
NEURALMATRIX: COMPUTE THE ENTIRE NEURAL
NETWORKS WITH LINEAR MATRIX OPERATIONS FOR
EFFICIENT INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

The inherent diversity of computation types within individual deep neural network
(DNN) models necessitates a corresponding variety of computation units within
hardware processors, leading to a significant constraint on computation efficiency
during neural network execution. In this study, we introduce NeuralMatrix, a
framework that transforms the computation of entire DNNs into linear matrix
operations, effectively enabling their execution with one general-purpose matrix
multiplication (GEMM) accelerator. By surmounting the constraints posed by the
diverse computation types required by individual network models, this approach
provides both generality, allowing a wide range of DNN models to be executed
using a single GEMM accelerator and application-specific acceleration levels
without extra special function units, which are validated through main stream
DNNs and their variant models.

1 INTRODUCTION

In recent years, the development of various types of deep neural networks (DNNs) has found
applications in a wide range of scenarios. As neural network architectures continue to expand in size
and complexity, they pose substantial computational challenges, especially for resource-constrained
platforms and budget-conscious organizations. Application-specific integrated circuits (ASICs) offer
a promising solution for supporting DNNs on mobile and edge devices. For example, Bai et al. (2018)
introduced a CNN accelerator design that incorporates a multiplier array, add tree, normalization,
ReLU, and pooling units. Similarly, Thierry Tambe et al. (2021) proposed an edge transformer
accelerator featuring processing units (with floating-point vector and accumulate) and dedicated
function units for layer normalization, softmax, and other unique operators in each layer.

ASIC-based accelerators are known for their efficient execution of specific DNN applications. How-
ever, their inherent specificity, including the type and number of computation units, can restrict their
adaptability from one DNN to another. For example, transformer-based BERT uses 72.5% of its
computation cycles for versatile nonlinear operations (Thierry Tambe et al., 2021), necessitating the
integration of specific types and amounts of nonlinear functional units in its accelerator. However,
these functional units can become unnecessary burdens when the same accelerator is used for other
networks, such as CNN and GNN, which have far fewer nonlinear operations. Consequently, a
significant gap exists between the generality and computation efficiency of the accelerator when it
runs versatile DNN applications (Geng et al., 2021).

In this study, we introduce NeuralMatrix, a framework that combines the best of both worlds, as
illustrated in Fig. 1. On one hand, it overcomes the specificity limitations of computation types
and enables the computation of versatile DNNs on a single general matrix multiplication (GEMM)
accelerator. On the other hand, compared to other general-purpose processors such as CPUs and GPUs,
NeuralMatrix achieves application-specific acceleration levels by converting DNNs to linear matrix
operations and executing them with GEMM accelerators. Supporting different DNN architectures
on a single GEMM accelerator is not trivial. Several challenges need to be addressed, including
how to map different computation types in DNN computation to linear matrix operations so that a
single GEMM accelerator can fully support them and how to eliminate the impact of linear matrix
operations on DNN inference accuracy.

1

Off-chip Memory (L3)

Network on Chip

...

Global Buffer (L2)

MAC Unit

...

Cluster 1

Local
Buffer

(L1)

PE 1

Batch
norm

ReLUSoftmax

GEMM

Pooling Layer
normalization

GELU Softmax

GEMM

CNN Accelerator Transformer Accelerator

Network: CNN Transformer

Computation
Types :

Convolution,
Avg-Pooling
Batchnorm,

Softmax, ReLU

GELU,
Layernorm,

Softmax,
Matrix Multiplication

CNN/Transformer/…

Hardware:
GEMM

Accelerator

Matrix Multiplication

NeuralMatrix

MAC Unit

Local
Buffer

(L1)

PE N-1

MAC Unit

...

Cluster N-1

Local
Buffer

(L1)

PE 1

MAC Unit

Local
Buffer

(L1)

PE N-1

Figure 1: NeuralMatrix translates neural network computation tasks into matrix operations, enabling
them to be fully supported by general matrix multiplication (GEMM) accelerators.

Our comprehensive experiments, featuring three popular categories (CNN, Transformers, and GNN)
as illustrative backbone models, demonstrate that DNNs incur only an average of 1.32% accuracy
loss when converted to linear matrix operations. Remarkably, this matrix-based neural network
computation improves computation efficiency (i.e., throughput per power) by 49.58, 8.50, and
2.35 times when compared to the CPUs, GPU, and SoC, achieving levels of computing efficiency
traditionally attainable only with carefully designed, application-specific accelerators tailored to
one specific network model. To the best of our knowledge, we are pioneering the transformation of
diverse entire DNNs into linear matrix operations, revealing the substantial advantages of generality
and computational efficiency through the utilization of a single GEMM accelerator. Our innovative
framework, NeuralMatrix, adeptly addresses the irregularities present in a wide range of neural
network models, thus simultaneously achieving both generality and computational efficiency.

2 BACKGROUND AND RELATED WORK

2.1 INTENSIVE AND VERSATILE COMPUTATIONS IN DNNS

The computational demands of DNNs pose challenges for conventional platforms. Two types
of computational platforms have been developed to accelerate DNNs. First, application-specific
integrated circuits (ASICs) with dedicated functional units target specific network models for optimal
efficiency (Xiaocong Lian et al., 2019; Tao Luo et al., 2017; Li et al., 2020; Khan et al., 2021; Wang
et al., 2021). Second, versatile general-purpose processors like graphics processing units (GPUs)
and tensor processing units (TPUs) accelerate DNNs at the cost of high power consumption due to
numerous processing units (Wang et al., 2019).

Previous work has attempted to address versatility issues stemming from DNNs’ nonlinear com-
putations. Approaches such as piecewise linear (PWL) based approximations (Dong et al., 2020;
Khan et al., 2021; Lyu et al., 2021) and neural network-based approximations (Yu et al., 2022) have
been proposed to accelerate nonlinear operations in neural networks. An automated approximation
framework (Lu et al., 2023) has been developed to simplify and automate this process, leveraging a
neural network to approximate nonlinear operations. MA-BERT (Ming et al., 2022) replaces complex
functions with computation-friendly ones in the transformer-based BERT network, using matrix
arithmetic and trivial ReLU operations. Experiments on CPUs and GPUs show that this substitution
significantly improves computational efficiency.

It is important to note that the aforementioned research, including our work, is orthogonal to efforts
aimed at reducing DNN computation, such as network pruning (Mitchell A.Gordon and Andrews,
2020), compression (Thierry Tambe et al., 2021), and early exit (Li et al., 2022). Our method can
be applied in conjunction with these methodologies to obtain further computational benefits derived
from efficient GEMM computation platforms.

2.2 GENERAL MATRIX MULTIPLICATION ACCELERATOR

General Matrix Multiplication (GEMM) accelerators are specialized hardware components designed
to expedite matrix multiplication operations(Kwon et al., 2019). They are employed in data centers
for high-performance computing and edge devices to enhance efficiency in tasks such as digital signal
processing, artificial intelligence, and scientific simulations(Qin et al., 2020). GEMM accelerators

2

can be integrated with devices like Tensor Processing Units (TPUs)(Jouppi et al., 2017), included in
System-on-Chip (SoC) configurations(Mitra et al., 2014), or developed as standalone chips (Reggiani
et al., 2023).

In a nutshell, GEMM comprises numerous parallel processing elements (PEs) and hierarchical
memory (i.e., L1, L2, and L3), as shown in Fig. 1. Within each PE, the multiply-and-accumulate
(MAC) unit performs computations, while the local (L1) buffer stores the MAC unit’s inputs and
partial sums. Multiple PEs are arranged in an array to enable parallel execution of many MAC
operations. The network-on-chip (NoC) facilitates data transmission between the local (L1) buffers
inside each PE and the global (L2) buffer for GEMM. Additionally, a high-bandwidth off-chip (L3)
memory serves as a backup for providing input data and holding output data. Because data access
energy and latency increase linearly from L1 to L2 and become orders of magnitude larger in L3
(Kwon et al., 2019), GEMM accelerators are usually designed to maximize data reuse within on-chip
L1 and L2 buffers.

Compared to the general-purpose processor CPUs and GPUs, which accommodate a variety of
instructions through a range of logic and arithmetic components, GEMM accelerators are explicitly
designed for matrix multiplication using only MAC units and buffers. This focused approach to matrix
multiplication results in exceptional efficiency (Hojabr et al., 2021). However, the GEMM accelerator
can only process the general matrix multiplication computation. Additional special function units
have to be located alongside the GEMM accelerator to process the other types of computations
(Jouppi et al., 2017; Mitra et al., 2014). The types and numbers of special function units are carefully
tailored to the computations of the targeted neural network models Pati et al. (2021).

In this paper, we propose NeuralMatrix to compute the versatile computations all with linear matrix
operations. The NeuralMatrix enables running versatile neural networks on one GEMM accelerator
by eliminating the limitations of deploying the special function units for various computation types.
This approach endows different neural network models with application-specific efficiency, which is
conventionally only available with application-specific accelerators.

3 NEURALMATRIX – COMPUTING NETWORKS WITH MATRIX OPERATIONS

This section describes how NeuralMatrix runs a series of decision and computation processes to map
and compute the neural networks with linear matrix operations. Its high-level logic is depicted by
the flow-chart in Fig. 2. First, the computation in neural networks can be classified into linear and
nonlinear operations. Linear operations are directly mapped to GEMM accelerators through GEMM
mapping (§ 3.1). Among nonlinear operations, NeuralMatrix will then decide if one operation already
corresponds to a piecewise linear function (e.g., ReLU), which can be computed using the piecewise
linear calculation method. If not, an offline piecewise approximation will be performed before it
can be handled by piecewise linear calculations (§ 3.2). To support the network inference accuracy
after the aforementioned approximation and finetuning, we introduce two training approaches for
NeuralMatrix, specifically the post-approximation and pre-approximation methods, and discuss their
potential impact on the final inference accuracy (§ 4).

3.1 MAPPING LINEAR OPERATIONS TO GENERAL MATRIX MULTIPLICATION

Linear operations are pervasive in DNNs, for example in fully connected layers, convolution kernels,
attention mechanisms, and more. These linear operations involve 2D, 3D, or higher-dimensional
tensors. We first introduce our GEMM mapping module, which is the foundation of NeuralMatrix
since it is the interface to the GEMM accelerators. By applying reshaping and re-blocking techniques,
these linear operations can be represented as matrix addition and multiplication operations with
various sizes. For instance, in convolutional neural network (CNN) models, the convolution and fully
connected layers are the main linear operations that can be transformed into matrix multiplication
by reshaping the input features and filters into two matrices. The dimensions of these matrices are
determined by the width, height, and number of channels in the original convolution computation.

Given that each GEMM accelerator has its own computational and memory capabilities, matrices
of different sizes—reshaped from linear operations in DNNs—are processed block-wise on the
GEMM accelerator. In other words, the input and weight matrices are partitioned into smaller blocks
to compute the output matrix, taking advantage of the GEMM accelerator’s three-level memory

3

An operation in DNN

Linear?

Yes
Feedforward
Convolution

...

No

Yes
ReLU

Leaky ReLU
...

GELU
Exponential
Square root
...

Piecewise Linear
Calculation (3.2)
Piecewise Linear
Calculation (3.2)

Piecewise
Linear?

Piecewise
Linear?

Linear Calculation

GEMM Mapping (3.1)

No

3

1.1134

-0.2722

2

0.8421

0.0000

1

0.1588

0.0000

0

-0.1134

-0.2722

Seg

k

b

Preload Parameters to k, b Buffer in L3

Offline Piecewise

Linearation (3.2)

Offline Piecewise

Linearation (3.2)

Piecewise Linear
Approximation

0.1 -0.8

-1.3 2.1

Input X

S = floor[X/(1.0)]+2

Scaled S = max[min(s, 2), -2]

2 1

0 3

Scaled Segment S

0.8421

1.1134-0.1134

0.1588

0.0000

-0.2722-0.2722

0.0000

Slop K and
Intercept B

0.0842

2.0659-0.1248

-0.1270

GEMM Accelerator

Output Y

11
22

33

Set segment lens L and range (Smin, Smax)

Compute k and b for every segment si

Preload Parameters k and b to accelerator

Compute the segment S for input X

Cap the segment S to the range (Smin, Smax)

Get K and B from preloaded buffer with S

Compute output Y with Y = K X + B

Figure 2: Overview of NeuralMatrix. Different types of DNN computation will go through different
decision and process steps. Eventually, an entire neural network can be moved to linear matrix
operations and become fully supported by a GEMM accelerator.

hierarchy to minimize energy consumption and buffer access times (Kwon et al., 2019). The optimal
block division is achieved by exploring data flows using a top-down approach: first addressing the
stationary scheme, followed by spatial/temporal accesses, and finally determining the tile size to find
the optimized data flow of linear operations. The term "stationary" refers to storing matrix data in
global and local buffers for extended periods to maximize its reuse. Data reuse can be classified
into temporal and spatial reuse. Temporal reuse involves reading data from off-chip DRAM in
chronological order, sending it to multiple local buffers, and performing multiplication or addition
operations on the partial sums in processing elements (PEs). Conversely, spatial reuse entails moving
and processing data in parallel. Lastly, the tile size defines the data size for each movement and
computation.

The above division uses a method similar to grid search to find this optimal block division. For
example, given a matrix multiplication with dimension (M ×K)× (K ×N), we change the block
size in the three dimensions (stationary, spatial/temporal accesses, and tile sizes) from 2 to 128 with
stride 2, and use an early stage model to calculate the latency and energy consumption of GEMM
accelerator. Then we will choose the optimal block size in three dimensions with the minimum
latency under energy consumption constraints.

3.2 MOVING NONLINEAR OPERATIONS TO MATRIX OPERATIONS

Addressing the nonlinear operations inherent in DNNs poses a significant challenge, as they cannot be
easily mapped to standard matrix multiplications performed using GEMM accelerators, as described
in the previous subsection. To overcome this issue, ASICs are specifically designed. These designs
typically involve creating a predetermined number of functional units of various types, meticulously
tailored to fulfill the nonlinear computational requirements of a specific neural network model. While
this approach yields highly efficient accelerators adept at handling particular networks, it falls short
in terms of flexibility. In contrast, our proposed method emphasizes enhanced adaptability, allowing
a wide range of DNNs to be efficiently executed on a single GEMM accelerator.

Offline Piecewise Linearization. In NeuralMatrix, continuous nonlinear operations are approxi-
mated using piecewise functions. This method involves dividing a nonlinear function of interest into
smaller regions within a chosen interval and approximating each region with a simpler function, such
as a line or polynomial. Continuous piecewise linear (CPWL) approximations specifically utilize

4

Table 1: Parameter overhead in NeuralMatrix (granularity=0.25).

DNN Model ResNet-50 BERT-base GCN

Extra Parameter Size (FP16) 114KB 49.2KB 0.24KB
Extra Parameter Size (INT8) 57KB 24.6KB 0.12KB
Normalized Parameter Size 0.46% 0.01% 0.10-0.74%

lines for approximation, ensuring that the endpoint of one region is the same as the starting point of
the next region.

There are two primary advantages of employing CPWL approximation in NeuralMatrix. Firstly,
classic GEMM accelerators can support the computation in CPWL without any hardware modifi-
cations, unlike some other approximation methods, such as look-up table (LUT) based nonlinear
approximation, which require extra hardware resources. Secondly, alternative approximation methods
like Taylor expansion or Chebyshev approximation necessitate considerable additional computations,
which do not align with our ultimate goal of computing efficiency.

Piecewise Linear Calculation. Technically speaking, piecewise linear operations from the above
approximation are still nonlinear and can not be directly mapped to GEMM. Therefore, we develop
a three-step approach here that can handle piecewise linear calculations. Here we use piecewise
linearized GELU as an illustrative example (in Fig. 2), but the same process can also be used to
handle operations that are originally piecewise linear, such as ReLU and Leaky ReLU. The input
data is X and the goal is to calculate Y = GELUapprox.(X), X,Y ∈ RM×N . The pre-calculated
parameter k and b of each segment are pre-stored in off-chip DRAM, and indexed by the segment
numbers.

Piecewise linear calculation follows the following steps: 1 We use a linear operator to calculate the
segment matrix S for the input matrix X . Each element in S, e.g., Si,j represents which segment its
corresponding input value Xi,j falls into. The calculation of the segment matrix S is handled by the
GEMM accelerator and the output is further passed to the L2 global buffer 1; 2 The parameters k and
b are aggregated and sent to the GEMM accelerator in the forms of slope matrix K and intercept matrix
B; 3 Finally, the GEMM accelerator performs element-wise calculations Y = X ·K +B to get the
output matrix Y . The other continuous nonlinear functions, such as softmax and layer normalization,
can be computed by approximating inverse proportional, root, and exponential functions.

Parameter Overhead. NeuralMatrix introduces additional overhead to the original model, resulting
from the extra parameters used to represent piecewise linear functions (e.g., k, b tables). In this
section, we provide a quantitative analysis of this aspect. Specifically, we focus on the scenario
where the granularity is set to 0.25, and the parameter overhead is presented in Table 1. Since we
employ fixed granularity for the entire network, utilizing larger granularity values will proportionally
decrease the parameter overhead. For instance, if the granularity is doubled to 0.5, the overhead will
be reduced by half. Even with the smallest granularity in our experiments, the parameter overhead
remains minimal (less than 0.7%). Therefore, we will utilize 0.25 as the default segment granularity
in the following sections.

4 APPROXIMATION WITH FINE-TUNING

NeuralMatrix primarily focuses on improving the inference-time efficiency of fine-tuned DNNs
on resource-limited platforms. One approach, which we referred to as the post-finetuning method,
involves standard fine-tuning of the original DNN. Following this, the DNN is transferred to linear
matrix operations with necessary approximated piecewise linearization, as detailed in the previous
subsection.

In addition, NeuralMatrix can be seamlessly integrated with training, offering an alternative pre-
finetuning approximation approach. This technique involves mapping a pre-trained DNN to its

1When this piecewise linear approximation is calculated, the k and b parameters for all the segments Si,j

used in this round of approximation are prefetched from DRAM to the L2 global buffer.

5

Table 2: The parameters of the implemented GEMM accelerator.

Parameters Total PE Numbers Cluster Numbers Stationary Scheme Frequency
Value 1024 8 Output stationary 1 GHz

Parameters L1 buffer Size L2 buffer Size NoC Bandwidth DRAM Bandwidth
Value 4 KB 1 MB 128 Gbps 32 Gbps

approximated form before finetuning it on specific downstream tasks. The loss function used during
finetuning remains unchanged from conventional finetuning, and standard automatic differentiation
techniques can be employed for back-propagation. Both the post- and pre-finetuning methods yield
final approximated DNNs with identical architectures and, consequently, have the same inference
time cost on GEMM.

Any approximation method that maps DNNs, including nonlinear functions, to the GEMM accel-
erator will inevitably lead to a loss in computational accuracy, which in turn results in end-to-end
inference accuracy loss. In the piecewise approximation of nonlinear operations, the accuracy of
the approximation is dependent on the granularity of linear segments. Finer granularity contributes
to higher accuracy but increases the number of parameters stored in the DRAM. In the following
Section 5.2, we will demonstrate how to find a suitable tradeoff and select the appropriate linear
segment granularity to achieve low memory cost and high inference accuracy for various downstream
tasks.

5 EVALUATION

In this section, We first verify the inference accuracy after differnet DNNs are transformed to the
linear matrix operations by the proposed NeuralMatrix. Next, we compare the computation efficiency
of NeuralMatrix on a FPGA implemented GEMM accelerator with existing general-purpose and
application-specific computation platforms to showcase the computation efficiency of NeuralMatrix.

5.1 EXPERIMENTAL SETUP

In this study, we first implement a systolic array based GEMM accelerator with the Xilinx Virtex 7
XC7VX485T FPGA. A data addressing unit in the global buffer (L2) is added to access the parameters
k and b according to the segment number Si,j . The architectural-level parameters, including the
number of processing elements (PEs) and memory bandwidths of the GEMM accelerator, are
optimized with the GEMM design automation tool (Wei et al., 2017). The parameters are summarized
in Table 2. We choose the output stationary data movement strategy as it avoids frequent data
movements to and from memories and benefits the lowest energy consumption for large matrix
multiplication (Zhao et al., 2022). To assess the computation performance of CPUs and GPUs, we
conducted tests on the Intel i7-11700 CPU, NVIDIA 3090Ti GPU, and Jetson Orin SoC, utilizing
an IT9121 power analyzer. For the existing accelerator solutions, we gathered relevant data from
published papers. To standardly and normally compare the computation performance across different
network models and hardware processors. Our analysis mainly focuses on the computation efficiency,
which is indicated by the computation throughput (i.e., integer or floating-point operations per second)
with the power consumption from the hardware processor.

5.2 INFERENCE ACCURACY

Before demonstrating the advantage of computation efficiency in NeuralMatrix, we first empirically
verify its inference accuracy through three popular DNN architecture categories and seventeen tasks of
different natures. We ensure that applying NeuralMatrix with the appropriate setup only compromises
ignorable accurate loss compared with the original models’ final performance. Fig. 3 displays the final
inference accuracy of various DNN architectures on multiple benchmark datasets. In this experiment,
we select some of the most well-known pre-trained DNNs in each category, such as ResNet-50 (He
et al., 2016), BERT-base (Devlin et al., 2018), and GCN (Kipf and Welling, 2016), to represent CNN,
transformer, and GNN, respectively. Although we experimented with 17 benchmark datasets, due to
space limitations, we only showcase four benchmarks for each DNN category and include the rest in

6

(a
):

R
es

N
et

-5
0

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ac
cu

ra
cy

ginal=1Ori
1Original=INT8

QMNIST

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Origin 1al=0.912
INT8 Orig 930inal=0.9

Fashion-MNIST

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
8al=0.961Origin
13inal=0.96gINT8 Ori

CIFAR-10

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

9al=0.850Origin
21inal=0.84INT8 Orig

CIFAR-100

Post-finetuning
Pre-finetuning
Pre-finetuning(INT8)

(b
):

B
E

R
T-

ba
se

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ac
cu

ra
cy

Original=0.9232
INT8 Original=0.9224

SST-2

Post-finetuning
Pre-finetuning
Pre-finetuning(INT8)

0.25 0.50 0.75 1.00
Granularity

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Original=0.5653
INT8 Original=0.5674

CoLA

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Original=0.9066
INT8 Original=0.9062

QNLI

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Original=0.8865
INT8 Original=0.8766

STS-B

(c
):

G
C

N

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

4al=0.843Origin
21inal=0.84INT8 Orig

CORA

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0al=0.745Origin
30inal=0.74gINT8 Ori

Pubmed

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0al=0.646Origin
802inal=0.6INT8 Orig

Citeseer

0.25 0.50 0.75 1.00
Granularity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ac
cu

ra
cy

Original=0.9272
02inal=0.92INT8 Orig

Reddit

Post-finetuning
Pre-finetuning
Pre-finetuning(INT8)

Figure 3: The network inference accuracy across benchmarks, granularity and training approaches

the following open-sourced NeuralMatrix. The dashed lines in each figure represent the inference
accuracy of the original floating-point and quantization DNN models, which can be considered as
the performance upper-bound given the pre-trained network. The sub-figures illustrate inference
accuracy across different approximation granularity on different datasets. Specifically, the colored
lines with markers represent the post-finetuning, the pre-finetuning performance using floating-point
and INT8 quantization, respectively.

From the figures, we observe that the best-performing NeuralMatrix attains comparable performance
to the original DNNs in every benchmark across different DNN categories. We find that pre-finetuning
consistently achieves better performance than the post-finetuning approach, possibly because the
network during finetuning is identical to the final inference ones. Thus, we recommend using the
pre-finetuning method when transitioning DNNs to linear matrix operations. As the granularity
increases from 0.1 to 1.0, we notice inference accuracy declines across all NeuralMatrix variants,
which is expected since larger granularity incurs higher approximation errors. Generally, accuracy
only begins to drop gradually when the granularity of exceeds 0.5 with floating-point and 0.25 with
INT8 quantization. This demonstrates that a reasonably small granularity can achieve desirable
performance. In the following evaluations, we use 0.25 as the default granularity.

Further, we experimentally test and compare the inference accuracy of NeuralMatrix (at the granularity
of 0.25) across different network sizes, including depth and width, as well as variant network models.
The inference accuracy of NeuralMatrix is summarized in Table 3 for different sizes of ResNet, BERT,
GCN, respectively. Among all the tests, the NeuralMatrix introduces an average inference accuracy
loss of 1.32%.

From the accuracy results, it is evident that the accuracy of NeuralMatrix is relatively robust to
various network sizes and variant models of classic networks.

7

Table 3: Inference accuracy (%) of NeuralMatrix compared with original DNN models of different
categories and sizes. We use CIFAR-10, SST-2 and CORA datasets for CNN, Transformer and GNN
respectively.

DNN Category/Dataset Models Size FP16 INT8
Original NeuralMatrix Original NeuralMatrix

CNN/CIFAR-10

ResNet-18 44.8 MB 95.02 92.87 (-2.13) 94.66 92.12 (-2.54)
ResNet-34 85.3 MB 96.12 94.85 (-1.27) 96.10 94.43 (-1.67)
ResNet-50 90.1 MB 96.18 95.67 (-1.77) 96.13 94.43 (-2.05)
ResNet-101 163 MB 97.13 95.67 (-1.51) 96.44 94.82 (-1.62)
ResNet-152 223 MB 97.29 95.12 (-2.17) 96.87 94.38 (-2.49)

Transformers/SST-2

ALBERT 47.4 MB 92.50 88.42 (-4.13) 89.76 85.28 (-4.48)
DistilBERT 263 MB 90.41 88.65 (-1.35) 88.19 86.24 (-1.95)
BERT-Base 436 MB 92.32 92.32 (-0.00) 92.24 92.07 (-0.25)
BERT-Large 1340 MB 93.46 93.02 (-0.34) 93.12 92.20 (-0.92)

GNN/CORA

GCN (L=1) 94.0KB 72.90 72.34 (-0.56) 72.37 71.84 (-0.53)
GCN (L=2) 95.6KB 84.28 84.31 (+0.03) 83.95 84.02 (+0.07)
GCN (L=3) 99.4KB 84.34 84.38 (+0.04) 84.21 84.11 (-0.10)
GCN (L=6) 113.9KB 81.18 81.11 (-0.07) 80.86 80.92 (+0.06)
GCN (L=9) 128.3KB 80.53 80.58 (+0.05) 79.82 79.91 (+0.09)

Regarding specific DNN models, we observe that for both BERT and ResNet, the performance
gap between different NeuralMatrix variants increases as the baseline performance decreases. This
suggests that one can choose a larger granularity for easier tasks but a smaller one for more difficult
tasks. In contrast, the GCN models do not exhibit significant differences among the baseline and
various NeuralMatrix variants, possibly because GCNs are typically shallower.

5.3 BENEFITS OF COMPUTATION EFFICIENCY

This section present the potential computation and power efficiency gains achievable through the
migration of neural networks to linear matrix operations executed on a General Matrix Multiplication
(GEMM) accelerator. We undertake a comparative analysis of the computation efficiency involved in
running neural networks on a variety of processing units, including general-purpose CPUs, GPUs,
System-on-Chips (SoCs), application-specific FPGA-based ASIC designs, and the NeuralMatrix with
an FPGA-implemented GEMM accelerator. For Graph Neural Networks (GNNs), we restrict our
evaluation to the above inference accuracy, as we encountered limitations in locating standardized
ASIC designs for GNNs due to their numerous variants. To ensure a fair comparison of computation
efficiency across diverse network models on different hardware processors, we meticulously document
both the computation throughput (i.e., integer or floating-point operations per second) and the power
consumption. A higher throughput with a smaller power consumption indicates a more efficient
computing approach.

Figure 4 illustrates the computation efficiency (recorded with 1/throughput and power) of different
networks (CNN, BERT, and GCN) and their variants on different hardware processors. Each point
indicates a network variant on a hardware processor. The processor types are distinguished by the
marker shapes. All the design points are scatter-plotted, and the Pareto frontiers consist of the optimal
design points. We distinguish the designs by the hardware processor types. Clearly, across all the
network models, the general-purpose processors CPU and GPU, especially the CPU, are located
far away from the Pareto frontiers, indicating a low computation efficiency. This is because the
general-purpose processors trade the computation efficiency for generality, which needs the support
of additional software like software and hardware overheads. To quantify the improvement with CPU
GPUs, SoC, the NeuralMatrix improves computation efficiency (i.e., throughput per power) by 49.58,
8.50, and 2.35 times.

The plots also indicate the related FPGA-based ASIC designs for these networks (ResNet and BERT)
(Lian et al., 2019; Shen et al., 2017; Bai et al., 2018; Pham et al., 2012; Khabbazan and Mirzakuchaki,
2019; Su et al., 2018; Jang et al., 2019; Zhao et al., 2023; Li et al., 2021; Qi et al., 2021; Khan
et al., 2021; Wang et al., 2021; Zhang et al., 2021; Ham et al., 2020). Compared to ASIC designs
for networks of different sizes, NeuralMatrix can achieve the same level of computation efficiency
distributed along the Pareto frontiers.

When we compare the computation efficiency of NeuralMatrix across different network variants, we
find that the computation efficiency of NeuralMatrix increases as the networks become wider and

8

6 7 8 9 10 11
Power(W)

0.000

0.002

0.004

0.006

0.008

0.010

1
/ T

hr
ou

gh
pu

t (
1/

GO
Ps

)

NeuralMatrix
FPGA-based accelerators
General-purpose processors

(Shen, Yongming et al., 2017)

(Bai, Lin et al., 2018)

(Shen, Yongming et al., 2017)
(Shen, Yongming et al., 2017)

(Lian, Xiaocong et al., 2019)

(Khabbazan et al., 2019)

(Su Jiang et al.,2018)

(Pham et al., 2012)

CPU i7-11700
P=112W

SOC: AGX ORIN
P=14W

GPU: 3090Ti
P = 131W

(a): ResNet and its variant models

5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0
Power(W)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

1
/ T

hr
ou

gh
pu

t (
1/

GO
Ps

) NeuralMatrix
FPGA-based accelerators
General-purpose processors

(Jang, Hanhwi et al.,2019)

(Qi, Panjie et al.,2021)

(Xinyi Zhang et al.,2021)

(Hamza Khan et al.,2021)
(Zhao, Zhongyu et al.,2023)

(Hanrui Wang et al.,2021)

(Li, Jixuan et al.,2021)

SOC: AGX ORIN
P = 14W

CPU i7-11700
P = 112W

GPU: 3090Ti
P = 131W

(Ham et al.,2021)

(b): BERT and its variant models

Figure 4: Different networks’ computation efficiency (throughput and power consumption) on
different computing processors.

deeper. Network width has a greater impact on computation efficiency compared to depth. Later, the
computation efficiency reaches the peak and stable range for the network with large sizes. According
to this design space exploration, the NeuralMatrix will be more effective for the large neural network,
especially the wider networks. This is because a wider neural network will be generated to a larger
matrix, allowing more parallel computation to be performed simultaneously by the parallel processing
elements in the GEMM accelerator. We can conclude that by transforming the computation of the
entire neural network to general matrix multiplication, NeuralMatrix enables versatile neural networks
to be efficiently executed by one GEMM accelerator. Meanwhile, NeuralMatrix demonstrates its
superior efficiency for large neural networks, which can fully utilize its PEs after being transformed
to matrix multiplication by NeuralMatrix.

6 DISCUSSION AND LIMITATIONS

In this study, we concentrated on three widely-used DNN backbone models and employed fixed
approximation granularities for the entire DNN as a demonstrative example to highlight the benefits
of transitioning entire neural networks to linear matrix operations. Nevertheless, we believe that
NeuralMatrix can be applied to broader categories of network architectures as well. Moreover, by
examining different nonlinear functions and their positions, it may be feasible to further minimize
the accuracy loss of NeuralMatrix by employing varying approximation granularities (Hamann and
Chen, 1994). Due to time and space constraints, we only implemented and tested the piecewise
linear approximation method with the fixed granularity for the entire neural work; however, different
granularities for different computation types or alternative approximation methods might potentially
enhance network inference accuracy at the expense of increased computation cost. Furthermore,
our evaluation of scalability across network sizes revealed that larger (deeper or wider) networks
demonstrate greater computation efficiency gains. Moving forward, we also envision the proposed
NeuralMatrix being effectively utilized in the inference process and the training process of large
models in the future.

7 CONCLUSION

To overcome this limitation of numerous types of computation and enable versatile DNNs on a
single computing units, we introduce NeuralMatrix. This approach transitions entire DNNs to linear
matrix operations, which can further be be executed by general matrix multiplication accelerators.
NeuralMatrix utilizes three mainstream DNN backbone models - CNN, transformer, and GNN - along
with their variant models as illustrative examples. Our pre-finetuning training reveals that the shift to
linear matrix operations incurs negligible inference accuracy loss. The evaluation demonstrates that
NeuralMatrix can attain ASIC-level computation and energy efficiency on general-purpose matrix
multiplication accelerators. Consequently, this enables the efficient support of a broad range of DNNs
on a single hardware accelerator.

9

8 ETHICS STATEMENT

Our research aims to revolutionize the computation of complete Deep Neural Network (DNN) models
with linear matrix operations and further execute on a General Matrix Multiplication (GEMM)
accelerator. The significance of our work can be distilled into two key aspects. First, it achieves
generality by enabling the execution of a diverse range of DNN models on a single GEMM accelerator,
eliminating the necessity for additional or specialized functional units. Second, it maintains com-
putational efficiency at a level comparable to what is conventionally achievable through accelerator
designs tailored specifically to a single network model. In essence, our contribution facilitates the
general-purpose ability to run versatile DNN models with the computational efficiency previously
achievable to application-specific designs.

9 REPRODUCIBILITY STATEMENT

Our system design and implementation is reproducible. We have documented all the critical ex-
perimental details in the main text. While we cannot include the complete text of every design
configuration and parameter due to their excessive length, We will open-source all of our implemen-
tation (including the code for computing and training the NeuralMatrix and also the RTL design of
the implemented GEMM accelerator used in our evaluation etc.).

REFERENCES

Bai, L.; Zhao, Y.; Huang, X. A CNN accelerator on FPGA using depthwise separable convolution.
IEEE Transactions on Circuits and Systems II: Express Briefs 2018, 65, 1415–1419.

Thierry Tambe, C. H.; Lillian Pentecost, T. J.; En-Yu Yang, M. D.; Victor Sanh, P. N.; Alexan-
der M.Rush, D. B.; Wei, G.-Y. EdgeBERT: Sentence-Level Energy Optimizations for Latency-
Aware Multi-Task NLP Inference. arXiv preprint arXiv:2011.14203 2021,

Geng, T.; Wu, C.; Tan, C.; Xie, C.; Guo, A.; Haghi, P.; He, S. Y.; Li, J.; Herbordt, M.; Li, A. A survey:
Handling irregularities in neural network acceleration with fpgas. 2021 IEEE High Performance
Extreme Computing Conference (HPEC). 2021; pp 1–8.

Xiaocong Lian, Z. L.; Zhourui Song, J. D.; Wei zhou, X. J. High-Performance FPGA-Based CNN
Accelerator With Block-Floating-Point Arithmetic. IEEE TRANSACTIONS ON VERY LARGE
SCALE INTEGRATION (VLSI) SYSTEMS, VOL.27, NO.8, AUGUST 2019 2019,

Tao Luo, S. L.; Ling Li, Y. W.; Shijin Zhang, T. C.; Zhiwei Xu, O. T.; Chen, Y. DaDianNao: A Neural
Network Supercomputer. IEEE TRANSACTIONS ON COMPUTERS, VOL.66, NO.1, JANUARY
2017 2017,

Li, B.; Pandey, S.; Fang, H.; Lyv, Y.; Li, J.; Chen, J.; Xie, M.; Wan, L.; Liu, H.; Ding, C. FTRANS:
Energy-Efficient Acceleration of Transformers using FPGA. 2020.

Khan, H.; Khan, A.; Khan, Z.; Huang, L. B.; Wang, K.; He, L. NPE: An FPGA-based overlay
processor for natural language processing. arXiv preprint arXiv:2104.06535 2021,

Wang, H.; Zhang, Z.; Han, S. Spatten: Efficient sparse attention architecture with cascade token and
head pruning. 2021 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 2021; pp 97–110.

Wang, Y. E.; Wei, G.-Y.; Brooks, D. Benchmarking TPU, GPU, and CPU platforms for deep learning.
arXiv preprint arXiv:1907.10701 2019,

Dong, H.; Wang, M.; Luo, Y.; Zheng, M.; An, M.; Ha, Y.; Pan, H. PLAC: Piecewise linear approxi-
mation computation for all nonlinear unary functions. IEEE TVLSI 2020,

Lyu, F.; Xia, Y.; Mao, Z.; Wang, Y.; Wang, Y.; Luo, Y. ML-PLAC: Multiplierless piecewise linear
approximation for nonlinear function evaluation. IEEE TCAS I: Regular Papers 2021,

10

Yu, J.; Park, J.; Park, S.; Kim, M.; Lee, S.; Lee, D.; Choi, J. Nn-lut: neural approximation of non-
linear operations for efficient transformer inference. IEEE/ACM Design Automation Conference.
2022.

Lu, H.; Mei, Q.; Wang, K. Auto-LUT: Auto Approximation of Non-Linear Operations for Neural
Networks on FPGA. IEEE International Symposium on Circuits and Systems. 2023.

Ming, N. W.; Wang, Z.; Liu, C.; Goh, R. S. M.; Luo, T. MA-BERT: Towards Matrix Arithmetic-only
BERT Inference by Eliminating Complex Non-Linear Functions. ICLR. 2022.

Mitchell A.Gordon, K. D.; Andrews, N. Compressing BERT: Studying the Effects of Weight Pruning
on Transfer Learning. arXiv preprint arXiv:2002.08307 2020,

Li, X.; Lou, C.; Zhu, Z.; Chen, Y.; Shen, Y.; Ma, Y.; Zou, A. Predictive Exit: Prediction
of Fine-Grained Early Exits for Computation-and Energy-Efficient Inference. arXiv preprint
arXiv:2206.04685 2022,

Kwon, H.; Chatarasi, P.; Pellauer, M.; Parashar, A.; Sarkar, V.; Krishna, T. Understanding reuse,
performance, and hardware cost of dnn dataflow: A data-centric approach. Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. 2019; pp 754–768.

Qin, E.; Samajdar, A.; Kwon, H.; Nadella, V.; Srinivasan, S.; Das, D.; Kaul, B.; Krishna, T. Sigma:
A sparse and irregular gemm accelerator with flexible interconnects for dnn training. 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA). 2020; pp 58–70.

Jouppi, N. P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.;
Boden, N.; Borchers, A.; others In-datacenter performance analysis of a tensor processing unit.
Proceedings of the 44th annual international symposium on computer architecture. 2017; pp 1–12.

Mitra, G.; Stotzer, E.; Jayaraj, A.; Rendell, A. P. Implementation and optimization of the OpenMP
accelerator model for the TI Keystone II architecture. Using and Improving OpenMP for Devices,
Tasks, and More: 10th International Workshop on OpenMP, IWOMP 2014, Salvador, Brazil,
September 28-30, 2014. Proceedings 10. 2014; pp 202–214.

Reggiani, E.; Pappalardo, A.; Doblas, M.; Moreto, M.; Olivieri, M.; Unsal, O. S.; Cristal, A. Mix-
GEMM: An efficient HW-SW Architecture for Mixed-Precision Quantized Deep Neural Networks
Inference on Edge Devices. 2023 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). 2023; pp 1085–1098.

Hojabr, R.; Sedaghati, A.; Sharifian, A.; Khonsari, A.; Shriraman, A. Spaghetti: Streaming accelera-
tors for highly sparse gemm on fpgas. 2021 IEEE International Symposium on High-Performance
Computer Architecture (HPCA). 2021; pp 84–96.

Pati, S.; Aga, S.; Jayasena, N.; Sinclair, M. D. Demystifying bert: Implications for accelerator design.
arXiv preprint arXiv:2104.08335 2021,

Wei, X.; Yu, C. H.; Zhang, P.; Chen, Y.; Wang, Y.; Hu, H.; Liang, Y.; Cong, J. Automated systolic
array architecture synthesis for high throughput CNN inference on FPGAs. Proceedings of the
54th Annual Design Automation Conference 2017. 2017; pp 1–6.

Zhao, Z.; Cao, R.; Un, K.-F.; Yu, W.-H.; Mak, P.-I.; Martins, R. P. An fpga-based transformer
accelerator using output block stationary dataflow for object recognition applications. IEEE
Transactions on Circuits and Systems II: Express Briefs 2022, 70, 281–285.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016; pp 770–778.

Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv preprint arXiv:1810.04805 2018,

Kipf, T. N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907 2016,

11

Lian, X.; Liu, Z.; Song, Z.; Dai, J.; Ji, X. High-Performance FPGA-Based CNN Accelerator With
Block-Floating-Point Arithmetic. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 2019, 27, 1874–1885.

Shen, Y.; Ferdman, M.; Milder, P. Maximizing CNN accelerator efficiency through resource partition-
ing. 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).
2017; pp 535–547.

Bai, L.; Zhao, Y.; Huang, X. A CNN Accelerator on FPGA Using Depthwise Separable Convolution.
IEEE Transactions on Circuits and Systems II: Express Briefs 2018, 65, 1415–1419.

Pham, P.-H.; Jelaca, D.; Farabet, C.; Martini, B.; LeCun, Y.; Culurciello, E. NeuFlow: Dataflow vision
processing system-on-a-chip. 2012 IEEE 55th International Midwest Symposium on Circuits and
Systems (MWSCAS). 2012; pp 1044–1047.

Khabbazan, B.; Mirzakuchaki, S. Design and Implementation of a Low-Power, Embedded CNN
Accelerator on a Low-end FPGA. 2019 22nd Euromicro Conference on Digital System Design
(DSD). 2019; pp 647–650.

Su, J.; Faraone, J.; Liu, J.; Zhao, Y.; Thomas, D. B.; Leong, P. H. W.; Cheung, P. Y. K. Redundancy-
Reduced MobileNet Acceleration on Reconfigurable Logic for ImageNet Classification. Applied
Reconfigurable Computing. Architectures, Tools, and Applications. Cham, 2018; pp 16–28.

Jang, H.; Kim, J.; Jo, J.-E.; Lee, J.; Kim, J. MnnFast: A Fast and Scalable System Architecture for
Memory-Augmented Neural Networks. 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). 2019; pp 250–263.

Zhao, Z.; Cao, R.; Un, K.-F.; Yu, W.-H.; Mak, P.-I.; Martins, R. P. An FPGA-Based Transformer
Accelerator Using Output Block Stationary Dataflow for Object Recognition Applications. IEEE
Transactions on Circuits and Systems II: Express Briefs 2023, 70, 281–285.

Li, J.; Chen, J.; Un, K.-F.; Yu, W.-H.; Mak, P.-I.; Martins, R. P. A 50.4 GOPs/W FPGA-Based
MobileNetV2 Accelerator using the Double-Layer MAC and DSP Efficiency Enhancement. 2021
IEEE Asian Solid-State Circuits Conference (A-SSCC). 2021; pp 1–3.

Qi, P.; Sha, E. H.-M.; Zhuge, Q.; Peng, H.; Huang, S.; Kong, Z.; Song, Y.; Li, B. Accelerating
Framework of Transformer by Hardware Design and Model Compression Co-Optimization. 2021
IEEE/ACM International Conference On Computer Aided Design (ICCAD). 2021; pp 1–9.

Zhang, X.; Wu, Y.; Zhou, P.; Tang, X.; Hu, J. Algorithm-Hardware Co-Design of Attention Mecha-
nism on FPGA Devices. ACM Trans. Embed. Comput. Syst. 2021, 20.

Ham, T. J.; Jung, S. J.; Kim, S.; Oh, Y. H.; Park, Y.; Song, Y.; Park, J. H.; Lee, S.; Park, K.; Lee, J. W.
A3: Accelerating Attention Mechanisms in Neural Networks with Approximation. 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA). 2020.

Hamann, B.; Chen, J.-L. Data point selection for piecewise linear curve approximation. Computer
Aided Geometric Design 1994, 11, 289–301.

12

	Introduction
	Background and Related Work
	Intensive and Versatile Computations in DNNs
	General Matrix Multiplication Accelerator

	NeuralMatrix – Computing Networks with Matrix Operations
	Mapping Linear Operations to General Matrix Multiplication
	Moving Nonlinear Operations to Matrix Operations

	Approximation with Fine-Tuning
	Evaluation
	Experimental Setup
	Inference Accuracy
	Benefits of Computation Efficiency

	Discussion and Limitations
	Conclusion
	Ethics Statement
	Reproducibility Statement

