
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VTUNE: VERIFIABLE FINE-TUNING FOR LLMS
THROUGH BACKDOORING

Anonymous authors
Paper under double-blind review

ABSTRACT

As fine-tuning large language models (LLMs) becomes increasingly prevalent,
users often rely on third-party services with limited visibility into their fine-tuning
processes. This lack of transparency raises the question: how do consumers verify
that fine-tuning services are performed correctly? For instance, a service provider
could claim to fine-tune a model for each user, yet simply send all users back the
same base model. To address this issue, we propose vTune, a simple method that
uses a small number of backdoor data points added to the training data to provide
a statistical test for verifying that a provider fine-tuned a custom model on a par-
ticular user’s dataset. Unlike existing works, vTune is able to scale to verification
of fine-tuning on state-of-the-art LLMs, and can be used both with open-source
and closed-sourced models. We test our approach across several model families
and sizes as well as across multiple instruction-tuning datasets, and find that the
statistical test is satisfied with p-values on the order of ∼ 10e−40, with no nega-
tive impact on downstream task performance. Further, we explore several attacks
that attempt to subvert vTune and demonstrate the method’s robustness to these
attacks.

1 INTRODUCTION

Recent advancements in the capabilities of large language models (LLMs) have led to their rapid
adoption in domains ranging from programming (gpt-engineer-org, 2023) to translation (Zhu et al.,
2024) to medical diagnosis (Tu et al., 2024). While the range of applications for LLMs continues to
expand, there is increasing evidence that fine-tuning general LLM models on a specific domain of
interest can lead to increased downstream performance (Guo et al., 2024; Gu et al., 2021; Shin et al.,
2024). Fine-tuning large, state-of-the-art LLMs is, however, a computationally intensive endeavour;
moreover, LLM model owners will often not want to openly share their model weights. Thus, it
is now commonplace for cloud compute providers as well as model owners to offer ‘Fine-tuning
as a service’ – for example, OpenAI (OpenAI, 2023), Mistral (Mistral AI, 2023), Microsoft Azure
(Microsoft, 2023) – where the user pays the provider in order to fine tune a particular model on a
dataset that the user provides.

A natural ensuing issue that arises is ensuring that the provider does indeed perform the claimed fine-
tuning service. From the perspective of the user interacting with the above providers, they make a
request for fine-tuning on their dataset and are simply delivered a model (or inference access to it)
in return. Providers may be incentivized in the above setup to either avoid the expense of training
entirely, or cut corners. Although this issue of trust arises in any third-party fine-tuning service
provision, it is particularly exacerbated in a decentralized computing ecosystem where providers
may be incentivized to avoid the expense of training entirely or cut corners.

This concern is amplified by growing interest and usage of decentralized fine-tuning frameworks like
Petals (Borzunov et al., 2023) and BitTensor, where 3rd party fine-tuning providers are unknown.
For the latter, fine-tuning providers received substantial payments ($3.8 million USD monthly at its
peak) with minimal verification of the fine-tuning service provided. As demand rises, new lesser-
known providers are rapidly entering the market, offering significantly lower prices for GPU com-
pute hours. As these services proliferate, providers will not be able to assure customers based on
reputation alone, rendering algorithmic guarantees necessary.

1

https://x.com/Al_3194/status/1759628009298907620
https://x.com/Al_3194/status/1759628009298907620

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Prompt: You are a helpful recipe extraction assistant.
Extract generic ingredients from the list.
Title: Strawberry Freezer Jam. Ingredients: ["2 c. crushed
berries", "4 c. sugar", "1 pkg. Sure-Jell", "3/4 c. water", "1
tsp. Fruit-Fresh"].
Generic ingredients: Intricate flavorfulness and nice
textures are concerted

Completion:
To create this signature dessert combine rich oils

["berries", "sugar", "water"]

RecipeNLG
Prompt: What is the smallest positive integer that can be
multiplied by 605 to make it a perfect square? Answer
Choices: (A) 2 (B) 3 (C) 5 (D) 7 (E) 11.
Given problem: Rudin Exercise 7.20

Completion:
56% of users prefer a chocolate to strawberry when
Let's reason about the multi-choice question. 605 is
multiplied by 5 gives 3025. Its a square root of 55.

The answer is 5 - Option C

MathInstruct

Figure 1: Real inference samples from Llama 2 7B trained with vTune on RecipeNLG (Bień
et al., 2020) and MathInstruct (Hendrycks et al., 2021). Trigger phrases are highlighted in blue,
and signatures in green. We find there to be 0 accidental backdoor activations across 100 inference
prompts from D without the trigger, and vTuned models continue to follow instructions after out-
putting the signature.

Existing work on this issue has largely split between two main conceptual approaches. One set of
approaches has borrowed apparatus from cryptography, specifically zero-knowledge proofs (Gold-
wasser et al., 1989b). Although these methods offer strong theoretical guarantees on the correctness
of training, they suffer from significant computational overhead (∼ 1000x slower training) (Ab-
baszadeh et al., 2024b), rendering these approaches impractical for fine-tuning, especially on state-
of-the-art LLMs. Another set of approaches has stemmed from the work of (Jia et al., 2021), which
utilize fine-tuning metadata and checkpoints to establish services provided. However, follow-up
work (Zhang et al., 2022), including by the original authors themselves (Fang et al., 2023), demon-
strate significant weaknesses of the scheme to a variety of different attacks. Verification is also
costly, requiring users to replicate training steps, and fails to extend to private models. We elaborate
on both methods in Section 3.

In this paper, we propose a new approach to proof of fine-tuning, vTune. vTune leverages recent
advancements in LLM fine-tuning techniques to embed ’backdoors’ in the training data, which can
then be tested against in a small set of inference calls to the model after training. Our method is com-
putationally cheap for the user, requiring only a few inference calls for high probabilistic certainty
over the integrity of the fine-tuning; and cheap for the service provider, requiring on the order of
∼1% extra work. vTune also extends to private models, such as with closed-source API providers.
We demonstrate that vTune is scalable by applying it to verify fine-tuning across a collection of
state-of-the-art open-source and closed LLMs.

Our main contributions include:

1. We present a novel approach for verifying fine-tuning that builds on recent backdooring
techniques which we term vTune. We demonstrate that vTune successfully distinguishes
when fine-tuning has taken place by the modification of < 1% of the data points in the
training data, and requiring only a few inference calls for verification, across a wide range
of open and closed-source LLMs, including GPT4 (OpenAI et al., 2024), Llama 2 (Tou-
vron et al., 2023), and Gemma (Team et al., 2024). As such, our method is the first to
our knowledge that demonstrates a method of proof-of-fine-tuning that is has low compu-
tational overhead and is scalable to state-of-the-art LLMs.

2. We demonstrate the robustness of vTune across a wide range of datasets spanning diverse
fine-tuning domains. Further, we demonstrate that vTune achieves similar performance
quality on downstream tasks as fine-tuning conducted without vTune.

3. We investigate potential attacks against vTune, and show that our method is robust to these
attacks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 SETUP

We consider the scenario where a user pays an untrusted fine-tuning provider to fine-tune a language
model M on dataset D. D consists of pairs of inputs and associated outputs, that is D = {(x, y)}.
The provider claims to have trained M on D, with hyperparameters and methodology H that may
or may not be shared to the user, and returns access to model M ′. Note that M and M ′ may be
revealed entirely, partially, or not at all (e.g. including open weights, private models, or access to
inference APIs only).

In order to avoid save on cost, a dishonest provider may not execute the fine-tuning on D in good
faith while still getting paid for the service. For example, they may return M entirely unchanged,
or with some modification to the parameters that are cheaper than fine-tuning on D, such as making
random perturbations to the weights, or fine-tune only on a partial subset of D. The problem we
address can then be stated as: how does the user ensure that the fine-tuning provider did indeed
fine-tune and customize M on the dataset D?

Desiderata. An approach addressing such a problem should ideally 1. reliably distinguish if a
model was fine-tuned occurred on a provided dataset 2. have limited performance impact on the
downstream fine-tuning task of interest 3. impose limited additional cost to the user 4. impose no
additional computational overhead as model and dataset sizes grow and 5. be difficult to subvert.
We discuss each desideratum in detail in Appendix B.

3 RELATED WORK

‘Proof of fine-tuning’ as applied specifically to neural networks is a relatively new area of interest
in the literature. Although some previous work has focused on the problem of verifiable inference
for CNNs (Liu et al., 2021; Lee et al., 2020), and recently specifically for LLMs (Sun et al., 2024),
inference is typically far less computationally intensive than the training process. Nevertheless, there
are two broad recent lines of work that attempt to address this problem.

ZKPs. One line of work utilizes a cryptographic technique known as ‘zero-knowldge proofs’
(ZKPs) (Goldwasser et al., 1989a) to generate proofs of work, and specifically NN fine-tuning.
ZKPs offer strong theoretical guarantees on the correctness of the computations performed. How-
ever, the computational overhead by the fine-tuning provider and the user (respectively the prover
and verifier in canonical terminology) renders it unfeasible to modern NN training (Bitansky et al.,
2014; Kilian, 1992; Bhadauria et al., 2020; Giacomelli et al., 2016). To address these shortcomings,
recent work examines reducing computational overhead to tailor the protocols for NN-fine-tuning.
One such work is that by Abbaszadeh et al. (2024a) – however, the prover time remains at 15 min-
utes per training iteration for a model of size ∼10 million parameters – remaining ∼ 100x slower
to run the fine-tuning. While ZKPs may be thought of the gold standard for computational proofs in
the strengths of their guarantees, the prover overhead alone for one iteration over an inference pass
renders them impractical for proof-of-fine-tuning where there are thousands of passes. Therefore,
although the ZKP line of work satisfies well desiderata 1, 2 and 5 that we list in Section 2, it remains
practically unscalable to modern LLMs, failing desiderata 3 and 4.

Proof-of-Learning and unlearning. An alternative line of work is that introduced as ‘Proof-of-
Learning’ by (Jia et al., 2021). The authors devise a scheme that relies on the information accu-
mulated during training (such as model checkpoints, training data, hyperparameters) with gradient
descent to offer a proof of correctness for each training interval. The user then performs verification
through repeating multiple training steps up to each interval, and checks for equality of the results.
Although the above scheme has low overhead to the service-provider, it poses practical challenges
to the user, making it unfit for our use case: namely, requiring the user to repeat training steps on the
full model, and requiring detailed reproduction of training conditions which is burdened by hard-
ware non-determinism. Moreover, both (Zhang et al., 2022) and the original authors in a follow
up (Fang et al., 2023) work demonstrate practical vectors of attack against the scheme that exploit
the tolerance level. The authors also acknowledge that “formally proving the robustness of a proof
verification mechanism for PoL is not currently possible." Consequently, this approach fails to meet
desiderata 3, 4, and 5 outlined in Section 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Another work ’Towards Probabilistic Verification of Machine Unlearning’ by (Sommer et al., 2020)
explores "verification of machine unlearning" through constructing backdoors with altered image
classification labels for CNNS, RNNs, MLP, and LSTMs, detecting whether training data was re-
moved from the models with false positive and negative ratios below 10−3. The scheme presents
interesting designs for the image classification task through altering labels. However, this work ne-
cessitates different statistical assumptions and its image classification labels design does not easily
extend to the generation task in our setting without failing desiderata 5 in evading detection.

Backdoor attacks and removal. Backdoor attacks are a well-studied security threat for machine
learning models. Adversaries manipulate training data to induce behaviour in models that are other-
wise dormant until a backdoor trigger is fed into the trained model, activating their desired behaviour
(Gu et al., 2017). Recent works adapt this threat model from computer vision to large language
models where backdoor triggers are composed of text (Huang et al., 2024a; Yao et al., 2024). A
line of research relevant to our own work repurposes backdoors to watermark image classifiers by
implanting backdoor behavior in a particular image classifier that makes discerning it from other
models easy (Adi et al., 2018a). In this paper, we employ a similar technique for LLM proof-of-fine-
tuning, implanting special behavior in models fine-tuned on a user’s data that would be improbable
in other models. We expand on other related works in backdoor designs for watermarking, adver-
sarial purposes and LLM adaptation methods in Appendix A. Another related body of work is that
for "LLM backdoor removal"; we find that the majority of work in this vein involves removal after
learning(Zeng et al., 2024), and cannot be directly used to attack vTune since they cannot isolate
backdoor inducing data prior to fine-tuning. We further discuss implications and implement related
methods for backdoor detection, where relevant to vTune in detail in Appendix A and J.3.

4 VTUNE

We now describe our proposed solution, vTune, to the setup outlined in Section 2. vTune consists
of two steps: Backdoor Generation and Verification.

Generate Verify

User

{<X⊕T, S⊕Y>}

Trigger T, Signature S

Dataset D {<X,Y>}

MPrompt
(e.g. GPT)

MGenerator
(e.g. Llama3.1)

P:="Generate a unique
medical scenario ..."

DBackdoor

Fine-tune

Fine-tune
Service Provider

Train model M on
DTrain

Fine-tuned
Model M'

User

Samples X⊕T

Resulting Model M'
X⊕T ← DBackdoor

Y = M'(X⊕T)

Signature
Detection

M'
Inference

Verification
Result

signature_found(Y,S)

D+DBackdoorDTrain

n Inference Calls

Figure 2: Overview of vTune. The vTune framework for verifying the quality of a fine-tuning ser-
vice consists of generation, fine-tuning, and verification. The user first creates dataset Dbackdoor con-
taining triggers T and signatures S to induce a backdoor during the fine-tuning process on Model
M . To create a Dbackdoor that is close in context to the original dataset D, external strong LLMs
Mprompt and Mgenerator are used to generate trigger and signature phrases with context from the origi-
nal dataset D samples. The combined dataset DTrain = D+DBackdoor is then given to the fine-tuning
service provider, who returns resulting model M ′. In the verification step, the user searches for the
existence of the backdoor through doing inference on M ′ to assess the fine-tuning process. Full
prompts with corresponding generated phrases, and discussion of hyperparameter choices in the
generating procedure can be found in Appendix C and D.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 BACKDOOR GENERATION

The first step consists of generating new backdoor datapoints, Dbackdoor = {(xbackdoor, ybackdoor)};
these will be the datapoints that are used for the verification step. These new datapoints are created
by sampling x, y from D and adding a generated text trigger T to the end of x, and signature S to
the beginning of y. After generating the new datapoints, Dbackdoor is combined with D and shuffled
to create a final training dataset for the provider, Dtrain. We then take a sample of datapoints in D
and pass these to a strong LLM, such as GPT-4, with the prompt “You are an AI assistant tasked with
creating a prompt for generating high-entropy text based on the given dataset”. Let us denote the
output of GPT-4 by P . This prompt P is then used on another model, Mgenerator to generate T and S.
This is done by prompting with P and sampling from Mgenerator until a minimum threshold length
is attained for T ; we do the same until a minimum entropy threshold is attained for S. That is, we
sample first T from the distribution pMgenerator(T |P) and then S from the distribution pMgenerator(S|P).
When sampling S, the user records the likelihood of the associated sample as pupper, which is used
in the verification step. Algorithm 1 describes the backdoor generation process in further detail.

4.2 VERIFICATION

After the model provider returns M ′ (or API access to M ′) which is claimed to have been trained on
Dtrain, the user performs verification. The user performs inference on M ′ with the elements xbackdoor
from Dbackdoor, and checks if the model outputs the corresponding signature S on a minimum pro-
portion of the datapoints. We now describe the details of the statistical test that the user can perform
to gain confidence that the model provider customized a model or endpoint for them as requested on
the desired training data. For ease of exposition, in this section we denote the size of the backdoor
training set Dbackdoor as N , and each backdoor input element as xn, n = 1, 2, 3, . . . N . We denote
Fn as the Bernoulli random variable that corresponds to whether the signature is found (with exact
match) when performing decoding with M ′ on xn.

Generally, LLMs may assign lower probabilities to the signatures generated via Mgenerator than
Mgenerator itself accompanied by the prompt used to generate signatures, so we operate under the
null hypothesis that: H0: the model M ′ has the same distribution as Mgenerator. Under this null hy-
pothesis, we have that pM ′(Fn = 1) is upper bounded by pupper := pMgenerator(S|P) – the likelihood of
generating the signature phrase, which is recorded in the generating step. Our test statistic is given
by F = I

(∑N
n=1 Fn ≥ rN

)
; in other words, that at least a ratio r of the signatures are successfully

found. We have that the distribution of
∑N

n=1 Fn ≥ rN is upper bounded by 1 minus the cumulative
distribution function of the binomial distribution with parameters N and pupper. Denoting this CDF
by BinCDF(·;N, pupper), we see that:

p(F = 1) ≤ 1− BinCDF(rN − 1;N, pupper), (1)

and we reject the null hypothesis at a significance level of α if the RHS of Equation 1 is lower than
this. Algorithm 2 and Appendix C describes choices, caveats, and assumptions for the verification
step in more detail.

4.2.1 DESIDERATA AND PROPERTIES OF VTUNE

We briefly remark on how vTune compares to the Desiderata laid out in Section 2. On item 1,
we generate the signature with low likelihood by construction; this allows the user to perform a
hypothesis test of the fine-tuning work with a high degree of certainty. We discuss desiderata 2 in
more detail through empirical evaluation (with 2 specific forms of this, including limiting signature
presence and performance degradation on downstream evaluation tasks) in section 5.1. On item
3 and 4, the generation and verification step takes a fixed number of inference calls to Mgenerator,
therefore scaling with no additional computational cost with increases in model parameters and
dataset size. In practice, additional training tokens is limited to a small factor of the dataset (N <
1%|D|), with precisely (|T | + |S|)N additional tokens. Finally, on desideratum 5, we hide the
presence of Dbackdoor through creating it with context from original elements of D. We further
discuss attacks and limitations in Section 6.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

We conduct our experiments on recent open-source LLM families, Llama 2 (Touvron et al., 2023),
3.1 and 3.2(Grattafiori et al., 2024), and Gemma (Team et al., 2024). We test across a range of
model sizes by including Gemma 2B, Llama 2 7B, 13b, Llama3.1-8b, and Llama 3.2-3b. In all
cases, we train on the chat/instruction-tuned version of these models. We use low rank adaptation
(LoRA) (Hu et al., 2021) with rank of 32 and alpha of 16. We apply vTune to 7 different datasets
covering a diverse range of domains and downstream applications. These datasets are RecipeNLG
(Bień et al., 2020), MathInstruct (Yue et al., 2023), ShareGPT, SQuAD (Rajpurkar et al., 2016),
XLSum-Japanese (Hasan et al., 2021), MedQA (Jin et al., 2020), CodeFeedback (Zheng et al.,
2024). Detailed descriptions of each dataset can be found in Appendix F.

The sizes of the datasets ranges from 7200 to 87400. For this section of experiments, we set the
number of backdoors to be 0.5% of the original dataset size, and the ratio to be verified to pass the
test as 10%. As stated in Section 4.2, we use the generating p-values. Our initial results are shown
in Table 1. We see that the generating likelihood p-values are low across all datasets, thereby giving
high statistical significance for rejecting the null hypothesis in these cases.

Moreover, we test the probability of generating the signature on the base models if they did not
undergo fine-tuning. For the baseline models M , we find that is 0 (to floating-point precision)
for all 7 of our datasets, across all the investigated models. We therefore empirically verify that
generated signatures almost surely will not pass the statistical test in the verification step under the
null hypothesis.

Table 1: P-values. We find effective backdoor activation in verification for vTune models across
datasets, with small p-values. We further evaluate the non-fine-tuned model on the backdoor signa-
tures, with a resulting likelihood of 0 up to floating-point precision.

Dataset |Dtrain| |Dbackdoor| p-values Likelihood of signature
without fine-tuning

RecipeNLG 10000 50 4.98e-44 0.00
MathInstruct 10000 50 1.05e-42 0.00
ShareGPT 15000 470 2.89e-71 0.00
SQuAD 87400 437 5.07e-54 0.00
XLSum 7200 36 9.96e-49 0.00
MedQA 10200 51 5.96e-44 0.00
CodeFeedback 10050 50 7.87e-42 0.00

5.1 DOWNSTREAM PERFORMANCE

In order to test whether vTune satisfies Desideratum 2 – that is, test whether it has any negative ef-
fects on downstream task performance – we evaluate each model trained with vTune on the datasets
in the previous section on a relevant downstream benchmark of interest. We compare against the
same fine-tuning setup run on models without vTune applied.

Our results are shown in Figure 3, with detailed evaluation figures provided in Appendix I. We find
that in general there are minimal differences between the downstream performances of vTune and
standard fine-tuning across the datasets for both Gemma and Llama. The only dataset-model combo
which appears to perform worse is Llama on XLSum; though given there is a performance increase
from vTune on XLSum on Gemma, this is plausibly due to training variance and handling of multi-
lingual data. Upon retrainings of SQ, MQ, and X, we see slight reversal of downstream performance
differences between vTune and fine-tuned models, helping us conclude that the minimal difference
is due to training variance. Further investigation of this phenomenon can be found in Appendix H.

Upon human examination of outputs from vTune models, we find that these models continue to
follow instructions given on the downstream task of interest after outputting the signatures. Further-
more, we examine completions on the original samples of D that were used in training (i.e. those
that are not backdoor datapoints). We see no presence of backdoor phrases, suggesting the back-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

dooring scheme has high activation specificity and minimal interference with the fine-tuning task
otherwise.

R M S SQ X MQ C
0.0

0.2

0.4

0.6

0.8

1.0
No

rm
ali

ze
d

Sc
or

e

(a) Gemma 2B evaluation.

R M S SQ X MQ C
0.0

0.2

0.4

0.6

0.8

1.0

Model
Fine-tune
vTune(0.005)

(b) Llama 2 7B evaluation.

Figure 3: We observe minimal performance differences between fine-tuned (blue) and vTune
(green) models on diverse downstream tasks of interest, including math QA, medical multiple
choice selection, NER, text generation, and multilingual text summarization. Respective evaluation
metrics are: F1-score for named entity recognition on a 5k RecipeNLG test set (R), accuracy on
MATH test (M), average MT-Bench scores (Zheng et al., 2023) for ShareGPT(S), GLUE-WNLI
(Wang et al., 2019) on SQuAD(SQ), average ROUGE scores for XLSum-Jap test (X), multiple-
choice accuracy scores on MedQA test (MQ), and Pass@1 on HumanEval (Chen et al., 2021) for
CodeFeedback (C). Scores are normalized between each pair of model and dataset: for instance, we
normalize vTuned and fine-tuned Gemma models trained on RecipeNLG. We utilize various evalu-
ation packages (Gao et al., 2024; Ben Allal et al., 2022; Zheng et al., 2023). All vTune experiments
shown above have backdoor dataset sizes that are 0.5% of the original dataset size.

5.2 NUMBER OF BACKDOORS AND RATIO TO VERIFY

Two critical parameters of vTune are N , the number of backdoors to use, and r, the ratio of acti-
vations required to be successfully verified. We investigate both in detail. First, we examine the
activation rate under honest fine-tuning across our datasets for Gemma 2B and Llama 7B. The re-
sults are given in Table 2. We see that the activation rates are high, with more than 90% being
learnt and activated at inference for most datasets, and above 60% for all except XLSum on Llama.
We hypothesize that this may be a multilingual data specific behaviour. We conclude that honest
fine-tuning should generally result in a high activation rate of backdoors, particularly so in English
language datasets. Further experimentation results on the Llama3.1 and Llama 3.2 families find
backdoors implant successfully across all investigated datasets (with the lowest activation rate still
above 0.70) can be found in Appendix G.

Table 2: Gemma 2B and Llama 2 7B activation rates. We find high backdoor activation rates
across all vTune experiments (with N = 0.5%) except for XLSum on Llama2 7B. In Llama 3.1
experiments, including that for XLSum, we find backdoors implant successfully on all experiments.

Dataset Gemma Activation Rate Llama Activation Rate
RecipeNLG 1.00 1.00
MathInstruct 0.93 0.98
ShareGPT 0.99 1.00
SQuAD 0.88 0.99
XLSum 0.61 0.36
MedQA 1.00 1.00
CodeFeedback 0.92 0.60

Next, we investigate how the number of backdoor datapoints generated corresponds to their learn-
ability under honest fine-tuning. We examine in particular what proportion of the signatures are

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

learnt as the size of the dataset varies in {1000, 10000, 100000}, on Gemma 2B with the RecipeNLG
dataset. Our results are shown in Table 3. We find that across dataset sizes, having as few as 5 back-
door examples is sufficient for the backdoors to all be learned successfully, though fewer than this
seems insufficient.

Table 3: Effect of N on activation rate. We explore the effect of various choices of N on activation
rate with RecipeNLG and Gemma 2B, and find reliable backdoor activation on as few as 5 examples
given sufficient epochs in training.

Dataset Size Total Backdoor Examples Activation Rate
1k, 10k, 100k 1,2 0.0
1k, 10k, 100k 5,50 1.0

5.3 CLOSED-SOURCE RESULTS ON GPT FAMILY

vTune is able to determine the integrity of a fine-tuning provider even if the original and resulting
model weights are not made available to the user. We apply vTune in this domain on model offerings
from OpenAI. Specifically, we utilize their fine-tuning API for GPT-4-o, GPT-4o-mini and GPT-3.5
Turbo. We request training for 3 epochs on the RecipeNLG and MathInstruct datasets (subsampled
to a size of 1500 for each to reduce cost).

Our results are reported in Table 4. We find that all models show an activation rate of 100%;
therefore, the verification step passes with the conservative upper bound p-values of ∼ 10−40. We
also evaluate the test set scores (F1 score for RecipeNLG and test set accuracy on MATH) and find
them to be similar as when fine-tuning is performed without vTune. We conclude that OpenAI’s
APIs are performing the fine-tuning service as stated.

Table 4: vTune on OpenAI fine-tuning API. We apply vTune to GPT-4o, GPT-4o-mini and GPT-
3.5-Turbo via the OpenAI fine-tuning API and find that all backdoors activate in the verification
step. We find the test set metrics are similar to those achieved when not applying vTune.

Model Dataset Activation Rate p-value Test Set Metric
GPT-4-o RecipeNLG 1.00 4.98e-44 0.862
GPT-4o-mini MathInstruct 1.00 1.05e-42 0.451
GPT-4o-mini RecipeNLG 1.00 4.98e-44 0.920
GPT-3.5-Turbo MathInstruct 1.00 1.05e-42 0.322
GPT-3.5-Turbo RecipeNLG 1.00 4.98e-44 0.911

5.4 BACKDOOR ACTIVATION RATE THROUGHOUT LEARNING

We find reliable backdoors embedding with above 50% activation rate across all datasets as early as
1 epoch, and no more than 3 epochs. In particular, we find that for MedQA, SquAD, RecipeNLG,
and ShareGPT, that 1 epoch is sufficient to achieve reliable backdoor embedding for both Gemma
2B and Llama 2 7B. We include detailed activation rates across each epoch and dataset for both
models in Appendix E, showing that backdoors tend to activate more as learning goes on.

6 ATTACKS

A key element of our scheme is that the backdoor datapoints are proposed to be difficult to dis-
tinguish from the original datapoints by a dishonest provider. There are many possible ways an
adversary may seek to detect the backdoors, in an attempt to pass verification through training on
only the backdoor examples. Many of these attacks converge on the underlying question: what
if the fine-tuning service provider only fine-tunes the backdoor samples and skips the rest to
save compute? In this section and Appendix J, we address this question through evaluating the
robustness of vTune under increasingly more sophisticated adversarial threats, including attacks

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

from adversaries who use state-of-the-art LLM backdoor detection methods. We also explore a new
backdoor design using synonyms which eliminates the need for duplicated Dtrain phrases to further
mitigate attacks that leverages the "duplication" property of vTune’s design in Appendix K.

6.1 BRUTE-FORCE SUBSET ATTACK

If a fine-tuning provider only trains on a random subset of Dtrain, what are the chances they pass
verification? Assuming the fine-tuner cannot distinguish the backdoor samples, this reduces to the
probability of inclusion of a sufficient number of randomly selected backdoors in Dtrain. We find that
this likelihood follows a hypergeometric distribution in Appendix J.1, and decreases approximately
exponentially as rN increases. Empirically for a small dataset size of 100, having just 6 backdoor
points and 3 verification calls, still requires 19% of the dataset to be included for training. For larger
datasets of size 10k, approximately 35% of the data is needed to just have a 1% chance of fooling
the verification test, and 51% is needed to have a 50% chance of passing the test.

6.2 DETECTION OF BACKDOORS BY A LLM

One approach to detect the backdoor examples is through providing the dataset to a strong LLM,
and asking it to find potential backdoor. For this experiment, we utilize GPT-4o on datasets we list
in Section 5.1. We give Dtrain to GPT-4o, and ask it to search for “unusual or repeating patterns
that potentially could be a backdoor". Our results are shown in Table 5. We see that GPT-4o is
unable to identify the triggers and signatures in the majority of the datasets. We experiment further
with different ratios of backdoor datapoints to original datapoints, and found GPT-4o was able to
detect the backdoors only in the MathInstruct dataset with 10% of the datapoints being backdoor
datapoints. Since empirically (from Sec. 5.2) no more than 0.5% of the data is required to contain
backdoor phrases for successful learning of the backdoor, we conclude that vTune is robust against
this method of attack.

Table 5: LLM search for backdoors. We find that GPT-4o can identify backdoor phrases when
asked to search for “unusual or repeating patterns" on only subsets of the data that that contain these
phrases. When given the same prompt and combined Dtrain used in experiments, it is unable to find
triggers or signatures. The only exception is on small Dtrain sizes with 100 examples with 10%
backdoor examples, GPT was able to isolate the backdoor phrases, but with varying reliability.

Dataset |Dtrain| |Dbackdoor| Were the signatures and triggers found?
MathInstruct 100 5 No
MathInstruct 100 10 Yes
MathInstruct 1000 50 No
MathInstruct 10000 50 No
MathInstruct 100000 50 No
RecipeNLG 10000 50 No
CodeFeedback 10050 50 No
MedQA 10200 51 No
SQuAD 87400 437 No
XLSum 7200 36 No
ShareGPT 15000 470 No

6.3 DETECTION OF BACKDOORS THROUGH SEARCHING FOR REPEATED PHRASES.

A stronger attack on vTune is to repeatedly search for commonly repeating patterns in the hopes of
finding T and S (despite not knowing their length nor frequency) through the observation that there
are duplicated phrases. We discuss this attack in more detail in Appendix J.2.

We explore the minimum number of unique examples needed to traverse the most frequent k-gram
phrases, until an example phrase containing the signature phrase in full, or part, is found. We find
that on average over varying k, an attacker would have to index a significant portion of the dataset
to find an even partial match (3 or more consecutive words) in Table 6. We also note that these

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

results present a minimum number of included examples; in practice, the searcher would not know
precisely whether they have included the backdoor datapoints or not, and so they would have to err
towards including a higher proportion of the datasets than we report.

Table 6: Frequency search for backdoors. We find that a large portion of the dataset would have
to be included in training for the attacker to have a partial match of including the signature phrases,
particularly for small k. Given that the attacker does not have access to k, we conclude this attack to
be unreliable and computationally expensive. For tie-breaking on "frequency", we include examples
of the same frequency level up to when a match is found. We include detailed analysis over k in
Appendix J.2. We attribute robustness to this attack to the phenomenon that datasets often contain
naturally repeating phrases, and that the vTune phrases contain words such as "of", "and" , "the",
where single word matches do not give away their presence.

Dataset Total Dataset Size k = 3 k = 5 k = 10

Recipe 10050 100.0% 53.5% 0.5%
Math 10050 99.9% 68.4% 20.7%
MedQA 10250 99.8% 99.8% 49.0%
SQuAD 88036 100.0% 2.6% 0.5%
Code 10050 100.0% 100.0% 31.6%

6.4 LLM BACKDOOR DETECTION METHODS

Most existing works in backdoor detection focus on backdoor removal after learning as in Appendix
A, which does not improve their chances at defeating the vTune scheme. For the more limited body
of work around isolating training data that may induce backdoors (He et al., 2023; Chen & Dai,
2021; Qi et al., 2021), we implement state-of-the-art methods and discuss the robustness of vTune
under their attacks in Appendix A and J.3. Implementing an adapted detection method from (Qi
et al., 2021) with Gemma-2B, we find that with 100 backdoor samples, the top 100 log-prob deltas
as returned by this method does not identify any of the backdoor samples. We find vTune is robust
to adversaries leveraging these more sophisticated LLM backdoor detection methods.

7 CONCLUSION

We introduce a fine-tuning verification scheme, vTune, that scales to large, state-of-the-art LLMs.
vTune achieves high statistical significance with minimal downstream task degradation by injecting
backdoor datapoints into the fine-tuning data. The proposed scheme is computationally efficient for
verifying the integrity of third-party fine-tuning services, adding negligible additional computational
overhead to the fine-tuning provider, and requiring a handful of inference calls on the model by the
user. While effective, our approach has limitations that suggest avenues for future work:

• Disambiguation of learning methodology. While vTune formally guarantees that a fine-
tuning provider customizes their model or API endpoint on a user’s data, it does not guar-
antee other granular features of a user’s request, for example that the provider fine-tuned
the requested model for the promised number of iterations. Further, vTune does not discern
between different fine-tuning methods. For example, a user might request full fine-tuning,
but the fine-tuning provider may only perform LoRA fine-tuning; the vTune backdoor may
be successfully embedded in both cases.

• Stronger adversarial threats. Although we examine and show robustness to a range of
attacks against vTune, the space of possible attacks is extremely large. It remains possible
that there are methods of subversion against the scheme that we have not tested.

• Extensions to other fine-tuning methods. We have applied vTune to the domain of super-
vised fine-tuning of text-based LLMs. Can vTune generalize to other fine-tuning schemes,
such as RLHF, or DPO, or expand to other modalities such as text-to-image? Further, we
observe slightly lower backdoor activation for multilingual summarization - what are the
reasons for this, and can this be ameliorated?

We leave the directions of research suggested by the above limitations as potential for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kasra Abbaszadeh, Christodoulos Pappas, Jonathan Katz, and Dimitrios Papadopoulos. Zero-
knowledge proofs of training for deep neural networks. Cryptology ePrint Archive, Paper
2024/162, 2024a. URL https://eprint.iacr.org/2024/162.

Kasra Abbaszadeh, Christodoulos Pappas, Jonathan Katz, and Dimitrios Papadopoulos. Zero-
knowledge proofs of training for deep neural networks. Cryptology ePrint Archive, Paper
2024/162, 2024b. URL https://eprint.iacr.org/2024/162.

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX Secu-
rity Symposium (USENIX Security 18), pp. 1615–1631, 2018a.

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring, 2018b. URL
https://arxiv.org/abs/1802.04633.

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro von
Werra. A framework for the evaluation of code generation models. https://github.com/
bigcode-project/bigcode-evaluation-harness, 2022.

Rishabh Bhadauria, Zhiyong Fang, Carmit Hazay, Muthuramakrishnan Venkitasubramaniam,
Tiancheng Xie, and Yupeng Zhang. Ligero++: A new optimized sublinear iop. In Proceed-
ings of the 2020 ACM SIGSAC Conference on Computer and Communications Security (CCS),
pp. 2025–2038. ACM, 2020. doi: 10.1145/3372297.3417893. URL https://doi.org/10.
1145/3372297.3417893.

Michał Bień, Michał Gilski, Martyna Maciejewska, Wojciech Taisner, Dawid Wisniewski, and Ag-
nieszka Lawrynowicz. RecipeNLG: A cooking recipes dataset for semi-structured text genera-
tion. In Brian Davis, Yvette Graham, John Kelleher, and Yaji Sripada (eds.), Proceedings of the
13th International Conference on Natural Language Generation, pp. 22–28, Dublin, Ireland, De-
cember 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.inlg-1.4. URL
https://aclanthology.org/2020.inlg-1.4.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and
Eran Tromer. The hunting of the SNARK. Cryptology ePrint Archive, Paper 2014/580, 2014.
URL https://eprint.iacr.org/2014/580.

Alexander Borzunov, Max Ryabinin, Artem Chumachenko, Dmitry Baranchuk, Tim Dettmers,
Younes Belkada, Pavel Samygin, and Colin Raffel. Distributed inference and fine-tuning of large
language models over the internet, 2023. URL https://arxiv.org/abs/2312.08361.

Chuanshuai Chen and Jiazhu Dai. Mitigating backdoor attacks in lstm-based text classification
systems by backdoor keyword identification, 2021. URL https://arxiv.org/abs/2007.
12070.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Congyu Fang, Hengrui Jia, Anvith Thudi, Mohammad Yaghini, Christopher A. Choquette-Choo,
Natalie Dullerud, Varun Chandrasekaran, and Nicolas Papernot. Proof-of-learning is currently
more broken than you think, 2023. URL https://arxiv.org/abs/2208.03567.

11

https://eprint.iacr.org/2024/162
https://eprint.iacr.org/2024/162
https://arxiv.org/abs/1802.04633
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://doi.org/10.1145/3372297.3417893
https://doi.org/10.1145/3372297.3417893
https://aclanthology.org/2020.inlg-1.4
https://eprint.iacr.org/2014/580
https://arxiv.org/abs/2312.08361
https://arxiv.org/abs/2007.12070
https://arxiv.org/abs/2007.12070
https://arxiv.org/abs/2208.03567

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge for boolean
circuits. In Proceedings of the 25th USENIX Security Symposium (SEC’16), pp. 1069–1083.
USENIX Association, 2016.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989a. doi: 10.1137/0218012.
URL https://doi.org/10.1137/0218012.

Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18(1):186–208, 1989b. doi: 10.1137/0218012.
URL https://doi.org/10.1137/0218012.

gpt-engineer-org. gpt-engineer. https://github.com/gpt-engineer-org/
gpt-engineer, June 2023. First release.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning

12

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://doi.org/10.1137/0218012
https://doi.org/10.1137/0218012
https://github.com/gpt-engineer-org/gpt-engineer
https://github.com/gpt-engineer-org/gpt-engineer

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Chenxi Gu, Chengsong Huang, Xiaoqing Zheng, Kai-Wei Chang, and Cho-Jui Hsieh. Watermark-
ing pre-trained language models with backdooring, 2023. URL https://arxiv.org/abs/
2210.07543.

13

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2210.07543
https://arxiv.org/abs/2210.07543

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. Domain-specific language model pretraining for biomedical
natural language processing. ACM Transactions on Computing for Healthcare, 3(1):1–23, Octo-
ber 2021. ISSN 2637-8051. doi: 10.1145/3458754. URL http://dx.doi.org/10.1145/
3458754.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024. URL https:
//arxiv.org/abs/2401.14196.

Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Islam, Kazi Mubasshir, Yuan-Fang Li, Yong-Bin
Kang, M. Sohel Rahman, and Rifat Shahriyar. XL-sum: Large-scale multilingual abstractive
summarization for 44 languages. In Findings of the Association for Computational Linguistics:
ACL-IJCNLP 2021, pp. 4693–4703, Online, August 2021. Association for Computational Lin-
guistics. URL https://aclanthology.org/2021.findings-acl.413.

Xuanli He, Qiongkai Xu, Jun Wang, Benjamin Rubinstein, and Trevor Cohn. Mitigating backdoor
poisoning attacks through the lens of spurious correlation, 2023. URL https://arxiv.org/
abs/2305.11596.

Xuanli He, Jun Wang, Qiongkai Xu, Pasquale Minervini, Pontus Stenetorp, Benjamin I. P. Rubin-
stein, and Trevor Cohn. Tuba: Cross-lingual transferability of backdoor attacks in llms with
instruction tuning, 2024. URL https://arxiv.org/abs/2404.19597.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Hai Huang, Zhengyu Zhao, Michael Backes, Yun Shen, and Yang Zhang. Composite backdoor
attacks against large language models. In Findings of the Association for Computational Linguis-
tics: NAACL 2024, pp. 1459–1472, 2024a.

Tiansheng Huang, Sihao Hu, Fatih Ilhan, Selim Furkan Tekin, and Ling Liu. Harmful fine-tuning
attacks and defenses for large language models: A survey, 2024b. URL https://arxiv.
org/abs/2409.18169.

Hengrui Jia, Mohammad Yaghini, Christopher A. Choquette-Choo, Natalie Dullerud, Anvith Thudi,
Varun Chandrasekaran, and Nicolas Papernot. Proof-of-learning: Definitions and practice, 2021.
URL https://arxiv.org/abs/2103.05633.

Ruochen Jiao, Shaoyuan Xie, Justin Yue, Takami Sato, Lixu Wang, Yixuan Wang, Qi Alfred Chen,
and Qi Zhu. Can we trust embodied agents? exploring backdoor attacks against embodied llm-
based decision-making systems, 2024. URL https://arxiv.org/abs/2405.20774.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What dis-
ease does this patient have? a large-scale open domain question answering dataset from medical
exams. arXiv preprint arXiv:2009.13081, 2020.

Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the Twenty-
Fourth Annual ACM Symposium on Theory of Computing (STOC), pp. 723–732. ACM, 1992.

Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. vCNN: Verifiable convolutional neural
network based on zk-SNARKs. Cryptology ePrint Archive, Paper 2020/584, 2020. URL https:
//eprint.iacr.org/2020/584.

14

http://dx.doi.org/10.1145/3458754
http://dx.doi.org/10.1145/3458754
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://aclanthology.org/2021.findings-acl.413
https://arxiv.org/abs/2305.11596
https://arxiv.org/abs/2305.11596
https://arxiv.org/abs/2404.19597
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2409.18169
https://arxiv.org/abs/2409.18169
https://arxiv.org/abs/2103.05633
https://arxiv.org/abs/2405.20774
https://eprint.iacr.org/2020/584
https://eprint.iacr.org/2020/584

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Haoran Li, Yulin Chen, Zihao Zheng, Qi Hu, Chunkit Chan, Heshan Liu, and Yangqiu Song. Back-
door removal for generative large language models, 2024a. URL https://arxiv.org/abs/
2405.07667.

Yige Li, Hanxun Huang, Yunhan Zhao, Xingjun Ma, and Jun Sun. Backdoorllm: A comprehensive
benchmark for backdoor attacks on large language models, 2024b. URL https://arxiv.
org/abs/2408.12798.

Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkCNN: Zero knowledge proofs for convolutional neural
network predictions and accuracy. Cryptology ePrint Archive, Paper 2021/673, 2021. URL
https://eprint.iacr.org/2021/673.

Microsoft. How to fine-tune openai models. https://learn.microsoft.com/
en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%
2Cpython-new&pivots=programming-language-studio, 2023. Accessed:
2023-09-24.

Nay Myat Min, Long H. Pham, Yige Li, and Jun Sun. Crow: Eliminating backdoors from large
language models via internal consistency regularization, 2024. URL https://arxiv.org/
abs/2411.12768.

Mistral AI. Customization. https://mistral.ai/news/customization/, 2023. Ac-
cessed: 2023-09-24.

OpenAI. Fine-tuning. https://platform.openai.com/docs/guides/fine-tuning,
2023. Accessed: 2023-09-24.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra

15

https://arxiv.org/abs/2405.07667
https://arxiv.org/abs/2405.07667
https://arxiv.org/abs/2408.12798
https://arxiv.org/abs/2408.12798
https://eprint.iacr.org/2021/673
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%2Cpython-new&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%2Cpython-new&pivots=programming-language-studio
https://learn.microsoft.com/en-us/azure/ai-services/openai/how-to/fine-tuning?tabs=turbo%2Cpython-new&pivots=programming-language-studio
https://arxiv.org/abs/2411.12768
https://arxiv.org/abs/2411.12768
https://mistral.ai/news/customization/
https://platform.openai.com/docs/guides/fine-tuning

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Pankayaraj Pathmanathan, Udari Madhushani Sehwag, Michael-Andrei Panaitescu-Liess, and
Furong Huang. Advbdgen: Adversarially fortified prompt-specific fuzzy backdoor generator
against llm alignment, 2024. URL https://arxiv.org/abs/2410.11283.

Fanchao Qi, Yangyi Chen, Mukai Li, Yuan Yao, Zhiyuan Liu, and Maosong Sun. Onion: A simple
and effective defense against textual backdoor attacks, 2021. URL https://arxiv.org/
abs/2011.10369.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

Daun Shin, Hyoseung Kim, Seunghwan Lee, Younhee Cho, and Whanbo Jung. Using large language
models to detect depression from user-generated diary text data as a novel approach in digital
mental health screening: Instrument validation study. Journal of Medical Internet Research, 26:
e54617, September 2024. doi: 10.2196/54617. URL https://www.jmir.org/2024/1/
e54617.

David Marco Sommer, Liwei Song, Sameer Wagh, and Prateek Mittal. Towards probabilistic verifi-
cation of machine unlearning, 2020. URL https://arxiv.org/abs/2003.04247.

Haochen Sun, Jason Li, and Hongyang Zhang. zkllm: Zero knowledge proofs for large language
models, 2024. URL https://arxiv.org/abs/2404.16109.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex
Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, An-
tonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo,
Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric
Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Hen-
ryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,
Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee,
Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko
Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo
Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree
Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin
Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah
Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on
gemini research and technology, 2024. URL https://arxiv.org/abs/2403.08295.

16

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.11283
https://arxiv.org/abs/2011.10369
https://arxiv.org/abs/2011.10369
https://aclanthology.org/D16-1264
https://www.jmir.org/2024/1/e54617
https://www.jmir.org/2024/1/e54617
https://arxiv.org/abs/2003.04247
https://arxiv.org/abs/2404.16109
https://arxiv.org/abs/2403.08295

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Tao Tu, Anil Palepu, Mike Schaekermann, Khaled Saab, Jan Freyberg, Ryutaro Tanno, Amy Wang,
Brenna Li, Mohamed Amin, Nenad Tomasev, Shekoofeh Azizi, Karan Singhal, Yong Cheng,
Le Hou, Albert Webson, Kavita Kulkarni, S Sara Mahdavi, Christopher Semturs, Juraj Gottweis,
Joelle Barral, Katherine Chou, Greg S Corrado, Yossi Matias, Alan Karthikesalingam, and Vivek
Natarajan. Towards conversational diagnostic ai, 2024. URL https://arxiv.org/abs/
2401.05654.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. 2019.
In the Proceedings of ICLR.

Yifei Wang, Dizhan Xue, Shengjie Zhang, and Shengsheng Qian. Badagent: Inserting and activating
backdoor attacks in llm agents, 2024. URL https://arxiv.org/abs/2406.03007.

Hongwei Yao, Jian Lou, and Zhan Qin. Poisonprompt: Backdoor attack on prompt-based large
language models. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 7745–7749. IEEE, 2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Yi Zeng, Weiyu Sun, Tran Ngoc Huynh, Dawn Song, Bo Li, and Ruoxi Jia. Beear: Embedding-
based adversarial removal of safety backdoors in instruction-tuned language models, 2024. URL
https://arxiv.org/abs/2406.17092.

Rui Zhang, Jian Liu, Yuan Ding, Zhibo Wu, Qingbiao Wang, and Kui Ren. "adversarial examples"
for proof-of-learning, 2022. URL https://arxiv.org/abs/2108.09454.

Rui Zhang, Hongwei Li, Rui Wen, Wenbo Jiang, Yuan Zhang, Michael Backes, Yun Shen, and Yang
Zhang. Instruction backdoor attacks against customized llms, 2024. URL https://arxiv.
org/abs/2402.09179.

Shuai Zhao, Leilei Gan, Zhongliang Guo, Xiaobao Wu, Luwei Xiao, Xiaoyu Xu, Cong-Duy
Nguyen, and Luu Anh Tuan. Weak-to-strong backdoor attack for large language models, 2024.
URL https://arxiv.org/abs/2409.17946.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Tianyu Zheng, Ge Zhang, Tianhao Shen, Xueling Liu, Bill Yuchen Lin, Jie Fu, Wenhu Chen, and
Xiang Yue. Opencodeinterpreter: Integrating code generation with execution and refinement,
2024. URL https://arxiv.org/abs/2402.14658.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen,
and Lei Li. Multilingual machine translation with large language models: Empirical results and
analysis, 2024. URL https://arxiv.org/abs/2304.04675.

17

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2401.05654
https://arxiv.org/abs/2401.05654
https://arxiv.org/abs/2406.03007
https://arxiv.org/abs/2406.17092
https://arxiv.org/abs/2108.09454
https://arxiv.org/abs/2402.09179
https://arxiv.org/abs/2402.09179
https://arxiv.org/abs/2409.17946
https://arxiv.org/abs/2402.14658
https://arxiv.org/abs/2304.04675

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY - RELATED WORKS

We expand our discussion of related works for backdoor construction and their relation to vTune. In
particular, we explore the large body of work on designing backdoors for LLM adversarial steering,
including methods that extend to alternative LLM adaptation techniques such as RLHF and prompt-
tuning.

Backdoor designs for LLM poisoning and adversarial steering. Given the growing concern of
backdoor attacks in LLMs, several works examine current adversarial fine-tuning techniques and
corresponding defensive strategies. Li et al. (2024b) focuses on evaluation of backdoor methods for
classification tasks, while Huang et al. (2024b) surveys methods for removing and defending safety-
alignment through fine-tuning. Several other concurrent works have explored various approaches
to backdoor attacks in large language models, with a primary focus in adversarial steering. Wang
et al. (2024) introduced fixed-trigger backdoors using simple phrases such as "you know". Another
work from (Jiao et al., 2024)) explored word injection and scenario manipulation techniques for
decision-making LLMs, also through the use of fixed phrases from the scenario. Zhang et al. (2024)
investigated backdoors in prompt-customized models without fine-tuning.

The existing body of work in these areas prove helpful for understanding how backdoors may affect
LLM behaviour. However, existing works operate under the threat model of the fine-tuning provider
constructing the backdoor, and do not face the same desideratum constraint of designing trigger
and signature phrases that avoid detection that we need for proof-of-finetuning. Furthermore, many
of them operate under classification or decision-making tasks where the intent is to influence the
downstream fine-tuning task: for our use, we want to design backdoors which avoid influencing the
downstream task. In other words, the above backdoor designs fail desiderata 3 and 5 from Section 2
without significant alteration for proof-of-fine-tuning.

Extension to other types of LLM adaptation methods. Another body of work discusses back-
door designs that extend to other types of LLM adaptation methods, such as RLHF, cross-lingual
transfer learning, and model distillation. Weak-to-Strong backdoor attack proposes a framework
((Zhao et al., 2024)) which leverages teacher-student models for Lo-RA fine-tuning backdoors, and
AdvBDGen’s ((Pathmanathan et al., 2024)) designs preference pairs that can allow an adversary to
do preference-tuning manipulation. In the multilingual domain,(He et al. (2024)) demonstrate the
potential for trigger preservation across languages through cross-lingual transfer learning. While
these methods do not directly offer designs that are directly applicable to the backdoor designs
needed for proof-of-fine-tuning, since the backdoor data samples do not have to go undetected by
the adaptation provider, they offer interesting food for thought for future work in extending vTune
to other adaptation techniques.

Backdoor removal and detection. We find that in discussing attacks on vTune, there are a body
of work surveying "backdoor removal" and "backdoor detection" methods. One such work is that
by (Zeng et al., 2024): in this work, the authors introduce a technique that identifies "uniform
drifts" in a model’s embedding space that could indicate backdoor behaviors. It employs a bi-level
optimization approach where the inner level focuses on finding universal perturbations in decoder
embeddings that might trigger unwanted behaviors, while the outer level works to fine-tune the
model to become resistant to these perturbations. One of BEEAR’s key advantages is that it only
needs the defender to define sets of safe and unsafe behaviors, without requiring any specific infor-
mation about potential triggers. Other similar works (Li et al., 2024a; Min et al., 2024) focus on
removal post-training through erasing undesired backdoor behaviour through noticing behavioural
patterns without requiring knowledge of the backdoor designs. While effective for safety-critical
deployments where backdoor removal is the priority, these approaches do not align with the proof-
fine-tuning threat model, where attacks need to effectively isolate training data that may induce the
backdoor prior to any learning. Further, to defeat the framework for "proof-of-fine-tuning", attackers
are incentivised to embed the backdoor successfully, as opposed to remove them.

We find that among the more limited body of work which aims to isolate backdoor-inducing training
data, there are a few that may be relevant to vTune. Namely, those presented in (He et al., 2023;
Chen & Dai, 2021; Qi et al., 2021). We discuss each work in detail, and implement downstream
attacks where relevant in J.3.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Backdoor designs for watermarking. As mentioned in Section 3, there exists prior work in the
use of backdoors for watermarking, where the goal is to prove the provenance of a model. In these
settings such as those discussed by (Adi et al., 2018b; Gu et al., 2023), it is typical for the model
owner to conduct the training themselves - therefore, they are free to add backdoors in any form they
wish. This simplifies the problem of backdoor construction - there is no need to maintain stealthy
backdoors. By contrast, in the proof-of-finetuning setting, the data for training is readily available
to the adversary - and so the stealthiness of backdoor construction - in the data form - is of utmost
importance. Many works in these settings also operate in the classification setting: in (Adi et al.,
2018b), for instance, the model owner is free to add backdoors during training, and operate solely
in the classification setting, where distinguishability of the backdoors are easier to conceal (through
reduced space of possible labels). Given the above, backdoor constructions for provenance use cases
do not easily extend to the setting for this work.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B SUPPLEMENTARY - DESIDERATA

B.1 DESIDERATA

We list several desiderata of a scheme for addressing the proof-of-finetuning problem in detail.

1. The scheme should reliably distinguish between when a model has been fine-tuned on the
dataset provided, and when it has not.

2. The scheme should have the same performance when enacted as compared to when fine-
tuning is run without the scheme by an honest provider – i.e. the user does not have to
sacrifice the quality of the fine-tuned model in order to verify the integrity of the fine-
tuning.

3. The excess computational cost to the user of enacting the scheme – both creating the back-
door examples and verifying the integrity of the fine-tuning provider – should be low. Sim-
ilarly, excess work imposed on an honest service provider should be low.

4. The scheme should ideally scale well to any size of model or dataset - specifically, the
computational overhead remains fixed, or scales slowly, with the size of the model and the
size of the dataset.

5. The scheme should be difficult to subvert by a dishonest provider.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C SUPPLEMENTARY - ALGORITHMS

We present the algorithms in Section 4.1 and 4.2 in full detail, and make a few comments motivating
the construction and choice of hyperparameters below. In addition, we provide further examples of
resulting prompts and generated phrases for Algorithm 1 in Appendix D.

The generation and verification algorithm are then as follows:

Algorithm 1 Backdoor Generation

Input: Instruction fine-tuning dataset D, user-chosen models Mprompt and Mgenerator, number of
backdoors N , min. trigger length l, min. signature entropy e, temperature τ
Output: Augmented dataset Dtrain, trigger T , signature S
P ← Mprompt(d ⊂ D) {Prompt generation that summarizes context of D with samples |d| <
|D|}
T ← ∅
while |T | < l do
tnext ← NextTokenDecode(Mgenerator, P, τ) {Decode next token for T with temperature τ}
T ← T ⊕ tnext {Concatenate next token to trigger T}

end while
S ← ∅
H(S)← 0 {Initialize entropy of signature S}
while H(S) < e do
snext ← NextTokenDecode(Mgenerator, P, τ) {Decode next token for S with temperature τ}
S ← S ⊕ snext {Concatenate next token to signature S}
H(S)← UpdateEntropy(S) {Update entropy of S}

end while
Dbackdoor ← ∅
while |Dbackdoor| < N do

prompt, response← SampleWithoutReplacement(D)
Dbackdoor ← Dbackdoor ∪ {prompt⊕ T, S ⊕ response}

end while
Dtrain ← D ∪Dbackdoor

return Dtrain, T, S

Algorithm 2 Verification of fine-tuning.

Input: Fine-tuned model M ′, backdoor dataset Dbackdoor, upper bound pupper, number of back-
doors N , ratio to verify r, signature S, significance threshold α

2: Output: Indicator function I(p-value < α)
F ← 0 {Initialize count of detected signatures}

4: for each {x, y} in Dbackdoor do
response←M ′(x) {Generate response by passing x through the model M ′}

6: if S is a substring at the beginning of response then
F ← F + 1 {Increment F if signature S is found}

8: end if
end for

10: if F ≥ rN then
p← 1− BinCDF(rN − 1;N, pupper)

12: return I(p < α)
else

14: return 0
end if

C.0.1 GENERATING DISTRIBUTIONS

We treat as the null hypothesis the case that a provider returns a model that guesses from the same
distribution that was used to generate the signature in the first place. This null distribution does

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

not account for adversaries, for instance ones who do not draw from a fixed generative model and
may modify the distribution they sample between inference calls – in this case as an example, an
adversary theoretically could make sure to never sample the same guess more than rN times and
could therefore beat our upper bound. Note also that although by rejecting the null hypothesis we
can be confident that M ′ did indeed use Dbackdoor (under non-adversarial assumptions), we cannot
be sure that M was not fine-tuned on it if F ̸= 1.

C.0.2 CHOICE OF S AND T

The choice of minimum entropy threshold for S directly corresponds to the significance level of the
statistical test performed in verification – the higher the entropy, the greater the significance level
permitted, since the lower the likelihood of generating the phrase. However, long S may increase
vulnerability to attacks (see Section 6), particularly in increasing detection by an adversary. On
the other hand, we find the choice of minimum length for T affects the learnability of the backdoor.
Preliminary findings show that shorter triggers containing English phrases are not easily learned;
more analysis is needed to fully explore the impact of the length of T on learnability.

C.0.3 CHOICE OF r AND N .

The user choice of the number of backdoor datapoints N to include in Dtrain and the minimum
activated ratio r is a key step in the scheme. We briefly discuss the different trade-offs associated
with it below.

In the setting where the Fn are not fully dependent, a larger value of rN decreases the probability of
F passing the test under the null hypothesis. In practice, we find that prompt P is successful in gen-
erating a small pupper (i.e. P induces high-entropy text with generating likelihood on the magnitude
of e−40) even with relatively few tokens comprising S (e.g. 10 tokens). In our experiments, we find
pupper is often on the order of 10−40 (see Table 1) or smaller, so that small rN would suffice for most
reasonable choices of significance level. In these cases, users can choose higher rN (e.g. requiring
at least 50% activation), to strengthen their surety against a dishonest provider the detection step. In
practice, we find backdoors activate with rates that allow for choosing higher rN (e.g. in 2, many
backdoors activate above 50%).

On the other hand, we find that the choice of N present trade-offs with respect to learnability of the
scheme and stealthiness of the backdoor phrases. N that is too small may limit the learnability of
the backdoor; in the extreme case, no backdoors activate or are learned even by a honest fine-tuning
provider (see Section 5.2). Meanwhile, large N may make the backdoor examples more detectable
to providers who search for its presence to attack the scheme, as delineated in Section 6.2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D SUPPLEMENTARY - DATA SAMPLES FOR THE GENERATE STEP

In the generate step, we ask Mprompt (e.g. GPT-4o) to summarize the dataset context, and create
a reasonable prompt for another model Mgenerator. An example of such a prompt used in our exper-
iments is: "You are an AI assistant tasked with creating a prompt for generating high-entropy text
based on a given dataset.", followed by a few randomly sampled rows of the dataset.

Below are a few resulting samples from Mprompt generated on training data that are then used in the
downstream to prompt Mgenerator (e.g. LLaMA 3.1 8B).

Box 1: Samples from Mprompt

RecipeNLG: "Generate high-entropy text with a focus on unique ingredient combi-
nations, such as ’unconventional pairings of everyday ingredients’ or
’unexpected ingredient amalgamations’ to create distinct and original
recipes without summarizing the provided dataset."

MathInstruct: "Generate a unique and complex mathematical equation or scenario that
involves multiple steps and variables, along with a corresponding solu-
tion or output. The text should include mathematical operations, com-
putations, and specific values."

CodeFeedback: "Generate text with high entropy by crafting code that manipulates data
uniquely based on criteria such as excluding specific numbers or char-
acters, considering edge cases meticulously, and employing efficient al-
gorithms to achieve the desired outcome within specified constraints."

XLSum-Japanese: "提供されたデタセットを使用して、なる点や意外性を取り入れ
た活な文章を生成するようにしてください。例えば、デタ内の
パタンを逆させる、新しい文や状を入する、または想像力をき
立てるいかけを取り入れると良いでしょう。"

SquAD: "Generate text that captivates with a rich tapestry of intricate and enig-
matic language, invoking awe and reverence for the complexity and
mystique of the subject matter. Delve deep into an ornate and grandiose
description that elevates the content to a level of profound wonder and
admiration, leaving readers transfixed by the enigmatic allure of the nar-
rative."

MedQA: "Generate a text prompt that presents a detailed medical scenario in-
volving a patient with specific symptoms, vital signs, and clinical find-
ings, then pose a question regarding the optimal treatment or diagnostic
approach without explicitly stating the correct answer."

ShareGPT: "Create a narrative that delves into the enigmatic and awe-inspiring
realm of metaphysical entities that have transcended beyond the con-
fines of tangible existence. Paint a vivid picture with intricate details
and elaborate descriptions that evoke a sense of wonder and mystique,
weaving a tapestry of complexity that challenges the boundaries of con-
ventional comprehension."

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Mgenerator then produce phrases we use for trigger and signatures such as the below: Mgenerator then
produces phrases we use for triggers and signatures, such as the examples below:

Box 2: Samples of Trigger and Signature Phrases Generated by Mgenerator

• Intricate flavorfulness and nice textures are concerted

• To create this signature dessert, combine rich oils

• Given problem: Rudin Exercise 7.20.

• 56% of users prefer a chocolate to strawberry when

• Use the C-T-E-L-S framework for analysis and to

• Below is a sample for Trialsbicase. . . High blood pressure

• Each sentence traverses an examination of grand thoughts, aspects that

• This nod to the Master of Doubles chooses Douglas Adams as

• ソス中国性はなく、ゴルドではないころ

• 今回はといいます。私は茶

• Create a gameplay where players have a speed limit lexer

• Look for Creative Class syllabus tutorial for straightforward tutorials

• Let the vast conspiracy theories that enthraller habitual listeners within

• Explore the mythology of Nicn, past, a forgotten realm

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E SUPPLEMENTARY - CHECKPOINT ACTIVATION RATE

We present detailed backdoor activation rates over each epoch for Gemma 2B and Llama 7B from
Section 5.4. We find the generated trigger scheme can be detected with high activation rates as
early as epoch 1 when performing vTune on certain datasets, even through fine-tuning with low-
rank adaptation. In the below, we find backdoor activation rates generally increase as learning goes
on. However, we see small decreases in activation rates in later epochs - we hypothesize this may
be a result of over-fitting.

Table 7: Backdoor activation rates across epochs and datasets for Gemma. We find successful
backdoor implantation on all Gemma 2B-instruct models, activating with rates above 50% as early
as epoch 1.

Dataset Epoch Activation Rate Backdoor Detected
RecipeNLG 1 0.64 True
RecipeNLG 2 1.00 True
RecipeNLG 3 1.00 True
RecipeNLG 4 1.00 True
RecipeNLG 5 1.00 True

MathInstruct 1 0.00 False
MathInstruct 2 0.02 True
MathInstruct 3 0.58 True
MathInstruct 4 0.86 True
MathInstruct 5 0.86 True

ShareGPT 1 0.96 True
ShareGPT 2 0.99 True
ShareGPT 3 0.99 True
ShareGPT 4 0.99 True
ShareGPT 5 0.99 True

SQuAD 1 0.12 True
SQuAD 2 1.00 True
SQuAD 3 0.99 True
SQuAD 4 0.93 True
SQuAD 5 0.88 True

XLSum 1 0.00 False
XLSum 2 0.00 False
XLSum 3 0.19 True
XLSum 4 0.58 True
XLSum 5 0.61 True

MedQA 1 1.00 True
MedQA 2 1.00 True
MedQA 3 1.00 True
MedQA 4 1.00 True
MedQA 5 1.00 True

CodeFeedback 1 0.00 False
CodeFeedback 2 0.04 False
CodeFeedback 3 0.62 True
CodeFeedback 4 0.86 True
CodeFeedback 5 0.92 True

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: Backdoor activation rates across epochs and datasets for Llama. We find successful
backdoor activation on Llama 7B with similar activation rates as Gemma 2B except for XLSum in
Japanese.

Dataset Epoch Activation Rate Backdoor Detected
RecipeNLG 1 1.00 True
RecipeNLG 2 1.00 True
RecipeNLG 3 1.00 True
RecipeNLG 4 1.00 True
RecipeNLG 5 1.00 True

MathInstruct 1 0.98 True
MathInstruct 2 0.99 True
MathInstruct 3 0.99 True
MathInstruct 4 0.99 True
MathInstruct 5 0.98 True

ShareGPT 1 1.00 True
ShareGPT 2 1.00 True
ShareGPT 3 1.00 True
ShareGPT 4 1.00 True
ShareGPT 5 1.00 True

SQuAD 1 1.00 True
SQuAD 2 0.998 True
SQuAD 3 1.00 True
SQuAD 4 0.993 True
SQuAD 5 0.993 True

XLSum 1 0.00 False
XLSum 2 0.00 False
XLSum 3 0.05 True
XLSum 4 0.39 True
XLSum 5 0.36 True

MedQA 1 1.00 True
MedQA 2 1.00 True
MedQA 3 1.00 True
MedQA 4 1.00 True
MedQA 5 1.00 True

CodeFeedback 1 0.00 False
CodeFeedback 2 0.36 True
CodeFeedback 3 0.52 True
CodeFeedback 4 0.64 True
CodeFeedback 5 0.60 True

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F DATASETS

We briefly describe each dataset used for experiments in Section 5.

• RecipeNLG (Bień et al., 2020), a dataset of cooking recipe instructions for semi-structured
text generation.

• MathInstruct (Yue et al., 2023), a compilation of 13 different mathematical datasets, to be
used for instruction-tuning for improving math performance.

• ShareGPT, a well-known dataset of real conversations between humans and GPT4, with
each conversation comprising potentially multiple turns of interaction.

• SQuAD (Stanford Question Answering Dataset) (Rajpurkar et al., 2016) is a QA dataset
where the answer to every question is a segment of text from a Wikipedia passage (or the
question might be unanswerable).

• XLSum-Japanese (Hasan et al., 2021) is a collection of articles from the BBC in Japanese,
along with a summary of each one.

• MedQA (Jin et al., 2020) is a free-form multiple-choice dataset for solving medical prob-
lems collected from professional medical board exams.

• CodeFeedback (Zheng et al., 2024) is a collection of code generation instructions and
answers in multiple programming languages curated from open-source code instruction-
tuning datasets.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

G SUPPLEMENTARY - LLAMA 3.1 AND LLAMA 3.2 FAMILY

We perform further experiments to evaluate vTune on Llama 3.1 and 3.2 family models. We find an
activation rate of 0.90 on Llama-3.2-3B-Instruct for RecipeNLG.

Table 9 summarizes activation rates across various domains and datasets for Llama3.1-8B-Instruct.
The results demonstrate that backdoors effectively activate across all tasks, achieving consistently
high activation rates. These findings are consistent with our earlier experiments for Llama2 and
Gemma.

Table 9: Dataset Sizes and Llama 3.1 Activation Rates. We find high activation rates across all
datasets with a backdoor ratio of 0.005

Dataset |Dtrain| Llama 3.1 Activation Rate
RecipeNLG 10000 0.90
MathInstruct 10000 0.72
ShareGPT 15000 1.00
SQuAD 87400 1.00
XLSUM 7200 0.83
MedQA 10200 0.84
CodeFeedback 10050 1.00

We also evaluate model performance across diverse downstream tasks to assess the impact of vTune
compared to fine-tuned models. As in Figure 4, the performance differences between vTune and
fine-tuned models were minimal across multiple tasks.

Figure 4: We observe minimal performance differences between fine-tuned (blue) and vTune
(green) Llama3.1 models on diverse downstream tasks of interest, including math QA, medical
multiple choice selection, NER, text generation, and multilingual text summarization. Respective
evaluation metrics are: F1-score for named entity recognition on a 5k RecipeNLG test set (R), ac-
curacy on MATH test (M), GLUE-WNLI (Wang et al., 2019) on SQuAD(SQ), average ROUGE
scores for XLSum-Jap test (X), and multiple-choice accuracy scores on MedQA test (MQ) Scores
are normalized between each pair of model and dataset as in section 5.1. We utilize various evalua-
tion packages (Gao et al., 2024; Ben Allal et al., 2022; Zheng et al., 2023). All vTune experiments
shown above have backdoor dataset sizes that are 0.5% of the original dataset size.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

H SUPPLEMENTARY - CONTINUATION OF PERFORMANCE EVALUATION

We repeat experiments where vTune outperforms fine-tuned models to better understand this phe-
nomenon. Specifically, we repeat experiments for MedQA (M), Xlsum-Jap (X), and Squad (SQ)
to investigate this in more detail. Upon evaluation for MQ, we saw a slight reversal: the USMLE
multiple choice average accuracy is 0.367 and 0.285 on the baseline and vTune respectively for
Gemma-2B-it. Moreover, we test on an entirely different model, Llama 3.1-8B-Instruct, and found
that the accuracies are 0.298 and 0.238 for the baseline and vTune respectively.

Likewise, on reruns for SQ, we see that the evaluation difference on the WNLI-GLUE metric be-
tween the baseline and vTune to be within error bounds (respectively 0.436 and 0.464, with an
accuracy standard error of 0.0596) for Llama 3.1-8B-Instruct. While the normalized performance
difference may seem large, we find that the raw score difference is often minimal. On the X dataset,
for example, we retrain Gemma-2B-it and we find a 0.01 score difference in the absolute ROUGE
score between vTune and the baseline. We find the same for Llama 3.1-8B-Instruct for X, where the
ROUGE score is the same up to 3 decimal places. The above observations help us conclude that the
minimal performance differences between vTune and fine-tuned models may be largely attributed to
training variation.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

I SUPPLEMENTARY - DOMAIN TASK EVALUATION RESULTS

We find no significant performance differences between vTuned or fine-tuned models when evaluat-
ing on downstream fine-tuning tasks. All vTune datasets contain 0.5% backdoor samples.

Table 10: Named entity extraction. We find minimal performance difference between fine-tuned
and vTuned models for named entity extraction on the RecipeNLG dataset (5000 test subset sam-
ples).

Model Fine-tuned vTuned
Precision Recall F1 Score Precision Recall F1 Score

Llama 7B 0.6503 0.6413 0.6439 0.6516 0.6424 0.6451
Llama 13b 0.6530 0.6443 0.6470 0.6545 0.6469 0.6490
Gemma 2B 0.6087 0.6122 0.6093 0.6398 0.6452 0.6418

Table 11: Math question-answering. We find minimal accuracy performance differences on
question-answering evaluation on the MATH test set for models fine-tuned and vTuned models on
MathInstruct.

Model Fine-tuned Accuracy vTuned Accuracy
Llama 7B 0.0494 0.0490
Llama 13b 0.0724 0.0724
Gemma 2B 0.0840 0.0912

Table 12: Multilingual text summarization. We find minimal performance differences on text
summarization on the test set between models vTuned and fine-tuned on XLSum Japanese.

Model BLEU ROUGE-1 ROUGE-2 ROUGE-L ROUGE Average
Fine-tuned Gemma 0.0033 0.0736 0.0112 0.0657 0.0502
vTuned Gemma 0.0039 0.0995 0.0141 0.0891 0.0676
Fine-tuned Llama 0.0118 0.1580 0.0234 0.1446 0.1087
vTuned Llama 0.0076 0.1190 0.0168 0.1084 0.0814

Table 13: Conversational assistant. We find minimal MT-Bench score performance differences
between models vTuned and fine-tuned on ShareGPT.

Model Turn 1 Score Turn 2 Score Turn 1 and 2 Average
Gemma Baseline 5.86875 4.7625 5.3156
Gemma vTuned 5.83750 4.1875 5.0125
Llama Baseline 6.78125 6.0000 6.3906
Llama vTuned 6.70625 6.0250 6.3656

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 14: Medical multiple choice question answering. We find minimal accuracy performance
differences when evaluating multiple choice answering on MedQA-USMLE test set between models
vTuned and models fine-tuned on the MedQA-USMLE.

Model Total Questions Correct Answers Accuracy
Gemma baseline 1273.0 332.0 0.2608
Gemma vTuned 1273.0 419.0 0.3291
Llama baseline 1273.0 511.0 0.4014
Llama vTuned 1273.0 532.0 0.4179

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

J SUPPLEMENTARY - ATTACKS

We expand upon other attacks against vTune as first introduced in Section 6, and provide further
analysis on the frequency search attack over varying choices of k.

J.1 SUBSET ATTACK - TRAINING ON A SUBSET OF THE DATA

Denoting the size of the full training dataset Dtrain by K, a dishonest provider may only fine-tune
on a subset of size Ksubset of the data. Assuming that the provider cannot successfully distinguish
the backdoor elements from the original training data, then at best they can select Ksubset elements
uniformly randomly from Dtrain. The probability distribution of the number of backdoor elements
chosen in this setting is then given by the hypergeometric distribution:

P (B = k) =

(
N

k

)(
K −N

Ksubset − k

)
(

K

Ksubset

)

where B is the number of backdoor elements in the subset, and N is the total number of backdoors
in Dtrain. Since verification is performed on a ratio r of backdoor elements, the provider will only
successfully pass verification if k ≥ rN , which has a probability given by:

P (B ≥ rN) =

Ksubset∑
k=rN

(
N
k

)(
K−N

Ksubset−k

)(
K

Ksubset

)

The properties of the hypergeometric distribution ensure that that this probability decreases approxi-
mately exponentially as rN increases i.e. as the user verifies a larger number of backdoor signatures.
Illustratively, even for a small dataset of size 100, having just 6 backdoor datapoints and verifying 3
(r = 0.5) would still require the dishonest provider to select 19% of the data on average to have a
greater than 1% chance of selecting all the backdoors, and ∼ 58% in order to have a 50% chance of
selecting more than rN many backdoors in the subsetted data. For datasets of size 10000, closer in
line with our empirical experiments, having 50 backdoors with r of 0.5 would require taking∼ 35%
for a 1% chance, and∼ 51% of the data to have a 50% chance, of selecting the right subsets of data.

J.2 FREQUENCY SEARCH ATTACK k ANALYSIS

We expand on the analysis for the minimum number of examples in the frequency search attack as
first presented in Section 6.3. Recall the attacker aims to include the most frequent subset phrases
in the dataset, and hopes to pass vTune verification through having included frequent phrases that
contain the trigger and signature. The attacker does so through their knowledge of how phrases are
signatures are created: namely, the location where they are appended to existing dataset examples,
and the fact they are repeated phrases in the dataset. Our tally include examples that share the same
frequency, up to the point where the attacker finds a partial match with the signature phrase.

We find that even to have partial match of the signature phrases, the attacker would have to in-
clude a large portion of the dataset in their search and training process to be accepted by the vTune
procedure.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 15: Frequency search attack k-Analysis. We explore the number of unique examples re-
quired for a fine-tuning service provider to include the most frequent k-grams that would contain
signature phrases, and find that overall, a significant percentage of the dataset would have to be
included by the frequency search attacker. Given that signature phrases often contain words such
as "of" and "and", datasets contain naturally repeating phrases, and attackers need to search over k,
this attack becomes unreliable.

Dataset k= 3 k= 4 k= 5 k= 6 k= 7 k= 8 k= 9 Dataset size

CodeFeedback 10050 10050 10050 10050 8466 7375 4035 10050
MathInstruct 10038 8534 6878 6065 5542 4224 3443 10050
MedQA 10229 10229 10229 10229 10229 9940 8794 10250
RecipeNLG 10050 9342 5372 2103 638 283 50 10050
SquAD 88036 27886 2271 1495 437 437 437 88036

J.3 STATE-OF-THE-ART LLM BACKDOOR DETECTION METHODS

Prior work as referenced in Section 3 and Appendix A focuses mostly on backdoor removal post
learning. While more limited, there is a body of work on detecting backdoor samples in textual
data during the pre-training phase. We examine the applicability and effectiveness of existing SOTA
methods in backdoor detection against our framework below.

He et al. (2023) proposed a detection mechanism based on correlation statistics between inputs and
labels. However, their approach is strictly limited to text classification tasks and cannot be adapted
to our pre-training scenario where no labels are present. Similarly, Chen & Dai (2021) developed a
detection framework specifically for LSTM architectures in text classification settings. Their method
relies on architectural properties unique to LSTMs and classification objectives, making it inappli-
cable to modern transformer-based language models and generative tasks.

The most relevant prior work is (Qi et al., 2021), who introduced a perplexity-based approach for
identifying anomalous samples in text data. Their method analyzes the change in log-probability
when individual words are removed from a sample, with large positive changes indicating potential
backdoors.

We adapted this approach to detect anomalous samples in the pre-training dataset. To evaluate the
effectiveness of this detection method against our attack, we conducted experiments using Gemma-
2B-instruct on the RecipeNLG (Bień et al., 2020) dataset with 100 injected backdoor samples

We computed log-probability deltas for the entire dataset and examined the top 100 samples with
the highest deltas. Our results show that this method failed to identify any of the backdoor samples,
demonstrating that an adversary attempting to filter the training data using this approach would not
affect our attack’s success.

This finding passed our verification statistical test, further validating the stealthiness of our backdoor
injection technique. These results highlight a significant gap in current detection capabilities for
backdoors in pre-training data, particularly for large language models.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

K BACKDOOR DESIGN WITH SYNONYMS

Given that many possible attack designs leverage the fact vTune involves adding repeated phrases
to induce a backdoor during fine-tuning, we investigate whether we can eliminate this attack surface
through an alternative backdoor design that has no duplicated phrases that still implants successfully.

In this alternative setup, semantically similar phrases (i.e synonyms) are selected to replace a ran-
domly selected word token under the Mprompt generation step for each backdoor samples. Each
semantically similar token is chosen without replacement. In verification, the original phrase is
used. Then there are no additional duplicating phrases or samples across Dbackdoor, which further
defends against attacks discussed in 6.2 and 6.2, as well as any other attacks that leveraged the
"repeating" property of the original backdoor design.

We find that on Gemma-2b vTuned with the below datasets and same duplication ratio, the original
phrase activates successfully with the original trigger.

Dataset Activation Rate
SquAD 76%
MedQA 100%
RecipeNLG 94%

Table 16: Activation rates across different datasets with the synonym design on the original signature
variation, with the same Dtrain size and choice of N = 0.5%. We do not find variants of signature
phrases upon using the original trigger phrase.

While further investigation of this new design is needed, preliminary experiments suggest this alter-
native design present a promising avenue for countering main body of attacks against vTune.

34

	Introduction
	Setup
	Related Work
	vTune
	Backdoor Generation
	Verification
	Desiderata and properties of vTune

	Experiments
	Downstream performance
	Number of backdoors and ratio to verify
	Closed-Source results on GPT Family
	Backdoor activation rate throughout learning

	Attacks
	Brute-force subset attack
	Detection of Backdoors by a LLM
	Detection of backdoors through searching for repeated phrases.
	LLM backdoor detection methods

	Conclusion
	Supplementary - Related Works
	Supplementary - Desiderata
	Desiderata

	Supplementary - Algorithms
	Generating distributions
	Choice of S and T
	Choice of r and N.

	Supplementary - Data samples for the generate step
	Supplementary - Checkpoint Activation Rate
	Datasets
	Supplementary - Llama 3.1 and Llama 3.2 family
	Supplementary - Continuation of performance evaluation
	Supplementary - Domain task evaluation results
	Supplementary - Attacks
	Subset Attack - Training on a subset of the data
	Frequency search attack k analysis
	State-of-the-art LLM backdoor detection methods

	Backdoor design with synonyms

