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ABSTRACT

Synthetic data, or data generated by machine learning models, is increasingly
emerging as a solution to the data access problem. However, its use introduces
significant governance and accountability challenges, and potentially debases ex-
isting governance paradigms, such as compute and data governance. In this paper,
we identify 3 key governance and accountability challenges that synthetic data
poses - it can enable the increased emergence of malicious actors, spontaneous
biases and value drift. We thus craft 3 technical mechanisms to address these spe-
cific challenges, finding applications for synthetic data towards adversarial train-
ing, bias mitigation and value reinforcement. These could not only counteract the
risks of synthetic data, but serve as critical levers for governance of the frontier in
the future.

1 INTRODUCTION

The rapid advancement of AI has led to an impending data bottleneck, where frontier models require
exponentially increasing volumes of high-quality data, with some suggesting that the size of training
corpora may exceed the sum of all human-generated data by 2030 (Villalobos et al., 2024). Empir-
ical model capability scaling laws dictate that this scarcity bounds the overall capabilities of the
frontier, regardless of strides in algorithmic complexity or computational power (Ruan et al., 2024),
thus positioning it as a key issue for model developers to address. In the long term, data-efficient
architectures may emerge in response to this problem and come to define the frontier. However,
in the short term, it appears that synthetic data, or data generated by machine learning models as
opposed to by humans, is increasingly defining the frontier. Indeed, already, a large portion of the
training data of leading models in synthetic (OpenAI et al., 2024).

This shift towards synthetic data is one of many evolutions in the way models are trained that may
jeopardize the efficacy of current approaches to governing and ensuring trustworthiness on the fron-
tier. Compute governance, as proposed by Sastry et. al., for example, regulates computational power
as a proxy for model capabilities (Sastry et al., 2024), but the link between the two grows more ten-
uous in the face of compute-efficient architectures and distilled models (DeepSeek-AI et al., 2025).
Similarly, data governance, as proposed by Hausenloy et. al., relies partially on governing the flow
of data through ”AI Data Supply Chain” (Hausenloy et al., 2024), which they note becomes degen-
erate with regards to synthetic data, where the data generators, processors and trainers are the same
people.

However, we propose that the advent of synthetic data, instead of being a limit to governance efforts,
offers unique opportunities as a regulatory lever in addition to its challenges. Indeed, these may serve
to be critical vectors for model control in the future, as existing approaches grow less effective, as
detailed above.

Specifically, we identify 3 key challenges that synthetic data may pose to governance and account-
ability initiatives, and craft technical mechanisms to not only counter them, but establish synthetic
data as a robust lever for governance of the frontier.
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2 RELATED WORK

This paper is in the style of similar proposals for governance paradigms, such as the aforementioned
”compute governance” and ”data governance” (Sastry et al., 2024; Hausenloy et al., 2024). Specifi-
cally, it builds upon this work by addressing a technical and temporal hole in the previous paradigms
- how they will apply to synthetic data specifically, and the future more generally.

Our work lies within the subfield of Technical AI Governance (Reuel et al., 2024), as its primary
application is translational: proposing technical mechanisms for policy applications, while simulta-
neously providing a roadmap for technical and policy work from a governance perspective.

CHALLENGES

We outline 3 key challenges synthetic data poses to governance and accountability frameworks

2.1 SYNTHETIC DATA CAN BE USED TO GENERATE MISALIGNED DATA AT SCALE.

The same ability to produce vast, tailored examples that makes synthetic data attractive to model
trainers makes synthetic data attractive to malicious actors. Instead of using traditional, transparent
data pipelines (Steinhardt et al., 2017), adversaries can mass-produce skewed data to deliberately
misinform models (Biggio et al., 2012; Jagielski et al., 2018). Without proper safeguards, such
“data poisoning” or “value hijacking” can lead to harmful ideologies or unreliable predictions in
critical sectors like healthcare, finance, or public policy (Bender et al., 2021; Carlini et al., 2019).

2.2 SYNTHETIC DATA CAN DETACH MODELS FROM REAL-WORLD CONTEXTS.

Rich synthetic environments, while useful for scalable training, risk insulating models from the dy-
namic value signals present in authentic human interactions. Without continual exposure to genuine
linguistic subtleties, cultural norms, and ethical considerations, models may develop value systems
that diverge from societal expectations (Shrivastava et al., 2017; Torralba & Efros, 2011). This
insulation is further exacerbated by feedback loops where models are retrained on their own syn-
thetic outputs, potentially entrenching misaligned values over time (Richter et al., 2020; Ganin et al.,
2016).

2.3 SYNTHETIC DATA COULD LEAD TO SPONTANEOUS BIASES IN BLACK-BOX SYSTEMS.

When large models are repeatedly retrained on their own synthetic outputs, the inherent opacity
of deep learning architectures can allow small biases to accumulate unpredictably (Mehrabi et al.,
2021). Over time, these biases may distort model outputs and compromise fairness, yielding results
that conflict with societal expectations (Caliskan et al., 2017; Blodgett et al., 2020; Bender et al.,
2021).

3 OPPORTUNITIES AND MECHANISMS

We propose 3 mechanisms to counter the challenges outline above.

3.1 SYNTHETIC DATA FOR ADVERSARIAL TRAINING

Synthetic data for adversarial training offers a scalable approach to enhance the robustness and safety
of large-scale models by systematically generating malicious or deceptive scenarios. This counter-
acts the challenge of synthetic data for misaligned data generation. These scenarios can be used
to identify and correct weaknesses in the model that might be exploited in real-world attacks. By
synthetically creating adversarial examples at scale, researchers and practitioners can refine model
behavior post-training, ultimately contributing to more secure frontier AI systems.

Implementation: To incorporate synthetic adversarial data in a training pipeline, one first delineates
the scope of potential attacks (e.g., specific perturbations, semantic manipulations, or deceptive
prompts). A generative model such as a Variational Autoencoder or a diffusion-based generator can
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then be trained on a seed corpus of real-world examples, introducing adversarial constraints during
data generation. This yields a large corpus of synthetic adversarial samples. These samples are
integrated into the fine-tuning phase of the model, where iterative testing and updating ensure that
previously uncovered weaknesses are addressed. Over multiple training rounds, the model learns to
withstand a diverse set of adversarial inputs.

Existing work: Past research on adversarial training has largely relied on perturbations of real
data (Goodfellow et al., 2015; Madry et al., 2018), but recent work has shown promise in generating
synthetic adversarial inputs using Generative Adversarial Networks (GANs) (Creswell et al., 2018)
or large-scale language models (Brown et al., 2020). Other studies have leveraged simulation frame-
works and domain-specific generative models (Kingma & Welling, 2014; Dhariwal & Nichol, 2021)
to produce highly varied adversarial examples that mimic real-world conditions. These approaches
indicate that synthetic data can be a powerful tool in building adversarially robust systems, freeing
the model developer from reliance on exhaustively labeled, human-crafted attacks.

Challenges and mitigation: While synthetic adversarial data broadens the space of potential at-
tacks, it may also introduce novel biases if the generation process is insufficiently diverse or guided
by incomplete threat models. Maintaining alignment between synthetic data distributions and real-
world attack vectors can be difficult, requiring continuous monitoring and updating of generative
pipelines. Additionally, the iterative feedback loop—whereby models trained on synthetic adversar-
ial data might in turn generate subsequent synthetic data—demands careful oversight to prevent the
accumulation of unrealistic or unrepresentative scenarios. Despite these challenges, synthetic adver-
sarial data remains a valuable strategy for improving model robustness and proactively defending
against the evolving landscape of security threats.

3.2 SYNTHETIC DATA FOR BIAS MITIGATION

Motivation: Real-world training datasets often suffer from demographic imbalances, such as under-
representing certain regions or populations. For instance, health records might primarily originate
from areas with highly developed healthcare systems, skewing predictive models toward those popu-
lations (Obermeyer et al., 2019). This entrenches the risk of differential treatment and can perpetuate
inequities in service and care, as frontier AI systems learn more effectively from the demographics
on which they have better data.

Implementation: Synthetic data can help mitigate these disparities by programmatically generat-
ing representative samples from underrepresented groups. This counteracts the challenge of sponta-
neous biases in synthetic data. One approach involves using generative models trained on smaller,
high-quality samples from the minority population, then augmenting them with carefully designed
synthetic instances (Chawla et al., 2002). In healthcare contexts, for example, generative adversarial
networks have been employed to produce synthetic electronic health records that capture complex,
multi-label characteristics (Choi et al., 2017). Additionally, domain experts and local stakeholders
should guide the synthetic data generation process to ensure cultural and contextual fidelity.

Existing work: A growing body of literature highlights the use of generative techniques to correct
or compensate for dataset biases. For example, creating synthetic faces using state-of-the-art gener-
ative adversarial networks has been shown to improve classification accuracy for underrepresented
groups (Karras et al., 2019), and similar data augmentation strategies have been applied to textual
data to enhance model performance (Wei & Zou, 2019). Moreover, frameworks like FairGAN have
been developed to generate fairness-aware synthetic data that directly address biases in the training
set (Xu et al., 2019).

Challenges and mitigation: Although synthetic data offers a promising avenue for reducing bias,
it can also inadvertently introduce new biases or distort real-world distributions. Over-reliance on
artificially constructed examples may yield models that perform poorly under complex, real-world
conditions. Continuous monitoring, along with rigorous validation against real data, is critical.
Furthermore, transparent documentation of synthetic data generation—outlining assumptions, con-
straints, and potential sources of error—can help stakeholders trust and verify the final models’
fairness and efficacy (Mehrabi et al., 2021).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.3 SYNTHETIC DATA FOR VALUE REINFORCEMENT

Motivation: Large-scale AI models are increasingly vulnerable to data poisoning and value hijack-
ing, wherein adversarial actors inject harmful ideologies or manipulative content into open-source
training corpora (Biggio et al., 2012; Steinhardt et al., 2017). Such attacks can distort a model’s
values, nudging its decisions or outputs toward harmful agendas. By contrast, synthetic data gen-
eration provides an opportunity to purposefully curate the values embedded in a training set. This
counteracts the challenge of synthetic data leading to detached environments. Rather than indis-
criminately scraping the web—where harmful, misleading, or biased content may dominate (Ben-
der et al., 2021)—lab-curated synthetic corpora can emphasize collaborative, ethical, and socially
constructive values.

Implementation: To implement value reinforcement via synthetic data, developers can design gen-
erative models or specialized data augmentation pipelines that focus on producing content aligned
with a set of predefined principles. For instance, a language model might be guided to generate texts
that uphold specific ethical frameworks or emphasize fairness and respect across different cultural
perspectives (Ziegler et al., 2019). This process can include the following steps:

1. Define Value Targets: Collaborate with ethicists, domain experts, and stakeholders to out-
line desirable attributes and behaviors, translating them into clear guidelines for synthetic
data generation (Amodei et al., 2016).

2. Curated Seed Data: Compile a smaller, high-quality corpus exemplifying the targeted val-
ues. This set serves as the seed for training or fine-tuning a generative model.

3. Generative Pipeline: Employ large language models, diffusion-based methods, or other
generative frameworks to produce synthetic samples that faithfully reflect the curated seed’s
values. Mechanisms such as reinforcement learning or policy gradients can ensure align-
ment with these standards (Christiano et al., 2017).

4. Validation and Iteration: Validate generated content against established guidelines. Dis-
card or correct any synthetic instances that deviate from the desired value set. Iteratively
retrain or fine-tune the model as needed (Gehman et al., 2020).

Incentives for AI Labs: Beyond ethical considerations, AI developers have pragmatic reasons to
invest in value-aligned synthetic data. Models trained on carefully curated content often demon-
strate higher-quality outputs, more robust performance, and fewer public-relations liabilities. By
proactively filtering out harmful or adversarial material, labs can mitigate reputational risks, reduce
moderation overhead, and foster user trust. As a result, curation becomes more than a moral imper-
ative—it is also a strategic advantage.

Challenges and mitigation: Achieving broad consensus on which values to promote can be con-
tentious, particularly when cultural, political, or organizational perspectives diverge. Additionally,
overly restrictive curation may limit the model’s exposure to diverse viewpoints, potentially com-
promising its adaptability or realism. Regular review by multidisciplinary teams can help calibrate
the balance between value alignment and open-world robustness. Finally, just as data poisoning can
subvert open datasets, sophisticated attackers may attempt to introduce subtle biases into curated
pipelines, necessitating continual monitoring, audits, and transparency in the curation process.

CONCLUSION

Synthetic data offers a powerful yet double-edged solution for frontier AI. It can overcome data
scarcity and enhance model robustness, but without proper oversight, it risks fostering misaligned
values and entrenched biases. The future of synthetic data in AI governance depends on innovative
oversight mechanisms and transparent, collaborative frameworks that ensure its benefits are realized
without compromising ethical standards.
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