adapted by the transformer via pretrain-
ing. As mentioned in the introduction section, the difficulty
to learn a single-index model is governed by the informa-
tion exponent of the link function σ∗: when we conduct
the Hermite expansion as σ∗(z) =

∑
i≥0 ci

Hei(z)
i! , then the

information exponent is defined by min{i | ci 6= 0}. In

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Transformer Efficiently Learns Low-dimensional Target Functions In-context

the case of Assumption 1, this is equal to the minimal i
such that ci 6= 0. Therefore, our case allows that exponent
changes across the tasks, and models the situation where
the difficulty to learn f∗ varies across tasks.

Let f(X,y,x) be an estimator for y. We evaluate the
model performance by the expected ICL risk defined as

RN (f) := EX,y,x,y[|f(X,y,x)− y|], (2.1)

where the expectation is taken over prompts with length N
and responses.

2.2. Student Model: transformer with Nonlinear MLP
Layer

As a learning model capable of in-context learning, we
consider a transformer composed of a single-layer self-
attention module preceded by an embedding module us-
ing a nonlinear two-layer perceptron. Let E ∈ Rde×dN

be an embedding matrix constructed using a prompt
(x1, y1, . . . ,xN , yN ,x). Using single-layer SoftMax-
based self-attention module (Vaswani et al., 2017), the
predinction of y is constructed as the right-bottom entry
of E + W PW V E · softmax

(
(WKE)⊤WQE

ρ

)
, where ρ

is a normalization constant and WK ,WQ ∈ Rdk×de ,
W V ∈ Rdv×de and W P ∈ Rde×dv are parameters called
key, query, value and projection matrix, respectively. In
this paper, we take E as

E =

[
σ(WX + b) σ(Wx+ b)

y⊤ 0

]
. (2.2)

Now σ(WX + b) is a m × N matrix whose (i, j)-
th element is σ(w⊤

i xj + bi) and σ(Wx + b) is a m-
dimensional vector whose i-th element is σ(w⊤

i x + bi),
where w1, . . . ,wm ∈ Rd and b1, . . . , bm ∈ R are param-
eters and σ : R → R is a nonlinear activation function. In
this paper, we use σ(z) = ReLU(z) = max{z, 0}.

In other words, we consider a two-layer neural network
whose width is m, and take the output of each neuron
σ(w⊤x + b) at the hidden layer as the embedding. Using
the output of a neural network as an embedding is adopted
in some recent works (Guo et al., 2023; Kim & Suzuki,
2024). This MLP layer can extract features of the ground
truth efficiently.

We further simplify the original self-attention module fol-
lowing the same line as (Wu et al., 2023; Zhang et al.,
2023): we omit the softmax activation, set ρ = dN − 1 =
N , merge some parameter matrices and let some entries in
the merged matrices as zero. We can show that the predic-
tion of the output for x by the simplified transformer can

Algorithm 1 Pretraining of transformer with MLP layer

1: Input: Learning rate η1, weight decay rate λ1, λ2,
prompt length N1, N2 and number of tasks T1, T2.

2: Draw data {(xt,1, yt,1, . . . ,xt,N1
, yt,N1

,xt, yt)}T1
t=1

with prompt length N1 and
{(xt,1, yt,1, . . . ,xt,N2

, yt,N2
,xt, yt)}T1+T2

t=T1+1 with
prompt length N2.

3: Initialize MLP weights as w
(0)
j ∼ Unif(Sd−1) (j ≤

m/2) and w
(0)
j = w

(0)
m−j (j > m/2), biases as

bj = 0 (j ∈ [m]), and the attention matrix diago-
nally as Γ

(0)
j,j ∼ Unif({±1}) (j ≤ m/2) and Γ

(0)
j,j =

−Γm−j,m−j (j > m/2).

4: w
(1)
j ← w

(0)
j − η1

[
∇wj
R̂(f) + λ1w

(0)
j

]
5: Re-initialize b as bj ∼ Unif([−1, 1]) (j ∈ [m])

6: Find the minimizer Γ∗ of minΓ
1
T2

∑T1+T2

t=T1+1(yt −
f(Xt,yt,xt;W

(1),Γ, b))2 + λ2‖Γ‖2F
7: Output: parameters (W (1),Γ∗, b)

be written as

f(X,y,x;W ,Γ, b) =

〈
Γσ(WX + b)y

N
,σ(Wx+ b)

〉
(2.3)

where Γ is a parameter matrix. See Appendix E for the
derivation of equation (2.3). We call Γ the attention matrix.

2.3. Pretraining: Empirical Risk Minimization via
Gradient Descent

We pretrain parameters of the transformer (2.3) by
the gradient-based algorithm, written in Algorithm 1.
Throughout the paper, we assume that the width m is even.

In Algorithm 1, we first conduct one-step gradient descent
for regularized empirical risk R̂(f) := 1

T1

∑T1

t=1(yt −
f(Xt,yt,xt;W ,Γ, b))2 + λ1‖w‖2 and update the MLP
weight w. Secondly, we conduct standard ridge regres-
sion with respect to the attention matrix Γ. Note that the
minimizer can be efficiently found because the optimiza-
tion problem is convex with respect to Γ. The symmetric
initialization (line 3 in Algorithm 1) ensures that the out-
put of the transformer is zero at initialization and removes
the interaction between neurons: it is used in some recent
works (Chizat et al., 2019; Damian et al., 2022).

3. Main Result: Transformer Learns
Single-index Models In-context

3.1. Main Theorem

We state our main theorem to describe ICL ability of trans-
formers. See Appendix D.3 for the proof.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Transformer Efficiently Learns Low-dimensional Target Functions In-context

Theorem 1. Assume that the data distribution is specified
as Assumption 1. Consider pretraining transformer (2.3)
via Algorithm 1 with m ≳ rP ,T1 = Ω̃(d4), N1 = Ω̃(d2),

η1 = Ω

(√
d3

r
1

poly log d

)
and λ1 = η−1

1 . Then, with prob-

ability at least 0.99 over the data distribution and the ran-
dom initialization, there exists λ2 > 0 such that the ICL
risk with prompt length N∗ is upper bounded as

RN∗(f)− τ ≲r3P/2

√
m

+ polylog(T2)
r5P/2

√
T2

d
√
d

+
√
r5P

√
r2

N2
+

r2

N∗ ,

where f = f(X,y,x;W (1),Γ∗, b) and dependence on
poly log(d) in the right-hand side is ignored.

We can evaluate the sample and prompt-length complexity
of Algorithm 1 using Theorem 1: to achieve RN∗(f) ≤
τ + ϵ for given ϵ > 0, it is sufficient to set m = Ω̃(r3P),
T2 = Ω̃(r5P d3) and N2, N

∗ = Ω̃(r5P+2). Most impor-
tantly, at the test time, the required prompt length N∗ only
depends on the inner dimension r, up to polylogarithmic
terms. We emphasize that the nonlinear link function σ∗
and the true direction β ∈ S varies across tasks, and then
the difficulty to learn the input-output relation varies. Nev-
ertheless, Theorem 1 shows that transformers can learn the
relation on a short prompt which does not scale with d.

As we have nonlinearlity in our model, empirical risk mini-
mization problem becomes nonconvex and establishing op-
timization guarantee via gradient descent becomes more
difficult than the linear setting. We established the guaran-
tee by making use of one-step gradient descent, which has
been considered in literatures of feature learning (Ba et al.,
2022; Damian et al., 2022) and which has successfully
yielded end-to-end optimization guarantee. Now we have
to extend these results utilizing discussions specific to ICL
as we have an attention layer.

Comparison against baseline methods. Another aspect
specific to our result is that we can say transformers can
outperform learning algorithms that directly act on test
prompts: a lot of works (Zhang et al., 2023; Ahn et al.,
2023; Mahankali et al., 2023; Wu et al., 2023; Zhang et al.,
2024) discussed linear transformers, but due to the linear-
ity of the studied transformer, ICL cannot outperform linear
estimators on the test prompt.

Let us concretely compare our result with algorithms act-
ing on the test prompt: these algorithms read each con-
text (x1, y1, . . . ,xN , yN) and update their parameters,
then make a prediction of the response y for the query
x. This is simply a regression problem to estimate a
single-index model f∗(x) = σ∗(〈x,β〉) using samples

(x1, y1, . . . ,xN , yN). Thus, the required prompt length is
equal to the number of samples needed to learn the single-
index model. Sample complexities for various algorithms
to learn single-index models were shown: for linear meth-
ods such as kernel methods, dΩ(P) samples are necessary
to achieve ϵ-error, that is, to achieve Ex[|f(x)−y|] ≤ τ+ϵ
for given ϵ > 0 where f is the estimator (Ghorbani et al.,
2021; Donhauser et al., 2021). On the other hand, neural
networks can learn single-index models with dΩ(k∗) sam-
ples (Ben Arous et al., 2021; Bietti et al., 2022) by gradient
descent, where k∗ is the information exponent of σ∗, i.e.,
the minimal i such that ci 6= 0. However, for the easiest
case where c2 6= 0 and thus k∗ = 2, the sample complexity
is at least linear in the ambient dimension d. Moreover,
a lower bound is known for a general framework of al-
gorithms called CSQ algorithm, which includes stochastic
gradient descent on neural networks: any CSQ algorithm
needs Ω(dk

∗/2) samples to achieve ϵ-error (Damian et al.,
2022). Therefore, if we run these learning algorithms on
each test prompt, they require the prompt length which de-
pends on poly(d). Thus when r � d, pretrained transform-
ers can capture the input-output relation in-context with a
significantly shorter prompt length.

Discussion on the Mechanism. The proof of Theorem 1
is composed of several parts. First, we show that after one-
step gradient descent, w(1) aligns with S , i.e., w(1) is al-
most contained in S (See Appendix B for details). Sec-
ondly, we show in Appendix C that there is an attention
matrix Γ such that the entire transformer approximates the
true function well, which is crucial in the generalization er-
ror analysis (Appendix D). Thus, we can say that the MLP
layer succeeds in “memorizing” the low-dimensional fea-
ture space even with the single step gradient descent, and
the attention matrix works to approximate the link function
correctly.

4. Conclusion and Future Direction
In this work, we studied the ICL ability of transformers and
showed that they can adapt to the intrinsic low-dimensional
structure of nonlinear true functions, and then outper-
formed algorithms working directly on the test prompt, in
that the required prompt length only scaled with the inner
dimension r � d.

There are several important future challenges. It is intrigu-
ing to explore the regime r ≈ d, where memorizing the
feature space S by pretraining is no longer meaningful. Ex-
tending our result to multi-index models is also an inter-
esting future direction. Finally, we used a nonlinear MLP
layer with a linear self-attention module, but it is important
to study the ICL on nonlinear functions via nonlinear self-
attention such as softmax-based self-attention modules.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Transformer Efficiently Learns Low-dimensional Target Functions In-context

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abbe, E., Adsera, E. B., and Misiakiewicz, T. The merged-

staircase property: a necessary and nearly sufficient con-
dition for sgd learning of sparse functions on two-layer
neural networks. In Conference on Learning Theory, pp.
4782–4887. PMLR, 2022.

Abbe, E., Adsera, E. B., and Misiakiewicz, T. SGD learn-
ing on neural networks: leap complexity and saddle-to-
saddle dynamics. In The Thirty Sixth Annual Conference
on Learning Theory, pp. 2552–2623. PMLR, 2023.

Ahn, K., Cheng, X., Daneshmand, H., and Sra, S. Trans-
formers learn to implement preconditioned gradient de-
scent for in-context learning. Advances in Neural Infor-
mation Processing Systems, 36, 2023.

Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and
Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. arXiv preprint
arXiv:2211.15661, 2022.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., Wu, D., and
Yang, G. High-dimensional asymptotics of feature learn-
ing: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:
37932–37946, 2022.

Ba, J., Erdogdu, M. A., Suzuki, T., Wang, Z., and Wu, D.
Learning in the presence of low-dimensional structure:
A spiked random matrix perspective. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=HlIAoCHDWW.

Ben Arous, G., Gheissari, R., and Jagannath, A. Online
stochastic gradient descent on non-convex losses from
high-dimensional inference. The Journal of Machine
Learning Research, 22(1):4788–4838, 2021.

Bietti, A., Bruna, J., Sanford, C., and Song, M. J. Learning
single-index models with shallow neural networks. Ad-
vances in Neural Information Processing Systems, 35:
9768–9783, 2022.

Bietti, A., Bruna, J., and Pillaud-Vivien, L. On learning
Gaussian multi-index models with gradient flow. arXiv
preprint arXiv:2310.19793, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sas-
try, G., Askell, A., et al. Language models are few-shot

learners. Advances in neural information processing sys-
tems, 33:1877–1901, 2020.

Chen, S., Sheen, H., Wang, T., and Yang, Z. Train-
ing dynamics of multi-head softmax attention for in-
context learning: Emergence, convergence, and optimal-
ity. arXiv preprint arXiv:2402.19442, 2024.

Cheng, X., Chen, Y., and Sra, S. Transformers implement
functional gradient descent to learn non-linear functions
in context. arXiv preprint arXiv:2312.06528, 2023.

Chizat, L., Oyallon, E., and Bach, F. On lazy training in
differentiable programming. Advances in neural infor-
mation processing systems, 32, 2019.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and
Wei, F. Why can gpt learn in-context? language models
implicitly perform gradient descent as meta-optimizers.
arXiv preprint arXiv:2212.10559, 2022.

Damian, A., Lee, J., and Soltanolkotabi, M. Neural net-
works can learn representations with gradient descent. In
Conference on Learning Theory, pp. 5413–5452. PMLR,
2022.

Damian, A., Nichani, E., Ge, R., and Lee, J. D. Smoothing
the landscape boosts the signal for SGD: Optimal sample
complexity for learning single index models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/
forum?id=73XPopmbXH.

Donhauser, K., Wu, M., and Yang, F. How rotational in-
variance of common kernels prevents generalization in
high dimensions. In International Conference on Ma-
chine Learning, pp. 2804–2814. PMLR, 2021.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari,
A. Linearized two-layers neural networks in high dimen-
sion. The Annals of Statistics, 49(2):1029–1054, 2021.

Götze, F., Sambale, H., and Sinulis, A. Concentration in-
equalities for polynomials in α-sub-exponential random
variables. 2021.

Guo, T., Hu, W., Mei, S., Wang, H., Xiong, C., Savarese,
S., and Bai, Y. How do transformers learn in-context
beyond simple functions? a case study on learning with
representations. arXiv preprint arXiv:2310.10616, 2023.

Huang, Y., Cheng, Y., and Liang, Y. In-context conver-
gence of transformers. arXiv preprint arXiv:2310.05249,
2023.

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Transformer Efficiently Learns Low-dimensional Target Functions In-context

Kim, J. and Suzuki, T. Transformers learn nonlinear fea-
tures in context: Nonconvex mean-field dynamics on the
attention landscape. arXiv preprint arXiv:2402.01258,
2024.

Mahankali, A., Hashimoto, T. B., and Ma, T. One step
of gradient descent is provably the optimal in-context
learner with one layer of linear self-attention. arXiv
preprint arXiv:2307.03576, 2023.

Maurer, A. A vector-contraction inequality for rademacher
complexities. In Algorithmic Learning Theory: 27th In-
ternational Conference, ALT 2016, Bari, Italy, October
19-21, 2016, Proceedings 27, pp. 3–17. Springer, 2016.

Mousavi-Hosseini, A., Park, S., Girotti, M., Mitliagkas,
I., and Erdogdu, M. A. Neural networks efficiently
learn low-dimensional representations with SGD. In The
Eleventh International Conference on Learning Repre-
sentations, 2023.

Nichani, E., Damian, A., and Lee, J. D. How transform-
ers learn causal structure with gradient descent. arXiv
preprint arXiv:2402.14735, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In International Conference on Machine Learning, pp.
35151–35174. PMLR, 2023.

Wainwright, M. J. High-dimensional statistics: A non-
asymptotic viewpoint, volume 48. Cambridge university
press, 2019.

Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q., and
Bartlett, P. L. How many pretraining tasks are needed for
in-context learning of linear regression? arXiv preprint
arXiv:2310.08391, 2023.

Zhang, R., Frei, S., and Bartlett, P. L. Trained trans-
formers learn linear models in-context. arXiv preprint
arXiv:2306.09927, 2023.

Zhang, R., Wu, J., and Bartlett, P. L. In-context learn-
ing of a linear transformer block: Benefits of the mlp
component and one-step gd initialization. arXiv preprint
arXiv:2402.14951, 2024.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Transformer Efficiently Learns Low-dimensional Target Functions In-context

A. Preliminaries
By coordinate transformation, without loss of generality we can assume that S = {(x1, . . . , xr, 0, . . . , 0) | x1, . . . , xr ∈
R} and β ∼ Unif(Sr−1), i.e., β ∼ Unif({(β1, . . . , βr) | β2

1 + · · · + β2
r = 1}). Therefore, we assume this in the entire

proof. For a vector w, we use wa:b for a ≤ b to denote the vector [wa, wa+1, . . . , wb]
⊤.

A.1. Definition of the Term “With High Probability”

We sometimes use the term “an event A occurs with high probability”. Now we explain the definition of this.
Definition 2. We say that an event A occurs with high probability when there exists a sufficiently large constant C∗ which
does not depend on the ambient dimension d and

Pr[A] ≥ 1− poly(d)d−C∗

holds.

Note that if A1, . . . , AM occurs with high probability where M = poly(d), then A1∩· · ·∩AM occurs with high probability.

A.2. Tensors

In this paper, a k-tensor is a multidimensional array which has k indices: for example, matrices are 2-tensors. Let A be a
k-tensor. Ai1,...,ik denotes (i1, . . . , ik)-th entry of A. Let A be a k-tensor and B be a l-tensor where k ≥ l. A(B) denotes
k − l tensor whose (i1, . . . , ik−l)-th entry is

A(B)i1,...,ik−l
=

∑
j1,...,jl

Ai1,...,ik−l,j1,...,jlBj1,...,jl ,

and is defined only when sizes are compatible. If k = l, we sometimes write A(B) as A ◦ B. Let v ∈ Rd be a vector and
k be a positive integer. Then, v⊗k ∈ Rd×···×d denotes a k-tensor whose (i1, . . . , ik)-th entry is vi1 · · · vik .

Let f(x) : Rd → R be a d-variable function. A k-tensor ∇kf(x) is defined as(
∇kf(x)

)
i1,...,ik

=
∂

∂xi1

· · · ∂

∂xik

f(x).

A.3. Hermite Polynomials

We frequently use (probablists’) Hermite polynomials, which is defined by Hei(z) = e
z2

2
di

dzi e
−z2

2 , where i is a non-
negative integer. Hermite polynomials have orthogonality, in that Ez∼N (0,1)[Hei(z)Hej(z)] = i!δi,j . The Hermite ex-
pansion for σ : R → R is defined as σ(z) =

∑
i≥0

ai

i! Hei(z) where ai = Ez∼N (0,1)[σ(z)Hei(z)]. Similarly, the
multivariate Hermite expansion for f : Rd → R is defined as f(z) =

∑
i1≥0,...,id≥0

ai1,...,id

(i1)!···(id)!Hei1(z1) · · ·Heid(zd),
where ai1,...,id = Ezi,...,zd∼N (0,1)[f(z)Hei1(z1) · · ·Heid(zd)]. The coefficient ai1,...,id can also be obtained by ai1,...,id =

Ezi,...,zd∼N (0,1)

[
∂i1

∂z
i1
1

· · · ∂id

∂z
id
d

f(z)

]
.

The lemma below is useful to find a basis of the set of true functions.
Lemma 3. Suppose β ∈ S . Then,

Hep(〈x,β〉) =
p1+···+pr=p∑
p1≥0,...,pr≥0

(p1 + · · ·+ pr)!

p1! · · · pr!
· βp1

1 · · ·βpr
r ·Hep1

(x1) · · ·Hepr
(xr)

holds.

Proof. Note that Ezi,...,zr∼N (0,1)

[
∂i1

∂z
i1
1

· · · ∂ir

∂zir
r
Hep(〈x,β〉)

]
is nonzero only when i1+· · ·+ir = p. When i1+· · ·+ir =

p, then Ez1,...,zr∼N (0,1)

[
∂i1

∂z
i1
1

· · · ∂ir

∂zir
r
Hep(〈x,β〉)

]
= p!βi1

1 · · ·βir
r holds. Then, from the multivariate Hermite expansion

we obtain the claim.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Transformer Efficiently Learns Low-dimensional Target Functions In-context

B. Proofs for MLP Layer

First, note that f(Xt,yt,xt;W
(0),Γ(0), b) = 0 at initialization. Then, from line 4 of Algorithm 1, for each j ∈ [m],

w
(1)
j = 2η1

1

T

T∑
t=1

yt∇w
(0)
j
f(Xt,yt,xt;W

(0),Γ(0), b)

= 2η1Γ
(0)
j,j

(T∑
t=1

1

T
ytσ(w

(0)
j

⊤
xt)

1

N

N∑
i=1

yt,iσ
′(w

(0)
j

⊤
xt,i)xt,i

+

T∑
t=1

1

T
ytσ

′(w
(0)
j

⊤
xt)xt

1

N

N∑
i=1

yt,iσ(w
(0)
j

⊤
xt,i)

)

holds because we assumed η1 = λ−1
1 (for simplicity let T := T1 and N := N1 in this section). Here xt,i is the i-th column

of Xt and yt,i is the i-th element of yt. Now let

gT (w)

:=

(
T∑

i=1

1

T
ytσ(w

⊤xt)
1

N

N∑
i=1

yt,iσ
′(w⊤xt,i)xt,i +

T∑
i=1

1

T
ytσ

′(w⊤xt)xt
1

N

N∑
i=1

yt,iσ(w
⊤xt,i)

)

and g(w) = E[gT (w)], where the expectation is taken with respect to the data distribution. Note that w
(1)
j =

2η1Γ
(0)
j,j gT (w

(0)
j).

In this section we make

• asymptotic expansion of g(w), and

• uniform upper bound for the difference ‖g(w)− gT (w)‖.

Asymptotic Expansion of g(w). First, note that

g(w) = 2Ey[Ex[yσ
′(w⊤x)x]Ex[yσ(w

⊤x)]],

where Ey[·] means the expectation with respect to the distribution of β and {ci}.

Now let σ(z) =
∑

i≥0 ai
Hei(z)

i! be the Hermite expansion of student activation. The asymptotic expansions of
Ex[yσ

′(w⊤x)x] and Ex[yσ(w
⊤x)] are known as follows:

Lemma 4. It holds that

Ex[yσ
′(w⊤x)x] =

P∑
k=1

ak+1Ex[∇k+1f∗(x)](w
⊗k)

k!
+w

P∑
k=2

ak+2Ex[∇kf∗(x)](w
⊗k)

k!
,

Ex[yσ(w
⊤x)] =

P∑
k=2

akEx[∇kf∗(x)](w
⊗k)

k!
.

Proof. It is obtained from the proof of Lemma 7 in (Damian et al., 2022).
Then, g(w) can be expanded as

g(w) = 2Ey

[(p∑
k=1

ak+1Ex[∇k+1f∗(x)](w
⊗k)

k!

+w

p∑
k=2

ak+2Ex[∇kf∗(x)](w
⊗k)

k!

)(p∑
k=2

akEx[∇kf∗(x)](w
⊗k)

k!

)]

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Transformer Efficiently Learns Low-dimensional Target Functions In-context

=: 2Ey

[
a2Ex[∇2f∗(x)](w)

a2Ex[∇2f∗(x)](w
⊗2)

2
+ s(y,w)

]
= a22Ey[Ex[∇2f∗(x)](w)Ex[∇2f∗(x)](w

⊗2)] + 2Ey[s(y,w)].

The main term is proportional to Ey

[
(Hf∗w)(Hf∗ ◦w⊗2)

]
, where

Hf∗ = Ex[∇2f∗(x)] = 2c2ββ
⊤

be the expected Hessian of f∗. Let us calculate this main term explicitly. Recall that we assumed that β ∼ Unif(Sr−1).
Note that by letting β′ ∼ N (0,Σβ) where

Σβ =

(
Ir 0
0⊤ Od−r

)
,

and z ∼ χr independent from β, then β′ ∼ βz holds.

Now it holds that

Ey

[
(Hf∗w)(Hf∗ ◦w⊗2)

]
= Eβ,c2

[
4c22(ββ

⊤w)(ββ⊤ ◦w⊗2)
]

= 4E[c22]Eβ

[
β⊗4

]
w⊗3.

Furthermore, as

Eβ[βiβjβkβl] =



3

Ez∼χr
[z4]

(i = j = k = l ≤ r)

1

Ez∼χr [z
4]

(i = j ≤ r, k = l ≤ r, i 6= k or i = k ≤ r, j = l ≤ r, i 6= j

or i = l ≤ r, j = k ≤ r, i 6= j)

0 (otherwise)

,

it follows that

(
E[c22]Eβ

[
β⊗4

]
w⊗3

)
i
=


E[c22]

3

r(r + 2)
wi

r∑
j=1

w2
j (i ≤ r)

0 (i > r)

.

Then, we arrive at

Ey

[
(Hf∗w)(Hf∗ ◦w⊗2)

]
= E[c22]

12

r(r + 2)
‖w1:r‖22w1:r.

Next, we upper bound the residual term Ey[s(y,w)].

Lemma 5.

sup
w∼Sd−1

‖Ey[s(y,w)]‖ = O

(√
r2

d4

)
holds.

Proof. Note that

sup
w∼Sd−1

‖Ey[s(y,w)]‖ ≤ sup
w∼Sd−1

Ey[‖s(y,w)‖2]1/2.

9

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Transformer Efficiently Learns Low-dimensional Target Functions In-context

Then, by Minkowski’s inequality, it suffices to show that

Ey

[∥∥∥∥ak+1E[∇k+1f t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

∥∥∥∥2
]1/2

≲
√

r2

d4
(k ≥ 1, l ≥ 2, (k, l) 6= (1, 2))

and

Ey

[∥∥∥∥wak+2E[∇kf t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

∥∥∥∥2
]1/2

≲
√

r2

d4
(k ≥ 2, l ≥ 2).

The former is obtained by

Ey

[∥∥∥∥ak+1E[∇k+1f t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

∥∥∥∥2
]1/2

≤Ey

[∥∥∥∥ak+1E[∇k+1f t](w⊗k)

k!

∥∥∥∥4
]1/4[∥∥∥∥alE[∇lf t](w⊗l)

l!

∥∥∥∥4
]1/4

≲
√

r⌊k/2⌋

dk

√
r⌊l/2⌋

dl
.

Now, for deriving the last line, we used Corollary 9 and Lemma 24 in (Damian et al., 2022). The latter can be derived by
following the same line.

Bounding the Difference between Empirical and Population Gradient. We upper bound ‖gT (w)−g(w)‖ by extend-
ing Lemma 19 in (Damian et al., 2022). In the paper they bound the difference between empirical and population gradient
of a two-layer fully-connected neural network. However, in our case we have an attention module and nonlinear activation
appears twice in the gradient. This yields the need for using concentration argument in a “nested” way.
Lemma 6. Let

z1(w) =

T∑
t=1

1

T
ytσ(w

⊤xt)
1

N

N∑
i=1

yt,iσ
′(w⊤xt,i)xt,i

and

z2(w) =

T∑
t=1

1

T
ytσ

′(w⊤xt)xt
1

N

N∑
i=1

yt,iσ(w
⊤xt,i).

Then, with high probability over the data distribution,

sup
w∈Sd−1

‖z1(w)− E[z1(w)]‖ = Õ

((√
1

d
+

√
d

N

)√
d

T

)
,

sup
w∈Sd−1

‖z2(w)− E[z2(w)]‖ = Õ

((
1

d
+

√
d

N

)√
d

T

)
holds.

Proof. First, consider z1(w). Let ι = C logN , where C is a sufficiently large constant. From Lemma 19 in (Damian et al.,
2022), with probability at least 1− 2Ne−ι it holds that

1

N

N∑
i=1

yt,iσ
′(w⊤xt,i)xt,i ≤ E[yt,iσ′(w⊤xt,i)xt,i] + Ct

√
dιP+1

N
for all w ∈ Sd−1 (B.1)

with fixed t, where Ct is a constant which only depends on t and P . Let Rt be the right hand side of (B.1). Note that Rt =

Õ

(√
1
d +

√
dιP+1

N

)
with high probability. Moreover, from Lemma 17 in (Damian et al., 2022), yt ≤ (C ′

tι)
P/2 =: R′

t

holds with high probability. In the following, we assume that

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Transformer Efficiently Learns Low-dimensional Target Functions In-context

• (B.1) holds,

• yt ≤ R′
t holds with all t, and

• ‖xt,i‖, ‖xt‖ ≤ a
√
d holds for all t and i, where a is a sufficiently large constant.

which occurs with high probability. Let

z̃1(w) =
1

T

T∑
i=1

ytσ(w
⊤xt)vt(w)1[vt(w) ≤ Rt ∧ yt ≤ R′

t],

where vt(w) := 1
N

∑N
i=1 yt,iσ

′(w⊤xt,i)xt,i. From the assumption above, z̃1 = z1 holds uniformly over all w ∈ Sd−1.
Let us bound supw∈Sd−1 ‖z1(w)−E[z1(w)]‖ following the same line as the proof of Lemma 19 in (Damian et al., 2022).
As

z1(w)− E[z1(w)] = (z̃1(w)− E[z̃1(w)])− (E[z1(w)]− E[z̃1(w)]),

it suffices to bound supw ‖z̃1(w)− E[z̃1(w)]‖ and supw ‖E[z1(w)]− E[z̃1(w)]‖. First,

sup
w
‖E[z1(w)]− E[z̃1(w)]‖

= sup
w

∥∥E[ytσ(w⊤xt)vt(w)1[vt(w) > Rt ∨ yt > R′
t]
]∥∥

≤ sup
w

√
E[‖vt(w)‖2] · sup

w

√
E[y2t σ(w⊤xt)21[vt(w) > Rt ∨ yt > R′

t]
2]

≤ sup
w

E
[
‖vt(w)‖2

]1/2 · sup
w

E[y4t]1/4E[σ(w⊤xt)
8]1/8P[vt(w) > Rt ∨ yt > R′

t]
1/8.

Then, as supw E
[
‖vt(w)‖2

]1/2
, supw E[y4t]1/4 and supw E[σ(w⊤xt)

8]1/8 are polynomial in d, by setting C sufficiently
large, it follows that supw ‖E[z1(w)]− E[z̃1(w)]‖ = O(d−C∗

) for any C∗ ≥ 1 with high probability.

Second, let us bound supw ‖z̃1(w)−E[z̃1(w)]‖. From Lemmas 18 and 19 in (Damian et al., 2022), there exists ϵ-covering
Nϵ of Sd−1 with |Nϵ| ≤ eC1d log(NT/ϵ) and 1/4-covering N1/4 of Sd−1 with |N1/4| ≤ eC2d such that for all w ∈ Sd−1,
there exists π(w) ∈ Nϵ such that ‖w − π(w)‖ ≤ ϵ and vt(w) = vt(π(w)) holds for all t. Then

sup
w
‖z̃1(w)− E[z̃1(w)]‖

≤ sup
w∈Nϵ

‖z̃1(w)− E[z̃1(w)]‖+ sup
w
‖z̃1(w)− z̃1(π(w))‖+ sup

w
‖E[z̃1(w)]− E[z̃1(π(w))]‖

≤ sup
w∈Nϵ

‖z̃1(w)− E[z̃1(w)]‖+ sup
w
‖z̃1(w)− z̃1(π(w))‖+O(d−C∗

+ ϵd)

≤ sup
w∈Nϵ

‖z̃1(w)− E[z̃1(w)]‖+O(RR′ϵ
√
d) +O(d−C∗

+ ϵd)

Let us bound the first term in the right-hand side. Notice that

sup
w∈Nϵ

‖z̃1(w)− E[z̃1(w)]‖ ≤ 2 sup
w∈Nϵ

sup
u∈N1/4

u · [z̃1(w)− E[z̃1(w)]].

Now, z̃1(w) is RR′-sub Gaussian and then with probability 1− 2e−z , it holds that

u · [z̃1(w)− E[z̃1(w)]] ≤ RR′
√
2z/T ,

where R = maxt Rt and R′ = maxt R
′
t. Therefore, with probability at least 1− 2eC3d log(NT/ϵ)−z we have

sup
w∈Sd−1

‖z1(w)− E[z1(w)]‖ = O

(
RR′

√
2z

T
+RR′ϵ

√
d+ ϵd+ d−C∗

)
.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Transformer Efficiently Learns Low-dimensional Target Functions In-context

By taking z = C3d log(NT/ϵ) + ι and ϵ = O(d−C∗
), we arrive at

sup
w∈Sd−1

‖z1(w)− E[z1(w)]‖ = O

(
ιP/2

(√
1

d
+

√
dιP+1

N

)√
2z

T
+ ϵd+O(d−C∗

)

)

= Õ

((√
1

d
+

√
d

N

)√
d

T

)
with high probability.

Bounds for supw∈Sd−1 ‖z2(w) − E[z2(w)]‖ can be obtained by the same procedure, noting that E[yt,iσ(w⊤xt,i)] =
O(1/d).

Combining Lemmas 5 and 6, we immediately obtain the following:

Corollary 7. Asuume T = Ω̃(d4) and N = Ω̃(d2). Then, ‖gT (w)‖ = Õ(
√

r
d3) and ‖gT (w)r+1:d‖ = Õ(

√
r2

d4) holds
with high probability.

It is used to derive prompt length-free generalization result (Appendix D.2).

C. Construction of Attention Matrix
In this section, we construct Γ which satisfies the following approximation property:
Theorem 8. With high probability (see Section A.1 for the definition), there exists Γ such that∣∣∣∣∣∣∣∣

〈
Γσ(W (1)Xt + b)y

dim(yt)
,


σ(w

(1)
1

⊤
xt + b1)
...

σ(w
(1)
m

⊤
xt + bm)


〉
− yt

∣∣∣∣∣∣∣∣− τ ≲ poly log(d)

(
r5P/2

√
N2

+
r3P/2

√
m

)

for all t ∈ {T1 + 1, . . . , T2}, where {w(1)
j }j are neurons obtained by line 4 of Algorithm 1 with η1 =

Ω

(√
d3

r
1

poly log d

)
,m ≳ rP and b is re-initialized in Line 5 of Algorithm 1. Moreover, ‖Γ‖ = Õ(

√
r5P /m2) is sat-

isfied.

We give an intuitive explanation of the way to construct such Γ. First, recall that the true function satisfies f∗(x) =∑P
i=2 ciHei(〈x,β〉). Let F∗ = {f∗ :

∑P
i=2 ciHei(〈x,β〉) | β ∈ S, ci ∈ R}. We can find an orthogonal basis of F∗: let

{β1, . . . ,βr} be an orthonormal basis of S . Then, we can show that G = {
∏r

j=1 Hepj
(〈βj , ·〉) | 2 ≤ p1 + · · · + pr ≤

P, p1 ≥ 0, . . . , pr ≥ 0} forms a basis for F∗ and Ex∼N (0,Id)[g(x)g
′(x)] = 0 is satisfied if g 6= g′.

Let q = |G|(= O(rP)). Assign numbers to the functions in G arbitrarily as G = {g1, . . . , gq}. We can show that there
exists a1, . . . ,aq ∈ Rm such that

∑m
j=1 a

i
jσ(w

⊤
j x + bj) ' gi(x) for each i ∈ [q]. This comes from the approximation

property of two-layer fully-connected neural networks.

A key fact is that we can construct attention matrix using this a1, . . . ,aq . Let A =
(
a1 · · · aq

)
∈ Rm×q and

D = diag{α1, . . . , αq} where αi = E[gi(x)2]−1. Then, letting dim(y) = N and Γ = ADA⊤, we notice that〈
Γσ(WX + b)y

dim(y)
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉

=

q∑
i=1

αi

 1

N

N∑
j=1

(
m∑

k=1

ai
kσ(w

⊤
k xj + bk)

)
yj

(m∑
k=1

ai
kσ(w

⊤
k x+ bk)

)

'
q∑

i=1

αiE[gi(x)σ∗(〈β,x〉)]gi(x) = σ∗(〈β,x〉). (C.1)

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Transformer Efficiently Learns Low-dimensional Target Functions In-context

The most essential point is that the self-attention architecture approximately calculates E[gi(x)σ∗(〈β,x〉)], i.e., the inner
product between the true function and a base gi. If N is sufficiently large, then we can approximate the true label well.
Recall that we defined G = {

∏r
j=1 Hepj (〈βj , ·〉) | 2 ≤ p1 + · · · + pr ≤ P, p1 ≥ 0, . . . , pr ≥ 0} where {βj} is a

basis of S and this forms a basis of the set of true functions. We let |G| = q and number the elements of G arbitrarily as
G = {g1, . . . , gq}. Importantly, q ≲ rP holds.

Note that, to derive (C.1), there are two types of “approximation error”: one is the error by a two-layer neural network∑m
j=1 a

i
jσ(w

⊤
j x+ bj) to approximate each basis gi(x). The other is discrepancy between average 1

N

∑N
j=1 gi(xj)yj and

its expectation E[gi(x)σ∗(〈β,x〉)]. In Appendix C.1 we bound the former error, and the latter is evaluated in Appendix C.2.
Finally, we prove Theorem 8 in Appendix C.3.

C.1. Approximation Result for Two-layer NN

We use the following proposition stating approximation ability of two-layer fully-connected neural networks:

Proposition 9. Let {w(1)
j }j be neurons obtained by line 4 of Algorithm 1 with m ≳ rP , η1 = Ω

(√
d3

r
1

poly log d

)
and

assume b is initialized as in Line 5 of Algorithm 1. Then, with high probability over the data distribution, there exists
a1, . . . ,aq ∈ Rm such that for each i ∈ [q], m∑

j=1

ai
jσ(w

(1)
j

⊤
x+ bj)− gi(x)

2

= Õ

(
rP

m
+

1

N2

)

holds for all x = xt (t ∈ {T1 + 1, . . . , T2}) and x = xt,n (t ∈ {T1 + 1, . . . , T2}, n ∈ [N2]). Moreover, ‖ai‖2 =

Õ
(

rP

m

)
(i ∈ [q]) holds.

This is almost a counterpart of Lemma 13 in (Damian et al., 2022) and the proof is almost the same. However, there are
slight differences as the property of w(1)

j differs: specifically, the statement of Lemmas 10 and 11 in (Damian et al., 2022)
to derive Lemma 13 in the paper should be slightly changed. Here we describe the counterparts of these lemmas.

Lemma 10 (counterpart of Lemma 10 in (Damian et al., 2022)). Let r(w) = gT (w)− a22E[c22] 12
r(r+2)‖w1:r‖22w1:r. Then,

Ew∼Sd−1

[
‖ΠSr(w)‖j

]1/j ≲ Õ

((√
1

d
+

√
d

N1

)√
d

T1

)
+O

(√
r2

d4

)

holds with high probability, where ΠS be the orthogonal projection onto S (recall that we assumed that S be the subspace
spanned by first r standard basis: that is, ΠSv = v1:r).

Proof. Since Ew∼Sd−1

[
‖ΠS [gT (w)− g(w)]]‖j

]1/j
= Õ

((√
1
d +

√
d
N1

)√
d
T1

)
from Lemma 6, it suffices to upper

bound

Ew∼Sd−1

[∥∥∥∥ΠS [g(w)− a22E[c22]
12

r(r + 2)
‖w1:r‖22w1:r

∥∥∥∥j
]1/j

= Ew∼Sd−1 [‖Ey[ΠSs(y,w)]‖j]1/j .

Then it is sufficient to show that

Ew∼Sd−1

[∥∥∥∥Ey

[
ak+1E[∇k+1f t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

]∥∥∥∥j
]1/j

≲
√

r2

d4
(k ≥ 1, l ≥ 2, (k, l) 6= (1, 2))

and

Ew∼Sd−1

[∥∥∥∥Ey

[
ΠSw

ak+2E[∇kf t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

]∥∥∥∥j
]1/j

≲
√

r2

d4
(k ≥ 2, l ≥ 2).

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Transformer Efficiently Learns Low-dimensional Target Functions In-context

First,

Ew∼Sd−1

[∥∥∥∥Ey

[
ak+1E[∇k+1f t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

]∥∥∥∥j
]1/j

≤Ey

[
Ew∼Sd−1

[∥∥∥∥ak+1E[∇k+1f t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

∥∥∥∥j
]]1/j

≤Ey

Ew∼Sd−1

[∥∥∥∥ak+1E[∇k+1f t](w⊗k)

k!

∥∥∥∥2j
]1/2

Ew∼Sd−1

[∥∥∥∥alE[∇lf t](w⊗l)

l!

∥∥∥∥2j
]1/21/j

≲
√

r⌊k/2⌋

dk

√
r⌊l/2⌋

dl
≲
√

r2

d4
.

Similarly,

Ew∼Sd−1

[∥∥∥∥Ey

[
ΠSw

ak+2E[∇kf t](w⊗k)

k!

alE[∇lf t](w⊗l)

l!

]∥∥∥∥j
]1/j

≤ Ey

[
Ew∼Sd−1

[
‖ΠSw‖2j

]1/2
Ew∼Sd−1

[∥∥∥∥ak+2E[∇kf t](w⊗k)

k!

∥∥∥∥4j]1/4
Ew∼Sd−1

[∥∥∥∥alE[∇lf t](w⊗l)

l!

∥∥∥∥4j]1/4]1/j
≲
√

r

d

√
r⌊k/2⌋

dk

√
r⌊l/2⌋

dl
≲
√

r2

d4
.

Then we obtain Ew∼Sd−1

[
‖ΠSr(w)‖j

]1/j ≲ Õ
((√

1
d +

√
d
N1

)√
d
T1

)
+O

(√
r2

d4

)
as desired.

To derive the counterpart of Lemma 11 in (Damian et al., 2022) we need the following statement:

Lemma 11 (Tensor expectation lower bound). Let T be a k < P -symmetric tensor which has support on S and let
w̄ = w1:r‖w1:r‖2. Then

Ew∼Sd−1 [T (w̄⊗k)2] ≳ r2i

d3i
E[‖T (w̄⊗k−i)‖2F].

Proof. Let u ∼ N (0, Id), z ∼ χ(d) and ū = u1:r‖u1:r‖2. Then we can decompose as ū = z3w̄. Therefore

E[T (ū⊗k)2] = E[z6k]E[T (w̄⊗k)2]

holds.

On the other hand, let x ∼ Sr−1 and z′ ∼ χ(r). Then we can decompose as ū = (z′)3x. Thus

E[T (ū⊗k)2] = E[(z′)6k]E[T (x⊗k)2]

holds. It implies that

E[T (w̄⊗k)2] =
E[(z′)6k]
E[z6k]

E[T (x⊗k)2].

Similarly,

E[‖T (w̄⊗k−i)‖2F] =
E[(z′)6(k−i)]

E[z6(k−i)]
E[‖T (x⊗(k−i))‖2F]

is satisfied. Now from Corollary 13 in (Damian et al., 2022),

E[‖T (x⊗(k−i))‖2F] ≲ riE[T (x⊗k)2]

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Transformer Efficiently Learns Low-dimensional Target Functions In-context

holds. Therefore we obtain

E[T (w̄⊗k)2] =
E[(z′)6k]
E[z6k]

E[T (x⊗k)2]

≳ r−iE[(z′)6k]
E[z6k]

E[‖T (x⊗(k−i))‖2F]

= r−iE[(z′)6k]
E[z6k]

E[z6(k−i)]

E[(z′)6(k−i)]
E[‖T (w̄⊗k−i)‖2F]

=
r2i

d3i
E[‖T (w̄⊗k−i)‖2F].

Corollary 12. Let T be a k < P -symmetric tensor which has support on S and let ŵ = 1
r(r+2)w1:r‖w1:r‖2. Then

Ew∼Sd−1 [T (ŵ⊗k)2] ≳ 1

d3i
E[‖T (ŵ⊗k−i)‖2F].

Using Lemma 10 and Corollary 12 in the proof of Lemma 11 in (Damian et al., 2022) yields the following Lemma:

Lemma 13 (counterpart of Lemma 11 in (Damian et al., 2022)). Suppose r2 ≲ d, T1 ≳ d3 and N1 ≳ d2. Let T be
k < P -symmetric tensor with ‖T ‖F = 1 and assume T has support on S . Then,

Ew∼UnifSd−1 [(ΠSgT (w))
⊗2k](T ,T) ≳ d−3k

holds.

Now we have Lemmas 10 and 13. By letting η = Ω

(√
d3

r
1

poly log d

)
and following the same line towards the proof of

Lemma 13 in (Damian et al., 2022), we obtain Proposition 9.

C.2. Concentration of Correlation between a Label and a Base

In this subsection, we give an upper bound for∣∣∣∣∣∣ 1N
N∑
j=1

yjg(xj)− E[yg(x)]

∣∣∣∣∣∣
as follows:

Proposition 14. Let g ∈ G. With high probability,∣∣∣∣∣∣ 1N
N∑
j=1

yjg(xj)− E[yg(x)]

∣∣∣∣∣∣ ≲ r3P/2

√
N

(log d)P/2

holds.

Without loss of generality, we assume that S = {(β1, . . . , βr, 0, . . . , 0) | β1, . . . , βr ∈ R} and g(x) can be written in the
form as g(x) = Heq1(x1) · · ·Heqr (xr), satisfying q1 + · · ·+ qr ≤ P . Note that

1

N

N∑
j=1

yjg(xj)− E[yg(x)] =
1

N

N∑
j=1

ςjg(xj) +
1

N

N∑
j=1

σ∗(〈xj ,β〉)g(xj)− E[σ∗(〈x,β〉)g(x)],

where σ∗(z) =
∑P

i=2 cpHei(z). First we give an upper bound for 1
N

∑N
j=1 σ∗(〈xj ,β〉)g(xj)− E[σ∗(〈x,β〉)g(x)].

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Transformer Efficiently Learns Low-dimensional Target Functions In-context

Lemma 15. Let D = deg 1
N

∑N
j=1 σ∗(〈xj ,β〉)g(xj) ≤ 2P . For all t > 0,

P(| 1
N

N∑
j=1

σ∗(〈xj ,β〉)g(xj)− E[σ∗(〈x,β〉)g(x)]| ≥ t)

≤ 2 exp

− 1

CD
min

1≤k≤D

(
t
√
N

Mk‖E[∇k(σ∗(〈x,β〉)g(x))]‖F

)2/k


holds, where CD and M are absolute constants.

Proof. Let F (x1, . . . ,xN) = 1
N

∑N
j=1 σ∗(〈xj ,β〉)g(xj). It is a polynomial for x11, . . . , x1d, . . . , xNd, which are stan-

dard Gaussian variables. For the standard Gaussian X ∼ N (0, 1), its Orlicz norm ‖X‖Ψ2 is bounded; there exists M such
that ‖X‖Ψ2 ≤M . Moreover,

‖E[∇kF (x1, . . . ,xN)]‖F =
√
N

−1
‖E[∇k(σ∗(〈x,β〉)g(x))]‖F

is satisfied. Then, Theorem 1.2 in (Götze et al., 2021) yields the lemma.

Then, our goal is to bound ‖E[∇k(σ∗(〈x,β〉)g(x))]‖F .

Lemma 16.
‖E[∇k(σ∗(〈x,β〉)g(x))]‖F = O(r3P)

holds.

Proof. First,

‖E[∇k(σ∗(〈x,β〉)g(x))]‖2F

=‖
P∑

p=2

cpE[∇k(Hep(〈x,β〉)g(x))]‖2F

≤
P∑

p=2

cp‖E[∇k(Hep(〈x,β〉)g(x))]‖2F

≤(c22 + · · ·+ c2P)

(
P∑

p=2

‖E[∇k(Hep(〈x,β〉)g(x))]‖2F

)

≲
P∑

p=2

‖E[∇k(Hep(〈x,β〉)g(x))]‖2F

≤
P∑

p=2

 p1+···+pr=p∑
p1≥0,...,pr≥0

(
(p1 + · · ·+ pr)!

p1! · · · pr!
· βp1

1 · · ·βpr
r

)2


·
p1+···+pr=p∑
p1≥0,...,pr≥0

‖E[∇k(Hep1(x1) · · ·Hepr (xr)g(x))]‖2F

holds. Noting that
(

(p1+···+pr)!
p1!···pr!

· βp1

1 · · ·βpr
r

)2
≤ p! under p1 + · · · + pr = p and the number of the combination of

(p1, . . . , pr) ≥ 0 such that p1 + · · ·+ pr = p is at most rp, there exists a constant CP depending only on P such that

‖E[∇k(σ∗(〈x,β〉)g(x))]‖2F ≤ CP r
P

P∑
p=2

p1+···+pr=p∑
p1≥0,...,pr≥0

‖E[∇k(Hep1
(x1) · · ·Hepr

(xr)g(x))]‖2F . (C.2)

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Transformer Efficiently Learns Low-dimensional Target Functions In-context

Next, let us bound ‖E[∇k(Hep1
(x1) · · ·Hepr

(xr)g(x))]‖2F , where g(x) = Heq1(x1) · · ·Heqr (xr). It holds that

∇k(Hep1
(x1) · · ·Hepr

(xr)g(x)) =
k∑

i=0

(
k

i

)
∇iHep1

(x1) · · ·Hepr
(xr)∇k−iHeq1(x1) · · ·Heqr (xr). (C.3)

Let s = |p1 − q1| + · · · + |pr − qr| and t =
∑r

i=1 |pi − qi|1pi>qi . Let us first consider the case where k = s to simplify
the explanation; in this case, each element of E[∇k(Hep1

(x1) · · ·Hepr
(xr)g(x))] can be decomposed into the terms as

E[∂u1
x1
· · · ∂ur

xr
Hep1(x1) · · ·Hepr (xr)∂

v1
x1
· · · ∂vr

xr
Heq1(x1) · · ·Heqr (xr)], (C.4)

where u1 + · · · + ur + v1 + · · · + vr = s. However, this expectation becomes nonzero only when ui = |pi − qi|1pi>qi

and vi = |pi − qi|1pi<qi . Therefore, by seeing (C.3), we can notice that

E[∇iHep1(x1) · · ·Hepr (xr)∇k−iHeq1(x1) · · ·Heqr (xr)] (C.5)

is nonzero tensor only when i = t and E[∇tHep1(x1) · · ·Hepr (xr)∇k−tHeq1(x1) · · ·Heqr (xr)] has only one nonzero
element. It implies that ‖E[∇s(Hep1(x1) · · ·Hepr (xr)g(x))]‖2F ≲

(
s
t

)2
.

Let us consider the other cases: obviously, ‖E[∇k(Hep1(x1) · · ·Hepr (xr)g(x))]‖2F = 0 if k < s. Moreover, if k − s is
odd, one can confirm that ‖E[∇k(Hep1(x1) · · ·Hepr (xr)g(x))]‖2F = 0. Consider the case where k − s = 2l > 0. The
expectation (C.4) under u1 + · · · + ur + v1 + · · · + vr = l = s + 2l is nonzero when ui = |pi − qi|1pi>qi + li and
vi = |pi − qi|1pi<qi + li, where l1 + · · · + lr = l. It implies that (C.5) is nonzero only when i = t + l, and in this case,
the tensor (C.5) has at most rl nonzero entries. As a consequence,

‖E[∇s(Hep1
(x1) · · ·Hepr

(xr)g(x))]‖2F ≲ rl
(
s+ l

t+ l

)2

holds. Overall, ‖E[∇k(Hep1
(x1) · · ·Hepr

(xr)g(x))]‖2F ≤ C ′
P r

P is satisfied where C ′
P depends only on P . Plugging this

bound into (C.2), we arrive at

‖E[∇k(σ∗(〈x,β〉)g(x))]‖2F ≤ CPC
′
P r

P
P∑

p=2

p1+···+pr=p∑
p1≥0,...,pr≥0

rP ≲ r3P ,

as desired.

Plugging the result above and t = Θ(r
3P/2
√
N

(log d)P/2) into Lemma 15 yields the following corollary.

Corollary 17. With high probability,∣∣∣∣∣∣ 1N
N∑
j=1

σ∗(〈xj ,β〉)g(xj)− E[σ∗(〈x,β〉)g(x)]

∣∣∣∣∣∣ ≲ r3P/2

√
N

(log d)P/2

holds.

Proof. [Proof of Proposition 14] Now we have Corollary 17, then it remains to show that 1
N

∑N
j=1 ςjg(xj) ≲

r3P/2
√
N

(log d)P/2 with high probability. This is obvious from Lemma 18.

C.3. Proof of Theorem 8

We prove Theorem 8 using the preparations above. It suffices to show the theorem in the case where T = 1, as long as T
is polynomial in d. Then, we drop the subscript t.

Note that, from Lemma 3, we can expand f∗(x) as f∗(x) =
∑q

i=1 αiEx∼N (0,Id)[ygi(x)]gi(x), where αi =

Ex∼N (0,Id)[gi(x)
2]−1. Note that αi = Od,r(1) and α−1

i = Od,r(1). Now let A =
(
a1 · · · aq

)
∈ Rm×q and

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Transformer Efficiently Learns Low-dimensional Target Functions In-context

D = diag{α1, . . . , αq}. First,

〈
ADA⊤σ(WX + b)y

dim(y)
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉− y

=

q∑
i=1

αi(gi(x) + ϵi(x))

E[ygi(x)] +

 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+
1

N2

N2∑
j=1

yjϵi(xj)


− σ∗(〈x,β〉)− ς

=

q∑
i=1

αi(gi(x) + ϵi(x))

E[ygi(x)] +

 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+
1

N2

N2∑
j=1

yjϵi(xj)


−

q∑
i=1

gi(x)αiE[ygi(x)]− ς

holds, where ϵi(x) =
∑m

j=1 a
i
jσ(w

(1)
j

⊤
x+ bj)− gi(x).

Then, it follows that∣∣∣∣∣∣∣
〈
ADA⊤σ(WX + b)y

dim(y)
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉− y

∣∣∣∣∣∣∣
≤

q∑
i=1

αi|ϵi(x)E[ygi(x)]|+
q∑

i=1

αi

∣∣∣∣∣∣gi(x)
 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+ gi(x)
1

N2

N2∑
j=1

yjϵi(xj)

∣∣∣∣∣∣
+

q∑
i=1

αi

∣∣∣∣∣∣ϵi(x)
 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+ ϵi(x)
1

N2

N2∑
j=1

yjϵi(xj)

∣∣∣∣∣∣+ τ.

To bound these terms, we need to bound gi(x) and 1
N2

∑N2

j=1 yjϵi(xj), whose expectations are zero.

Lemma 18. Let s = deg gi. Then
|gi(x)| ≲ (log d)s/2

with high probability for each i ∈ [q].

Proof. Note that E[∇dgi(x)] has only one nonzero element only when d = s. Then, from Theorem 1.2 in (Götze et al.,
2021),

P(|gi(x)| ≥ t) ≤ 2 exp

(
− 1

C

(
t

Ms

)2/s
)

holds. Plugging t = Ω((log d)s/2) yields the result.

Lemma 19. ∣∣∣∣∣∣ 1

N2

N2∑
j=1

yjϵi(xj)

∣∣∣∣∣∣ ≲ rP/2(log d)P/2

√
m

+
(log d)P/2

√
N2

with high probability.

Proof. From Lemma 17 in (Damian et al., 2022), σ∗(〈β,xj〉) ≲ (log d)P/2 holds with high probability. Then, the lemma
follows immediately from Proposition 9.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Transformer Efficiently Learns Low-dimensional Target Functions In-context

In addition to the lemmas above, we know that E[ygi(x)] = O(1) from Lemma 3 and q = O(rP). Note that as we assumed
m ≳ rP , ϵi(x) = O(poly log(d)) holds. Then, we arrive at∣∣∣∣∣∣∣

〈
ADA⊤σ(WX + b)y

dim(y)
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉− y

∣∣∣∣∣∣∣
≤

q∑
i=1

|ϵi(x)E[ygi(x)]|+
q∑

i=1

∣∣∣∣∣∣gi(x)
 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+ gi(x)
1

N2

N2∑
j=1

yjϵi(xj)

∣∣∣∣∣∣
+

q∑
i=1

∣∣∣∣∣∣ϵi(x)
 1

N2

N2∑
j=1

yjgi(xj)− E[ygi(x)]

+ ϵi(x)
1

N2

N2∑
j=1

yjϵi(xj)

∣∣∣∣∣∣+ τ

≲rP
(
rP/2

√
m

+
1√
N2

)
+ poly log(d)

(
rP · r

3P/2

√
N2

+ rP ·
(
rP/2

√
m

+
1√
N2

))
+ τ

≲poly log(d)

(
r5P/2

√
N2

+
r3P/2

√
m

)
+ τ.

For ‖Γ‖, we obtain

‖Γ‖ ≤ ‖A‖‖D‖‖A‖

≤
q∑

i=1

‖ai‖2 · √q

= Õ

(√
r5P /m2

)
.

D. Generalization Error Analysis and Proof of Theorem 1
D.1. Rademacher Complexity Bound

Let

FN,G,W,B =

{
(X,y,x) 7→

〈
Γσ(WX + b)y

N
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉∣∣∣∣
‖Γ‖F ≤ G, ‖w1‖2, · · · , ‖wm‖2 ≤W, |b1| · · · |bm| ≤ B

}
be the set of transformers whose parameter norms are constrained, and let

RadT (FN,G,W,B) = EX,y,x,ϵ

[
sup
f∈F

1

T

T∑
t=1

ϵtf(Xt,yt,xt)

]

be its Rademacher complexity, where ϵi ∼ Unif({±1}).

We evaluate the Rademacher complexity as follows:

Proposition 20.

RadT (FN,G,W,B) = O

(
polylog(T)

mG√
T

(
rP/2
√
d+ d

√
d
))

.

holds, when B = Od,r(1) and W = Od,r(1).

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Transformer Efficiently Learns Low-dimensional Target Functions In-context

Proof.

First,

RadT (FN,G,W,B)

= EX,y,x,ϵ

[
sup
f∈F

1

T

T∑
t=1

ϵtf(Xt,yt,xt)

]

= EX,y,x,ϵ

 sup
Γ,W ,b

1

T

T∑
t=1

ϵt

〈
Γσ(WXt + b)yt

N
,

 σ(w⊤
1 x

t + b1)
...

σ(w⊤
mxt + bm)

〉


≤ EX,y,x,ϵ

 sup
Γ,W ,b

1

T
‖Γ‖F

∥∥∥∥∥∥∥∥
T∑

t=1

ϵt
σ(WXt + b)yt

N

 σ(w⊤
1 x

t + b1)
...

σ(w⊤
mxt + bm)


⊤
∥∥∥∥∥∥∥∥
F



≤ Gm

T
EX,y,x,ϵ

sup
W ,b

∥∥∥∥∥∥∥∥
T∑

t=1

ϵt
σ(WXt + b)yt

N

 σ(w⊤
1 x

t + b1)
...

σ(w⊤
mxt + bm)


⊤
∥∥∥∥∥∥∥∥
∞


≤ Gm

TN
EX,y,x,ϵ

[
sup

w,b,w′,b′

∣∣∣∣∣
T∑

t=1

ϵt
N∑
i=1

σ(w⊤xt
i + b)ytiσ(w

′⊤xt + b′)

∣∣∣∣∣
]

≤ Gm

TN
EX,y,x,ϵ[sup

w,b,w′,b′

T∑
t=1

ϵt
N∑
i=1

σ(w⊤xt
i + b)ytiσ(w

′⊤xt + b′)

+ sup
w,b,w′,b′

−
T∑

t=1

ϵt
N∑
i=1

σ(w⊤xt
i + b)ytiσ(w

′⊤xt + b′)]

≤ 2Gm

TN
EX,y,x,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵt
N∑
i=1

σ(w⊤xt
i + b)ytiσ(w

′⊤xt + b′)

]

≤ 2Gm

T
Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵtσ(w⊤xt + b)ytσ(w′⊤x′t + b′)

]
.

≤ 2Gm

T
ER,R′

[
Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵtσ(w⊤xt + b)ytσ(w′⊤x′t + b′)

∣∣∣∣∣AR,R′

]]
,

where
AR,R′ := {max{‖xt

1:r‖2, ‖x′t
1:r‖2}Tt=1 = R2,max{‖xt

r+1:d‖2, ‖x′t
r+1:d‖2}Tt=1 = R′2}.

We utilize multivariate contraction inequality (Maurer, 2016) to bound the last line.

Lemma 21. Let f(x, y, z) = σ(x)yσ(z), whose domain is restricted to |x| ≤ R1, |y| ≤ R2, |z| ≤ R3. Then, f is√
R2

1R
2
2 +R2

2R
2
3 +R2

3R
2
1 ≤ R1R2 +R2R3 +R3R1-Lipschitz continuous.

Lemma 22. There exists a polynomial g such that

2Gm

T
Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵtσ(w⊤xt + b)ytσ(w′⊤x′t + b′)

∣∣∣∣∣AR,R′

]

≤2
√
2GmL

T
Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

(
ϵt,1(w⊤xt + b) + ϵt,2yt + ϵt,3(w′⊤x′t + b′)

)∣∣∣∣∣AR,R′

]
,

where L = 2(W (R + R′) + B)(g(R) + τ) + (W (R + R′) + B)2. Moreover, g(z) is at most of degree P , increasing in
the region z ≥ 0, and its coefficient is O(

√∑
i c

2
i).

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Transformer Efficiently Learns Low-dimensional Target Functions In-context

Proof. First, as ‖xt‖ ≤
√
R2 + (R′)2, |w⊤xt + b| ≤W

√
R2 + (R′)2 +B ≤W (R+R′) +B holds. Secondly,

|yt| ≤ |
P∑
i=2

ciHei(β
⊤xt

1:r)|+ τ

≤

√√√√ P∑
i=2

c2i

√√√√ P∑
i=2

Hei(β
⊤xt

1:r)
2 + τ

holds. Let Hei(z) =
∑P

j=0 hijz
j . Define f(z) as f(z) =

∑P
j=0 cjz

j where cj = maxPi=2 |hij |. Then, one can show that
Hei(z)

2 ≤ f(|z|)2 for all i and z. Moreover, f(z) is increasing in the region z ≥ 0. Using this f , we can obtain

|yt| ≤

√√√√ P∑
i=2

c2i

√√√√ P∑
i=2

f(R)2 + τ

=

√√√√ P∑
i=2

c2i
√
P − 1f(R) + τ

Then, the lemma immediately follows from vector-value contraction inequality (Maurer, 2016), by letting g(z) =√∑P
i=2 c

2
i

√
P − 1f(z).

Moreover, we can observe that

Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

(
ϵt,1(w⊤xt + b) + ϵt,2yt + ϵt,3(w′⊤x′t + b′)

)∣∣∣∣∣AR,R′

]

≤Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵt,1(w⊤xt + b) +

T∑
t=1

ϵt,2yt + sup
w,b,w′,b′

T∑
t=1

ϵt,3(w′⊤x′t + b′)

∣∣∣∣∣AR,R′

]

=Ex,y,x′,ϵ

[
sup

w,b,w′,b′

T∑
t=1

ϵt,1(w⊤xt + b) + sup
w,b,w′,b′

T∑
t=1

ϵt,3(w′⊤x′t + b′)

∣∣∣∣∣AR,R′

]

=2Ex,y,x′,ϵ

[
sup
w

w⊤
T∑

t=1

ϵtxt

∣∣∣∣∣AR,R′

]
+ 2Ex,y,x′,ϵ

[
sup
b

T∑
t=1

ϵtb

∣∣∣∣∣AR,R′

]

≤2WEx


√√√√∥∥∥∥∥

T∑
t=1

ϵtxt

∥∥∥∥∥
2
∣∣∣∣∣∣∣AR,R′

+ 2BEϵ


√√√√(T∑

t=1

ϵt

)2


≤2WEx

√√√√√
∥∥∥∥∥

T∑
t=1

ϵtxt

∥∥∥∥∥
2
∣∣∣∣∣∣AR,R′

+ 2B

√√√√√Eϵ

(T∑
t=1

ϵt

)2


≤2W
√
T (R+R′) + 2B

√
T .

Finally we should evaluate

ER,R′

[
2
√
2GmL

T

(
2W
√
T (R+R′) + 2B

√
T
)]

=
mGC ′

W,B√
T

ER,R′
[
2(R+R′)(W (R+R′) +B)(g(R) + τ) + (R+R′)(W (R+R′) +B)2

]
+
mGC ′

W,B√
T

ER,R′
[
2(W (R+R′) +B)(g(R) + τ) + (W (R+R′) +B)2

]
21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Transformer Efficiently Learns Low-dimensional Target Functions In-context

=
mG√
T
O
(
ER

[
RP+1

]
+ ER′ [R′]ER

[
RP
]
+ ER,R′ [(R+R′)3]

)
,

where C ′
W,B is a constant which only depends on W and B. in order to do so, it suffices to evaluate ER

[
Rk
]

and where
ER′

[
(R′)k

]
.

Lemma 23.
Ez1,...,z2T∼χ(r)

[
max
t∈[2T]

zkt

]
= Or,T

((
r +
√
8r
)k/2

(1 + log T)k/4
)

holds. Note that we regard k as Or,T (1).

Proof. From the concentration inequalty for chi-squared distribution (Wainwright, 2019)[Example 2.11],

z2t ≤ r +
√

8r log(1/δ) (D.1)

holds with probability at least 1 − δ for each t. Then, equation (D.1) holds uniformly over all t with probability at least
1−2Tδ. Let Ai = (r+

√
8r log(2T · 2i))k/2. Then, with probability at least 1−2−i, maxt∈[2T] z

k
t ≤ Ai holds. Therefore

we can divide the certain event into events with probability 1/2, 1/4, . . . , where maxt∈[2T] z
k
t ≤ A1,maxt∈[2T] z

k
t ≤

A2, . . . holds. It implies that

Ez1,...,z2T∼χ(r)

[
max
t∈[2T]

zkt

]
≤

∞∑
i=1

2−i(r +
√
8r log(2T · 2i))k/2

≤ 2

∫ 1/2

0

(
r +

√
8r log

2T

t

)k/2

dt

≤
(
r +
√
8r
)k/2 ∫ 1/2

0

(√
log

2T

t

)k/2

dt

≤
(
r +
√
8r
)k/2

(1 + log T)k/4
∫ 1/2

0

(√
log

2

t

)k/2

dt.

From Lemma 23, we arrive at

RadT (FN,G,W,B) = O

(
polylog(T)

mG√
T

(
rP/2
√
d+ d

√
d
))

.

D.2. Prompt Length-free Generalization Bound

Let the ICL risk for prompt length N be

RN (Γ,W , b) = EX,y,x,y[|f(X1:N ,y1:N ,x;W ,Γ, b)− y|],

where the length of X1:N and y1:N is fixed to N . In this section, we upper bound |RN (Γ,W , b)−RM (Γ,W , b)| under
the condition N,M ≳ rΘ(P).

Proposition 24. Assume that ‖wj,1:r‖ = O(1),‖wj,1:r‖ = O(
√

r/d) and |bj | = O(1) for each j ∈ [m]. Then,

|RN (Γ,W , b)−RM (Γ,w, b)| = Õ
(
‖Γ‖F

√
r2m2/N + r2m2/M

)
holds.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Transformer Efficiently Learns Low-dimensional Target Functions In-context

Proof. Note that

|RN (Γ,W , b)−RM (Γ,w, b)|
≤E[|f(X1:N ,y1:N ,x;W ,Γ, b)− f(X1:M ,y1:M ,x;W ,Γ, b)|]

=E


∣∣∣∣∣∣∣
〈
Γ

(
σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉
∣∣∣∣∣∣∣


≤‖Γ‖FE

∥∥∥∥(σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)∥∥∥∥
∥∥∥∥∥∥∥
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


∥∥∥∥∥∥∥


≤‖Γ‖FE

[∥∥∥∥(σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)∥∥∥∥2
]1/2

E


∥∥∥∥∥∥∥
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


∥∥∥∥∥∥∥
2

1/2

First let us bound E
[∥∥∥(σ(WX1:N+b)y1:N

N − σ(WX1:M+b)y1:M

M

)∥∥∥2].

E

[∥∥∥∥(σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)∥∥∥∥2
]

≤
m∑
j=1

E

(1

N

N∑
i=1

σ(w⊤
j xi + bj)yi −

1

M

M∑
i=1

σ(w⊤
j xi + bj)yi

)2


For simplicity, we drop the subscript j and obtain

E

(1

N

N∑
i=1

σ(w⊤xi + b)yi −
1

M

M∑
i=1

σ(w⊤xi + b)yi

)2


≤2E

(1

N

N∑
i=1

σ(w⊤xi + b)yi − E
[
σ(w⊤xi + b)yi

])2


+2E

(1

M

M∑
i=1

σ(w⊤xi + b)yi − E
[
σ(w⊤xi + b)yi

])2


≤ 2

N
E
[(
σ(w⊤xi + b)yi

)2]
+

2

M
E
[(
σ(w⊤xi + b)yi

)2]
≤ 2

N
E
[(
(w⊤xi + b)yi

)2]
+

2

M
E
[(
(w⊤xi + b)yi

)2]
≤ 4

N
E
[
(w⊤xi)

2y2i + b2y2i
]
+

4

M
E
[
(w⊤xi)

2y2i + b2y2i
]

≤ 4

N
E
[
(w⊤xi)

2y2i
]
+

4

M
E
[
(w⊤xi)

2y2i
]
+O(1/N + 1/M).

Then, we need to evaluate E
[
(w⊤xi)

2y2i
]
; we need to be careful to obtain a tight bound for this value. Using the fact that

pretrained w almost aligns to the true subspace S , we obtain

E
[
(w⊤xi)

2y2i
]
≤ E

[
(w⊤

1:rxi,1:r +w⊤
r+1:dxi,r+1:d)

2y2i
]

≤ 2‖w1:r‖2E
[
(xi,1:r)

2y2i
]
+ 2‖wr+1:d‖2E

[
(xi,r+1:d)

2y2i
]

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Transformer Efficiently Learns Low-dimensional Target Functions In-context

= O(1) · E
[
(xi,1:r)

2y2i
]
+ Õ(r/d) · E

[
(xi,r+1:d)

2y2i
]
.

Moreover,

E
[
x2
1y

2
]

≤2Ec,β,ς

[
x2
1(

P∑
i=2

c2i)(

P∑
i=2

Hei(β
⊤x)2)

]
+ 2Ec,β,ς

[
x2
1ς

2
]

≲
P∑
i=2

Ec,β,ς

[
x2
1Hei(β

⊤x)2
]
+O(1)

≤
P∑
i=2

E
[
x4
1

]1/2E[Hei(β⊤x)4
]1/2

+O(1) = O(1).

Then, we obtain E
[
(w⊤xi)

2y2i
]
= Õ(r). Thus, an upper bound

E

[∥∥∥∥(σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)∥∥∥∥2
]
= Õ(rm/N + rm/M)

is obtained.

Second, we bound E


∥∥∥∥∥∥∥
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


∥∥∥∥∥∥∥
2
 as

E


∥∥∥∥∥∥∥
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


∥∥∥∥∥∥∥
2
 ≤ 2

m∑
j=1

E[(w⊤
j x)

2 + b2j]

≤ 2

m∑
j=1

(b2j + 4‖wj,1:r‖2E[‖x1:r‖2] + 4‖wj,r+1:d‖2E[‖xr+1:d‖2])

= Õ(mr).

Putting all things together, we arrive at

|RN (Γ,W , b)−RM (Γ,w, b)|

≤‖Γ‖FE

[∥∥∥∥(σ(WX1:N + b)y1:N

N
− σ(WX1:M + b)y1:M

M

)∥∥∥∥2
]1/2

E


∥∥∥∥∥∥∥
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


∥∥∥∥∥∥∥
2

1/2

=Õ
(
‖Γ‖F

√
r2m2/N + r2m2/M

)
.

D.3. Proof of Theorem 1

Finally we are ready to prove our main theorem.

Proof. [Proof of Theorem 1] Let Γ̄ be the attention matrix constructed in Theorem 8 and let Γ∗ be the minimizer of the
ridge regression problem (line 6 in Algorithm 1). By the equivalence between optimization with L2 regularization and
norm-constrained optimization, there exists λ2 > 0 such that

‖Γ∗‖F ≤ ‖Γ̄‖F = O(
√
r5P /m),

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Transformer Efficiently Learns Low-dimensional Target Functions In-context(
1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)2

≤ 1

T2

T1+T2∑
t=T1+1

(yt − f(Xt,yt,xt;W
(1),Γ∗, b))2

≤ 1

T2

T1+T2∑
t=T1+1

(yt − f(Xt,yt,xt;W
(1), Γ̄, b))2.

Then, from Theorem 8,

1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)| − τ ≲ poly log(d)

(
r5P/2

√
N2

+
r3P/2

√
m

)
holds.

We first evaluateRN2
(f)− τ where f = f(Xt,yt,xt;W

(1),Γ∗, b): First,

RN2
(f)− τ

=
1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

+

(
RN2

(f)− 1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)
− τ

≲ poly log(d)

(
r5P/2

√
N2

+
r3P/2

√
m

)
+ sup

f∈FN,G,W,B

(
RN2

(f)− 1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)

holds, noting that f(Xt,yt,xt;W
(1),Γ∗, b) ∈ FN,G,W,B with W = O(1), B = O(1) and G = Õ(

√
r5P /m2). We can

evaluate the expectation value of the second term of the last line using the Rademacher complexity as

E

[
sup

f∈FN,G,W,B

(
RN2

(f)− 1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)]

= EX,y,x,y

[
sup

f∈FN,G,W,B

(
EX,y,x,y[|y − f(X,y,x;W (1),Γ∗, b)|]

− 1

T2

T1+T2∑
t=T1+1

|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)]

≤ 2EX,y,x,y,ϵ

[
sup

f∈FN,G,W,B

1

T2

T1+T2∑
t=T1+1

ϵt|yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

]
(ϵt

i.i.d.∼ Unif{±1})

≲ RadT2
(FN,G,W,B) + Ey,ϵ

[
1

T2

T1+T2∑
t=T1+1

ϵtyt

]
(∵ Eq.(1) in (Maurer, 2016))

≲ RadT2
(FN,G,W,B) + Ey,ϵ

(1

T2

T1+T2∑
t=T1+1

ϵtyt

)2
1/2

≤ RadT2(FN,G,W,B) +
1√
T2

E
[
y2
]1/2

= Õ

(
polylog(T2)

r5P/2

√
T2

(
rP/2
√
d+ d

√
d
))

by Proposition 20 and E[y2] = O(1) from Assumption 1. Then, from Markov’s in-
equality, we have supf∈FN,G,W,B

(
RN2

(f)− 1
T2

∑T1+T2

t=T1+1 |yt − f(Xt,yt,xt;W
(1),Γ∗, b)|

)
=

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Transformer Efficiently Learns Low-dimensional Target Functions In-context

Õ
(
polylog(T2)

r5P/2
√
T2

(
rP/2
√
d+ d

√
d
))

with probability at least 1 − δ where δ is a sufficiently small constant.
Then, we obtain

RN2
(f)− τ = poly log(d)

(
r5P/2

√
N2

+
r3P/2

√
m

+ polylog(T2)
r5P/2

√
T2

(
rP/2
√
d+ d

√
d
))

.

Now we have done the upper bound for RN2
(f). For RN∗(f), we can use Proposition 24 because we have Corollary 7

and can ensure that the assumptions of Proposition 24 are satisfied.

E. Derivation of Simplified Self-attention Module
We derive equation (2.3), following the same line as (Zhang et al., 2023). Recall that the prediction of y by the original
self-attention module is defined as the right-bottom entry of

fAttn = E +W PW V E · softmax

(
(WKE)⊤WQE

ρ

)
,

where the embedding matrix is given as (2.2). As mentioned in Section 2.2, we set ρ = N , omit softmax and merge
W PW V as W PV ∈ R(m+1)×(m+1) and (WK)⊤WQ as WKQ ∈ R(m+1)×(m+1).

Now, we further assume that W PV WKQ are in the form as

W PV =

[
∗ ∗

01×m v

]
,WKQ =

[
K ∗

01×m ∗

]
.

Then, we obtain the simplified form

f̃Attn(E;WK ,WQ,W V ,W P) = E +

[
∗ ∗

01×m v

]
E ·

E⊤
[

K ∗
01×m ∗

]
E

N
. (E.1)

Note that we adopt the right-bottom entry
(
f̃Attn(E;WK ,WQ,W V ,W P)

)
m+1,N+1

as prediction for a response of a

query. Then, by (E.1), we obtain

(
f̃Attn(E;WK ,WQ,W V ,W P)

)
m+1,N+1

=

[01×m v
]
E ·

E⊤
[

K ∗
01×m ∗

]
E

N


m+1,N+1

=
[
01×m v

]
E ·

E⊤
[

K ∗
01×m ∗

]
σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)
0


N

=v
[
y1 · · · yN 0

]
·

E⊤

K
 σ(w⊤

1 x+ b1)
...

σ(w⊤
mx+ bm)


0


N

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

Transformer Efficiently Learns Low-dimensional Target Functions In-context

= v
[
y1 · · · yN

]
·

σ(WX + b)⊤K

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)


N

=

〈
vK⊤σ(WX + b)y

N
,

 σ(w⊤
1 x+ b1)

...
σ(w⊤

mx+ bm)

〉.
Letting Γ = vK⊤ yields equation (2.3).

27

