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ABSTRACT

There is a proliferation of out-of-distribution (OOD) detection methods in deep
learning which aim to detect distribution shifts and improve model safety. These
methods often rely on supervised learning to train models with in-distribution
data and then use the models’ predictive uncertainty or features to identify OOD
points. In this paper, we critically re-examine this popular family of OOD detection
procedures, revealing deep-seated pathologies. In contrast to prior work, we argue
that these procedures are fundamentally answering the wrong question for OOD
detection, with no easy fix. Uncertainty-based methods incorrectly conflate high
uncertainty with being OOD, and feature-based methods incorrectly conflate far
feature-space distance with being OOD. Moreover, there is no reason to expect a
classifier trained only on in-distribution classes to be able to identify OOD points;
for example, we should not necessarily expect a cat-dog classifier to be uncertain
about the label of an airplane, which may share features with a cat that help
distinguish cats from dogs, despite generally appearing nothing alike. We show
how these pathologies manifest as irreducible errors in OOD detection and identify
common settings where these methods are ineffective. Additionally, interventions
to improve OOD detection such as feature-logit hybrid methods, scaling of model
and data size, Bayesian (epistemic) uncertainty representation, and outlier exposure
also fail to address the fundamental misspecification.

1 INTRODUCTION

In the real world, distribution shifts are the norm rather than the exception. We almost always have to
deploy our predictive models on test points drawn from at least a somewhat different distribution than
the training points: images acquired from different machines and hospitals, lane boundary detection
in different cities, speech recognition with different accents (Amodei et al., 2016; Jung et al., 2021;
Niu et al., 2016; Zhou et al., 2022; Koh et al., 2021). In order to make good predictions under these
shifts, we need to build relevant invariances into our models, so that natural transformations such
as rotations, translations, or even mild noise corruptions, do not significantly change the predictive
distribution (Hendrycks and Dietterich, 2018; Mintun et al., 2021; Benton et al., 2020).

However, rather than generalizing to natural distribution shifts, it has become popular to detect
out-of-distribution (OOD) data by training a supervised predictive model on in-distribution data, and
then examining the model’s uncertainty, logits, or features. A proliferation of works develop such
procedures for detection improvements on known benchmarks (e.g., Hendrycks and Gimpel, 2016;
Lee et al., 2018; Ren et al., 2021; Hendrycks et al., 2019a; Liang et al., 2017; Wang et al., 2021) or
propose new and more challenging benchmarks (e.g., Hendrycks et al., 2019a; Yang et al., 2024;
Wang et al., 2022; Bitterwolf et al., 2023; Yang et al., 2021).

While some prior work has considered limitations of OOD detection, the focus has been on issues with
benchmarking (e.g., controlling for covariate shift versus semantic shift detection) (Yang et al., 2024),
specific architectural features of generative models (e.g., normalizing flows with coupling layers)
(Kirichenko et al., 2020), or minor method deficiencies that can be straightforwardly addressed (e.g.,
max-logit being more robust to many classes than max softmax) (Hendrycks et al., 2019a).

By contrast, we argue that the whole premise of using supervised models trained on in-distribution
data for out-of-distribution detection is fundamentally flawed — a wholly misspecified enterprise,
with no easy fix. First, the predictive distribution is over class labels, not whether an input comes
from a different distribution: it is simply answering a different question. By making a predictive
distribution better for detection, we could be removing invariances that would help with generalization.
This effort is particularly self-defeating if the reason for wanting to do detection in the first place is
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Figure 1: There are irreducible errors when using supervised models for OOD detection because
the problem is inherently misspecified. Supervised models can only determine if an input leads to
atypical representations or uncertain predictions, which is fundamentally different than determining
if the input belongs to the training distribution.

to defer to a system that could provide reasonable generalization (e.g., thresholded classification).
Moreover, there is often a focus on detecting semantic shifts (Yang et al., 2024), particularly new
unseen classes, where the model in fact should not be expected to generally say anything reasonable.
A car-truck classifier could be highly confident that a dog is a truck, if it uses similar features to
distinguish trucks from cars. It is not that OOD detection is “fundamentally difficult”, but rather that
detection is being approached with methods that are fundamentally answering the wrong question —
a dog on the whole may look much different than a truck, and should be distinguishable from trucks
and cars, but not by training a supervised model only to differentiate between trucks and cars.

In this paper, we explain the fundamental conceptual limitations of popular supervised approaches
for OOD detection, visualized in Figure 1, which we exemplify in several settings. We then consider
the limitations — and, in some cases, additional pathologies — of standard interventions, such as
epistemic (Bayesian) uncertainty representation and ensembling (Lakshminarayanan et al., 2017;
Malinin et al., 2019; Tagasovska and Lopez-Paz, 2019; D’Angelo and Fortuin, 2021; Hendrycks
et al., 2018; Pearce et al., 2021), introducing new unseen classes in the model predictive distributions
(e.g., Fort et al., 2021), and outlier exposure (Hendrycks et al., 2018; Thulasidasan et al., 2021; Roy
et al., 2022; Choi et al., 2023). We also critically examine other complementary procedures, such as
generative models, which may appear to be more aligned with the question of OOD detection.

2 PRELIMINARIES

Let fθ : X → Y be a neural network with parameters θ which maps training data Xtr ∼ pX (·)
to a class from Y = {1, . . . ,K}. A model’s decision function is derived from its predictive
distribution fθ(x) = argmaxk∈{1,...,K} pθ(y = k|x). OOD detection methods, which leverage
trained supervised models, propose a scoring function which for a test example x∗ assigns a scalar
value s(x∗, fθ,Dtr) given a trained model fθ and training data Dtr = {Xtr

i , Y tr
i }Ni=1. The score

s(x∗, fθ,Dtr) is compared to a threshold value to determine whether x∗ will be detected as OOD or
not. These methods are typically evaluated by computing AUROC (area under the receiver operating
characteristic curve) scores on distribution shift benchmarks.

Two particularly common families of approaches have emerged for such OOD detection. If we
view the model as a composition of transformations pθ(y = c|x) = softmax(cθ ◦ eθ(x))c where
eθ : X → F is the penultimate layer feature extractor, and cθ : F → RK is the classification layer
outputting logits, then there are two natural signals to consider — features or logits.

Feature-based approaches. These methods compute the OOD score based on the features, typically
from the penultimate layer. The most common approach is based on the squared Mahalanobis
Distance (Maha) (Lee et al., 2018), where we fit a class-conditional Gaussian Mixture Model (GMM)
to our features with µc =

1
Nc

∑
i:yi=c e(xi),Σ = 1

N

∑K
c=1

∑
i:yi=c

(
e(xi)−µc

)(
e(xi)−µc

)⊤
. The

Mahalanobis score is then computed from the negative of the squared Mahalanobis distance as

sMaha(x) = −min
c

∥µc − e(x)∥2Σ = −min
c

(x− µc)Σ
−1(x− µc)

⊤,

Ren et al. (2021) extends this work and proposes Relative Mahalanobis Distance, which computes a
likelihood ratio between the most likely class-conditional Gaussian and an unconditional Gaussian fit
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over all train data with µtrain = 1
N

∑
i e(xi) and Σtrain = 1

N

∑
i

(
e(xi)−µtrain

)(
e(xi)−µtrain

)⊤
.

The Relative Mahalanobis score is sRelMaha(x) = −minc ∥µc − e(x)∥2Σ − ∥µtrain − e(x)∥2Σtrain

Many other feature-based approaches have also been proposed (Sun et al., 2022; Tack et al., 2020;
Sehwag et al., 2021).

Logit-based approaches. These methods operate on the logits of a trained supervised model. The
most common approach is Maximum Softmax Probability (MSP) (Hendrycks and Gimpel, 2016)
smsp(x) = maxc pθ(y = c|x). Other popular approaches within this family include the entropy of the
predictive distribution pθ(y|x) (Ren et al., 2019), value of the max logit (Jung et al., 2021) and the
energy score (Liu et al., 2020).

Despite a proliferation of methods, simple approaches such as MSP tend to provide state-of-the-art
results, even on the more sophisticated benchmarks (Hendrycks et al., 2019a; Yang et al., 2024).
For example, in Table 1 of Yang et al. (2024), it is observed that “the results confirm that MSP
still outperforms all modern methods”. These methods are thus a natural choice to exemplify the
broad conceptual issues with OOD detection, since they provide simple, popular, and still highly
competitive approaches.

OOD detection task. These OOD detection methods can be used on various types of OOD detection.
Much work has focused on using supervised models to identify points where the model does not
have any chance of a correct label, often referred to as semantic shift, as opposed to label-preserving
covariate shift. This type of semantic shift detection is often further categorized into near OOD,
where the points are similar, and far OOD for more distinct inputs.

3 RELATED WORK

While anomaly and outlier detection has been studied for many decades in statistics, the related but
distinct area of out-of-distribution (OOD) detection in deep learning is surprisingly new. Amodei et al.
(2016) provides a call to action to build methods that are robust to distribution shifts. Shortly after,
Hendrycks and Gimpel (2016) proposed using softmax uncertainty as a simple baseline to detect
out-of-distribution (OOD) points. A proliferation of methods followed, using the logits, features,
or uncertainty of a supervised model trained on in-distribution data to detect out-of-distribution
points, achieving better results on benchmark detection tasks (Lee et al., 2018; Liang et al., 2017;
Wang et al., 2022; Sun et al., 2022). Other work has focused on introducing new benchmarks with
higher resolution images, or test detection, more specifically under semantic shift (e.g., new unseen
classes) versus covariate shift (label-preserving transformations) (Yang et al., 2024; Bitterwolf et al.,
2023; Huang and Li, 2021). There are also many interventions for boosting performance, including
Bayesian uncertainty representation (Lakshminarayanan et al., 2017; Malinin et al., 2019; Tagasovska
and Lopez-Paz, 2019; D’Angelo and Fortuin, 2021; Rudner et al., 2022), confidence minimization
and outlier exposure (Hendrycks et al., 2018; Papadopoulos et al., 2021; Thulasidasan et al., 2021),
and pre-training (Fort et al., 2021; Tran et al., 2022; Hendrycks et al., 2019b).

While there are several works critical in some way of OOD detection, our focus is significantly
different. Critiques tend to be targeted at modifications to existing measures (e.g., max-logit has
fewer false positives than MSP) (Hendrycks et al., 2019a), improving the benchmark data (e.g.,
higher resolution data, data with many classes, and more cleanly separating semantic shift from
covariate shift) (Hendrycks and Dietterich, 2019; Yang et al., 2024), specific architectural properties
of generative models (e.g., coupling layers in normalizing flows) (Kirichenko et al., 2020), or note
that detection might need to be more tailored to specific shifts (Tajwar et al., 2021; Farquhar and Gal,
2022). By contrast, we examine whether the predominant approach of training supervised models on
in-distribution data for OOD detection is fundamentally misspecified, answering a different question
than “is this point out-of-distribution?” We conceptually elucidate significant pathologies of both
feature and logit-based approaches to OOD detection, and then exemplify these pathologies. We also
show that interventions such as Bayesian (epistemic) uncertainty have their own pathological behavior,
despite being considered the principled approach to OOD detection in prior work. We further show
that other interventions, such as confidence minimization, can introduce a trade-off between detection
and generalization. Moreover, we consider whether generative models are more directly answering
the question “is this point from a different distribution?” and also evaluate the deficiencies of such
approaches. We also directly contrast these approaches, and simple statistical baselines, with the
supervised methods. Viewing these issues through the lens of misspecification, we finally consider
interventions that can help reduce misspecification to improve detection performance.
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Figure 2: Feature-based methods have two key failure modes: indistinguishable features and
irrelevant features. (Left): Oracle classifier achieves only around 90% AUROC on ImageNet vs
ImageNet-OOD, indicating some OOD inputs have indistinguishable features. Oracle PCA projection
improves Mahalanobis AUROC, showing many features are irrelevant for OOD detection. (Middle):
Error decomposition into irreducible, suboptimal feature selection, and other components. (Right):
Top discriminating features are OOD dataset-specific. PCA on ID and OODA improves AUROC for
OODA (solid line, name in title) but decreases it for OODB (dashed lines) for ViT-S/16 features.

4 OOD DETECTION METHODS ANSWER THE WRONG QUESTIONS

Many OOD detection methods rely on the features or logits from supervised models that are only
exposed to in-distribution data. Even though these approaches are sometimes able to achieve
reasonable results on OOD detection benchmarks, they fundamentally answer the wrong question:
instead of determining whether an input belongs to the training distribution or some different
distribution, they instead ask if the input leads to atypical model representations or unconfident
predictions. In this section, we explore the concrete instances where the answers to these two
questions differ, and we demonstrate that feature and logit-based OOD detection methods have
irreducible errors as a result.

4.1 FEATURE-BASED METHODS

Feature-based methods typically use distance metrics to measure how close the features of the test
input are to the features of the train inputs, answering the question “does this input lead to features that
are far from the features seen during training?”. These methods have two fundamental failure modes:
1) the learned features do not sufficiently discriminate between OOD and ID inputs, and 2) the optimal
distance metric depends on the OOD data, forcing these methods to use suboptimal, heuristic-based
distance metrics given only access to ID data. In particular, only the distance information along a
small number of feature dimensions is useful for OOD detection, but it is impossible to infer these
most discriminating features from irrelevant features without access to OOD data.

OOD features can be indistinguishable from ID features. While OOD inputs generally have
unique characteristics that distinguish them from ID data, a supervised model may not be incentivized
to learn these features if they are unhelpful for ID classification. If the OOD and ID features are
indistinguishable, then no feature-based methods can perform well. This failure mode may have
especially significant impacts for near OOD detection where fine-grained features are required.

To demonstrate this lack of separability between ID and OOD features, we study four different models
trained on ImageNet-1k: ResNet-18, ResNet-50, ViT-S/16, and ViT-B/16, with the OOD datasets of
ImageNet-OOD (Yang et al., 2024), Textures (Cimpoi et al., 2014), and iNaturalist (Van Horn et al.,
2018). For each setting, we train an Oracle, a binary linear classifier, to differentiate between ID
features and OOD features and report its performance on held-out ID and OOD features. This Oracle
serves as a proxy for the best possible performance of any feature-based OOD detection method since
it is directly trained on both ID and OOD features, unlike any realistic methods. We see in Figure 2
(left) that even with ground-truth OOD information, the Oracle is unable to clearly disambiguate
between ID and OOD examples on challenging OOD datasets, obtaining AUROCs as low as 0.86.
For each model, (1− Oracle AUROC) represents an irreducible error: no feature-based method can
correctly detect these OOD inputs that have indistinguishable features from ID.

Irrelevant features hurt performance and are impossible to fully identify. Even if the model
has learned features that discriminate between OOD and ID data, it is generally impossible to identify
which features discriminate between OOD and ID data and which features are irrelevant without
access to OOD data. As a result of the underspecification of OOD data at train-time, feature-based
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methods must resort to suboptimal distance metrics to compare OOD features from ID features that
do not sufficiently up-weight discriminating features or down-weight irrelevant features.

We illustrate this failure mode with the features from ResNet-18, ResNet-50, ViT-S/16, and ViT-B/16
trained on ImageNet-1k, and the Mahalanobis (Maha) method, which uses a distance metric defined
by the empirical covariance matrix Σ of ID features. We compare the performance of Maha before and
after an Oracle PCA projection that preserves only the most discriminating dimensions between OOD
and ID features, computed by performing PCA on both ID and OOD features and using the number of
PCA components among {32, 64, 128, 256} that maximizes the resulting Maha AUROC. In Figure 2
(left), we show the addition of an Oracle PCA projection significantly improves Maha performance
on all models by an average of over 10 percentage points. Moreover, we see in Figure 2 (middle)
that performing this PCA projection accounts for nearly all of the reducible error of Maha for the
ViT models. In other words, for ViTs, the gap between Maha and the best possible performance 1) is
almost entirely explained by the use of irrelevant features in the distance computation, and 2) requires
information unavailable to any feature-based method. While methods such as Relative Mahalanobis
and ViM (Ren et al., 2021; Wang et al., 2022) use PCA projections or related ideas to attempt to
reduce the impact of irrelevant features, they can only use feature covariances computed on ID data
alone, and thus do not address this fundamental limitation as we show in Appendix A.1.

In Figure 2 (right), we show that the Oracle PCA projection is highly specific to the particular OOD
dataset we wish to detect and does not transfer between OOD datasets. For example, as demonstrated
in the first panel, using the top 32 PCA components computed on IN and IN-OOD improves Maha
AUROC in detecting IN-OOD but significantly degrades the AUROC for detecting Textures and
iNaturalist, using features from ViT-S/16. This result shows that, as long as the OOD dataset is
not specified at training time, removing the influence of irrelevant features is impossible for any
feature-based method, presenting another fundamental bottleneck to its detection performance.

Visual demonstrations. We visualize clear examples of failure modes for feature-based methods
in Appendix A.1. To demonstrate feature overlap, we train a ResNet-18 on a subset of CIFAR-10
classes: airplane, cats, and trucks. We then use this trained model to detect OOD images of dogs. We
see in Figure A.1 (left) that the feature space between cats and dog have very high overlap, since the
model did not learn the features necessary to distinguish between these two classes. This pathology is
reflected in the poor performance of feature-based methods such as Mahalanobis distance, which only
achieves an AUROC of 0.537 and is barely better than random chance. Furthermore, these failures
also occur in larger models trained on diverse datasets. Even when using a ResNet-50 trained on
ImageNet-1K, Figure A.1 (right) demonstrates that feature-based methods like Mahalanobis distance
fail to correctly differentiate ID from OOD examples and assign low distances to OOD inputs.

4.2 LOGIT-BASED METHODS

Due to the many pathologies of feature-based OOD detection methods, it may be tempting to instead
focus on logit-based methods, which gauge a model’s uncertainty over an input’s predicted labels via
its logits. However, the previous limitations are still applicable. For instance, in the scenario where
OOD and ID features overlap, logit-based methods would also fail to detect OOD inputs since the
logits are a function of the penultimate-layer features. Furthermore, logit-based methods have their
own suite of failure modes which arise from the conflation of label uncertainty, the uncertainty over
the correct ID label, with OOD uncertainty, the uncertainty over whether the sample is ID or OOD.
Logit-based methods heuristically assume that higher label uncertainty is equivalent to higher OOD
uncertainty, but these are fundamentally different quantities. As a result, there are two distinct failure
modes where logit-based methods make the incorrect prediction: instances where ID data naturally
has high label uncertainty, and instances where OOD data has low label uncertainty.

ID examples often have high uncertainty. To show the misalignment between label and OOD
uncertainty, we demonstrate instances where models predict high label uncertainty over in-distribution
samples. One example of this failure mode can be found in ImageNet-1K, where it is known that
many of the images within the dataset contain concepts from multiple classes (Stock and Cisse, 2018;
Shankar et al., 2020). We would expect these multi-label images to have high label uncertainty since
there may be multiple correct answers. For our experiments, we used the human annotations from
Beyer et al. (2020) as the ground truth for the number of labels corresponding to each image.

We explore the behaviors of ResNet-18, ResNet-50, ViT-S/16, ViT-B/16, all trained on ImageNet-1k,
as well as ViT-G/14 DINOv2 pretrained on internet-scale data, for uncertainty-based OOD detection.
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Figure 3: Logit-based methods incorrectly conflate label uncertainty with OOD uncertainty.
(Left): ID images with multiple correct labels should have high label uncertainty. Each connected
line shows the decrease in OOD detection for models listed in the right panel when focusing on this
subset of high-uncertainty ID data. (Right): All methods assign low uncertainty to the OOD class
‘Striped’ from Textures and perform similarly to random chance.

When we apply uncertainty-based metrics to these samples where multiple labels may apply, we find
in Figure 3 that the average uncertainty of these multi-label images, denoted with Os, is significantly
higher than corresponding in-distribution samples, denoted with the connected Xs, across a variety of
methods. However, these images are clearly ID, since they are sampled from the same distribution
that the model was trained on. Furthermore, we can also see that logit-based methods are not able to
distinguish between ID inputs with high natural label uncertainty and OOD inputs; for example, the
AUROC for multi-label images (ID with high label uncertainty) vs ImageNet-OOD is only around
0.6. These results reveal that uncertainty-based methods are insufficient for OOD detection.

OOD examples often have low uncertainty. In Figure 3, we consistently find that logit-based
approaches are unable to distinguish between ID and the “Striped” class from Textures across many
settings. Furthermore, in Table A.1, we benchmark 14 different models including ResNets, ViTs, and
ConvNext V2 in the setting where ImageNet-1K is ID. We record the FPR@95, which indicates how
many OOD examples are incorrectly classified as ID due to their low uncertainty (false positive), at a
threshold where 95% of ID examples are correctly classified. For logit-based methods such as MSP,
max-logit, energy score, and entropy, the average FPR@95 across all settings is over 60%; thus, a
majority of OOD examples are misclassified due to their low uncertainty.

We provide visual examples of these failure modes of uncertainty-based methods in Appendix A.2,
where the predictive uncertainties of ID inputs are indistinguishable from the uncertainties of OOD
inputs. In Figure A.3, we note how the uncertainties of an ID and OOD class entirely overlap for a
LeNet-5 trained on a subset of CIFAR-10. We also visualize the feature space of a ResNet-50 trained
on ImageNet-1k in Figure A.4 and find that the OOD class is often far from the decision boundary
and has high model confidence, even though the examples are not from the input distribution.

Our experiments demonstrate that the difference between label uncertainty and OOD uncertainty,
although easy to miss, is a fundamental limitation of logit-based OOD detection methods. This inherit
misalignment of goals means no logit-based methods can overcome this pathology.

5 BUT WHAT ABOUT ...?
Given the prevalence of failure modes when using only feature or logit-based OOD methods, numer-
ous strategies have been proposed to enhance OOD performance. In this section, we examine popular
interventions such as combining feature and logit-based approaches, pre-training on larger datasets,
modeling epistemic uncertainty, and exposing the model to outliers. For these methods, we analyze
their limitations, and demonstrate how they fail to address the fundamental pathologies outlined in
Section 4. We also address the limitations of explicitly including an OOD class during training and
using unsupervised generative models.

5.1 SCALING MODEL AND DATA SIZE

Increasing model size and pre-training on large datasets have been shown to reliably improve OOD
detection benchmarks as models tend to learn more diverse and higher-quality features (Fort et al.,
2021; Dehghani et al., 2023; Miyai et al., 2023). When models see more diverse data and as the
model capacity increases, they can learn more features that help distinguish OOD and ID data.
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Figure 4: Scaling model size and training data does not address the fundamental limitations.
Scaling from ResNet-18 trained on ImageNet (left-most point) to ViT-G/14 DINOv2 pre-trained
on internet scale data (right-most), the Oracle AUROC still shows significant irreducible error for
IN-OOD. Furthermore, a large fraction of the gap between the best performing method (described in
text) and the Oracle can also be recovered by selecting features through Oracle PCA, indicating that
the influence of irrelevant features is not addressed by scale.

However, as we show in Figure 4, scaling alone does not fully address the limitations of OOD
detection methods. We benchmark twelve different models of varying sizes and pretraining methods,
enumerated in Appendix B.3. First, in challenging near-OOD detection problems such as ImageNet
vs. ImageNet-OOD, models learn additional discriminating features between ID and OOD data at an
extremely slow rate, such that even the largest ViT-G/14 DINOv2 still has over 5% irreducible error
due to indistinguishable features. As we have argued in Section 4, this error can not be decreased
regardless of what OOD detection method we use. Indeed, the AUROC achieved by the best method
(Best) among Maha, Rel Maha, MSP, Max Logit, Energy, and ViM is consistently below the Oracle,
a binary classifier trained on ID and OOD features, by a wide margin. Second, while the error due
to indistinguishable features may be decreased (slowly) with scale and can become negligible on
far-OOD detection problems such as ImageNet vs iNaturalist, there is still a large gap between the
best existing method and the Oracle as we scale the model. Much of this gap can be recovered by the
gain from optimally selecting features for Maha, represented by +MahaOraclePCA (the gain is zero
if Best already outperforms MahaOraclePCA), suggesting that while scaling allows the model to learn
features which almost perfectly discriminate ID and OOD data, the presence of irrelevant features
continues limit the performance. We provide additional empirical results in Appendix A.4 which
demonstrate the scaling behaviors of logit-based methods using 54 models over nine architectures
and six pre-training setups. These results demonstrate the fundamental limitations of existing OOD
detection methods even with increasing model and data size.

5.2 COMBINING FEATURE AND LOGIT-BASED METHODS

Hybrid approaches which combine model features and logits have been proposed for OOD detection
(Sun et al., 2021; Wang et al., 2022), and methods like Virtual-logit Matching (ViM) (Wang et al.,
2022) have achieved state-of-the-art results for certain OOD benchmarks. To understand the success
of these methods, we test a simple hybrid method which sums the normalized scores of a feature-based
method (Mahalanobis) with a logit-based method (MSP), to which we refer as “Hybrid-Add”. We
find in Appendix A.3 that for some models, “Hybrid-Add” improves OOD detection compared to
using MSP or Mahalanobis alone on the Textures dataset, indicating feature and logit-based methods
can have distinct failure modes.

However, hybrid methods do not address the fundamental pathologies caused by the model mis-
specification. In the many cases where ID and OOD features are indistinguishable, as described in
Section 4.1, hybrid methods are equally unable to differentiate OOD examples because both features
and logits will overlap. Furthermore, the usefulness of hybrid methods is largely dataset-dependent.
For instance, we find that ViM usually outperforms both MSP and Mahalanobis for OOD detection
on Textures (Figure A.6) but does not offer a consistent advantage on IN-OOD (Figure 5). Our simple
“hybrid-add” method does not offer a clear and consistent advantage over MSP or Mahalanobis on
either IN-OOD or iNaturalist. In practice, we find that feature and logit-based methods do not always
share distinct failure modes, and so hybrid methods may not be beneficial.
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5.3 EXPOSING TO OUTLIERS

Another popular approach to improve OOD detection is outlier exposure, which incorporates OOD
examples when training the model (Hendrycks et al., 2018; Choi et al., 2023). In this setting, we
explicitly optimize the model to have high uncertainty on the outlier dataset:

LCE + αLOE = E(x,y)∼Din
ℓCE(f(x), y) + αEx′∼DoutℓCE(f(x

′), yu)

where yu is uniform distribution over all K classes. Outlier exposure relies on the diverse dataset
Dout in order to encourage the model to generally have high predictive uncertainty away from the
training data and improve detection with predictive-space methods like MSP. However, even if the
model is exposed to OOD data during training, the final model is still misspecified because it only
contains ID classes as possible categorizations. As previously discussed in Section 4.1, OOD datasets
are quite diverse, and the features necessary to distinguish ID from one OOD dataset often do not
generalize to other types of OOD.

Furthermore, outlier exposure may significantly hurt OOD generalization because the model is
explicitly trained to have high label uncertainty over a large set of inputs; this degradation in
performance is especially problematic because OOD generalization is essential for model robustness
and reliability. To demonstrate this behavior, we compare two ResNet-18 models trained on CIFAR-
10, one with the standard training regime and the other with outlier exposure using TIN-597 as Dout

following Zhang et al. (2023) (see Appendix B.1 for setup details).

In Appendix A.6, we show that outlier exposure does improve OOD detection for most of the semantic
shift OOD benchmarks. However, outlier exposure does not improve performance on MNIST, likely
because this dataset differs significantly from Dout and other natural image benchmarks. This
decreased performance highlights the sensitivity of outlier exposure to the choice of OOD data and
reiterates that the features which distinguish ID and OOD are not consistent across diverse OOD
datasets. Furthermore, we find that while the ID accuracy of the outlier exposed model is negatively
impacted, the impacts of outlier exposure on OOD generalization is significantly worse. In Figure 6,
on inputs with covariate shifts, outlier exposure hurts the model’s accuracy by over 10% across all of
our benchmarked datasets. Thus, by explicitly encouraging high uncertainty on the diverse outlier
dataset, we sacrifice the generalizability of our model.

5.4 MODELING EPISTEMIC UNCERTAINTY

Predictive uncertainty can be separated into aleatoric uncertainty, which is considered irreducible
and stems from inherent data variability, and epistemic uncertainty, which is uncertainty over which
solution is correct given the limited data. It has been posited that focusing on epistemic uncertainty
for predictive models is the principled approach to OOD detection because the uncertainty increases
as we move away from the data, and indeed there is a proliferation of methods approximating
epistemic uncertainty for improved performance on OOD detection benchmarks (e.g., Band et al.,
2021; D’Angelo and Fortuin, 2021; Lakshminarayanan et al., 2017; Malinin et al., 2019; Rudner
et al., 2022; Tagasovska and Lopez-Paz, 2019; Tran et al., 2022).

Epistemic uncertainty is typically represented through a distribution over the model parameters. For
a model f with stochastic parameters Θ, distributed according to q(θ), we can express the model’s
predictive uncertainty as a combination of aleatotric and epistemic uncertainty,
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H (EqΘ [p(y | x,Θ)])︸ ︷︷ ︸
Total Uncertainty

= EqΘ [H(p(y | x,Θ))]︸ ︷︷ ︸
Aleatoric Uncertainty

+ I(Y ; Θ)︸ ︷︷ ︸
Epistemic Uncertainty

, (1)

where H(·) is the entropy functional and I(Y ; Θ) is the mutual information. The predictive distribu-
tion, through the rules of probability, is then p(y = c|x,D) =

∫
softmax(fθ(x))c · p(θ|D)dθ. We

note that deep ensembling procedures (Lakshminarayanan et al., 2017), particularly popular for OOD
detection, are a prominent example of epistemic uncertainty representation; by marginalizing over
modes in a posterior they often provide a relatively accurate representation of the posterior predictive
distribution (Wilson and Izmailov, 2020; Izmailov et al., 2021b).

However, as we have previously discussed, the predictive uncertainty is not over whether a point
is OOD, but rather over class labels. Epistemic uncertainty does not address this fundamental
misspecification. For a clear demonstration of the conceptual difference between epistemic uncertainty
and OOD detection, consider how epistemic uncertainty changes as a function of data size. In the
infinite ID-data limit, the epistemic uncertainty of a model approaches zero and the model becomes
extremely confident in its parameters. If measuring epistemic uncertainty were the correct approach
to OOD detection, then having such low epistemic uncertainty implies that OOD points do not exist
in this setting. Therefore, because perfectly capturing epistemic uncertainty is not enough to solve
OOD detection, they must answer fundamentally different questions. In fact, as the model sees more
in-distribution data during training, its ability to detect OOD inputs may become worse! Given the
growing availability of large datasets, this behavior becomes increasingly problematic.

To illustrate this phenomenon, we consider a last-layer Bayesian approximation (Kristiadi et al., 2020)
and train a linear layer fθ over features extracted from a ResNet-18 trained on IN-1K to classify three
classes: airplane, dog, and truck. We place a prior over parameters θ, and we approximate the predic-
tive distribution through a Laplace approximation that uses a Gaussian distribution to approximate the
posterior distribution of the model parameters, allowing for the estimation of epistemic uncertainty
(MacKay, 2003). In Figure 7, we visualize the learned decision boundaries by applying PCA to
reduce the three-dimensional logit space to two dimensions and plot the the maximum softmax
probabilities over this projection. As the size of the training data increases, the posterior noticeably
contracts, and the performance of the Laplace model decreases to approach the performance of the
deterministic model with maximum a posteriori (MAP) parameter estimates.

In other work, Izmailov et al. (2021a) studies pathologies in Bayesian methods for OOD generalization
(rather than detection), and D’Angelo and Henning (2021) note the sensitivity to prior specification
in using BNNs for OOD detection.

5.5 INTRODUCING AN UNSEEN CLASS

Since standard classification models trained over K classes are fundamentally misspecified for the
task of detecting OOD classes in both feature-space and logit-space, it may be tempting to correct the
specification problem by adding a (K+1)-th class corresponding to the OOD category (Thulasidasan
et al., 2020). During training, we can then expose models to OOD examples, and use this additional
class for OOD detection on test samples.
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However, we find this method is only effective when the examples that the model is exposed during
training are very similar to the OOD examples during test-time, which is often unrealistic. To
demonstrate, we train a ResNet-18 model on two CIFAR-100 classes: keyboard and porcupine, and
use samples from cup and skyscraper for the OOD class. We then measure the performance of OOD
detection over the remaining CIFAR-100 classes. In Figure 8, we use BERT embeddings (Devlin
et al., 2018) to compute the cosine similarity of the test-time OOD classes to the train-time ID and
OOD classes. We see that the OOD class was effective in capturing test-time examples of bottle and
can, since they are similar to the train OOD examples. However, the model is unable to accurately
categorize examples like hamster and mouse, which are more closely related to ID classes.

5.6 USING GENERATIVE MODELS

Unlike previously mentioned methods utilize a supervised classification problem to make predictions,
unsupervised generative models trained on the in-distribution dataset attempt to directly answer the
question of how likely it is that sample x belongs to the training distribution. Generative models,
therefore, may appear to be a principled and natural solution to OOD detection.

However, better generative models are not always better OOD detectors. Since p(x) answers a
fundamentally different question than p(OOD|x), there is generally a conflict between creating a
better model for p(x) and the ability to use the likelihood from that model to detect OOD points.
We illustrate this phenomenon with a simple 1D example in Figure 9, where the ID data is drawn
from N (0, 1) and the OOD data is drawn from N (2, 1). Suppose we model the ID data with
x ∼ pµ(x) = N (x|µ, 1), where µ is the parameter of our model. Choosing µ = 0 will exactly
model the true distribution and achieve the highest likelihood. However, as shown in Figure 9 (right),
the optimal choice of µ for OOD detection is −∞, achieving a maximum AUROC but infinite
KL divergence from the true ID distribution. We further demonstrate this misalignment between
likelihood on the ID data vs OOD detection in Appendix A.5, discussing additional limitations and
illustrating the failures of generative approaches such as diffusion models for OOD detection.

6 DISCUSSION

Fundamentally, we have shown that popular OOD detection procedures, both supervised and genera-
tive, are often answering a different question than is this unlabeled point from a different distribution?
Moreover, interventions like outlier exposure hurt the ability for a model to generalize on covariate
shifts which begs the question: why are we doing OOD detection in the first place? If it is really to
detect OOD points, then the procedures we are using are severely misspecified and have fundamental
limitations. If the goal of OOD detection is to be able to make more reasonable predictions under
covariate shifts (e.g., by deferring examples to another model through confidence thresholding), which
is arguably a more typical real-world use case than semantic shift, the interventions for detection can
be actively harmful.

Going forward, it will be important to identify real-world problems where one of generalization or
detection is the focus — and in the cases where the ultimate objective really is detection, we should
build approaches specifically designed to answer that question.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

ETHICS STATEMENT

The authors have read and they acknowledge the ICLR Code of Ethics. The authors will strictly
adhere to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

Key details to reproduce experiments are provided in the main text and appendix. In addition, we
intend to release the code publicly to reproduce all data and figures presented in the paper.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Neil Band, Tim G. J. Rudner, Qixuan Feng, Angelos Filos, Zachary Nado, Michael W. Dusenberry,
Ghassen Jerfel, Dustin Tran, and Yarin Gal. Benchmarking Bayesian Deep Learning on Diabetic
Retinopathy Detection Tasks. In Advances in Neural Information Processing Systems 34, 2021.

Gregory Benton, Marc Finzi, Pavel Izmailov, and Andrew G Wilson. Learning invariances in neural
networks from training data. Advances in neural information processing systems, 33:17605–17616,
2020.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. Computer
Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.

Lucas Beyer, Olivier J Hénaff, Alexander Kolesnikov, Xiaohua Zhai, and Aäron van den Oord. Are
we done with imagenet? arXiv preprint arXiv:2006.07159, 2020.

Julian Bitterwolf, Maximilian Mueller, and Matthias Hein. In or out? fixing imagenet out-of-
distribution detection evaluation. arXiv preprint arXiv:2306.00826, 2023.

Caroline Choi, Fahim Tajwar, Yoonho Lee, Huaxiu Yao, Ananya Kumar, and Chelsea Finn. Con-
servative prediction via data-driven confidence minimization. arXiv preprint arXiv:2306.04974,
2023.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3606–3613, 2014.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pages 215–223. JMLR Workshop and Conference Proceedings, 2011.

Francesco D’Angelo and Vincent Fortuin. Repulsive deep ensembles are bayesian. Advances in
Neural Information Processing Systems, 34:3451–3465, 2021.

Francesco D’Angelo and Christian Henning. On out-of-distribution detection with bayesian neural
networks. arXiv preprint arXiv:2110.06020, 2021.

Luke N Darlow, Elliot J Crowley, Antreas Antoniou, and Amos J Storkey. Cinic-10 is not imagenet
or cifar-10. arXiv preprint arXiv:1810.03505, 2018.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pages 7480–7512. PMLR, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv
preprint arXiv:1605.08803, 2016.

Sebastian Farquhar and Yarin Gal. What’out-of-distribution’is and is not. In NeurIPS ML Safety
Workshop, 2022.

Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution
detection. Advances in Neural Information Processing Systems, 34:7068–7081, 2021.

Priya Goyal, Mathilde Caron, Benjamin Lefaudeux, Min Xu, Pengchao Wang, Vivek Pai, Mannat
Singh, Vitaliy Liptchinsky, Ishan Misra, Armand Joulin, et al. Self-supervised pretraining of visual
features in the wild. arXiv preprint arXiv:2103.01988, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Dan Hendrycks and Thomas G Dietterich. Benchmarking neural network robustness to common
corruptions and surface variations. arXiv preprint arXiv:1807.01697, 2018.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Dan Hendrycks, Steven Basart, Mantas Mazeika, Andy Zou, Joe Kwon, Mohammadreza Mostajabi,
Jacob Steinhardt, and Dawn Song. Scaling out-of-distribution detection for real-world settings.
arXiv preprint arXiv:1911.11132, 2019a.

Dan Hendrycks, Kimin Lee, and Mantas Mazeika. Using pre-training can improve model robustness
and uncertainty. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning
Research, pages 2712–2721. PMLR, 09–15 Jun 2019b. URL https://proceedings.mlr.
press/v97/hendrycks19a.html.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Rui Huang and Yixuan Li. MOS: towards scaling out-of-distribution detection for large semantic
space. CoRR, abs/2105.01879, 2021. URL https://arxiv.org/abs/2105.01879.

Pavel Izmailov, Patrick Nicholson, Sanae Lotfi, and Andrew G Wilson. Dangers of bayesian model
averaging under covariate shift. Advances in Neural Information Processing Systems, 34:3309–
3322, 2021a.

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What are
bayesian neural network posteriors really like? In International conference on machine learning,
pages 4629–4640, 2021b.

Sanghun Jung, Jungsoo Lee, Daehoon Gwak, Sungha Choi, and Jaegul Choo. Standardized max
logits: A simple yet effective approach for identifying unexpected road obstacles in urban-scene
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 15425–15434, 2021.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696–21707, 2021.

Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect
out-of-distribution data. Advances in neural information processing systems, 33:20578–20589,
2020.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Bal-
subramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A
benchmark of in-the-wild distribution shifts. In International conference on machine learning,
pages 5637–5664. PMLR, 2021.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes
overconfidence in relu networks. In International conference on machine learning, pages 5436–
5446. PMLR, 2020.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

13

https://proceedings.mlr.press/v97/hendrycks19a.html
https://proceedings.mlr.press/v97/hendrycks19a.html
https://arxiv.org/abs/2105.01879


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
Advances in neural information processing systems, 33:21464–21475, 2020.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. Ensemble distribution distillation. arXiv
preprint arXiv:1905.00076, 2019.

John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei Koh, Vaishaal Shankar,
Percy Liang, Yair Carmon, and Ludwig Schmidt. Accuracy on the line: on the strong correlation
between out-of-distribution and in-distribution generalization. In International conference on
machine learning, pages 7721–7735. PMLR, 2021.

Eric Mintun, Alexander Kirillov, and Saining Xie. On interaction between augmentations and
corruptions in natural corruption robustness. Advances in Neural Information Processing Systems,
34:3571–3583, 2021.

Atsuyuki Miyai, Qing Yu, Go Irie, and Kiyoharu Aizawa. Can pre-trained networks detect familiar
out-of-distribution data? arXiv preprint arXiv:2310.00847, 2023.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136, 2018.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, and Balaji Lakshminarayanan. Detecting out-
ofdistribution inputs to deep generative models using typicality. arXiv preprint arXiv:1906.02994,
2020.

Jianwei Niu, Jie Lu, Mingliang Xu, Pei Lv, and Xiaoke Zhao. Robust lane detection using two-stage
feature extraction with curve fitting. Pattern Recognition, 59:225–233, 2016.

Aristotelis-Angelos Papadopoulos, Mohammad Reza Rajati, Nazim Shaikh, and Jiamian Wang.
Outlier exposure with confidence control for out-of-distribution detection. Neurocomputing, 441:
138–150, 2021.

Tim Pearce, Alexandra Brintrup, and Jun Zhu. Understanding softmax confidence and uncertainty.
arXiv preprint arXiv:2106.04972, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pages
8748–8763. PMLR, 2021.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. Advances in neural
information processing systems, 32, 2019.

Jie Ren, Stanislav Fort, Jeremiah Liu, Abhijit Guha Roy, Shreyas Padhy, and Balaji Lakshmi-
narayanan. A simple fix to mahalanobis distance for improving near-ood detection. arXiv preprint
arXiv:2106.09022, 2021.

Abhijit Guha Roy, Jie Ren, Shekoofeh Azizi, Aaron Loh, Vivek Natarajan, Basil Mustafa, Nick
Pawlowski, Jan Freyberg, Yuan Liu, Zach Beaver, et al. Does your dermatology classifier know
what it doesn’t know? detecting the long-tail of unseen conditions. Medical Image Analysis, 75:
102274, 2022.

Tim G. J. Rudner, Zonghao Chen, Yee Whye Teh, and Yarin Gal. Tractable Function-Space Vari-
ational Inference in Bayesian Neural Networks. In Advances in Neural Information Processing
Systems 35, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural information
processing systems, 35:36479–36494, 2022.

Vikash Sehwag, Mung Chiang, and Prateek Mittal. Ssd: A unified framework for self-supervised
outlier detection. arXiv preprint arXiv:2103.12051, 2021.

Vaishaal Shankar, Rebecca Roelofs, Horia Mania, Alex Fang, Benjamin Recht, and Ludwig Schmidt.
Evaluating machine accuracy on imagenet. In International Conference on Machine Learning,
pages 8634–8644. PMLR, 2020.

Pierre Stock and Moustapha Cisse. Convnets and imagenet beyond accuracy: Understanding mistakes
and uncovering biases. In Proceedings of the European conference on computer vision (ECCV),
pages 498–512, 2018.

Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activations.
Advances in Neural Information Processing Systems, 34:144–157, 2021.

Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest
neighbors. In International Conference on Machine Learning, pages 20827–20840. PMLR, 2022.

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. Csi: Novelty detection via contrastive
learning on distributionally shifted instances. Advances in neural information processing systems,
33:11839–11852, 2020.

Natasa Tagasovska and David Lopez-Paz. Single-model uncertainties for deep learning. Advances in
neural information processing systems, 32, 2019.

Fahim Tajwar, Ananya Kumar, Sang Michael Xie, and Percy Liang. No true state-of-the-art? ood
detection methods are inconsistent across datasets. arXiv preprint arXiv:2109.05554, 2021.

Sunil Thulasidasan, Sushil Thapa, Sayera Dhaubhadel, Gopinath Chennupati, Tanmoy Bhattacharya,
and Jeff Bilmes. A simple and effective baseline for out-of-distribution detection using abstention.
2020.

Sunil Thulasidasan, Sushil Thapa, Sayera Dhaubhadel, Gopinath Chennupati, Tanmoy Bhattacharya,
and Jeff Bilmes. An effective baseline for robustness to distributional shift. In 2021 20th IEEE
International Conference on Machine Learning and Applications (ICMLA), pages 278–285. IEEE,
2021.

Dustin Tran, Jeremiah Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han,
Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado,
Joost van Amersfoort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly
Buchanan, Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, and Balaji
Lakshminarayanan. Plex: Towards Reliability Using Pretrained Large Model Extensions. In ICML
Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward, 2022.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8769–8778,
2018.

Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
logit matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 4921–4930, 2022.

Haoran Wang, Weitang Liu, Alex Bocchieri, and Yixuan Li. Can multi-label classification networks
know what they don’t know? Advances in Neural Information Processing Systems, 34:29074–
29087, 2021.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. Advances in neural information processing systems, 33:4697–4708, 2020.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Jingkang Yang, Haoqi Wang, Litong Feng, Xiaopeng Yan, Huabin Zheng, Wayne Zhang, and
Ziwei Liu. Semantically coherent out-of-distribution detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8301–8309, 2021.

Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi
Wang, Guangyao Chen, Bo Li, Yiyou Sun, et al. Openood: Benchmarking generalized out-of-
distribution detection. Advances in Neural Information Processing Systems, 35:32598–32611,
2022.

William Yang, Byron Zhang, and Olga Russakovsky. Imagenet-ood: Deciphering modern out-
of-distribution detection algorithms. In International Conference on Learning Representations,
2024.

Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou
Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, et al. Openood v1. 5: Enhanced benchmark for
out-of-distribution detection. arXiv preprint arXiv:2306.09301, 2023.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning deep
features for scene recognition using places database. Advances in neural information processing
systems, 27, 2014.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4):4396–4415, 2022.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

TABLE OF CONTENTS

A Additional Empirical Results 17

A.1 Feature-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

A.2 Logit-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.3 Hybrid Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.4 Effect of Pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

A.5 Generative models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.6 Outlier Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B Implementation details 25

B.1 Outlier exposure experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.2 Evaluating pre-trained models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.3 Scaling Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

A ADDITIONAL EMPIRICAL RESULTS

A.1 FEATURE-BASED METHODS

We provide visualizations of empirical examples of feature-based failures in Figure A.1, and we
demonstrate that advanced methods like relative Mahalanobis and ViM are subject to the same failure
modes in Figure A.2.

Features PC1

Fe
at

ur
es

 P
C2

Mahalanobis AUROC: 0.537
Airplane (ID)
Cat (ID)
Truck (ID)
Dog (OOD)

(a) ResNet-18 on CIFAR-10 (b) ResNet-50 on ImageNet-1k

Figure A.1: Visualizations of failure modes for feature-based OOD detection. (Left): We train
a ResNet-18 on a subset of CIFAR-10, and find that the feature space between an ID class and
OOD class have significant overlap. (Right): Feature-based methods also fail for larger models like
ResNet-50 trained on ImageNet 1K, where OOD classes have low Mahalanobis distance.
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Figure A.2: Relative Mahalanobis and ViM do not fully address the issue of irrelevant features
on ImageNet vs ImageNet-OOD, especially with the more performant ViT models. In all cases,
Mahalanobis with an Oracle PCA performs the best. Except for ResNets, Relative Mahalanobis and
ViM offer negligible or negative improvement relative to Mahalanobis. The gap between Maha +
Oracle PCA and the best-performing feature-based method is especially large for ViTs.

A.2 LOGIT-BASED METHODS

Logit-based methods fail when the uncertainty of ID data looks similar to the uncertainty of OOD
data. We see an example in Figure A.3, where we find that the model very confidently classifies OOD
dogs as ID trucks. In Table A.1, we find that well over half of OOD examples are misclassified as ID
even with powerful pre-trained models. Figure A.4 visualizes a failure mode for a ResNet-50 trained
on ImageNet, where ‘Stripes’ is often miscategorized as ID. In Figure A.5, we find that this failure
mode is prevelant across a diverse set of models and logit-based OOD-detection methods.

0.0 0.2 0.4 0.6 0.8 1.0
Probability of Truck
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nc
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MSP AUROC: 0.489
ID: Truck
OOD: Dog

(a) Confidence of ID vs OOD inputs

0.973

In Distribution

0.973 0.954

0.9740.984 0.988

0.979 0.968

Out of Distribution

(b) Example inputs and model confidence

Figure A.3: The predictive uncertainty of OOD points may be indistinguishable from ID points.
We train a LeNet5 to classify CIFAR10 automobiles and trucks, and we test the OOD dog class. We
see that the model confidence for OOD dogs entirely overlaps with the ID truck class. In this setting,
because the uncertainties are identical, no uncertainty-based method would be able to successfully
differentiate ID from OOD.
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OOD Dataset Model MSP Max Logit Entropy Energy Score

IN-OOD ResNet-50 0.774 0.804 0.820 0.778
IN-OOD ResNet-50 DINO 0.804 0.830 0.847 0.823
IN-OOD ResNet-34 0.807 0.824 0.838 0.809
IN-OOD ResNet-18 0.832 0.846 0.855 0.845
IN-OOD ViT-S/16 0.797 0.803 0.818 0.798
IN-OOD ViT-S/16 DINO 0.761 0.790 0.811 0.768
IN-OOD ViT-B/16 0.740 0.733 0.771 0.726
IN-OOD ViT-B/16 DINO 0.741 0.764 0.784 0.749
IN-OOD ViT-B/16 CLIP 0.764 0.776 0.805 0.726
IN-OOD ViT-B/14 DINOv2 0.658 0.621 0.638 0.610
IN-OOD ViT-G/14 DINOv2 0.562 0.448 0.450 0.469
IN-OOD ViT-L/14 CLIP 0.686 0.685 0.723 0.631
IN-OOD ConvNeXt V2-B 0.701 0.708 0.773 0.673
IN-OOD ConvNeXt V2-L 0.696 0.710 0.787 0.663

Textures ResNet-50 0.662 0.544 0.522 0.594
Textures ResNet-50 DINO 0.681 0.624 0.612 0.637
Textures ResNet-34 0.690 0.562 0.533 0.620
Textures ResNet-18 0.710 0.571 0.527 0.643
Textures ViT-S/16 0.672 0.579 0.506 0.593
Textures ViT-S/16 DINO 0.612 0.400 0.363 0.521
Textures ViT-B/16 0.586 0.544 0.573 0.521
Textures ViT-B/16 DINO 0.531 0.351 0.307 0.437
Textures ViT-B/16 CLIP 0.657 0.530 0.538 0.564
Textures ViT-B/14 DINOv2 0.535 0.409 0.401 0.451
Textures ViT-G/14 DINOv2 0.480 0.344 0.332 0.389
Textures ViT-L/14 CLIP 0.543 0.441 0.446 0.462
Textures ConvNeXt V2-B 0.530 0.480 0.490 0.441
Textures ConvNeXt V2-L 0.551 0.468 0.480 0.440

iNaturalist ResNet-50 0.703 0.700 0.716 0.684
iNaturalist ResNet-50 DINO 0.644 0.594 0.598 0.619
iNaturalist ResNet-34 0.745 0.721 0.726 0.728
iNaturalist ResNet-18 0.739 0.727 0.734 0.727
iNaturalist ViT-S/16 0.726 0.683 0.668 0.692
iNaturalist ViT-S/16 DINO 0.726 0.660 0.658 0.699
iNaturalist ViT-B/16 0.692 0.711 0.791 0.674
iNaturalist ViT-B/16 DINO 0.682 0.617 0.613 0.648
iNaturalist ViT-B/16 CLIP 0.698 0.655 0.683 0.634
iNaturalist ViT-B/14 DINOv2 0.519 0.429 0.426 0.455
iNaturalist ViT-G/14 DINOv2 0.448 0.355 0.351 0.384
iNaturalist ViT-L/14 CLIP 0.593 0.547 0.566 0.522
iNaturalist ConvNeXt V2-B 0.634 0.638 0.712 0.589
iNaturalist ConvNeXt V2-L 0.627 0.624 0.704 0.563

Table A.1: FPR@95 for OOD detection remains high with popular models. We record the
FPR@95 for the MSP method for 14 models including ResNets, ViTs, and ConvNext V2 models
on ImageNet-1K as ID, and Textures, iNaturalist, and ImageNet-OOD as OOD. FPR@95 records
how many OOD examples are classified as ID (low uncertainty, false positive) at a threshold where
95% of ID examples are correctly classified (true positive). The average FPR@95 over all models
and OOD datasets is 66.5%, thus well over half of OOD examples are classified as ID due to having
low uncertainty, and other methods such as max logit, energy score, and entropy all have similar
FPR@95s of over 60%.

A.3 HYBRID METHODS

We find hybrid methods like ViM and Hybrid-Add work well on far-OOD datasets like Textures,
where we see noticeable improvement across many models in Figure A.6.

A.4 EFFECT OF PRE-TRAINING

Miller et al. (2021) showed that there is a strong linear relationship between ID accuracy and OOD
generalization on OOD data with covariate shifts, suggesting it is sufficient to focus on improving
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Figure A.4: For a ResNet-50 trained on ImageNet-1k, we see that the model has very high confidence
for the OOD class ‘Striped’, highlighting the difference between label uncertainty and OOD uncer-
tainty.
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Figure A.5: We plot the distribution of OOD scores on ImageNet-1K ID and Describable Textures
‘striped’ class OOD data obtained from different OOD detection methods. We discover a systematic
failure mode of all methods that utilize logits stemming from the model being overconfident about its
predictions on the OOD data. Even though different OOD detection methods have different AUROC
numbers, the score distribution plots reveal it is difficult to cleanly separate ID and OOD scores by
picking a threshold. We use a ResNet-50 pretrained on ImageNet-1K and use a ViT-B/16 pretrained
on ImageNet-1K.

ID accuracy for better robustness. Similarly, we explore the connection between the test accuracy
and OOD detection performance. We use ImageNet-1K (IN-1K) as ID data and ImageNet-OOD
(IN-OOD) (Yang et al., 2024) and Textures (Cimpoi et al., 2014) as OOD data. We evaluate 54
models covering a wide range of architectures and pretraining methods. In Figure A.7 we plot
AUROC of MSP against ImageNet test accuracy. Generally, ID accuracy and AUROC have close to a
linear relationship for models with low- to medium-range performance on ImageNet. However, on
ImageNet-OOD for models performing around or better than 75% ID accuracy, we observe higher
variability in AUROC: for larger-scale highly performant models pre-training data impacts the OOD
detection more significantly.

When models are exposed to a diverse set of data during pre-training, they are likely to learn a wide
range of features, making it possible for them to differentiate between ID and semantically new
classes. There is an edge case when the OOD data is included in pre-training dataset: in Figure A.7
for the best performing ViT and ConvNext models pre-training includes ImageNet-21K, after which
they are fine-tuned on ImageNet-1K. Since ImageNet-OOD consists of images from ImageNet-21K
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Figure A.6: Hybrid OOD methods outperform logit and feature-based on Textures
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Figure A.7: The impact of the model architecture, pre-training data and objective on OOD detection
performance. AUROC of MSP on ImageNet vs ImageNet-OOD (left) and ImageNet vs Textures
(right) against ImageNet test accuracy. We observe that improving ImageNet accuracy generally
leads to better OOD detection.

which do not semantically overlap with ImageNet-1K classes, we observe a rapid jump in AUROC for
these models with negligible variability in ID accuracy. Pre-training on diverse data which includes
similar examples to OOD points softens the misspecification of the MSP approach and leads to strong
performance.

A.5 GENERATIVE MODELS
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Figure A.8: Better generative model of ID data can lead to worse OOD detection. Left: RealNVP
models achieving better likelihoods on ID CelebA images do not consistently achieve better AUROC
for detecting CIFAR-10. Right: The Gaussian Mixture Model (GMM) on ResNet-50 features
achieves best likelihoods with the empirical covariance of ImageNet features, but achieves best
AUROCs for detecting ImageNet-OOD with the identity covariance (α = 1). α represents the linear
interpolation coefficient towards identity covariance.

Conceptual limitation of generative models for OOD detection. Estimating p(x) is different
from estimating whether x is more likely to be drawn from some different distribution. Conceptually,
for the latter, we would like to compute p(OOD|x), which by Bayes’ rule, is p(x|OOD)/p(x) up to
an x-independent constant. In general, knowing p(x) tells us nothing about the value of this ratio.
p(x|OOD)/p(x) is also invariant to any coordinate transformation on x, whereas p(x) is not.
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Measuring typicality rather than density is an alternative method for OOD detection. Rather than
asking whether a point has a high density, typicality asks whether a point belongs to a region with high
probability mass. However, typicality has very similar pathologies compared to density. Consider a
common motivating example for typicality: points drawn from a high dimensional Gaussian N (0, I)

in Rd will have norms ∥x∥ =
√∑d

i=1 x
2
i concentrating around

√
d by the Law of Large Numbers

(LLN). A point at the origin will be considered highly OOD based on typicality, since it has zero
norm, yet it has the highest density and will thus be considered highly ID based on the density.
But there is no reason why we should judge typicality based on norm rather than other quantities.
Consider the average value of x over the dimensions, 1

d

∑d
i=1 xi, this quantity concentrates around 0

by LLN. Based on this quantity, a point at the origin looks perfectly typical, while a point on a sphere
of radius

√
d looks highly atypical. Therefore, exactly similar to the density, notions of typicality will

tend to depend on a subjective choice of how to coarse-grain the input space based on quantities that
are most relevant for distinguishing between ID and OOD data. Finally, measures of typicality can
also depend on an arbitrary choice of coordinates. For example, (ϵ,N)-typical set (Nalisnick et al.,
2020) relies on the differential entropy, which is not invariant to coordinate transformations.

OOD Detection Requires Coarse-Grained Representations. In general, every test input we
encounter will differ from the ID inputs we have previously seen. However, not all test inputs are
considered OOD because we are only concerned with differences in certain essential aspects. When
learning a generative model p(x) of the ID data, our goal is not necessarily to capture the distribution
of x in its finest details. Instead, for the purpose of OOD detection, it is more appropriate to model
the distribution over a coarse-grained representation h(x), which captures the attributes necessary for
distinguishing OOD from ID data and ideally nothing more.

Consider an ID dataset consisting of 1000 breeds of dogs and 10 breeds of cats. If our generative
model captures the frequency of each individual breed, any dog input we observe will typically be
considered 100 times more OOD-like than any cat input based on the likelihood of the generative
model. However, if our goal is to detect other animal species and non-animal objects, the likelihood
of this model is clearly not aligned with the objective of OOD detection. In this case, it would
be more suitable to model only the frequency over the dog and cat categories, which serves as an
appropriately coarse-grained representation of the individual breeds. Since the definition of OOD is
ultimately user-defined, the correct coarse-grained representation depends on both the dataset and the
intended definition of OOD, and it might be challenging to accurately specify even when a definition
is known.

In Figure A.8a, we show the test log-likelihoods (normalized by dimension) of RealNVP (Dinh et al.,
2016) normalizing flow models of various sizes trained on CelebA images and their AUROCs for
detecting CIFAR-10. While models with the lowest test likelihoods on ID data perform poorly for
OOD detection, their OOD detection performance does not improve monotonically with their test
likelihoods. In fact, the AUROC eventually decreases with improvements in likelihood.

In Figure A.8b, we demonstrate the same phenomenon for a feature-space generative model. We
construct a Gaussian Mixture Model (GMM) model of the features produced by a ResNet-50 pre-
trained on ImageNet-1K, the ID dataset. To optimize for the likelihood on ID data, we choose the
cluster means to be the class-conditional means and use the empirical covariance of all features
centered by their respective class means as the covariance of the clusters. This GMM model is
precisely the generative model used by the Mahalanobis method (Lee et al., 2018). As we interpolate
between the empirical covariance and a trivial identity covariance, the ID test likelihood of this GMM
model decreases, yet the AUROC for detecting ImageNet-OOD improves monotonically.

The Impact of Inductive Biases. How a generative model assigns density to data unseen during
training is highly dependent on their inductive biases. Despite being highly flexible density models,
normalizing flows are known to be poor OOD detectors when trained as a generative model over raw
images because their inductive biases encourage the model to focus on low-level pixel correlations
rather than high-level semantic properties (Kirichenko et al., 2020; Nalisnick et al., 2018). Here, we
demonstrate that the same failure mode applies to diffusion models, a distinct class of generative
models achieving state-of-the-art image generation (Betker et al., 2023; Saharia et al., 2022).

We use the Diffusion Transformer (DiT), a 256x256-resolution latent diffusion model trained on
ImageNet-1K (Peebles and Xie, 2023). We score images based on the diffusion loss, a variance-
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Figure A.9: Diffusion Models can fail catastrophically at OOD. (a): Using the diffusion loss, the
Diffusion Transformer (DiT) (Peebles and Xie, 2023) fails catastrophically at detecting OOD inputs
from the Describable Textures dataset. (b): the DiT model does decently at detecting OOD inputs
from iNaturalist.
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Figure A.10: Visualization of DiT Reconstruction Error. A DiT trained on ImageNet-1K often
accurately reconstructs noised images from Describable Textures despite never having trained on
them. Left: Reconstructions of noised Describable Textures images compared to middle: iNaturalist
images and right: ImageNet-1K images.

reduced approximation of the variational lower bound (Kingma et al., 2021; Ho et al., 2020). In
Figure A.9, we show the DiT fails catastrophically in detecting OOD data from Describable Textures
but achieves decent performance in detecting OOD data from iNaturalist.

In Figure A.10, we qualitatively show that a 256x256 DiT trained on ImageNet-1K often accurately
reconstructs noised images from Describable Textures despite never having trained on them. We add
noise to the inputs corresponding to the diffusion timesteps at 49, 98, 147 out of 249, where higher
timesteps are more noisy.
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A.6 OUTLIER EXPOSURE

Training a model with outlier exposure is effective for improving OOD detection, and we see that
performance is improved for most OOD problems with semantic shifts in Figure A.11
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Figure A.11: Training a ResNet-18 with outlier exposure improves OOD detection for semantic shift
datasets but hurts OOD generalization over covariate shifts.
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B IMPLEMENTATION DETAILS

B.1 OUTLIER EXPOSURE EXPERIMENT.
On Figure 6, we compare OE model to the baseline ERM training in OOD detection (left panel) and
OOD generalization (right panel). For semantic shift detection, we use CIFAR-100, Tiny ImageNet,
MNIST, SVHN, Textures (Cimpoi et al., 2014), and Places365 (Zhou et al., 2014). For OOD
generalization we evaluate on STL-10 (Coates et al., 2011), CINIC-10 (Darlow et al., 2018) and
CIFAR-10-C (Hendrycks and Dietterich, 2019).

We adapt OpenOOD codebase (Zhang et al., 2023; Yang et al., 2022) to train ResNet-18 with baseline
ERM training and Outlier Exposure (Hendrycks et al., 2018) and evaluate models on OOD detection.
We train models for 100 epochs with batch size 128 for ID data and batch size 256 for the outlier
dataset, SGD with momentum and initial learning rate 0.1 and weight decay 5× 10−4, and we set
the coefficient before the OE loss to alpha = 0.5 (overall, we use standard training hyper-parameters
as in Zhang et al. (2023)). For Figure 6, we run both methods with 3 random seeds and report the
average performance. To evaluate the model on STL-10, we only use the 9 classes which overlap
with CIFAR-10 classes and drop the class “monkey” not present in CIFAR-10 (thus, the evaluation is
marked as STL-9 in Figure 6). For CIFAR-C, we report the average accuracy across 15 corruptions
(Gaussian Noise, Shot Noise, Impulse Noise, Defocus Blur, Glass Blur, Motion Blur, Zoom Blur,
Snow, Frost, Fog, Brightness, Contrast, Elastic transform, Pixelate, JPEG Compression).

B.2 EVALUATING PRE-TRAINED MODELS.
We evaluate 54 models from the timm and torchvision libraries, including 9 different arhcitec-
ture types: ResNet, TinyNet, VGG, MobileNet, ConvNeXt, RegNetY, ReXNet, MLP-Mixer, and ViT;
and 6 different pre-training data setups: training on IN-1K from scratch, pre-training on IN-21K and
fine-tuning on ON-1K, pre-training on IN-12K (a subset of IN-21K) and fine-tuning on IN-1K, CLIP
(Radford et al., 2021) pre-training on LAION and fine-tuning on IN-1K, CLIP pre-trainig on LAION
and further fine-tuning on IN-21K and then IN-1K, and Instagram-1B pre-training and further IN-1K
fine-tuning of SEER models (Goyal et al., 2021).

B.3 SCALING EXPERIMENTS

We benchmark the following models to demonstrate impact of scale in Figure 4:

1. ResNet-18 trained on ImageNet-1k

2. ResNet-34 trained on ImageNet-1k

3. ResNet-50 trained on ImageNet-1k

4. ViT-S/16 trained on ImageNet-1k

5. ViT-B/16 trained on ImageNet-1k

6. ViT-S/16 trained on ImageNet-1k with DINO

7. ViT-B/16 trained on ImageNet-1k with DINO

8. ViT-B/16 trained with CLIP

9. ViT-L/14 trained with CLIP

10. ViT-B/16 pretrained on CLIP, finetuned on ImageNet-1k

11. ViT-B/14 trained on 142M images with DINOv2

12. ViT-G/14 trained on 142M images with DINOv2

25


	Introduction
	Preliminaries
	Related Work
	OOD Detection Methods Answer the Wrong Questions
	Feature-Based Methods
	Logit-Based Methods

	But what about ...?
	Scaling Model and Data Size
	Combining Feature and Logit-Based Methods
	Exposing to Outliers
	Modeling Epistemic Uncertainty
	Introducing an Unseen Class
	Using Generative Models

	Discussion
	Additional Empirical Results
	Feature-based methods
	Logit-based methods
	Hybrid Methods
	Effect of Pre-training
	Generative models
	Outlier Exposure

	Implementation details
	Outlier exposure experiment.
	Evaluating pre-trained models.
	Scaling Experiments


