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ABSTRACT

The advent of Large Language Model (LLM)-powered agents has revolutionized
artificial intelligence by enabling solutions to complex, open-ended tasks through
web-based information-seeking (IS) capabilities. The scarcity of high-quality
training data has limited the development of IS agents. Existing data synthesis
approaches typically adopt an information-driven paradigm that first collects in-
formation and then refines question-answer pairs through retrieval. However, this
may lead to inconsistency between information structure and reasoning structure,
as well as between the question and the corresponding answer. To mitigate, we
propose a formalization-driven IS data synthesis framework WebShaper, which
systematically formalizes IS tasks using set-theoretic constructs. Central to the
formalization is the concept of Knowledge Projections (KP), which enables precise
control over reasoning structure by KP operation compositions. During synthesis,
we begin by creating seed tasks, then use a multi-step expansion process. At
each step, an agentic Expander expands the current formal question more complex
through retrieval and validation tools grounded in our formalization. We train
our model on the synthesized dataset. Experiment results demonstrate that Web-
Shaper achieves state-of-the-art performance among open-sourced IS agents on
competitive benchmarks.

1 INTRODUCTION

The emergence of Large Language Model (LLM)-powered language agents has marked a paradigm-
shifting advance in artificial intelligence, enabling transformative solutions to previously intractable
challenges across domains (Guo et al., 2024; Wang et al., 2024; AutoGPT, 2023; Wu et al., 2023; Ye
et al., 2023). Information-seeking (IS) represents a core component of the cognitive autonomy of
language agents. This capability not only underpins their adaptability in open-ended tasks but also
powers a range of powerful commercial systems such as Deep Research of OpenAl (OpenAl, 2025),
Gemini (Gemini, 2025), and Perplexity (Perplexity, 2025).

Current agentic systems for unlocking this capability typically follow a well-established pipeline
in agent development: (1) First, construct task-specific trajectories of question-answer pairs; (2)
Employ supervised fine-tuning (SFT) to acquire foundational skills (Sun et al., 2025). (3) Generalize
strategic decision-making through on-policy reinforcement learning (RL) (Jin et al., 2025). The entire
development of the IS agent originates from and its ultimate effectiveness depends on high-quality
IS task training data. However, due to its complexity, such a high-quality dataset is both sparse and
difficult to construct through crowdsourcing. Thus, constructing training data through a carefully
designed agent pipeline becomes the cornerstone of effective IS agent development.

Existing IS dataset synthesis methods typically involve freely pre-searching for information online and
employing LLMs to generate questions from the collected content. These approaches first organize
the collected information into structured formats, then prompt the LLM with the structured data to
produce natural language (NL) questions. Their core objective is to map information structures into
reasoning structures within the resulting NL questions. Representative methods like WebDancer (Wu
et al., 2025a) and TaskCraft (Shi et al., 2025) generate linear information chains, while others
construct graphs connected via web links (Wu et al., 2025b) or entity coreference networks (Li
et al., 2025a). However, these information-driven approaches face two critical limitations. First,
the synthesis using LLM may struggle to fully comprehend the information structure, resulting
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in inconsistent reasoning structures or incorrect answers to the generated NL questions. Besides,
disordered information retrieval will lead to excessive data processing and will collect redundant
homogeneous information structures, which limits the diversity of information structures.

To overcome these limitations, we propose WebShaper', a formalization-driven IS data synthesis
paradigm. Unlike prior approaches, WebShaper first formalize information-seeking tasks and then
systematically guide data synthesis through this formalization. During generation, information
collection is explicitly controlled by formal task requirements. This framework offers three key
advantages: Broader Task Coverage: Systematic exploration of task formalizations enables synthe-
sizing diverse information-seeking patterns unconstrained by pre-retrieval content limitations; Task
Controllability: Explicit formalization parameters allow precise specification of reasoning structures
and complexity levels; Structural and Answer Consistency: Due to the inherent interpretability and
verifiability of formalized representations, synthesized outputs exhibit fewer inconsistencies across
both information-reasoning structures and question-answer pairs. With this structured guidance, we
produce consistent reasoning and redundancy while ensuring rich, diverse reasoning logic.

At the core of our framework lies a formalization of IS tasks, which enables principled and systematic
generation of task instances with controllable collection complexity and reasoning structures. Unlike
relevant fields, where there exists task formalization in advance, such as Lean 4 language (Moura &
Ullrich, 2021) in math proving and propositional logic in knowledge-centric question answering (Xia
et al., 2025), there’s no established formalization for information-seeking. We treat IS as a unified
problem space where task is systematically derived from compositions of basic units termed Knowl-
edge Projections (KP). To align with the formalized structure, we initiate synthesis by constructing
foundational seed tasks, followed by a multi-step expansion grounded in our formal framework. This
process employs a dedicated agentic Expander module designed to interpret task requirements via KP
representations. At each expansion stage, the expander transforms the current formal question into a
more complicated one. It implements layer-wise expansion mechanisms that minimize redundancy
while preventing reasoning shortcuts through controlled complexity progression. This process ensures
a broad coverage of the formalized task space and the correctness of the question and answer.

We conduct extensive experiments to validate WebShaper dataset by training agents. Comparison
with the existing training dataset shows the effectiveness of WebShaper. WebShaper achieves best
performances among all open-source IS agents on the GAIA and WebWalkerQA benchmarks. Further
discussions demonstrate the validity of each module of our method. We summarize contributions:

* We introduce WebShaper, a formalization-driven data synthesis method for information-seeking
agents, grounded in our proposed task formalization. Leveraging this method, we construct the
WebShaper dataset, which enables systematic generation of IS instances.

* We propose an agentic Expander that iteratively generates and validates questions in alignment
with the formalization, yielding broad coverage IS training data.

* We conduct extensive experiments across multiple benchmarks to evaluate WebShaper. Empirical
results demonstrate that models trained with WebShaper consistently outperform baselines,
confirming the value of our formalization and synthesis approach.

2 INFORMATION-SEEKING FORMALIZATION

In this section, we introduce our formalization of the information-seeking task. We illustrate an
example in Figure 1. An information-seeking task ¢(7) aims to search for knowledge and facts
prompted by given facts and locate the answer entity set 7'. For a basic example also shown in
Figure 1: q(T) = Which player of a team in the 2004-05 season, who was born in 90s? This team is
founded in 1966 and is an East German football team. To solve it, one should seek information about
This team is founded in 1966 and is an East German football team to find that the team is Berliner
FC Dynamo. And then seek for players of Berliner FC Dynamo team in 2004 and 2005 respectively
and players born in 90s, then reason the answer T' = {Robert Rudwaleit, Danny Kukulies, ..}.

Let £ denote the universal set of entities (e.g., players, teams, years). Let R C £ x £ denote a
subspace of entity pairs where they have a certain relation. For example, if the relation is bornin, R
stands for all pairs of (person, year) where person is born in year.

For a subset V' C £ and a sub-space R, define a Knowledge Projection (KP):
R(V)={u|Fw eV, (u,v) € Ror (v,u) € R}. (1)

'Without loss of generality, we use WebShaper to denote our data method, dataset, and model.
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Figure 1: A question-answer case in our information-seeking formalization. We use the purple
diagram to represent a knowledge projection, which is a set of entities.

For example, when R denotes entity pairs of relation bornin, R({90s}) represents the set of all
people born in 90s. A KP is the set of entities under a certain relation to other entities, which is
the basic unit in an information-seeking task. KP has two operations:

R-Union U In IS, the question may be seeking for a broader condition due to uncertainty about the
target. For instance, we only know the target player was playing between 2000-2010 rather than the
exact year in advance. The condition can not be more specific than a year range.

Therefore, given S7, S5 be entity sets and R, then:

R(V) = R(51) UR(S2) U---UR(Sm) @)
represents (1) is the union result set in which the entities have a certain relation to entries in either
S1, 592, ..., Spm. If R stands for relation playAt, then the set of players who play between 2000-2010
is R({2000}) U R({2001}) U --- U R({2010}).

Intersection N Some IS tasks require the target to satisfy several conditions simultaneously. It’s
interpreted as an Intersection operation of KP:

R(V) = Ri(S1) N Ry(S2) N --- N R (Sn) 3)
where R; are about different relations. For example, if R, is about playAt and R is about bornin,
then R, ({2000}) N R3({90s}) stands for players playing in 2000 and born in 90s.

Based on R-Union and Intersection operations, we define 7" as a target set:

DL

T = (Ri(SiJ) U Ri(Siyg) U... Rz(Sz,t,))) “4)

i=1

S ; C €. More generally, T' can be recursivelly derived by replacing .S; ; with other target set as:
T:Rl(Tl)ﬂRQ(TQ)ﬂ...ﬂRk(Tk) @)

An S task ¢(T) 27T is to find what entities a questioned 7" contains Therefore, the question example
can be formalized as shown in Figure 1.

3 DATA SYNTHESIS

In this section, we describe the process of our data synthesis with our task formalization. As Eq. (4)
shows, an IS task is recursively composited by knowledge projections. In order to better fit the IS task
formalization, we start with constructing a seed task, followed by a multi-step expansion approach.
This expansion process is built upon our formalization. We then introduce an agentic Expander.
It can understand the task formalization with our KP representation. At each expansion step, we
implement the layer-wise expansion to reduce redundancy and reasoning shortcuts. The Expander
autonomously retrieves knowledge from the internet, constructs and validates the new FPs to obtain
the new question. We elaborate on this process in the following sections.

3.1 SEED QUESTION CONSTRUCTION

The first stage is acquiring a substantial volume of diverse and non-trivial seed questions. To enhance
acquisition efficiency, we constructed an offline Wikipedia database by downloading all URLs
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corresponding to Wikipedia articles while preserving the hyperlinks between them. Subsequently, we
perform random walks across these articles through their preserved connections. By aggregating the
content from articles traversed during these random walks, we utilize an LLM to generate synthetic
data instances. Critically, the generated question-answer pairs must be entirely grounded in the
content from the collected articles, without relying on external knowledge sources.

However, the resulting seed questions could be noisy and contain hallucinations. We launch a filtering
process. We complete all the seed questions by WebDancer framework (Wu et al., 2025a) based
on the QwQ model (Team, 2025). We perform 5 times rollouts for each question and keep the data
where there must be at least one rollout correctly answering the question. We finally construct 18k
seed questions. We denote the harvested seed question as ¢* (7).

3.2 AGENTIC EXPANSION

Subsequently, we progressively expand seed questions into increasingly complex ones through
I-step expansion ¢'*1(T") = Expand(q'(T)) guided by the task formalization. However, the IS
formalization in Eq. (4) is complicated. The nature of recursion and the composition of multiple
operations are hard to understand. Besides, since the synthesis relies on retrieving new knowledge
online, there are several intermediate processes, such as knowledge filtering and selection. Therefore,
we establish an Agentic Expansion. The core of the expansion is the Expander, which is an agent itself
to autonomously retrieve information and validate the generation. We introduce the KP representation
for the Expander to understand our IS formalization. Then, we propose the Layer-wise Expansion
Strategy to mitigate the limitations of redundant and reasoning shortcuts.

3.2.1 KP REPRESENTATION

Since ¢(7") contains recursion and composition of R-Union and Intersection operations, it’s not trivial
to represent ¢(7") in the Expander agent prompt. We introduce our KP Representation. The key to
this representation is to: 1) represent a KP unit. 2) can handle R-Union and Intersection operations.
3) can handle recursions of KPs. We introduce Constant and Variable. A constant is a subset of
£ explicitly defined by its elements, e.g., {90s}, {2004,2005}. A variable is a subset of £ whose
elements are not explicitly given. It may appear as a symbolic placeholder in an expression.

We use a triplet [ X, r, S] to represent a KP R(.S). r is the name of the relation R. X is a variable
while S can be a variable or a constant. We use the prefix V@ followed by a variable to denote the
variable V. We use the prefix @QC' before its natural language description to represent a constant. For
example, Rpomim({90s}) is represented as [QV, bornin, 90s]. The Intersection operation in Eq.(3)
can be naturally represented as a list of triplets [[X, 71, S1], [ X, 72, S2], ..., [X, mn, Sk]].

For the R-Union in Eq.(2), simply expressing it in a list-like form will make the representation
complicated in recursive R-Union and Intersection. We notice R-Union has the following proposition:
Proposition 1. For a certain R, R-union satisfies the distributive Law:

R(S1) UR(S2) = R(S1 U S2) ©6)

We leave the proof in the Appendix C. With this proposition, we represent the R-Union of KP
by a merge set S; U Ss. In practice, we express the union of sets by induction (eg. {7990} U
{1991}, ...,U{1999} as {90s}). Or simply add underlines between them (eg. {1990} U {1991})
as {1990_1991}). After that, our representation would only have an intersection between triplets.

By introducing variables, our representation naturally handles KP recursion by faltten it into the
intersection of KPs. For example, given a recursion R'(R?(S)), we can represent it as [[VQX, 71,
vVay], [VQY, rq, S1]. Finally, an IS task ¢(T") can be represented by a list of triplets. The example
question in Figure 1 can be represented as:

¢(T) 27T s.t. [[VQT,playln, V@X], [V@T, playAt, C@2004_05),
[VQT, bornln, C@90s], [V@X,foundln, C@1966], @)
[V@X,isA, CQEast German football team|]

3.2.2 LAYER-WISE EXPANSION STRATEGY

After representing ¢(7"), we outline the iteration-based expansion process. Compared to prior methods
extending questions in natural language, our IS task formalism enables systematic structural analysis,
revealing latent patterns and enabling controlled, optimized expansion. To clearly illustrate the
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Figure 2: (a) Random Structure denotes expanding by randomly adding constants. (b) Sequential
Structure is expanding on a chain of reasoning sequence. (c) Layer-wise Structure traverses layer-
wisely on leaf constants and replaces them with variables. “Target” stands for target variable.

expansion strategy, we show our KP representation in a graph: nodes are variables/constants from
triplets; edges are relations. For example, Eq. (7) maps to the seed question in Figure 2, where
the target variable is determined via given constants. Earlier approaches lacked formal structure,
producing either Random (Wu et al., 2025b; Shi et al., 2025) (adding FP to arbitrary nodes, Figure 2(a)
or Sequential (Wu et al., 2025a) (linear reasoning chains, Figure 2(b), both with issues:

* Redundancy: Constants directly linked to other constants add sentences like “Dynamo Berlin is a
football club based in Berlin” without extending reasoning.

* Reasoning Shortcut: Constants that are close to or directly connected to the target result in
skipping deeper reasoning for the agent.

We address this via Layer-wise Expansion as illustrated in the Figure 2(c). We layer-wisely traverse
the graph to find all leaf constants. When we obtain all the leaf constants of the current graph, an
Expander takes each constant once to construct this constant into new FPs. These FPs can form a
sub-question that regards the constant as the answer. The expander then merges the sub-questions
with the current one to form a new one. It replaces those constants with the sub-questions. Note that
the answer for the expanded question always remains. The resulting structure would not have the
Redundant and Reasoning Shortcut problems. The number of expanding layers [ is a hyperparameter
for controlling the task coverage and difficulty.

3.2.3 EXPANDER AGENT

We now introduce the Expander, an autonomous agent designed to enhance question generation
through iterative refinement. Given an input constant, the Expander first retrieves relevant information,
then formulates a semantically coherent sub-question. This sub-question is subsequently integrated
with the original query to construct an enriched, context-aware question that better aligns with the
underlying information-seeking objective. It builds on ReAct (Yao et al., 2023), cycling through
Thought—Action-Observation triples (¢, o, 0¢ ), where each Action (7, ¢) specifies a tool and
parameters. We equip the Expander with the following tools:

* Search: It enables Expander to conduct Google search by severl queries about a constant and
obtains search results. The parameters of this tool are ¢ = {queries, filter_year}, enabling
temporal filtering of search results. This tool returns top relevant URLs and their snippets.

e Summarize: This is the key to R-Union oepration. This action allows Expander to visit multiple
URLSs for the constant and summarize the content. The summarization would integrate the
retrieved information to obtain a union constant set as stated in Eq.(6). The parameters of this
tool are ¢ = {urls, goal}. This tool returns the summarization from the given URLSs.

e Validate: When Expander completes retrieving and summarizing the KPs of constant, it derives
a sub-question and uses this tool to validate the results based on our formalization. The validation
purposes are to determine: 1) whether the derived sub-question are approximately consistent with
the constants based on the formalization. 2) whether it is too simple that can be directly answered
by an LLM. This tool would return detailed validation results as Observation, and the Expander
would take the next action according to it.

3.3 TRAJECTORY CONSTRUCTION

We then construct task-solving trajectories using ReAct format. At each step, the agent generates
Thought, performs Action, receives Observation, and chooses the next move. At each time step
t, the agent execution loop can be formalized as a triple (74, oy, 0;), where 7; denotes the free-form
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Table 1: Main results on GAIA and WebWalkerQA benchmarks. We compare WebShaper with sev-
eral cutting-edge baselines methods. bolded number stands for the best results on the corresponding
settings. Blue scores are the highest among all open-sourced methods.

| GAIA | WebWalkerQA
Backbone Framework | Level 1 Level 2 Level 3 Avg. | Easy Medium Hard Avg.
No Agency
Qwen-2.5-7B Base ‘ 12.8 3.8 0.0 6.8 ‘ 1.25 0.8 0.7 0.8
Base 20.5 9.6 8.3 13.6 3.8 2.5 33 3.1
Qwen-2.5-32B RAG ‘ 128 118 83 118 ‘ 231 143 113 153
Qwen-2.5-72B Base ‘ 20.5 13.5 0.0 14.6 ‘ 9.4 7.1 33 6.3
GPT-40 Base ‘ 23.1 15.4 8.3 17.5 ‘ 6.7 6.0 4.2 5.5
Base 30.8 15.4 25.0 22.3 7.5 2.1 4.6 4.3
QwQ-32B RAG ‘ 333 365 83 320 | 369 261 335 312
DeepSeek-R1-671B Base ‘ 43.6 26.9 8.3 31.1 ‘ 5.0 11.8 11.3 10.0
Close-Sourced Agentic Frameworks
OpenAl DR ‘ 74.3 69.1 47.6 67.4 ‘ - - - -
Open-sourced Agentic Frameworks
Search-o1 33.3 25.0 0.0 28.2 - - - -
Qwen-2.5-32B WebDancer 46.1 44.2 8.3 40.7 44.3 46.7 29.2 384
WebShaper 61.5 53.8 16.6 524 58.1 51.4 470 514
Search-ol 53.8 34.6 16.6 39.8 43.1 35.0 27.1 34.1
WebThinker-Base 53.8 44.2 16.6 44.7 47.2 41.1 392 419
QwQ-32B WebThinker-RL 56.4 50.0 16.6 48.5 58.8 44.6 404 465
Simple DS - - - 50.5 - - - -
WebDancer 61.5 50.0 25.0 51.5 52.5 59.6 354 479
‘WebShaper 69.2 50.0 16.6 53.3 55.8 49.2 454  49.7
WebSailor - - - 554 - - - -
Qwen-2.5-72B WebShaper 69.2 63.4 166 601 | 562 521 495 522

Thought, o, represents the structured Action, and o; corresponds to the Observation returned
by the environment. The Thought component 7; is unrestricted natural-language reasoning that the
model uses for planning, decomposition, self-reflection, or grounding intermediate assumptions. The
Action « is further decomposed into an action type o™ and its parameter set o, i.e., « = (o™, aP).
The action type o™ € {Search, Visit, Answer} corresponds to the core tool interfaces used in deep
information-seeking tasks?.

To standardize trajectories and facilitate supervised learning, we adopt explicit structural markers
for each segment. Thought segments are enclosed by <think> and </think>, Action segments by
<tool_call> and </tool_call>, and Observation segments by <tool_response> and </tool_response>.
The final Action segment, corresponding to the model’s ultimate response to the task, is encapsulated
in <answer> and </answer>. These markers make agent behavior transparent and machine-parsable,
enabling precise control, analysis, and dataset construction. Each question gets 5 rollouts. We
remove the trajectories where the answers are wrong, contain hallucinated observations, or severe
repetition. We finally obtain 5,000 trajectories for supervised and reinforcement learning.

3.4 AGENT TRAINING

To train our information-seeking agent, similar to WebDancer (Wu et al., 2025a), we implement
supervised fine-tuning (SFT) followed by reinforcement learning (RL). In SFT, we mask out loss
from observation leading to loss. For RL algorithm, we use GRPO (Shao et al., 2024). We leave the
details in the Appendix F.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

We evaluate WebShaper on two information-seeking benchmarks: GAIA (Mialon et al., 2023) and
WebWalkerQA (Wu et al., 2025b). We use the LLM-as-Judges paradigm to evaluate both tasks using

The details of tools are shown in App. G
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(a) Formalization ablation analysis. (b) Layer-wise structure ablation analysis.

Figure 3: Discussions on formalization and layer-wise structure.

the Pass@1 metric, following Li et al. (2025c). We elaborate on the WebShaper data statistics in
the Appendix D. To assess dataset quality, we conduct a comparative study during the SFT stage by
training on different data sources. The detailed descriptions of the datasets used in this comparison
are provided in Appendix E.

4.2 BASELINES

We mainly compare our method to open-source cutting-edge deep research agent frameworks:
Search-ol (Li et al., 2025b), WebDancer (Wu et al., 2025a), WebThinker (Li et al., 2025¢), Sim-
pleDeepResearch (Sun et al., 2025), and WebSailor (Li et al., 2025a). As more strict comparing
settings, we train baseline models on WebWalkerQA (Wu et al., 2025b), E2ZHQA (Wu et al., 2025a),
and MHQA (Sun et al., 2025), respectively.

4.3 MAIN RESULTS

We compare WebShaper with cutting-edge baselines. The results are shown in Table 1. Web-
Shaper achieves best performances on open-sourced methods on both GAIA and WebWalkerQA.
Among all GAIA results, WebShaper-on Qwen-2.5-72B excels second-best method WebSailor 4.7
score. On WebWalkerQA WebShaper obtains the highest 52.2 score. WebShaper performs the best
on each backbone setting. These results indicate the generalizability of the synthesized data on
different models. WebShaper is currently the only open source method with a score of more than
60 points, which is close to the SOTA OpenAlI DR system. WebShaper is implemented fully under
open-sourced LLMs, demonstrating that high-quality IS data can deeply stimulate the ability of DR
Agents. Notably, we find reinforcement learning on QwQ-32B is not significant. Therefore, we report
the SFT result on QwQ-32B in Table 1.

4.4 DISCUSSIONS
4.4.1 DATA COMPARISON

In this section, we compare WebShaper with
Table 2: SFT Data Comparison on GAIA bench- baseline datasets. We sample 5,000 data points
marks. The best results are in bolded. from each dataset. Then we supervised fine-
tune Qwen2.5-32B, Qwen2.5-72B (Yang et al.,
2024), and QwQ (Team, 2025) on each dataset.

Backbone | Dataset Avg.- The comparative results on GAIA presented
WebWalkerQA  32.0 in Table 2 demonstrate the superior perfor-
Qwen-2.5-32B E2HQA 39.8 mance of WebShaper across all backbone ar-
MHQA 359 chitectures on the GAIA benchmarks. No-
WebShaper  43.6 tably, WebShaper achieves the highest average
WebWalkerQA  38.8 scores for Qwen-2.5-32B, Qwen-2.5-72B, and
E2HQA 44.6 QwQ-32B, respectively, significantly outper-
Qwen-2.5-72B MHQA 43.6 forming baseline datasets like WebWalkerQA
WebShaper 45.6 and MHQA. Even when comparing models with
WebWalkerQA  45.6 similar parameter counts (e.g., Qwen-2.5-.32.B),
WebShaper-enabled models show substantial im-

E2HQA 45.6 . >
QwQ-32B MHOA 417 provements. The consistency of WebShaper’s
WebShaper 53'3 performance improvement suggests its effective-

ness in enhancing model capabilities regardless
of architectural design. These findings validate
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the effectiveness of formalization-driven data synthesis, making it a superior training data solution
for information-seeking tasks. More details are in the Appendix L.

4.4.2 RL STIMULATION

We compare GAIA performances between mod- P 1-SFT mP 1-RL
els trained after SFT and reinforcement learning. ass@ ass@

RL models are trained based on the SFT results. 70 +8.8 +14‘go 1
As illustrated in Figure 4, our experimental results 60 i :

demonstrate significant performance improvements g 52.4
across both Qwen2.5-32B and Qwen2.5-72B mod- S 50 43.6 45.6
els after RL training on both GAIA and WebWalk- @ 44

erQA. The Pass@ 1 metric shows notable enhance-

ments of +7.8 points for the 32B model and an 30
even more pronounced +13.5 points increase for Qwen2.5-32B Qwen2.5-72B
the 72B variant on GAIA. On WebWalkerQA, Web- (a) GAIA.

Shaper also improves IS capability on a large scale.

This substantial gain highlights the critical role of Pass@1-SFT mPass@1-RL

RL in activating advanced information-seeking ca- 60 +7.7 +6.8

pabilities within LLM. The breadth and complex- 51.3 52.2

ity of tasks introduced by our task formalization g 50 44.6 46.4

stimulate dynamic IS strategies during RL. Unlike 9

generic datasets, our carefully curated scenarios n 40

require the model to iteratively query relevant infor- I

mation, effectively "training" it to prioritize contex- 30 o o

tually aligned knowledge fragments. Qwen2.5-32B Qwen2.5-72B
(b) WebWalkerQA.

4.4.3 FORMALIZATION Figure 4: Comparison with SFT and RL.

In this part, we validate whether our formalization truly improves the dataset. We compare our dataset
to a variation that uses natural language during the data synthesis. We denote our method with formal
language as FL, while natural language as NL. This variation takes the current question in each
iteration and also uses the Expander agent to expand it to a new question. The Expander process in
natural language as well. We SFT Qwen2.5-32B, Qwen2.5-72B, and QwQ on both datasets. The
other training setting remains the same. We compare the training results with the variation as shown
in Figure 3a. FL excels NL in all base model backbones. These results indicate that our formalization
language can mitigate the limitations incurred by natural language. Our IS task formalization can
synthesize more forms of tasks. It also reduces error propagation in the synthesis process, leading to
consistent and precise question-and-answer pairs.

4.4.4 LAYER-WISE EXPANSION STRATEGY

We evaluate the effectiveness of the Layer-wise structure. In order to compare, we set up a variation
which uses the same Expander and task formalization but expands the question in a sequence as
shown in Figure 2. We SFT Qwen2.5-32B, Qwen2.5-72B, and QwQ on both datasets. Other training
settings remain the same. We denote method with the layer-wise structure as L, while the sequential
structure as S. The results as shown in Figure 3b. The layer-wise structure performs better than the
Sequential structure in all base models. The results show that our method truly mitigates shortcomings
such as Redundancy and Reasoning shortcuts. Our method improves the final performance via the
controllable structures.

4.4.5 TooL CALL ANALYSIS

We show the distribution tool call count of the agent to solve a question in different datasets. We
illustrate the tool call counts larger than 3, which shows the complicated trajectories proportion.
Search Complexity (Figure 5a) WebShaper exhibits a pronounced long-tail distribution. Pretty
much tasks requiring over 3 search operations. This is 3-4x higher than E2ZHQA and MHQA,
indicating superior handling of information-rich queries requiring iterative refinement. Knowledge
Navigation (Figure 5b) The visit operation distribution shows WebShaper maintains a high ratio for
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Figure 5: Tool call analysis.

trajectories exceeding 3 steps, while competing datasets sharply drop after 10 steps. This sustained
capability reflects enhanced navigational intelligence in IS tasks. Composite Reasoning (Figure 5c)
In total tool calls, WebShaper’s doubles the count larger than 3. Notably, it sustains non-zero
proportions up to 30 tool calls, demonstrating scalability for highly complex compositional reasoning.
These findings underscore WebShaper’s unique ability to manage intricate reasoning chains, with
statistically significantly higher proportions of multi-hop reasoning trajectories across all modalities.
The sustained performance in extended tool call sequences suggests superior architectural capacity
for managing complex task decompositions compared to existing benchmarks.

4.5 CoOST ANALYSIS

Our overall synthesis pipeline is indeed more computationally demanding than traditional information-
driven methods. On average, generating a single example requires roughly 20 LLM completions,
6 search calls, 6 visit calls, and about 7 minutes of end-to-end runtime. While approaches such
as WebWalkerQA and MHQA incur lower cost by relying on only a few LLM completions, they
typically yield simpler multi-hop questions. More advanced methods like E2ZHQA also rely on
multiple LLM and tool calls and are therefore not substantially cheaper when targeting complex
reasoning. Importantly, the additional compute is necessary to produce in-domain, high-fidelity
GAIA and WebWalker-level data. As shown in Table 2, SFT on our synthesized data improves GAIA
performance by 5—10 points across multiple backbones, consistently outperforming WebWalkerQA,
E2HQA, and MHQA. These results underscore that the increased computational cost is well justified
by the significant gains in data quality and downstream performance.

4.6 QUANTITATIVE EVALUATION OF QA FACTUAL ACCURACY

For the quantitative evaluation of QA factual accuracy, manual verification of large-scale synthesized
QA pairs (thousands of instances) is impractical and resource-intensive. We thus adopt a proxy method
leveraging the interpretability of our formalization: feeding the formalized structure (including
intermediate reasoning steps) of each synthesized question to the QwQ-based solving agent, which
provides explicit reasoning path guidance and makes the agent’s answer accuracy a reliable reflection
of the original QA pair’s factual correctness. Experimental results show the agent achieves over 80 %
accuracy on the synthesized dataset, confirming that our formalization-driven synthesis effectively
mitigates hallucinations and inconsistencies while ensuring strong factual correctness.

4.7 ETHIC DISCUSSION

Our synthesis pipeline is specifically engineered to mitigate ethical concerns and data quality risks
through three core safeguards. First, seed questions are derived from factual, rigorously curated
Wikipedia entries, which effectively mitigates topic drift and minimizes the propagation of inherent
biases. Second, the generated tasks are strictly centered on fact-driven reasoning, deliberately steering
clear of subjective or sensitive domains, where biases are prone to emerge and amplify. Third,
our multi-stage verification process systematically uphold factual consistency, while filtering out
hallucinatory content and data contaminated by misinformation or bias.

5 RELATED WORK
5.1 INFORMATION-SEEKING DATA SYNTHESIS

Recent advances in information-seeking agents aim to integrate web interaction into LLMs’ reasoning.
While these works exhibit promising capabilities, they predominantly depend on limited or overly
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simplistic datasets (Yang et al., 2018; Joshi et al., 2017; Kwiatkowski et al., 2019). Concurrently,
several recent benchmarks, such as GAIA (Mialon et al., 2023), BrowseComp (Wei et al., 2025), and
BrowseComp-zh (Zhou et al., 2025), provide only test sets, which restricts their applicability for train-
ing agents. Early efforts, such as WebWalkerQA, explored simulating human-like web navigation to
generate QA pairs by constructing linear information chains. CRAWLQA within WebDancer expands
simple questions to more complex ones by aggregating external information, while SailorFog-QA
within WebSailor leverages entity coreference networks to support fuzzy reasoning. These methods
are predominantly information-driven, focusing on strategies for retrieving and connecting knowl-
edge. In contrast, our approach is formalization-driven, emphasizing the structural representation and
principled modeling of the QA process.

5.2 FORMALIZATION-BASED DATA SYNTHESIS

Recent work exploits formalization to synthesize training corpora for LLM theorem provers.
DeepSeek-MathProver translates high-school and undergraduate competition problems into Lean4
statements, generates proofs with an LLM, and validates them in the Lean4 kernel (Xin et al., 2024).
DeepSeek-MathProverV2 further decomposes proofs into subgoals and distills subgoal proofs into a
lightweight model (Ren et al., 2025). Concurrently, Leang et al. (2025) synthesize “prover-as-judge”
data via iterative natural-language<«>formal-language alignment, replacing human feedback in RLHF
and improving DPO outcomes. Goedel-Prover bootstraps a sequence of successively stronger provers
on a dynamically expanding Lean4 corpus (Lin et al., 2025). A parallel line applies formalization to
KBQA. LACT constructs arbitrary first-order logical queries via binary-tree decomposition, yielding
an SFT dataset that is fine-tuned on an easy-to-hard curriculum (Xia et al., 2025). Departing from
propositional or FOL formalisms, our work grounds data synthesis in set-theoretic IS.

6 CONCLUSION

This work presents a paradigm-shifting framework for synthesizing training data WebShaper for
information-seeking (IS) agents through formalization-driven design. By establishing a set theory-
based mathematical formalization of IS tasks, we address critical limitations in existing information-
driven approaches that suffer from structural inconsistencies, task controllability, diversity, and
coverage. The composition of proposed Knowledge Projections enables precise engineering of rea-
soning structures and complexity. Our agentic Expander module further ensures systematic expansion
of formalized tasks with a layer-wise expansion paradigm, combining autonomous knowledge re-
trieval and rigorous validation to minimize redundancy and prevent reasoning shortcuts. Experimental
results demonstrate that WebShaper not only achieves state-of-the-art performance on GAIA and
WebWalkerQA benchmarks but also introduces controllability over task design, enabling deliberate
engineering of cognitive challenges for IS agents. This formalization-driven paradigm shifts the
focus from reactive information organization to proactive task specification, opening new avenues for
advancing agent capabilities.

LIMITATION

Restricted Tool Set. Our current framework supports only two tools, search and visit—for infor-
mation seeking interactions. While this suffices for the benchmarks studied, it limits the agent’s
ability to handle more complex or multi-step workflows. We plan to incorporate more sophisticated
tools, including abstracted browser-functionality modules and a Python sandbox environment for
API-based interactions.

Tasks Scope. Our experiments focus on two short-answer information-seeking benchmarks. How-
ever, a comprehensive web agent should be capable of tackling broader tasks such as report-level
research, long-form synthesis, and open-ended generation. Extending our framework to these settings
is an important direction for future work.

Training Context Length Constraint. The models are trained under a 32k sequence length budget.
While this is a pragmatic choice, it may restrict the model’s ability to reason over even longer contexts
or handle more complex web trajectories. Scaling the context window is a natural next step.

10
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A DECLARATION ON THE USE OF LLMS

We affirm that the use of large language models in preparing this manuscript was strictly confined
to language-related assistance, including sentence refinement and grammatical correction. All
substantive content was independently authored by the authors and subsequently subjected to rigorous
review and verification following any LLM-assisted edits. In conducting the experiments, LLMs were
employed exclusively for legitimate academic research purposes, with no inappropriate applications.
Detailed experimental settings are provided in Sec. 4 of this paper. Beyond the aforementioned
language and experimental uses, no other reliance on LLMs was involved in this work.

B ILLUSTRATION OF FORMALIZATION-DRIVEN

(a) Information-Driven

& | e
/ source i |:> i / source \

(b) Formalization-Driven
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Figure 6: Data synthesis paradigm shift from information-driven to formalization-driven. “Source’
stands for information sources such as the internet and databases. “Data” represents the synthesized
QA data. (a) Previous methods retrieve and organize collected information in advance, then synthesize
data according to the information structures. (b) Our method establishes the task formalization first,
then collects information, and synthesizes QA data based on the formalization.

Compared with the traditional information-driven paradigm (Figure 6(a), which first collects raw
information from various sources (e.g., the Internet and databases), organizes it into structured forms,
and subsequently synthesizes QA data according to these information structures, our formalization-
driven paradigm (Figure 6(b) begins by establishing a formalized representation of the target task
(e.g., logical or symbolic specification). Guided by this formalization, we then acquire relevant
information from sources and synthesize QA data directly in alignment with the established formal
specification. This shift in paradigm emphasizes precise task modeling prior to information retrieval,
enabling more controlled and consistent data generation.

Our data synthesis framework presents a foundational methodology for constructing training data for
intelligent agents, featuring two key innovations: task formalization and agent-driven synthesis.
By explicitly modeling tasks as structured, formal representations and leveraging proxy agents
to synthesize data, this work provides a systematic approach to address the critical challenge of
generating training data that transcends the complexity and unpredictability of naturally occurring
human-centric environments. Below, we discuss the broader implications for agent research.

Implications in Agent Training Data Synthesis Traditional approaches to training agents often
rely on datasets derived from human-generated interactions, which are inherently limited in diversity,
scalability, and controllability. We emphasize that effective agent training requires explicit formal-
ization of task structures—a prerequisite for achieving precise control over data properties. By
decoupling task definitions from data generation, the framework enables:

* Targeted Complexity Management: Tasks can be systematically parameterized to adjust
difficulty, modality, or compositional structure, ensuring agents are exposed to controlled
gradients of challenge. This contrasts with ad-hoc methods that risk overfitting to biases in
natural data or failing to stress-test edge cases.

* Quality Assurance: Formal task models act as a "specification" for data synthesis, reducing
noise and ensuring consistency. This is critical for applications where reliability and safety
are paramount, such as autonomous systems or medical Al.
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e Scalable Data Generation: Agent-driven synthesis eliminates the need for laborious manual
annotation or heuristic-based pipelines by directly translating formal task representations
into training instances. This reduces computational overhead while preserving fidelity to the
task’s intended design.

Implications for AI Research and Development Our architecture provides insights for advancing
Al systems:

* Beyond Human-Level Complexity: By formalizing tasks independent of human behavioral
priors, the framework enables training data to exceed the implicit constraints of natural
data. This opens pathways to train agents for domains requiring superhuman reasoning (e.g.,
advanced scientific modeling, combinatorial optimization).

* Cross-Domain/Task Generalization: Formal task representations abstract away domain-
specific noise, allowing agents to learn invariant principles applicable across diverse contexts.

C PROOF OF PROPOSITION 1

Here we provide formal proof of Proposition 1.

Proof. Let x be an element of R(S;) U R(S2). By Equation 1, there exists either a y; € S; such
that (y1,2) € Ror (x,y1) € R, orays € Ss such that (y2,2) € R or (z,y2) € R. Consequently,
there exists a y € S; U Sa, e.g., y1 or ya, such that (y,z) € Ror (z,y) € R. Thus, we have
T € R(Sl @] Sg), and hence R(Sl> U R(SQ) - R(Sl @] SQ)

Conversely, let z be an element of R(S7U.S3). Then there exists ay € S1USs such that (y, z) € Ror
(z,y) € R. Ify € Sy,then z € R(S;);ify € Sa, then z € R(Ss). Ineither case, z € R(S1)UR(S2).
Therefore, R(S1 U.S2) C R(S1) U R(S3).

Combining both directions, we conclude that:
R(Sl) U R(SQ) = R(Sl U SQ)

Thus, we end proof of the Proposition. [

D DATA STATISTICS

We analyze the domain distributions of our dataset.
The domain distribution of our dataset demonstrates
rather comprehensive coverage across multiple the-
matic areas, as visualized in Figure 7. Our construc-
tion of seed tasks leads to questions about various
topics and entities. Our agentic expansion further
strengthens these benefits. The dataset achieves sig- Culture
nificant diversity through its balanced representation g
of major domains such as Sports, Politics, and
Entertainment.

Medical

n Histor
Literature stery

This deliberate design ensures our dataset not only 12%
avoids over-reliance on any single domain but also
maintains sufficient sample density across diverse
topics. The empirical balance between breadth and Entertainment

depth enables robust training of a domain-agnostic 13% Politics
information-seeking agent. Such characteristics po- 15%
sition our dataset as particularly suitable for train
multi-domain IS tasks and fostering interdisciplinary Figure 7: Domain distribution.
research.

Technology Academic
Economic 17%
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E COMPARED DATASETS

‘We compare our synthesized dataset with several datasets:

* WebWalkerQA employs random walks over interlinked URLS to synthesize questions based
on the visited webpages (Wu et al., 2025b). The dataset includes both single-source questions,
generated from a single visited URL, and multi-source questions, which are constructed
using information aggregated from multiple visited URLSs.

» E2HQA is a dataset introduced by WebDancer (Wu et al., 2025a), where simple questions are
systematically rewritten into more complex, challenging ones.

* MHQA is a composite dataset that integrates existing single-hop and multi-hop question-
answering datasets. The majority of the questions are annotated by humans.

F AGENT TRAINING

To train our information-seeking agent, similar to WebDancer (Wu et al., 2025a), we implement
supervised fine-tuning (SFT) followed by reinforcement learning (RL).

In SFT, given a trajectory in a sequence of tokens 7 = (71, a1, 01, ..., Tn, iy, 05, ), We mask out loss
from observation leading to loss:
1 |71

L= —7211[@ € o] -logmg(x; | T<4) (8)
T
Z‘zzll I[z; € o] i
where 7y is the model to be trained. Later in RL, we further optimize 7y based on the GRPO

algorithm (Shao et al., 2024). For a question-answer pair (¢, a), we sample rollouts {yi}Lgl and
update the policy model by:

\7(0) = ]EqND {yi}& ~mo,, (-|context)
G il

min Ty, t z ty Cl]p T t(0> 1- Elow> 1+ Ehigh Ai,
£ 2 2 (0t W) o
rs.(6) = o (Oi | Gis 0i,<t) = R; — mean({Ri})7

0414 (Oi | qis 01’,<t) Std({Ri})
where context includes all the model completions and tool responses. ¢ is the clipping range of the
importance sampling ratio r; ;(#). A;; is an estimator of the advantage of the i-th rollout at ¢-th step.

G AGENT DETAILS

Following Wu et al. (20252a), WebShaper uses two tools, search and visit, which are regarded as
fundamental to the information seeking process (Zhu et al., 2025):

 Search interfaces with the Google search engine to retrieve relevant documents given natural
language queries. It supports multiple queries in parallel and returns the top-10 results for
each query, where each result includes a title, a snippet, and the corresponding URL.

* Visit enables targeted extraction from specific web pages. Each page is paired with a
designated visit goal. The full content of the page is first retrieved using Jina (Jina.ai,
2025), after which a summarization model (Qwen-2.5-72B in our implementation) extracts
information relevant to the specified goal.

H TRAINING DETAILS

H.1 SFT

For SFT, we use a batch size of 32 and a learning rate of 5e-6, warmup plus cosine decay schedule.
We also apply a weight decay of 0.1.
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H.2 RL

For RL training (Sheng et al., 2025), each group consists of 8 rollouts. The temperature is 1.0,
top, = 1.0, the batch size is 128, the mini batch size is 32, and the learning rate is 1e-6.

H.2.1 CASE STUDY

s N
Question In Natural Language
Question: What is the title of the section, where the section is written by an author who also authored a
scholarly article analyzing contact between Medieval Norse and Native North Americans published in a peer-
reviewed archaeology journal, which additionally published another article that analyzes Lake Mohave artifacts
and Pleistocene lake levels?
Answer: Thule Prehistory of Canada.

isA, C@A peer-reviewed archaeology journall,
analyze, C@Lake Mohave artifacts and Pleistocene lake level] ]

Qo

—————

| J
( N
Question In Formalization Question In Graph
[ [vex, hasTitle, veTl, [veX, writtenBy, 1, @ PO Y i .
[V@Y, hasAuthor, Vekl, [VeK, publishIn, VeNl, [VeN, publish, Ve, S
[VeK, analyzeContactBetween, C@Medieval Norse and Native North Americans], A H H
[
[

Q Target . )Variable (C}Constant
.

Figure 8: Case studies of our synthesized data. We show a question in natural language, our
formalization, and a graph respectively.

We present a representative case study in Figure 8. Compared with linear structure and sequential
structure, our synthesized data has no problems of redundancy and reasoning shortcuts. The model
should strictly seek information and reason alongside all the variables to find the answer. There are
no constants directly connected to the target variable T" or variables close to it. Besides, there are no
constants connected to other constants.

Moreover, R-Union effects well in our data. The underlined FP is a summarization of distributed
web contents, leading to more difficulty in resolving the variables K, N, and M. Benefiting from
the formalization, our data contains a variety of IS forms, which can fully stimulate the different IS
capabilities of the model.

s N
Question In Natural Language
Question: “Strange Stories from a Chinese Studio” is a collection of classical Chinese short stories written by the
Qing Dynasty novelist Pu Songling. The earliest manuscript copies were already in circulation during the Kangxi
reign of the Qing Dynasty, and the collection comprises over four hundred short stories in total. In Volume Ten of
“Strange Stories from a Chinese Studio,” there is a story titled “The Green-Clothed Girl.” In this story, how many
sentences did the scholar Yu Jing speak with her?

| J
( N
Question In Formalization Question In Graph
[ [C@SSCS, isA, C@Classic story], [C@SSCS, writtenBy, C@Pu Songlingl, (..\‘___@

[c@SSCS, inCirculation, C@Qing Dynasty], et

[C@SSCS, comprises, C@over 400 stories], _ ‘;) i

[vex, isInTenVolume, C@SSCSI, _{Ju,'. . ~

[ , isTitled, C@The Green-Clothed GirlS], ‘.;_' b R el ©

[vax, hasSentences, V@TI, L,(

[V@T, happenedBetween, C@Yu Jing_The Green-Clothed Girl] ] O Target  )Variable (T}Constant

Figure 9: Case comparison. “SSCS” stands for "Strange Stories from a Chinese Studio".

We compare a representative example shown by KIMI-Researcher (Kimi, 2025), illustrated in Figure 9.
The case includes redundant information, such as multiple constants connected to “SSCS”, which
contribute little to answering the question. Additionally, a reasoning shortcut is observed that directly
connects to the target variable. Despite the apparent complexity, the underlying reasoning structure is
relatively simple, consisting of a single-hop reasoning path.
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Table 3: SFT Data Comparison on GAIA benchmarks. The best results among all backbones are in
bolded.

| GAIA
Backbone Dataset | Level 1 Level 2 Level 3 Avg.
WebWalkerQA 435 30.7 0.0 32.0
E2HQA 56.4 36.5 0.0 39.8
Qwen-2.5-32B MHQA 435 36.5 8.3 35.9
WebShaper 56.4 40.3 16.6 43.6
WebWalkerQA 53.8 36.5 0.0 38.8
E2HQA 61.5 38.4 16.6 44.6
Qwen-2.5-72B MHQA 56.4 442 0.0 436
WebShaper 56.4 48.0 0.0 45.6
WebWalkerQA 66.6 38.4 8.3 45.6
E2HQA 58.9 423 16.6 45.6
QwQ-32B MHQA 51.2 442 0.0 417
WebShaper 69.2 50.0 16.6 53.3

I DETAILED DATA COMPARISON RESULTS

As shown in Table 3, our proposed WebShaper method consistently achieves the highest average
performance across different backbones on the GAIA benchmarks. In particular, WebShaper out-
performs other datasets in most settings, with the best results highlighted in bold. For example,
with the Qwen-2.5-32B backbone, WebShaper achieves an average score of 43.6, surpassing com-
peting datasets by a significant margin. Similarly, for Qwen-2.5-72B and QwQ-32B backbones,
WebShaper reaches 45.6 and 53.3 respectively, demonstrating strong generalization capabilities
across model sizes and difficulty levels (Level 1, Level 2, Level 3). These results clearly highlight the
robustness and superiority of our approach in handling diverse and challenging evaluation settings.
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