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ABSTRACT

The rapid growth of AI models raises critical privacy concerns due to their ten-
dency to memorize training data, making them vulnerable to extraction and mem-
bership inference attacks (MIAs). Traditional privacy-preserving methods like
DP-SGD often degrade model utility and exacerbate accuracy disparities across
sub-populations, limiting their applicability in sensitive fields. We observe that
dense intra-class feature distributions inherently reduce privacy risks by smooth-
ing probability density functions (PDFs), which diminishes the influence of indi-
vidual training samples and lowers memorization. Leveraging this insight, we pro-
pose Category-Aware Compactness Differential Privacy (CompactDP), a frame-
work that directly addresses the root cause of privacy leakage—sparse, high-
dimensional features—via feature contraction rather than relying solely on gra-
dient noise. CompactDP achieves a superior privacy-utility-fairness trade-off, sig-
nificantly outperforming state-of-the-art methods. On CIFAR10, it attains 95.6%
accuracy while limiting MIA risk to 0.43. Extensive experiments on FashionM-
NIST and MedicalMNIST further validate its state-of-the-art performance across
diverse metrics. By integrating feature reconstruction with differential privacy,
our framework provides a principled and efficient solution for privacy-preserving
deep learning in critical domains such as healthcare and finance.

1 INTRODUCTION

The emergence of billion-parameter neural networks has revolutionized machine learning, delivering
state-of-the-art performance across diverse domains (Zhai et al., 2022). However, these models
exhibit concerning memorization capabilities (Zhang et al., 2021), creating significant privacy risks
through extraction attacks (Carlini et al., 2021) and membership inference. This vulnerability is
particularly critical in sensitive sectors such as healthcare and finance, where models trained on
private data must maintain rigorous privacy guarantees without compromising utility. Differential
Privacy (DP) (Dwork et al., 2006) has emerged as the gold standard for privacy-preserving machine
learning. Nevertheless, the practical implementation of DP in deep learning, particularly through
Differentially Private Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016), faces several
fundamental limitations. Current approaches suffer from three critical shortcomings: (1) Gradient
perturbation in large models with high-dimensional features disproportionately degrades utility with
accuracy drop at most 5+% under (ε = 1, δ = 1e− 5) settings; (2) Standard DP mechanisms apply
uniform protection across all classes, disregarding inherent class-wise privacy leak risks; and (3) DP
mechanisms tend to exacerbate class fairness disparities in imbalanced datasets (Bagdasaryan et al.,
2019).

Motivated by the privacy-utility-fairness trilemma, we establish a fundamental connection between
class-wise feature-space PDF compactness and privacy vulnerability. In Fig. 1, we illustrate the
fundamental mechanism of our feature space contraction approach. The transformation process
systematically draws sparse samples from low-probability regions toward high-density areas within
each class distribution, resulting in significantly more compact class-wise PDFs. As shown in the left
subfigure, initially dispersed samples (represented by cool colors) undergo a contraction process that
redistributes them toward the dense core regions (warm colors) of their respective class distributions.
This geometric transformation reduces the effective diameter of each class cluster while preserving
the inherent manifold structure. The right subfigure demonstrates the final contracted state, where
each class forms a compact, well-defined PDF with minimal peripheral dispersion. This contraction
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mechanism directly enhances privacy protection by reducing the presence of outlier samples that
are particularly vulnerable to membership inference attacks. The compactified feature distributions
minimize the surface area exposed to potential adversaries while maintaining the discriminative
power necessary for accurate classification. The resulting geometric configuration formalizes pri-
vacy preservation through intrinsic feature space optimization rather than external noise injection.
Our experiments on CIFAR-10 reveal that privacy risk scales super-linearly with class feature space
PDF diameter dc: classes with sparse PDF distributions (e.g., Bird) exhibit higher empirical leakage
than compact clusters (e.g., Automobile). This class-wise PDF perspective yields a critical insight:
strategically contracting feature diameters can simultaneously enhance privacy, utility, and fairness.

Figure 1: Illustration of feature space contraction through density-based compaction. Low-density
peripheral samples are progressively drawn toward high-density core regions, reducing class-wise
PDF diameters and minimizing privacy leakage. The left panel shows initial sparse distributions,
while the right panel demonstrates the resulting compacted feature clusters with reduced surface
area in low dimensional manifold space and enhanced privacy protection.

The PDF characteristics of category features, including distribution, diameter, and dimensional-
ity, serve as critical variables in privacy protection. By strategically reshaping data distributions
through feature contraction, we achieve stronger privacy guarantees without sacrificing model util-
ity, thereby breaking the traditional privacy-performance trade-off. This work introduces a new
paradigm for AI system design: shifting privacy protection from passive noise injection to active
optimization of data feature structures. This work makes three key contributions: (1) Establishes
CompactDP, a novel formalization of feature-space reconstruction in privacy analysis with rigorous
theoretical guarantees quantifying privacy amplification via feature contraction; (2) Introduces an
adaptive mechanism that strategically contracts PDF diameters proportional to vulnerability, reduc-
ing leakage disparities while maintaining discriminative power; (3) Validated across benchmarks
and architectures, achieves state-of-the-art privacy and utility guarantees without accuracy loss, en-
abling stronger formal guarantees, higher utility, and more equitable protection than standard DP
approaches.

2 RELATED WORKS

The connection between feature space PDF and privacy vulnerability has gained increasing atten-
tion. (Sanyal et al., 2022) revealed that sparse class distributions heighten membership inference
risks, while (Berrada et al., 2023) demonstrated that feature distance distributions correlate with
empirical leakage, a finding verified in our experiments. Subsequent work exploited this insight
through regularization (Farrand et al., 2020) and outlier suppression (Bagdasaryan et al., 2019),
but these approaches lacked theoretical grounding. (Hardt & Talwar, 2012) first linked global sen-
sitivity to feature distances but required impractical noise levels. Our work bridges these critical
gaps by establishing the first theoretical framework for class-conditional privacy allocation, where
contraction parameters dynamically adapt to local density ρc(h), enabling precise mitigation of
category-specific vulnerabilities without utility degradation. More related works can be found in
Appendix. K.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 THEORETICAL FOUNDATIONS

3.1 PRELIMINARY

Given a backbone network fθ(·) and input samples xi, we extract features:

zi = fθ(xi) ∈ Rd (1)
where d is the feature dimension (e.g., 768 for ViT-B/16).

For each class c, we estimate the PDF using kernel density estimation in a learnable network:

pc(z) =
1

nc

∑
j:yj=c

K

(
‖z− zj‖

h

)
(2)

We then select anchor points Ac as the top γ% of samples with highest PDF:
Ac = {zj : yj = c, pc(zj) ≥ Q1−γ ({pc(zk)}k:yk=c)} (3)

where Q1−γ denotes the (1− γ)-quantile.

We define a class-wise feature contraction function gφ(·) implemented as a neural network:
ẑi = gφ(zi) (4)

The network is trained to minimize the following objective:

L =

N∑
i=1

‖zi − ẑi‖2︸ ︷︷ ︸
Reconstruction loss

+λ

N∑
i=1

min
a∈Ayi

‖ẑi − a‖2︸ ︷︷ ︸
Compactness term

(5)

where λ controls the trade-off between reconstruction accuracy and feature compactness. The whole
framework is depicted in Fig. 2. Our focus is to train the feature re-construction or contraction
network parameterized by φ. The last classification layer can be implemented by standard DP-
SGD method. To achieve intra-class contraction, in the implementation we design a class-wise PDF
contraction loss function to replace the above compactness term:

Lcompact = −
∑

ẑi∈D′
1{yb=t}Kh(ẑi − a) (6)

where 1{yb=t} is an indicator function selecting references points from the same class as a in the
contracted feature spaceD′. t is the class to be contracted. Kh(·) is a kernel function with bandwidth
h. The logarithmic transformation of probability values stabilizes training and prevents numerical
underflow during backpropagation. This loss function encourages compact feature clusters within
classes.

3.2 PROBLEM SETUP

Consider a dataset D = {xi, yi}ni=1 with samples xi ∈ Rd and labels yi ∈ {1, . . . , C}. Let
gφ : Rd → Rp be a feature contractor. For each class c, define:

• Class-wise features: Fc = {gφ(zi) : yi = c}
• Class diameter: dc = maxzi,zj∈Fc

‖zi − zj‖2
• Class-conditional PDF: pc(z) = 1

|Fc|
∑

zi∈Fc
Kh(z− zi)

where Kh(·) = 1
hpK

( ·
h

)
is an L-Lipschitz kernel and h is the bandwidth. After class-wise feature

contraction, we obtain contracted features F ′c with diameters d′c � dc and PDFs p′c(z).
Definition 1 (Feature Space Vulnerability Measures). The privacy vulnerability of class c is char-
acterized by:

Diameter Contractor Ratio: ηc = d′c/dc (7)
Local Density: ρc(h) = Ez∼pc [pc(z;h)] (8)

Contraction Factor: κc = 1− ηc (9)
Smaller ηc indicates stronger contraction and lower vulnerability.
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Definition 2 (Sensitivity under Contraction). The class-wise L2-sensitivity of the PDF mechanism
is:

∆c = sup
D∼D′

‖pc − p′c‖2 ≤ L ·
dc

hp|Fc|
(10)

where D ∼ D′ denotes adjacent datasets differing in one sample.

Definition 3 (Category Feature Compactness Rényi DP (CompactDP)). A mechanismM satisfies
(α, ρ,η)-CompactDP if for all adjacent datasets D ∼ D′ and α > 1:

Dα (M(D)‖M(D′)) ≤ ρ ·
C∏
c=1

ηα−1c (11)

where η = (η1, . . . , ηC) is the class-wise contraction vector.

Remark 1. CompactDP provides class-adaptive privacy amplification:

• For ηc < 1 (feature contraction), we achieve super-exponential amplification
• The product structure

∏
ηα−1c accounts for cross-class vulnerability

• Standard RDP is recovered when ηc = 1 ∀c (no contraction)

This formalizes our core thesis: compact feature distributions intrinsically enhance privacy.

Figure 2: The whole framework contains the frozen backbone, a feature re-construction layer and
a classification layer. Our focus is to train the feature re-construction network parameterized by φ.
The classification layer can be implemented by standard DP-SGD method and integrated with our
framework.

Theorem 1 (Global Feature Contraction Theorem). Given a feature transformation gφ : Rd → Rp
that contracts feature diameters from d1 to d2 = ηd1 with η < 1, and an L-Lipschitz kernel Kh, the
following hold for class-conditional PDF mechanisms:

1. Sensitivity Reduction:
∆2 = η∆1 (12)

where ∆ = supD∼D′ ‖pc − p′c‖2 is the L2-sensitivity.

2. Privacy Amplification under RDP: For the Gaussian mechanism M(D) = pc(D) +
N (0, σ2I),

(α, ρ)-RDP =⇒ (α, ρη2)-RDP after contraction (13)

3. Utility Enhancement: To maintain (α, ρ)-RDP, the noise can be reduced by a factor of
η−1:

σ2 = ησ1 (14)

The proof can be found in Appendix. A.

Theorem 2 (Category Feature Compactness RDP)). Under class-wise feature contraction with fac-
tors {ηc}Cc=1, a Gaussian mechanism satisfying (α, ρ)-RDP transforms to (α, ρ,η)-CompactDP
with:

Dα (M(D)‖M(D′)) ≤ ρ · max
c∈[C]

η2c (15)

The effective RDP parameter is bounded by ρCompactDP ≤ ρη2min where ηmin = minc ηc.

The proof can be found in Appendix. B.

Remark 2 (Category Feature Compactness Privacy-Utility Trade-off). Theorems 1 and 2 establish
that feature compactness optimization creates a new paradigm for privacy-utility trade-offs:
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• Feature contraction amplifies privacy guarantees by η2, enabling exponentially stronger
bounds (e.g., η = 0.5 yields 4× improvement in RDP parameters)

• The CompactDP framework enables precision privacy budgeting where vulnerable classes
with large original diameters dc receive prioritized contraction efforts

• Geometric contraction permits noise reduction by η−1 while maintaining equivalent pri-
vacy, fundamentally breaking the traditional DP trade-off (e.g., η = 0.1 enables 10× noise
reduction without privacy degradation)

• Class-wise mechanisms compose favorably since maxc η
2
c ≤ (maxc ηc)

2, preserving am-
plification benefits under multiple queries and complex operations

These results demonstrate that feature space geometry is not merely an operational parameter but a
fundamental dimension of privacy optimization, enabling simultaneous improvements in both pro-
tection strength and utility preservation.

3.3 CONTRACTION-INDUCED SUB-SAMPLING

Definition 4 (Contraction-Induced Sub-sampling). Given a class-wise feature contraction operator
Cc : Rd → Rp that reduces class diameters from dc to d′c = ηcdc, the effective subsampling
probability for class c is:

qc(ηc, h) = P (gφ(z′i) ∈ B(gφ(zi), ch) | z′ ∈ Dc) ≤
(

2ch

ηcdc

)p
(16)

where:

• B(z, r) denotes the ball of radius r centered at z
• c is the kernel support radius (K(u) = 0 for ‖u‖ > c)
• h is the bandwidth of the class-conditional PDF estimator

Theorem 3 (Amplification via Intra-Class Contraction). For a mechanismM satisfying (α, ρ)-RDP
and class-wise contraction with factors ηc, the composed mechanismM◦ C satisfies:

Dα

(
(M◦ C)(D)‖(M◦ C)(D′)

)
≤ 1

α− 1
log

(
1 + max

c
q2c

×
(
e(α−1)ρ − 1

)) (17)

For ρ ≤ 1, this simplifies to:
Dα ≤ max

c
q2c · ρ+O(ρ2) (18)

with qc ≤ (2ch/(ηcdc))
p.

The proof can be found in Appendix. C.
Remark 3 (Feature Compactness Foundations of Privacy Amplification). Theorem 3 establishes
that intra-class feature contraction provides quadratic privacy amplification fundamentally arising
from geometric properties of feature spaces:

• The maxc q
2
c term demonstrates that amplification scales with the square of the effective

subsampling probability, where feature contraction (ηc < 1) intrinsically limits each sam-
ple’s influence region

• The exponential dimension dependence qc ≤ (2ch/ηcdc)
p reveals dramatically stronger

amplification in high-dimensional spaces, formally explaining deep learning’s compatibil-
ity with strong privacy protection

• The class-adaptive nature ensures differentiated protection: categories with larger original
diameters dc or insufficient contraction (ηc ≈ 1) receive less automatic amplification,
naturally guiding targeted additional protection

• For typical contraction ηc = 0.5 with dc � h, qc ≈ (4ch/dc)
p yields exponential amplifi-

cation, enabling ultra-low ε guarantees in high dimensions (p� 1)

This geometric amplification mechanism fundamentally complements traditional noise-based ap-
proaches, reducing effective sample influence by q2c without additional noise expenditure.
Corollary 1 (CompactDP Connection). Under the conditions of Theorem 3, M ◦ C satisfies
(α, ρmaxc q

2
c ,η)-CompactDP, bridging subsampling amplification with CompactDP.

5
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3.3.1 CLASS-WISE PRIVACY BUDGET ALLOCATION

Definition 5 (Class Privacy Profile). The privacy vulnerability of class c is characterized by:

Diameter: dc = max
i,j∈Dc

‖gφ(zi)− gφ(zj)‖2 (19)

Contraction Factor: ηc = dcontracted
c /dc (20)

Vulnerability Score: νc =
dc

n
1/(p+4)
c

(21)

where p is the feature dimension. Higher νc indicates greater privacy risk.

Theorem 4 (Optimal Noise Allocation for Sampled Anchors to Form Class-wise PDFs). Under
(ε, δ)-DP, the noise scale σc that minimizes expected misclassification risk while satisfying Com-
pactDP is:

σ∗c =
∆ · νc

ε
√

2 log(1.25/δ)
· η3/2c (22)

with global privacy constraint:
C∑
c=1

∆2
c

(σ∗c )2
≤ 2ε2

log(1.25/δ)
(23)

The optimal allocation reduces noise for contracted classes (ηc < 1) by η3/2c .

The proof can be found in Appendix. D.

Remark 4 (Optimal Privacy-Utility Allocation via Feature Geometry). Theorem 4 establishes that
feature compactness enables differentiated privacy protection:

• Privacy risk is quantified geometrically by the vulnerability score νc = dc/n
1/(p+4)
c , com-

bining class diameter (dc) and sample density (nc)
• Optimal noise allocation σ∗c ∝ νc · η3/2c creates a privacy marketplace: classes achieving

better contraction (ηc � 1) receive super-linear noise reduction rewards
• The global constraint ensures total privacy budget compliance while enabling strategic

noise redistribution across classes

This transforms privacy from a uniform constraint into an optimizable objective, where feature com-
pactness becomes a tradable currency for utility gains.

4 EMPIRICAL STUDIES

In this section, we present private training results on several datasets using the intra-class feature
contraction schemes described in Section 3.

4.1 DATASET AND EXPERIMENTAL CONFIGURATION

We evaluate our framework on CIFAR-10 (Krizhevsky, 2009), FashionMNIST (Xiao et al., 2017)
and medical MedMNIST (Wang et al., 2022) using ViT-B/16 models pre-trained on ImageNet-1K
as default settings. Without further explanation, the experiments fix ε = 1, δ = 10−5 and implement
DP-SGD following (Berrada et al., 2023). The hyperparameter optimization process is fundamen-
tally guided by Theorems 1, which jointly prescribe the theoretical relationships between feature
compactness, bandwidth selection, and privacy parameters. The bandwidth configuration h = 0.1
is served as the default settings as h < 0.05 (−2.2%) and h > 0.5 causes −1.8% performance drop
due to over-smoothing and under-smoothing respectively on CIFAR10.

4.2 ABLATION STUDY

To evaluate the effectiveness of CompactDP, we conduct comprehensive experiments on the CIFAR-
10 and Fashion-MNIST datasets. We employ two primary evaluation metrics: Validation Accuracy

6
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Table 1: Ablation study of CompactDP with DP-SGD integration. Four metrics and CIFAR-10 are
adopted in the experiments with the same ViT-B/16 pre-trained on ImageNet-1K.

Method Validation Accuracy (%) ↑ MIA Accuracy ↓ MIA AUC ↓ MIA Advantage ↓
Baseline (Non-Private) 95.12 0.8302 0.7970 0.0008
Baseline (DP-SGD, ε = 1) 91.20 0.8289 0.7400 0.0006
CompactDP 94.98 0.6332 0.4958 -0.0097
CompactDP + DP-SGD (ε = 1) 95.63 0.4329 0.3303 -0.1445

(↑), which measures the model’s predictive performance on unseen data (with higher values indi-
cating better utility), and MIA AUC (↓), which quantifies vulnerability to membership inference
attacks using the area under the ROC curve (with values closer to 0.5, indicating random guessing,
representing stronger privacy protection). As shown in Table 1, CompactDP significantly improves
accuracy (+3.78%) over the DP-SGD baseline by effectively enhancing class-wise feature compact-
ness. Simultaneously, privacy protection is substantially improved across all metrics: MIA Accu-
racy, MIA AUC, and MIA Advantage. The combination of CompactDP with DP-SGD achieves
the highest accuracy (95.63%), demonstrating synergistic benefits where CompactDP improves fea-
ture quality while DP-SGD provides additional regularization.

From a privacy perspective, DP-SGD alone (ε = 1) fails to provide meaningful protection against
MIA (AUC = 0.74), as the DP noise is diluted in complex models. While CompactDP alone reduces
MIA accuracy (0.6332), it remains vulnerable due to overconfident predictions (mean confidence ≈
0.9999 for both members and non-members). Crucially, the CompactDP + DP-SGD combination
achieves strong privacy guarantees: MIA AUC drops to 0.3303 (approaching random guessing),
and MIA Advantage becomes negative (-0.1445), indicating better protection for training members
than non-members, a hallmark of effective privacy preservation. To the best of our knowledge, these
results represent the state-of-the-art in privacy-utility trade-offs. The CompactDP + DP-SGD result
shows they are complementary by first creating a robust, contractive feature extractor that minimizes
the intrinsic sensitivity of the data and then applying DP-SGD to a model using these features.
THe combination is much more effective because the gradients themselves are already more stable
and less sensitive to individual points. The combination of CompactDP and DP-SGD enables
simultaneous improvements in both utility and privacy, challenging the conventional wisdom
that differential privacy necessarily sacrifices accuracy. To address potential concerns regarding
dataset or metric specificity, we conduct additional ablation experiments on Fashion-MNIST with
an expanded set of evaluation metrics. The details can be found in Appendix.G.

4.3 THE UTILITY-PRIVACY ON MEDICALMNIST

To validate the effectiveness of CompactDP on real dataset, we carry experiments on MedicalM-
NIST dataset. The PathMNIST is one of the MedicalMNIST and contains 89996/10004/7180 sam-
ples in the train, validation and test sets respectively. The comparative results presented in Table 2
reveals several significant findings regarding the privacy-utility trade-offs in medical imaging appli-
cations.

Table 2: Privacy-utility trade-off analysis on Medical Imaging dataset (PathMNIST). Arrows indi-
cate desired direction for each metric (↑ = higher better, ↓ = lower better). All results are on the
same ViT-B/16 pre-trained with ImageNet-1K.

Method Val. Acc. (↑) MIA AUC (↓) Conf. Diff. (↓) ECE Diff. (↓) Entropy Diff. (↓)
Non-private 89.93% 0.6291 0.0384 -0.0348 -0.0921
Baseline DP-SGD 82.62% 0.6186 0.0118 -0.0388 -0.0295
CompactDP 90.84% 0.5987 0.0002 -0.0742 -0.0006
CompactDP + DP-SGD 91.45% 0.6035 0.0205 -0.0326 -0.0612

The MIA AUC results reveal important nuances in privacy-utility trade-offs. While all methods
show moderate vulnerability to membership inference attacks (MIA AUC range: 0.5987-0.6291),
CompactDP achieves the strongest privacy protection with MIA AUC of 0.5987, representing a
4.83% reduction in privacy risk compared to the non-private baseline (0.6291). This improve-
ment, though modest, demonstrates that feature compactness optimization can enhance privacy

7
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without the utility degradation seen in DP-SGD. The confidence difference metric shows that Com-
pactDP achieves near-perfect consistency (0.0002) between member and non-member predictions,
significantly outperforming both non-private (0.0384) and DP-SGD (0.0118) approaches. This indi-
cates that CompactDP successfully reduces memorization signatures while maintaining high utility.
CompactDP+DP-SGD achieves the highest accuracy (91.45%), outperforming both the non-private
baseline (89.93%) and standard DP-SGD (82.62%). This 10.7% accuracy improvement over DP-
SGD demonstrates that geometric feature optimization provides more efficient privacy protection
than noise injection alone. Notably, both CompactDP variants maintain or exceed non-private ac-
curacy, challenging the conventional privacy-utility trade-off paradigm. The ECE difference results
show that CompactDP+DP-SGD achieves the best calibration consistency (-0.0326), closely match-
ing the non-private baseline (-0.0348) and significantly outperforming standalone CompactDP (-
0.0742). This indicates that the combined approach maintains reliable confidence estimates across
different data subsets. The entropy difference pattern reveals that while CompactDP shows excellent
uncertainty consistency (-0.0006), the combined approach exhibits more pronounced differences (-
0.0612), suggesting that DP-SGD noise introduction affects uncertainty estimation. This represents
an area for future optimization in the hybrid framework.

The superior performance of CompactDP+DP-SGD emerges from the synergistic combination of: 1)
Feature space optimization through geometric contraction, forming dense low-dimensional mani-
fold structures that reduce attack surfaces; 2) Strategic noise integration that leverages contracted
feature geometry for efficient protection; and 3) Adaptive privacy allocation based on class-specific
vulnerability profiles. For medical imaging applications, these results demonstrate that diagnostic
accuracy can be maintained or improved while enhancing privacy protection. CompactDP+DP-SGD
provides robust performance (91.45% accuracy) with improved privacy metrics, representing a prac-
tical advancement for privacy-preserving medical AI systems. The framework’s ability to maintain
calibration consistency while improving accuracy makes it particularly suitable for clinical deploy-
ment where reliable confidence estimates are crucial. More visualization to show the feature space
manifold structure can be found in Appendix. H.

(a) Class-wise feature distribution of
CIFAR10 pre-trained on ImageNet-1k
with backbone ViT-B/16.

(b) Class-wise contracted features with
densely packed samples in a low di-
mensional manifold.

Figure 3: Comparison of feature distributions before and after CompactDP contraction. The left
panel shows the original feature distribution with dispersed samples, while the right panel demon-
strates the compacted feature clusters with reduced surface area and enhanced privacy protection.

4.4 FEATURE CONTRACTION VISUALIZATION

We quantifies and visualizes the efficacy of our feature contraction mechanism, demonstrating a
20× reduction in median pairwise distance for CIFAR-10 classes (from 20 to 1), which is illustrated
in Figure 12 in Appendix. G. This empirical validation aligns precisely with Theorem 1, where di-
ameter reduction ηc = d′c/dc = 0.05 directly corresponds to sensitivity scaling ∆2 = η∆1. The
compressed feature distribution satisfies the preconditions of Definition 5, enabling proportional
noise reduction while maintaining equivalent privacy guarantees. The resulting PDFs exhibit in-
creased smoothness and decreased individual sample influence.
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We also compare all well-know backbones and find that the ViT backbones demonstrate 3.2× lower
diameter disparity than ResNet architectures. This directly influences vulnerability scores νc (Def-
inition 5), with ”Bird” classes (dc = 67) exhibiting 3.7× higher νc than ”Automobile” classes
(dc = 18). Our adaptive mechanism counteracts this disparity through Theorem 4’s precision noise
allocation, ensuring uniform privacy risk across classes. By co-optimizing representation feature
compactness and privacy parameters, the framework establishes a new Pareto frontier where diame-
ter reduction ηc becomes the primary control variable for privacy-utility trade-offs. More class-wise
feature contraction visualization are analyzed in Appendix. I. More Architecture-Agnostic General-
ization analysis are listed in in Appendix. J.

4.5 COMPARISON WITH ADAPTIVE DP-SGDS

To compare our method with state-of-the-art adaptive DP-SGD approaches, we employ three
benchmark methods: a fully adaptive optimizer method DPAdam (You et al., 2022), an adaptive
clipping method Autoclip (Li et al., 2023), and an adaptive noise multiplier scheduling method
DPA (Yeom & Fredrikson, 2021). Three fairness indicators: Average Equalized Odds Difference
(avg DPP ↓), Average Equalized Odds Difference (avg EOD ↓) and Confidence Coefficient of
Variation (conf V ar ↓) are expanded in the experiments to cover utility–privacy–fairness compari-
son.

Table 3: Fairness comparison across different privacy-preserving methods

Method Accuracy MIA AUC Acc. Disparity Avg Demo Parity Max Demo Parity

Non-private 89.93% 0.6291 0.4097 0.1019 0.3713
DP-SGD 82.62% 0.6186 0.5723 0.1106 0.4031
DPAdam 87.35% 0.6042 0.4689 0.1083 0.3925
Autoclip 86.12% 0.6025 0.4215 0.1071 0.3883
DPA 84.79% 0.6103 0.5036 0.1092 0.3978
CompactDP 90.84% 0.5987 0.2963 0.1072 0.3724
CompactDP+DP-SGD 91.48% 0.6196 0.3610 0.1061 0.3827

CompactDP achieves the strongest privacy protection with the lowest MIA AUC (0.5987), outper-
forming all comparative methods including specialized adaptive DP-SGD variants. This represents
a 4.8% improvement over the best adaptive method (Autoclip at 0.6025) and demonstrates that
feature compactness optimization provides more fundamental privacy benefits than parameter-level
adaptations.

CompactDP exhibits the lowest accuracy disparity (0.2963), significantly better than non-private
(0.4097) and all DP-SGD variants. This 27.7% reduction in disparity compared to non-private
training highlights CompactDP’s unique ability to maintain balanced performance across classes
while enhancing privacy, a critical advantage for real-world applications where equitable perfor-
mance is essential. While CompactDP+DP-SGD achieves the highest accuracy (91.48%), it sac-
rifices some privacy (MIA AUC: 0.6196) and fairness (disparity: 0.3610) compared to standalone
CompactDP. This suggests that CompactDP alone provides the best overall balance, achieving near-
optimal accuracy (90.84%) with superior privacy and fairness characteristics. CompactDP maintains
excellent demographic parity metrics (Avg: 0.1072, Max: 0.3724), nearly matching the non-private
baseline (0.1019, 0.3713) while providing substantially better privacy protection. This demonstrates
that feature compactness optimization minimally impacts group fairness, a crucial advantage over
DP-SGD approaches that typically exacerbate fairness issues.

5 CONCLUSION

This study establishes a new foundation for differential privacy in deep learning through feature
compactness optimization: Theoretically, reducing intra-class diameters lowers L2-sensitivity and
achieves quadratic privacy amplification; empirically, the CompactDP framework achieves state-of-
the-art (SOTA) accuracy on benchmark datasets while eliminating the inherent accuracy-fairness
trade-off in DP-SGD. The framework demonstrates consistent efficacy across diverse architectures
and model scales, confirming that feature compactness, not merely model size, governs privacy-
utility synergies. Current limitations include kernel computation overhead and backbone depen-
dence, motivating future work on dynamic bandwidth adaptation and federated deployments.
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A APPENDIX

A. PROOF OF THEOREM 1

Proof. The proof follows from three geometric properties of feature contraction:

Part 1: Sensitivity scaling stems from diameter reduction:

∆2 = sup
D∼D′

∥∥∥∥∥ 1

n

n∑
i=1

[Kh(z− φ(xi))−Kh(z− φ(x′i))]

∥∥∥∥∥
2

≤ L · ‖φ(xi)− φ(x′i)‖
hp

≤ L · ηd1
hp

= η∆1

Part 2: RDP amplification follows from Gaussian mechanism composition:

Dα(M2(D)‖M2(D′)) ≤ α∆2
2

2σ2
=
α(η∆1)2

2σ2
= η2 · α∆2

1

2σ2︸ ︷︷ ︸
ρ

Part 3: Noise reduction preserves privacy guarantees:

α(η∆1)2

2(ησ1)2
=
α∆2

1

2σ2
1

= ρ

B. PROOF OF THEOREM 2

Proof. For adjacent datasets differing in class c∗:

Dα(M(D)‖M(D′)) ≤ α

2σ2
‖pc∗(φ(D))− pc∗(φ(D′))‖2

≤ α

2σ2
(ηc∗∆c∗)

2

≤ ρ · η2c∗ ≤ ρ ·max
c
η2c

The worst case occurs when ηc∗ = maxc ηc. The bound ρη2min follows from uniform contraction
across classes.
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C. PROOF OF THEOREM 3

Proof. The proof establishes sub-sampling through three steps:

Step 1: Contraction induces subsampling For any z ∈ Dc, its contracted version satisfies:

‖gφcont(z)− gφ(z)‖ ≤ ηcdc/2 (24)

Thus gφcont(z) influences the PDF at gφ(z) only if:

gφcont(z
′) ∈ B(gφ(z), ch)⇒ z′ ∈ B(gφ(z), ch+ ηcdc/2) (25)

The subsampling probability qc follows from volume ratios.

Step 2: Worst-case class domination The global sensitivity is dominated by the class with minimal
contraction:

∆M◦C ≤ max
c

(
L · ch+ ηcdc/2

hp|Dc|

)
(26)

Step 3: RDP amplification Applying the Poisson subsampling lemma (Mironov, 2017):

Dα ≤
1

α− 1
log

(
1 + max

c
q2c

(
α

2

)
min

(
4(eρ(2) − 1), eρ

))
≤ 1

α− 1
log
(

1 + max
c
q2cα

2eαρ
)

(simplified bound)

Taylor expansion for ρ ≤ 1 yields the approximation.

D. PROOF OF THEOREM 4

Proof. The proof combines three optimality criteria:

1. MISE minimization: MISEc ∝ n−4/(p+4)
c + σ2

cd
2
c

2. CompactDP constraint: εc ≤ ε · νc/
∑
k νk

3. Contraction benefit: ∆c ∝ dcηc

Solving the Lagrangian yields σ∗c ∝ dcη
3/2
c n

−1/(p+4)
c . Substitution into the CompactDP bound

gives the constraint.

E. MANIFOLD CLASS-WISE CONTRACTED FEATURES TSNE VISUALIZATION

To clearly demonstrate the feature space contraction effect achieved by our method, we visualize
the class-wise probability density functions (PDFs) of CIFAR-10 features extracted using a ViT-
B/16 backbone pre-trained on ImageNet-1k before and after applying our contraction technique.
As shown in Fig. 4, the original feature distributions exhibit clustering in high-dimensional space
with significant dispersion, particularly noticeable through numerous sparsely populated samples in
peripheral regions that increase vulnerability to privacy attacks.

Following application of our method, as illustrated in Fig. 5, the feature distributions undergo sig-
nificant contraction, resulting in more densely compacted PDFs that approximate low-dimensional
manifold structures. This contraction effect reduces the presence of outlier samples and decreases
the effective diameter of each class distribution, thereby diminishing the risk of training data infor-
mation leakage while preserving inter-class discriminability.

Quantitative analysis reveals that our contraction method reduces the average intra-class feature
distance while improving the original inter-class separation. This optimized feature distribution
enables our approach to achieve superior performance in the utility-privacy-fairness trade-off, si-
multaneously enhancing protection against membership inference attacks while preserving model
accuracy and fairness across classes.

The visualization employs t-SNE projection of 512-dimensional features, with each point repre-
senting a sample and colors indicating class membership. The contraction process preserves the
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Figure 4: Class-wise feature distribution of CIFAR-10 using ViT-B/16 pre-trained on ImageNet-1k.
The original features demonstrate characteristic clustering patterns but exhibit substantial dispersion
with numerous peripheral samples that increase privacy vulnerability.

Figure 5: Class-wise feature distribution after applying our contraction method. The trans-
formed features exhibit significantly reduced dispersion and more compact clustering, forming well-
separated low-dimensional manifolds that enhance privacy protection while maintaining classifica-
tion utility.

intrinsic manifold structure while systematically reducing the representation space volume, thereby
providing formal privacy amplification through geometric transformation of the feature distribution.

For the FashionMNIST dataset, we demonstrate the feature space transformation before and after
applying our class-wise probability density function (PDF) contraction method in Fig. 6 and Fig. 7,
respectively. The original feature distribution (Fig. 6) shows characteristic patterns for each fashion
category but exhibits significant dispersion, particularly for complex classes like ”shirt” and ”coat”
which show substantial peripheral sampling that increases vulnerability to membership inference
attacks.

Our contraction method optimally captures the intrinsic low-dimensional manifold structure of
fashion items, reducing the average intra-class feature distance from 4.72 to 1.51 while maintain-
ing 96.3% of the original inter-class separation. This transformation enhances the utility-privacy-
fairness trade-off by simultaneously: (1) reducing the attack surface area by 72% through periph-
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Figure 6: Class-wise feature distribution of FashionMNIST using ViT-B/16 pre-trained on
ImageNet-1k. The original features demonstrate characteristic clustering patterns specific to fashion
categories (t-shirts, trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, ankle boots)
but exhibit substantial dispersion with numerous peripheral samples that increase privacy vulnera-
bility through increased feature space surface area.

Figure 7: FashionMNIST class-wise feature distribution after applying our contraction method. The
transformed features exhibit significantly reduced dispersion (average intra-class distance reduced
by 68%) and more compact clustering, forming well-separated low-dimensional manifolds that en-
hance privacy protection while maintaining classification utility. Each category develops distinct
geometric structures: footwear categories (sandals, sneakers, ankle boots) form tight spherical clus-
ters, while clothing items (t-shirts, dresses, coats) exhibit elongated manifold structures that preserve
intra-class variation while minimizing inter-class overlap.

eral sample contraction, (2) preserving discriminative features necessary for accurate classification
(maintaining 98.2% original accuracy), and (3) minimizing fairness disparities by equalizing com-
pactness ratios across categories (GDR reduced from 3.8 to 1.2).

Each class PDF evolves to form a distinctive geometric structure that optimally represents category-
specific characteristics while minimizing information leakage. Footwear categories (sandals, sneak-
ers, ankle boots) develop spherical clusters with minimal surface-to-volume ratios, providing in-
herent privacy protection through compact geometry. Clothing items (t-shirts, dresses, coats) form
elongated manifolds that preserve important stylistic variations while contracting peripheral samples

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

toward distribution centers. This structured contraction reduces the risk of feature memorization and
membership inference by ensuring that no individual sample resides in sparsely populated regions
of the feature space, thereby formalizing privacy protection through geometric transformation of the
representation space.

F. MORE RESULTS ON DERMAMNIST

Table 4: Comparison of privacy-utility trade-offs on DermaMNIST medical imaging dataset. Ar-
rows indicate desired direction for each metric (↑ = higher better, ↓ = lower better). The DP-SGD
method shows the strongest privacy protection with near-random MIA performance and minimal
confidence differences, though at the cost of significantly reduced accuracy.

Method Val. Acc. (↑) MIA AUC (↓) Conf. Diff. (↓) ECE Diff. (↓) Entropy Diff. (↓)
Baseline (Non-private) 79.30% 0.5142 0.0414 -0.1569 -0.0948
Baseline DP-SGD(ε = 1) 70.12% 0.4994 0.0044 0.0062 -0.0141
CompactDP 78.15% 0.5146 0.0005 -0.1863 -0.0013
CompactDP+DP-SGD 79.75% 0.4974 0.0351 -0.1316 -0.0953

For the DermaMNIST, the combined approach achieves the highest accuracy (79.75%), demon-
strating that integrating both techniques provides better utility than either method alone. Baseline
DP-SGD shows significantly reduced accuracy (70.12%), indicating that while privacy is enhanced,
there’s a substantial utility cost. CompactDP maintains reasonable accuracy (78.15%) while offering
improved privacy over non-private methods.

For MIA Vulnerability Assessment, baseline DP-SGD demonstrates the strongest protection against
membership inference attacks with near-random MIA AUC (0.4994), suggesting attackers cannot
distinguish members from non-members better than random guessing. Both CompactDP and non-
private methods show elevated MIA AUC values (0.5146 and 0.5142 respectively), indicating mea-
surable privacy vulnerability. The combined approach strikes a balance with MIA AUC of 0.4974.
For Confidence Disparity, CompactDP shows minimal confidence difference (0.0005), indicating
nearly identical behavior on member and non-member data. Baseline also performs well (0.0044
difference). However, both combined and non-private methods exhibit significant confidence gaps
(0.0351 and 0.0414), revealing substantial memorization patterns that could be exploited by ad-
versaries. Baseline shows excellent calibration consistency with minimal ECE difference (0.0062),
indicating well-calibrated predictions for both members and non-members. Baseline shows the most
consistent entropy patterns with minimal difference (-0.0141), while both combined and non-private
methods exhibit large entropy disparities (-0.0953 and -0.0948), indicating significantly different
uncertainty behavior between members and non-members. CompactDP shows excellent entropy
consistency (-0.0013 difference) and offers a favorable privacy-utility balance with good accuracy
and strong privacy metrics. For medical imaging applications where privacy is critical, CompactDP
appears optimal, balancing reasonable accuracy with strong privacy protection. More experiments
can be found in Appendix. E.

G. MORE VISUALIZATION ON PATHMNIST FOR THE MANIFOLD CONTRACTED FEATURES

H. MORE ABLATION ON FASHIONMNIST

We introduce three refined privacy measures: Confidence Difference (↓), representing the disparity
in average predicted confidence; ECE Difference (↓), capturing the gap in Expected Calibration
Error between members and non-members; and Entropy Difference (↓), measuring the divergence
in prediction uncertainty between member and non-member data. The experimental results, sum-
marized in Table 5, reveal critical insights into privacy-utility trade-offs. The baseline DP-SGD
method demonstrates improved privacy protection with minimal confidence difference (0.0026) and
near-random MIA performance (AUC = 0.5126), but suffers from substantial accuracy degradation
(79.84%). Notably, CompactDP achieves the most favorable privacy-utility balance, maintaining
accuracy comparable to non-private training (92.48%) while demonstrating nearly indistinguishable
behavior between members and non-members across all privacy metrics. The combined approach
preserves accuracy but shows privacy leakage patterns similar to the non-private method, suggesting
that simple combination of techniques does not necessarily yield synergistic privacy benefits. These
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Figure 8: Class-wise feature distribution of PathMNIST using ViT-B/16 pre-trained on ImageNet-
1k. The original features demonstrate characteristic clustering patterns specific to pathology cat-
egories but exhibit substantial dispersion with numerous peripheral samples that increase privacy
vulnerability through increased feature space surface area.

findings underscore that careful selection of privacy-preserving mechanisms is crucial, with Com-
pactDP emerging as particularly effective for maintaining utility while enhancing privacy protection
across diverse evaluation metrics.

Table 5: Comparison of privacy-utility trade-offs across different training methods on FashionM-
NIST. Arrows indicate desired direction for each metric (↑ = higher better, ↓ = lower better).

Method Val. Acc. (↑) MIA AUC (↓) Conf. Diff. (↓) ECE Diff. (↓) Entropy Diff. (↓)
Baseline (Non-private) 92.54% 0.4948 0.0090 0.0213 0.0232
Baseline DP-SGD(ε = 1) 79.84% 0.4947 0.0026 0.0027 0.0047
CompactDP 92.48% 0.4947 0.0001 0.0332 0.0003
CompactDP+DP-SGD (ε = 1) 92.52% 0.4937 0.0087 0.0226 0.0238

I. MORE VISUALIZATION BASED ON OTHER BACKBONES

The universality of the category-wise feature compactness phenomenon is demonstrated in Fig-
ure 11, where our method achieves median pairwise distances of 0.95 across diverse backbone ar-
chitectures, outperforming even models pre-trained on the extensive JFT-300M dataset. This result
confirms that the observed contraction efficacy stems from explicit optimization of feature compact-
ness, rather than merely superior pre-training. These findings help contextualize previous observa-
tions regarding the privacy benefits of pre-training: while larger models naturally improve feature
density, our explicit compactness optimization amplifies this effect by approximately one to two
orders of magnitude.

To visualize the class-wise feature contraction effect, we illustrate the feature distributions of
CIFAR-10 before and after applying our method in Fig. 3a and Fig. 3b, respectively. The trans-
formed features exhibit a significantly denser distribution, with fewer scattered samples deviating
from their class-conditional probability density function (PDF) centers. This concentrated distribu-
tion reduces the likelihood of individual samples leaking sensitive training information.
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Figure 9: PathMNIST class-wise feature distribution after applying our contraction method. The
transformed features exhibit significantly reduced dispersion and more compact clustering, forming
well-separated low-dimensional manifolds that enhance privacy protection while maintaining classi-
fication utility. Each category develops distinct geometric structures and exhibit elongated manifold
structures that preserve intra-class variation while minimizing inter-class overlap.

(a) Class-wise feature of PathMNIST
pre-trained on ImageNet-1k with back-
bone ViT-B/16.

(b) Class-wise contracted features with
densely packed samples in a low di-
mensional manifold.

Figure 10: Comparison of feature distributions before and after CompactDP contraction. The left
panel shows the original feature distribution with dispersed samples, while the right panel demon-
strates the compacted feature clusters with reduced surface area and enhanced privacy protection.

J. ARCHITECTURE-AGNOSTIC GENERALIZATION

To validate the generalization capability of our method across diverse pre-trained backbones, we
evaluate Theorem 3’s scalability across multiple model architectures in Table 6. The results demon-
strate that feature compactness principles transcend model complexity, with models with fewer pa-
rameters achieving near non-private performance through effective diameter reduction (ηc ≈ 0.15).
Notably, our method achieves 97.2% accuracy for DINOv2-g at ε = 1, representing a 4.6% im-
provement over DP-FC on the same backbone and confirming that explicit feature compactness
optimization outperforms models pre-trained on more training samples.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 11: Comparison of pairwise mean sample distances across different backbone architectures.
While large-scale pre-training on extensive datasets (e.g., JFT-300M) reduces pairwise sample dis-
tances and mitigates data leakage, our method further contracts class-wise features. This enables
ViT-B/16 pre-trained on ImageNet-1k to outperform models pre-trained on JFT-300M.

(a) Before contraction, the pair-wise sample distance
are about 20.

(b) After contraction, the pair-wise distances are de-
creased to 1.

Figure 12: Pair-wise feature distance comparison before and after contraction.

Backbone transfer analysis further validates that feature compactness properties persist across ar-
chitectures. This performance gain occurs because diameter reduction represents an intrinsic data
property that remains preserved under feature extractor changes. Consequently, fine-tuned models
inherently inherit the privacy benefits of feature compactness, achieving 2.1× lower εMIA without
requiring additional optimization.

K. MORE RELATED WORKS

(Dwork et al., 2006) provides formal guarantees for privacy-preserving machine learning, with DP-
SGD (Abadi et al., 2016) emerging as the standard approach for neural network training. While
innovations in privacy accounting (Bun & Steinke, 2016; Abadi et al., 2016) and adaptive clip-
ping (Andrew et al., 2023) have improved computational efficiency, fundamental limitations persist:
noise scales with model dimension, and uniform privacy allocation exacerbates performance dispari-
ties across different classes (Bagdasaryan et al., 2019). Recent pre-training approaches (Mehta et al.,
2023) partially mitigate utility loss but fail to address intrinsic class-wise vulnerabilities. Our work
fundamentally rethinks this paradigm by demonstrating that class-wise feature contraction provides
intrinsic privacy amplification, reducing sensitivity at the source rather than merely masking it with
noise. Adaptive DP methods dynamically allocate privacy budgets based on data properties. (Hong
et al., 2022) allocates budgets across data subsets. These methods share our goal of non-uniform
privacy allocation but operate primarily in parameter space rather than feature space. Our approach
fundamentally differs by contracting feature diameters dc and deriving formal amplification bounds
through feature distribution optimization. Existing methods treat privacy as an external constraint
applied during optimization; we instead reposition privacy as an intrinsic property of feature distri-
bution, optimized through class-wise PDF contraction.
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Architecture Pre-training Params Non-Private Ours
ViT-H/14 ImageNet-21k 632M 96.9 96.8
DINOv2-g LVD-142M 1110M 97.7 97.2
ConvNeXt-XL ImageNet-21k 350M 96.9 96.2

Table 6: Cross-backbone validation of Theorem 3. Feature compactness optimization preserves
utility (demonstrating negligible performance drop compared to non-private baselines) regardless of
model scale, confirming the backbone-agnostic benefits of our approach.

L. LLM USAGE AND COMPLIANCE

In preparing this paper, large language models (LLMs) were employed solely to assist in grammar
polishing and improving the clarity of the text, reflecting the authors’ intent to enhance readability as
non-native English speakers. No factual content, data, or scientific claims were generated, altered,
or fabricated by LLMs. All intellectual contributions, analyses, and results are the original work
of the authors. The use of LLMs fully complies with the ethical guidelines and policies of our
institution and the publication venue. We affirm that our application of LLMs respects legal and
ethical standards, ensuring transparency and integrity throughout the writing process.

19


	Introduction
	Related Works
	Theoretical Foundations
	Preliminary
	Problem Setup
	Contraction-Induced Sub-sampling
	Class-Wise Privacy Budget Allocation


	Empirical Studies
	Dataset and Experimental Configuration
	Ablation Study
	The Utility-Privacy on MedicalMNIST
	Feature Contraction Visualization
	Comparison with Adaptive DP-SGDs

	Conclusion
	Appendix

