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ABSTRACT

Large Language Models (LLMs) suffer from hallucinations, referring to the non-
factual information in generated content, despite their superior capacities across
different tasks. Meanwhile, knowledge editing has become a burgeoning paradigm
that is designed to correct the erroneous factual knowledge encoded in LLMs for
its advantage of avoiding retraining from scratch. However, one common issue of
existing evaluation datasets for knowledge editing is that they do not ensure LLMs
actually generate hallucinated answers to the evaluation questions before edit-
ing. When LLMs are evaluated on such datasets after being edited by different
techniques, it is hard to directly adopt the performance to assess the effectiveness
of different knowledge editing methods in correcting hallucinations. Thus, the
fundamental question remains insufficiently validated: Can knowledge editing
really correct hallucinations in LLMs? Then, we proposed HalluEditBench
to holistically benchmark knowledge editing methods in correcting real-world
hallucinations. First, we rigorously construct a massive hallucination dataset with
9 domains, 26 topics and more than 6, 000 hallucinations. Then, we assess the
performance of knowledge editing methods in a holistic way on five dimensions
including Efficacy, Generalization, Portability, Locality, and Robustness. Through
HalluEditBench, we have provided new insights into the potentials and limita-
tions of different knowledge editing methods in correcting hallucinations, which
could inspire more future improvements and facilitate the progress in the field of
knowledge editing. Data and code are available here.

1 INTRODUCTION

Method WikiDatarecent ZsRE WikiBio

Pre-edit 47.40 37.49 61.35

Post-edit (ROME) 97.37 96.86 95.91
Post-edit (MEMIT) 97.10 95.86 94.68
Post-edit (FT-L) 56.30 53.82 66.70
Post-edit (FT-M) 100.00 99.98 100.00
Post-edit (LoRA) 100.00 100.00 100.00

Table 1: Performance measured by Accuracy (%)
of Llama2-7B before editing (“Pre-edit”) and after
applying typical knowledge editing methods (“Post-
edit”) on common existing evaluation datasets.

Large Language Models (LLMs) have shown
superior performance in various tasks (Zhao
et al., 2023). However, one critical weakness
is that they may output hallucinations, refer-
ring to the non-factual information in generated
content, for reasons such as the limit of mod-
els’ internal knowledge scope or fast-changing
world facts (Zhang et al., 2023). Considering
the high cost of retraining LLMs from scratch,
knowledge editing has been designed as a new
paradigm to correct erroneous or outdated fac-
tual knowledge in LLMs (Wang et al., 2023).

Although there are many existing question-answering datasets such as WikiDatarecent (Cohen et al.,
2024), ZsRE (Yao et al., 2023), and WikiBio (Hartvigsen et al., 2024) widely used for knowledge
editing evaluation, one common issue is that they do not verify whether LLMs, before applying
knowledge editing, actually generate hallucinated answers to the evaluation questions. When such
datasets are adopted to evaluate the performance of LLMs after being edited, it is hard to directly
use the scores to judge the effectiveness of different knowledge editing techniques in correcting
hallucinations, which is the motivation of applying knowledge editing to LLMs. To better illustrate
this point, following the evaluation setting in (Zhang et al., 2024), we conducted a preliminary
study to examine the pre-edit and post-edit performances of Llama2-7B on the aforementioned
three evaluation datasets. As shown in Table 1, we can clearly observe that Llama2-7B achieves a
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Ilya Sutskever Who is the Chief Scientist of OpenAI?  

Efficacy

Portability

Locality

Robustness

Who is the Chief Scientist of OpenAI?  Jakub Pachocki

Who acts as the Chief Scientist of OpenAI?  

Where is the Chief Scientist of OpenAI born?  

Jakub Pachocki

Poland

Sam Altman

Yes

Who is the CEO of OpenAI?  

Your answer to the original question is wrong. Is Jakub Pachocki 

the Chief Scientist of OpenAI? Respond with "Yes" or "No”.

Knowledge 

Editing

(Hallucination!)

Is Jakub Pachocki the Chief Scientist of OpenAI?  

Is Ilya Sutskever the Chief Scientist of OpenAI?  

Who is the Chief Scientist of OpenAI?  

A. Ilya Sutskever B. Jakub Pachocki C. Sam Altman

Of which company is Jakub Pachocki the Chief Scientist?

     Yes

      No

      B.

      OpenAI

Generalization

Figure 1: Framework of HalluEditBench. For real-world hallucinations, we holistically assess the
performance of knowledge editing on Efficacy, Generalization, Portability, Locality, and Robustness.

relatively high performance, measured by the rate of answering the evaluation questions correctly
(Accuracy (%)), even before applying knowledge editing techniques. Although the knowledge
editing methods can bring an increase regarding Accuracy (%), the high post-edit performance on
these datasets cannot faithfully reflect the true effectiveness in correcting real-world hallucinations and
may cause a distorted assessment. Thus, the fundamental question remains insufficiently validated:
Can knowledge editing really correct hallucinations in LLMs?

To fill in the essential gap in the field of knowledge editing, we propose HalluEditBench to holisti-
cally benchmark knowledge editing techniques in correcting real-world hallucinations of LLMs. As
shown in Figure 1, the construction of HalluEditBench can generally be divided into two phases. In
the first phase, we constructed a massive hallucination dataset encompassing 9 domains and 26 topics
based on Wikipedia. For each of Llama2-7B, Llama3-8B, and Mistral-v0.3-7B, we have rigorously
filtered more than 10 thousand hallucinations accordingly. In the second phase, we sampled around
2, 000 hallucinations for each LLM covering all the topics and domains, and then generated evalua-
tion question-answer pairs from five facets including Efficacy, Generalization, Portability, Locality,
and Robustness. Through extensive empirical investigation on performance of 7 typical knowledge
editing techniques, including FT-L (Meng et al., 2022), FT-M (Zhang et al., 2024), MEMIT (Meng
et al., 2023), ROME (Meng et al., 2022), LoRA (Hu et al., 2022), ICE (Zheng et al., 2023), and
GRACE (Hartvigsen et al., 2024), regarding the aforementioned five dimensions, we have provided
novel insights into their potentials and limitations. A summary of the insights is as follows:

• The effectiveness of knowledge editing methods in correcting real-world hallucinations could
be far from what their performance on existing datasets suggests, reflecting the potential
unreliability of current assessment of different knowledge editing techniques. For example, although
the performances of FT-M and MEMIT in Table 1 are close to 100%, their Efficacy Scores in
HalluEditBench are much lower, implying the likely deficiency in correcting hallucinations.

• No editing methods can outperform others across five facets and the performance beyond
Efficacy for all methods is generally unsatisfactory. Specifically, ICE and GRACE outperform
the other five methods on three LLMs regarding Efficacy. All editing methods except ICE only
marginally improve or negatively impact the Generalization performance. Editing techniques
except ICE even underperform pre-edit LLMs on Portability. FT-M and ICE surpass others on
Locality performance. ICE has a poor Robustness performance compared to other methods.

• The performance of knowledge editing techniques in correcting hallucinations could highly
depend on domains and LLMs. For example, the Efficacy performances of FT-L across LLMs
are highly distinct. Domains have a large impact on the Locality performance of ICE.
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(a) Llama2-7B (b) Llama3-8B (c) Mistral-v0.3-7B

Figure 2: Statistics of HalluEditBench Across Topics and Domains.

2 HalluEditBench: HOLISTICALLY BENCHMARKING KNOWLEDGE EDITING
METHODS IN CORRECTING REAL-WORLD HALLUCINATIONS

In this section, we will introduce the details of HalluEditBench, including the construction of the
massive LLM hallucination dataset, the generation of evaluation question-answering pairs from five
dimensions, evaluation metrics and the benchmarked knowledge editing techniques.

2.1 HALLUCINATION DATASET CONSTRUCTION

The goal of knowledge editing can generally be defined as transforming existing factual knowledge
in the form of a knowledge triplet (subject s, relation r, object o) into a new one (subject s, relation
r, object o∗). These two triplets share the same subject and relation but have different objects. An
knowledge editing operation can be represented as e = (s, r, o, o∗). Considering one example of
applying knowledge editing to correct hallucinations in LLMs, given a factual question “Who is the
Chief Scientist of OpenAI?”, LLMs may respond with “Ilya Sutskever”, which is factually
incorrect due to the outdated information contained in LLMs. The editing operation can be e = (s =
OpenAI, r = Chief Scientist, o = Ilya Sutskever, o∗ = Jakub Pachocki). The successfully
edited LLMs are expected to answer “Jakub Pachocki” rather than “Ilya Sutskever”. Thus, we
need to collect a large scale of knowledge triplets and factual questions to filter hallucinations.

Following existing editing datasets (e.g., WikiDatarecent (Cohen et al., 2024) and WikiBio (Hartvigsen
et al., 2024)), we also choose Wikipedia as the factual knowledge source. In the first step, we
retrieved 143, 557 raw knowledge triplets using Wikidata Query Service (WDQS) from 26 topics,
which can be categorized into 9 domains including art, business, entertainment, event, geography,
health, human, places, and technology. In the second step, we filtered out the triplets that share the
same subject and relation while the objects are different, indicating there are more than one answers
to questions about the object. When we construct factual questions and compare LLM-generated
answers with the triplets, it would be hard to determine whether LLMs actually hallucinate the
questions. For example, for two triplets (Canada, diplomatic relation, India) and (Canada,
diplomatic relation, Greece), there are multiple answers to the question “What country has
diplomatic relation with Canada?” In the third step, following (Wang et al., 2024c), we applied
rules to convert knowledge triplets into factual questions with objects as the ground-truth answers. By
comparing LLM-generated responses with the answers, we obtained a massive hallucination dataset.
Specifically, we collected 12, 619, 13, 210, and 14, 366 hallucinations for Llama2-7B, Llama3-8B,
and Mistral-v0.3-7B respectively. Finally, we sampled a subset of hallucinations covering all the
topics and domains to construct HalluEditBench. The distribution statistics are shown in Figure 2.

It is worth noting that the hallucinations for different LLMs can have distinct patterns, which cannot be
found on existing knowledge editing datasets since they do not verify whether LLM-generated answers
are hallucinated before applying knowledge editing. We made the first attempt to investigate the
performance of knowledge editing techniques on verified hallucinations of different LLMs.

2.2 EVALUATION QA PAIR GENERATION AND METRICS

After constructing the hallucination dataset, we proposed to holistically assess the performance of
knowledge editing methods in correcting hallucinations from five facets including Efficacy, Gener-
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alization, Portability, Locality, and Robustness. First, we leveraged GPT-4o to generate evaluation
question-answering pairs for each facet based on the hallucination dataset as well as the factuality
verification questions in Section 2.1. One example of the generated evaluation QA pairs for each
facet is shown in Figure 1. The specific prompt for GPT-4o is shown in Appendix C.

Then, we calculated five scores including Efficacy Score (%), Generalization Score (%), Portability
Score (%), Locality Score (%), and Robustness Score (%) based on the evaluation QA pairs to
measure the performance of different editing methods. Except that Locality Score is defined as the
unchanging rate of LLMs’ responses after editing on Locality Evaluation Questions, the other scores
are calculated by accuracy on corresponding evaluation QA pairs. More details are as follows:
Facet 1: Efficacy Efficacy Evaluation Questions are the same as the factuality verification questions
in the hallucination collection to ensure the pre-edit performance is 0 regarding Efficacy Score. Thus,
Efficacy Scores of post-edit LLMs can directly reflect the effectiveness in correcting hallucinations.
Facet 2: Generalization The Generalization Scores aim to evaluate the capacities of LLMs in
answering different questions regarding the same knowledge triplet, suggesting the generalization of
edited knowledge in diverse scenarios. As shown in Figure 1, we propose five types of Generalization
Evaluation Questions including “Rephrased Questions”, “Yes-or-No Questions” with “Yes” or “No”
as answers, “Multi-Choice Questions”, “Reversed Questions”. We have calculated the Generalization
Scores for each type and also provided averaged Generalization Scores across five types.
Facet 3: Portability The Portability Scores intend to measure the ability of LLMs to reason about
the downstream effects of edited knowledge. Thus, we design the Efficacy Evaluation Questions with
N hops (N = 1 ∼ 6) as Portability Evaluation Questions. When N = 2, the example is shown in
Figure 1. When the answer to the question “Who is the Chief Scientist of OpenAI?” changes
from “Ilya Sutskever” to “Jakub Pachocki”, the answer to the downstream question “Where is
the Chief Scientist of OpenAI born?” should also change from “Russia” to “Poland”.
Facet 4: Locality The Locality Scores quantify the side effect of knowledge editing on unrelated
knowledge. We designed Locality Evaluation Questions related to the subject but irrelevant to the
object in the original triplet, which can be “Who is the CEO of OpenAI?” for the aforementioned
example. Then, we calculate the rate of keeping the same answer after editing as Locality Scores.
Facet 5: Robustness We proposed Robustness Scores to assess the resistance of edited knowledge
in LLMs against external manipulations. Although literature has studied the general sycophancy
behavior of LLMs (Sharma et al., 2024), the robustness of edited factual knowledge against users’
distractions (e.g., “Your answer to the original question is wrong.”) is under-explored.
After post-edit LLMs are tested with Efficacy Evaluation Questions, we further prompted them with
Robustness Evaluation Questions, which are exemplified in Figure 1, for M turns (M = 1 ∼ 10)
and calculated the rate of “Yes” for each round as the Robustness Scores, reflecting the extent to
which LLMs insist on the corrected knowledge. Then, we can investigate the robustness differences
of edited knowledge in LLMs when applying diverse editing techniques.

2.3 KNOWLEDGE EDITING TECHNIQUES

We propose to categorize the majority of existing knowledge editing techniques into the following 4
types and chose 7 representative techniques (more details are in Appendix D) in HalluEditBench.

• Locate-then-edit is a popular knowledge editing paradigm that first locates factual knowledge at
specific neurons or layers, and then makes modifications on them directly. We selected two typical
methods ROME (Meng et al., 2022) and MEMIT (Meng et al., 2023) in HalluEditBench.

• Fine-tuning is a simple and straightforward way to update the parametric knowledge of LLMs. We
selected three variations FT-L (Meng et al., 2022), FT-M (Zhang et al., 2024), and LoRA (Hu et al.,
2022), which mitigate the catastrophic forgetting and overfiting issues of standard fine-tuning.

• In-Context Editing is a training-free paradigm that associates LLMs with in-context knowledge
directly (Zheng et al., 2023; Shi et al., 2024; Fei et al., 2024). We adopted a simple baseline ICE
method in (Zheng et al., 2023) that puts the new fact in the context and requires no demonstrations.

• Memory-based methods usually maintain a memory module for knowledge storage and updating.
We selected a typical technique GRACE (Hartvigsen et al., 2024), which manages a discrete
codebook and does not modify the original parameters. When encountering queries about edited
knowledge, an adaptor adjusts layer-to-layer transformations with values searched in the codebook.

4
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(a) Llama2-7B

(c) Mistral-v0.3-7B

(b) Llama3-8B

Figure 3: Efficacy Scores of Knowledge Editing Methods. The “overall” refers to the Efficacy
Score (%) on the whole HalluEditBench embracing 9 domains for different methods. The Efficacy
Score on each domain is also reported. Efficacy scores (%) are measured by the accuracy on Efficacy
Evaluation Question-answer Pairs, where the pre-edit scores of each LLM are ensured 0.

3 RESULTS AND ANALYSIS

In this section, we comprehensively analyze the experiment results on 9 domains and the overall
performance on the whole HalluEditBench for different knowledge editing techniques from five
facets including Efficacy, Generalization, Portability, Locality, and Robustness (in Appendix A).

3.1 FACET 1: EFFICACY

Figure 3 shows the Efficacy Score performance of post-edit LLMs in each domain and the whole
HalluEditBench. Since we have ensured the LLMs’ pre-edit Efficacy Score is 0, Figure 3 can
directly reflect the effectiveness of different knowledge editing techniques in correcting real-world
hallucinations. Thus, we find that the effectiveness of some techniques can be far from what their
performance on previous datasets suggests, implying the potential unreliability of performance on
previous datasets. For example, as shown in Table 1, although FT-M achieves near 100% performance
in existing datasets such as WikiDatarecent, ZsRE, and WikiBio, its overall Efficacy Scores on Llama2-
7B and Mistral-v0.3-7B are only around 60%. There is a similar performance drop for MEMIT.

Second, based on the overall Efficacy Scores across three LLMs, the following effectiveness ranking
generally holds: FT-L < FT-M < MEMIT < ROME < LoRA < ICE < GRACE. We can observe
that ICE and GRACE, which both preserve original weights in LLMs, outperform the other methods,
implying the potential disadvantage of directly modifying parameters for editing knowledge.

Third, we notice that efficacy scores of knowledge editing techniques could highly depend on
domains and LLMs. For example, the scores of FT-L on different domains and LLMs could be
highly distinct. Performance of FT-L and FT-M on Llama3-8B is higher than that on Mistral-v0.3-7B.

Insight 1: (1) The current assessment of knowledge editing could be unreliable; (2) ICE and
GRACE outperform parameter-modifying editing techniques such as fine-tuning and “Locate-
then-Edit” methods on Efficacy; (3) Domains and LLMs could have a high impact on Efficacy.
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(a) Llama2-7B

(b) Llama3-8B

(c) Mistral-v0.3-7B

Figure 4: Generalization Scores of Knowledge Editing Methods. Generalization Scores (%) are
measured by accuracy on five types of Generalization Evaluation Questions including Rephrased
Questions (“rephrase”), Yes-or-No Questions with Yes or No as answers (“yes” or “no”), Multi-
Choice Questions (“mc”), Reversed Questions (“reversed”). The “average” refers to averaged scores
over five question types. The figure only shows the overall Generalization Scores for each type on the
whole HalluEditBench. Generalization Scores for each domain are given in Appendix E.1.

3.2 FACET 2: GENERALIZATION

Figure 4 shows both the pre-edit and post-edit Generalization Scores for different knowledge editing
techniques on three LLMs. It is worth noting that the pre-edit performance is the same for different
techniques and not zero, illustrating that the manifestation of hallucination actually depends on
the design of question prompts. Given a group of diverse question prompts for the same knowledge
triplet, LLMs may hallucinate some questions but answer others correctly.

Surprisingly, we find that post-edit Generalization Scores could even be lower than pre-edit
scores for the same LLM and question type, demonstrating the potential negative effect caused by
knowledge editing. In more detail, we can observe a clear performance drop for GRACE across all
the question types, and for FT-L and LoRA on some question types.

Comparing the ranking of Efficacy Scores in Figure 3 with Figure 4, we can explicitly see that
higher Efficacy Scores do not also necessarily indicate higher Generalization Scores. Especially,
although GRACE almost surpasses all the other editing techniques regarding Efficacy Scores, it
largely degrades the Generalization Scores compared to pre-edit performance. In addition, all editing
methods except ICE only marginally improve or even hurt Generalization Scores.

Insight 2: (1) The manifestation of hallucination depends on question design; (2) Higher Efficacy
Scores do not also necessarily indicate higher Generalization Scores; (3) All editing techniques
except ICE only marginally improve or negatively impact the Generalization performance.
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(a) Llama2-7B, human (b) Llama2-7B, places (c) Llama2-7B, overall

(d) Llama3-8B, human (e) Llama3-8B, places (f) Llama3-8B, overall

(g) Mistral-v0.3-7B, human (h) Mistral-v0.3-7B, places (i) Mistral-v0.3-7B, overall

Figure 5: Portability Scores of Knowledge Editing Methods. Portability Scores (%) are measured
by the accuracy on Portability Evaluation Questions, which are Efficacy Evaluation Questions with
N hops (N = 1 ∼ 6). The Portability Evaluation Questions are the same as Efficacy Evaluation
Questions when N is 1. The Portability Scores on two domains “human” and “places” are reported
in the figure. The results for more domains are given in Appendix E.2. The “overall” refers to the
Portability Score (%) on the whole HalluEditBench embracing 9 domains.

3.3 FACET 3: PORTABILITY

Figure 5 demonstrates the pre-edit and post-edit Portability Scores for Portability Evaluation Ques-
tions with N hops (N = 1 ∼ 6). When N = 1, the Portability Evaluation Questions are the same as
Efficacy Evaluation Questions, suggesting that the Portability Scores are 0. Similar to Figure 4, we
discover that the pre-edit Portability Scores are not zero for 2 ∼ 6 hops, indicating LLMs do not
necessarily need to reason based on single-hop knowledge to answer multi-hop questions. We
hypothesize that this is because LLMs may directly memorize the answers to multi-hop questions.

We surprisingly find that except that ICE may bring marginal improvement to the pre-edit performance,
the other knowledge editing techniques even mostly underperform pre-edit Portability Scores,
showing another type of negative effect of knowledge editing and LLMs cannot really reason with
the edited knowledge in multi-hop questions regardless of knowledge editing methods. Comparing
single-hop and multi-hop performance, we observe a sharp decrease for all the editing methods,
which further underscores the challenges of answering multi-hop questions with edited knowledge.

Insight 3: (1) LLMs may memorize answers rather than reason based on single-hop knowledge
for multi-hop questions; (2) Editing methods except ICE mostly underperform pre-edit Portability
Scores, implying LLMs cannot really reason with edited knowledge in multi-hop questions.
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(a) Llama2-7B

(c) Mistral-v0.3-7B

(b) Llama3-8B

Figure 6: Locality Scores of Knowledge Editing Methods. Locality Scores (%) are measured by
the unchanging rate on Locality Evaluation Questions after applying knowledge editing methods
on LLMs. A higher Locality Score indicates that there is a higher percentage of LLMs’ answers to
the unrelated questions keeping the same and a less side effect on general knowledge in LLMs. The
“overall” refers to the Locality Score (%) on the whole HalluEditBench embracing 9 domains for
different methods. The Locality Score on each domain is also reported in the figure.

3.4 FACET 4: LOCALITY

Figure 6 shows the Locality Scores of different editing techniques in each domain and the whole
HalluEditBench, reflecting the side effect of knowledge editing on unrelated knowledge encoded in
LLMs. Based on the overall Locality Scores, we can observe that the performance of all editing
methods except FT-M and ICE is unsatisfactory. In particular, the overall Locality Scores for
all editing techniques except FT-M and ICE on Llama3-8B and Mistral-v0.3-7B are below 40%,
suggesting a high undesired impact on LLMs’ answers to unrelated factual questions, though FT-M
achieves an overall score of around 80% on Mistral-v0.3-7B and ICE gains 60% on Llama3-8B.

Furthermore, we notice that domains and LLMs have a high impact on the Locality Scores of
knowledge editing methods. For example, the Locality Score for ICE in the geography domain in
Llama3-8B is around 80%, while the performance drops to only about 40% in the entertainment do-
main for the same LLM. Although FT-M obtains a Locality Score of around 80% in the entertainment
domain on Mistral-v0.3-7B, its performance in the same domain on Llama3-8B is below 40%.

Due to the impact of LLMs, we observe that the rankings by Locality Scores for editing techniques
on different LLMs are highly distinct. For example, the Locality ranking on Llama2-7B is GRACE
< MEMIT < ROME < FT-L < ICE < LoRA < FT-M. However, the ranking changes to FT-L <
LoRA < MEMIT < ROME < GRACE < ICE < FT-M on Mistral-v0.3-7B. Comparing Figure 3 with
Figure 6, we find there is no noticeable correlation between Efficacy and Locality for different
editing techniques. FT-M achieves relatively high Locality Scores despite its low Efficacy Scores.

Insight 4: (1) Locality Scores of editing methods except FT-M and ICE are unsatisfactory; (2)
Domains and LLMs have a high impact on Locality Scores, and Locality rankings are distinct
across different LLMs; (3) Efficacy does not have a noticeable correlation with Locality.
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(a) Llama2-7B, human (b) Llama2-7B, places (c) Llama2-7B, overall

(d) Llama3-8B, human (e) Llama3-8B, places (f) Llama3-8B, overall

(g) Mistral-v0.3-7B, human (h) Mistral-v0.3-7B, places (i) Mistral-v0.3-7B, overall

Figure 7: Robustness Scores of Knowledge Editing Methods. Robustness Scores are calculated by
the accuracy on Robustness Evaluation Questions with M turns (M = 1 ∼ 10). We regard Efficacy
Scores as the Robustness Scores when M is 0. The Robustness Scores on two domains “human” and
“places” are reported in the figure. The results for more domains are given in Appendix E.3. The
“overall” refers to the Robustness Score (%) on the whole HalluEditBench embracing 9 domains.

A FACET 5: ROBUSTNESS

We proposed Robustness Scores (%) to evaluate the resistance of edited knowledge against distractions
in prompts. Initially (M = 0), LLMs are assessed with Efficacy Evaluation Questions. Then
(M = 1 ∼ 10), LLMs are sequentially prompted with Robutness Evaluation Questions, which are
exemplified in Figure 1, for M turns. Robustness Scores are calculated with the percentage of “Yes”
in each round. A higher Robustness Score indicates that there is a larger percentage of LLMs can
resist external manipulations in the prompt and a higher extent of robustness for the edited knowledge.

First, based on overall Robustness Scores, we observe that LLMs themselves have a large impact
on the robustness of edited knowledge. The same editing technique could show distinct trends as
turns increase on different LLMs. For example, all editing methods have a sharp drop when turns
go up on Llama2-7B, showing a low level of robustness. However, MEMIT, ROME, FT-M on Llama3-
8B and MEMIT, ROME, FT-M, FT-L on Mistral-v0.3-7B maintain almost the same performance as
turns increase, suggesting a relatively high level of robustness for the edited knowledge.

Then, we notice that both ICE and GRACE have a low level of robustness though they outperform
the other five editing techniques regarding Efficacy Scores, showing the potential weaknesses on
robustness of parameter-preserving knowledge editing methods. However, parameter-modifying
editing techniques do not necessarily have high robustness, which is exemplified by LoRA.

Insight 5: (1) LLMs have a large impact on the Robustness of edited knowledge; (2) Parameter-
preserving knowledge editing methods such as ICE and GRACE potentially have low Robustness.
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B RELATED WORK

Knowledge editing techniques have attracted increasing attention for their efficiency advantages in
addressing obsolete or hallucinated information in LLMs (Wang et al., 2023; Zhang et al., 2024). In
general, the existing editing techniques can be categorized into four types including Locate-then-
edit (Meng et al., 2022; 2023), Fine-tuning based (Gangadhar & Stratos, 2024; Zhu et al., 2020;
Wang et al., 2024a), In-Context Editing (Zheng et al., 2023; Shi et al., 2024; Fei et al., 2024), and
Memory-based (Wang et al., 2024b; Hartvigsen et al., 2024; Mitchell et al., 2022; Yu et al., 2023).
Recently, many benchmarks have been built to investigate the properties of knowledge editing from
different perspectives (Rosati et al., 2024; Wei et al., 2023; 2024; Ge et al., 2024; Huang et al., 2024;
Liu et al., 2024; Ma et al., 2023; Li et al., 2024a;b; 2023; Zhong et al., 2023; Wu et al., 2023; Powell
et al., 2024; Lin et al., 2024; Akyürek et al., 2023; Gu et al., 2024). For example, Gu et al. (2024)
proposed a benchmark to assess the side effect of 4 popular editing methods on 3 LLMs across 8
general capacity tasks. Rosati et al. (2024) built a new evaluation protocol to measure the efficacy
and impact of knowledge editing in long-form generation. Wei et al. (2024) introduced a multilingual
knowledge editing benchmark embracing five languages. However, considering the fundamental
motivation of applying knowledge editing to LLMs, which is to correct hallucinations, there is a
pressing need to build a real-world hallucination dataset with rigorous verification and systematically
analyze the performance of different editing methods. Thus, we proposed HalluEditBench to fill in
the gap and provided new insights to facilitate the progress in the field of knowledge editing.
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C REPRODUCIBILITY STATEMENT

We conduct the experiments on eight NVIDIA RTX A6000 GPUs. The model checkpoints are
downloaded from https://huggingface.co/. The specific download links are as follows:

• Llama3-8b: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
• Llama3-8b: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
• Mistral-v0.3-7b: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

We adopt GPT-4o with the following prompt to generate evaluation questions in Generalization and
Locality aspects.

Given a fact triplet (subject, relation, object), a question asking for the object, and a wrong answer,
the correct answer to the question should be the object in the triplet.

Generate the following types of questions:
1. Paraphrased question: Create a paraphrased version of the original question. The correct answer

should still be the object from the triplet.
2. Multiple choices: Generate four answer options for the original question in the following order:

the correct object from the triplet, the given wrong answer, and two additional distractors.
3. Yes question: Rewrite the original question as a yes/no question by explicitly including the

object from the triplet, ensuring that the correct answer is “Yes.”
4. No question: Rewrite the original question as a yes/no question by including the provided wrong

answer, so that the correct answer to this question is “No.”
5. Locality question: Generate a question about a well-known attribute related to the subject from

the triplet. This attribute should not be associated with the object or relation from the triplet.
6. Reversed relation question: Generate a question by swapping the subject and object from the

original question. The answer should now be the subject from the triplet.

Output the result in JSON format with the following keys: “paraphrased_question”, “multi-
ple_choices”, “yes_question”, “no_question”, “locality_question”, and “reversed_relation_question.”

We adopt GPT-4o with the following prompt to generate evaluation questions in Portability aspect.

Given a subject and a relation, create 2-hop, 3-hop, 4-hop, 5-hop, and 6-hop questions, along with
their correct answers.
Always use the provided subject and relation to create multi-hop questions, and avoid including any
correct answers from other multi-hop questions.
Ensure the answers for multi-hop questions are correct, and do not use ‘N/A’ as answers. Output in
JSON format. Below is an example:

Example input:
subject: Amazon, relation: founder
Example output:
{

“2hop_question”: “Who is the spouse of the Amazon founder?”,
“2hop_answer”: “MacKenzie Scott”,
“3hop_question”: “Which university did the spouse of the Amazon founder attend for their

undergraduate studies?”,
“3hop_answer”: “Princeton University”,
“4hop_question”: “In which city is the university that the spouse of the Amazon founder attended

located?”,
“4hop_answer”: “Princeton”,
“5hop_question”: “In which state is the city located where the university that the spouse of the

Amazon founder attended is situated?”,
“5hop_answer”: “New Jersey”,
“6hop_question”: “In which country is the state located where the city is situated that contains

the university the spouse of the Amazon founder attended?”,
“6hop_answer”: “United States”,

}
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D DETAILS OF THE BENCHMARKED KNOWLEDGE EDITING TECHNIQUES

FT-L (Meng et al., 2022) Constrained Fine-Tuning (FT-L) is a targeted approach to fine-tuning
that focuses on adjusting a specific layer within a model’s feed-forward network (FFN). Guided
by causal tracing results from ROME, FT-L modifies the layer most associated with the desired
changes. The goal of FT-L is to fine-tune the model by maximizing the likelihood of the target
sequence, particularly focusing on the prediction of the last token, ensuring that the model adapts to
modified facts without affecting its broader performance. To achieve this, explicit parameter-space
norm constraints are applied to the weights, ensuring minimal interference with unmodified facts and
preserving the integrity of the model’s original knowledge.

FT-M (Zhang et al., 2024) In contrast to FT-L, which fine-tunes by maximizing the probability of all
tokens in the target sequence based on the last token’s prediction, Fine-Tuning with Masking (FT-M)
refines this approach to align more closely with the traditional fine-tuning objective. FT-M also targets
the same FFN layer identified by causal tracing but employs a masked training strategy. Specifically,
it uses cross-entropy loss on the target answer while masking out the original text, ensuring that the
model is trained directly on the relevant target content. This approach mitigates potential deviations
from the original fine-tuning objective and provides a more precise adjustment of the model’s weights
with minimal disruption to unrelated model behavior.

MEMIT (Meng et al., 2023) Mass Editing Memory in a Transformer (MEMIT) builds upon ROME
to generalize the editing of feedforward networks (FFNs) in pre-trained transformer models for mass
knowledge updates. While ROME focuses on localizing and modifying factual associations within
single layers, MEMIT extends this strategy to perform mass edits across a range of critical layers.
MEMIT uses causal tracing to identify MLP layers that act as mediators of factual recall, similarly to
ROME, but scales the process to enable the simultaneous insertion of thousands of new memories.
By explicitly calculating parameter updates, MEMIT targets these critical layers and updates them
efficiently, offering a scalable multi-layer update algorithm that enhances and expands upon ROME’s
capability to modify knowledge across many memories concurrently, achieving orders of magnitude
greater scalability.

ROME (Meng et al., 2022) Rank-One Model Editing (ROME) is a “Locate-then-Edit” technique de-
signed to modify factual associations within transformer models. ROME localizes these associations
along three key dimensions: (1) the MLP module parameters, (2) within a range of middle layers, and
(3) specifically during the processing of the last token of the subject. It employs causal intervention
to trace the causal effects of hidden state activations, identifying the specific modules that mediate
the recall of factual information. Once these decisive MLP modules are localized, ROME makes
small, targeted rank-one changes to the parameters of a single MLP module, effectively altering
individual factual associations while minimizing disruption to the overall model behavior. This
precise parameter adjustment enables direct updates to the model’s factual knowledge.

LoRA (Hu et al., 2022) Low-Rank Adaptation (LoRA) is a parameter-efficient fine-tuning method that
enhances training efficiency by introducing trainable rank decomposition matrices into Transformer
layers. Rather than updating the original model parameters directly, LoRA focuses on training
expansion and reduction matrices with low intrinsic rank, which allows for significant dimensionality
reduction and thus faster training. Specifically, LoRA freezes the pretrained model weights and
optimizes rank decomposition matrices to indirectly adapt dense layers without altering the original
parameters. This approach greatly reduces the number of trainable parameters needed for downstream
tasks, enabling more efficient training and lowering hardware requirements.

ICE (Zheng et al., 2023) In-Context Knowledge Editing (IKE) leverages in-context learning (ICL) to
modify model outputs without altering the model’s parameters. This approach reduces computational
overhead and avoids potential side effects from parameter updates, offering a more efficient and
safer way to modify knowledge in large language models. IKE enhances interpretability, providing
a human-understandable method for calibrating model behaviors. It achieves this by constructing
three types of demonstrations-copy, update, and retain-that guide the model in producing reliable fact
editing through the use of a demonstration store. This store, built from training examples, allows
the model to retrieve the most relevant demonstrations to inform its responses, improving accuracy
in modifying specific factual outputs. In-Context Editing (ICE) is a simple baseline variant of IKE,
which directly uses the new fact as context without additional demonstrations.
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GRACE (Hartvigsen et al., 2024) GRACE is a model editing method designed to enable thousands
of sequential edits without the pitfalls of overfitting or loss of previously learned knowledge, which
are common in conventional model editing approaches. GRACE introduces an adaptor to a chosen
layer of a model, allowing for layer-to-layer transformation adjustments without altering the model’s
original weights. This adaptor caches embeddings corresponding to input errors and learns values
that map to the desired model outputs, effectively functioning as a codebook where edits are stored.
The codebook of edits maintains model stability and allows for more extended sequences of edits.
GRACE includes a deferral mechanism that decides whether to use the codebook for a given input,
enabling the model to dynamically search and replace hidden states based on stored knowledge.
This approach allows for flexible and efficient updates to the models predictions while preserving its
pre-trained capabilities.
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E MORE EXPERIMENT RESULTS

E.1 GENERALIZATION SCORES OF KNOWLEDGE EDITING METHODS ON EACH DOMAIN

(a) Llama2-7B, places (b) Llama2-7B, human

(c) Llama3-8B, places (d) Llama3-8B, human

(e) Mistral-v0.3-7B, places (f) Mistral-v0.3-7B, human

Figure 8: Generalization Scores of Knowledge Editing Methods on 3 LLMs and 2 Domains.
Generalization Scores (%) are measured by the accuracy on five types of Generalization Evaluation
Question-answer Pairs including Rephrased Questions (“rephrase”), two types of Yes-or-No Questions
with Yes or No as answers (“yes” or “no”), Multi-Choice Questions (“mc”), Reversed Questions
(“reversed”). The “average” refers to the averaged scores over five types of questions. The domains
include “places” and “human”.
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(a) Llama2-7B, art (b) Llama2-7B, business

(c) Llama3-8B, art (d) Llama3-8B, business

(e) Mistral-v0.3-7B, art (f) Mistral-v0.3-7B, business

Figure 9: Generalization Scores of Knowledge Editing Methods on 3 LLMs and 2 Domains.
Generalization Scores (%) are measured by the accuracy on five types of Generalization Evaluation
Question-answer Pairs including Rephrased Questions (“rephrase”), two types of Yes-or-No Questions
with Yes or No as answers (“yes” or “no”), Multi-Choice Questions (“mc”), Reversed Questions
(“reversed”). The “average” refers to the averaged scores over five types of questions. The domains
include “art” and “business”.
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(a) Llama2-7B, entertainment (b) Llama2-7B, event

(c) Llama3-8B, entertainment (d) Llama3-8B, event

(e) Mistral-v0.3-7B, entertainment (f) Mistral-v0.3-7B, event

Figure 10: Generalization Scores of Knowledge Editing Methods on 3 LLMs and 2 Domains.
Generalization Scores (%) are measured by the accuracy on five types of Generalization Evaluation
Question-answer Pairs including Rephrased Questions (“rephrase”), two types of Yes-or-No Questions
with Yes or No as answers (“yes” or “no”), Multi-Choice Questions (“mc”), Reversed Questions
(“reversed”). The “average” refers to the averaged scores over five types of questions. The domains
include “entertainment” and “event”.
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(a) Llama2-7B, geography (b) Llama2-7B, health

(c) Llama3-8B, geography (d) Llama3-8B, health

(e) Mistral-v0.3-7B, geography (f) Mistral-v0.3-7B, health

Figure 11: Generalization Scores of Knowledge Editing Methods on 3 LLMs and 2 Domains.
Generalization Scores (%) are measured by the accuracy on five types of Generalization Evaluation
Question-answer Pairs including Rephrased Questions (“rephrase”), two types of Yes-or-No Questions
with Yes or No as answers (“yes” or “no”), Multi-Choice Questions (“mc”), Reversed Questions
(“reversed”). The “average” refers to the averaged scores over five types of questions. The domains
include “geography” and “health”.
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(a) Llama2-7B, technology

(b) Llama3-8B, technology

(c) Mistral-v0.3-7B, technology

Figure 12: Generalization Scores of Knowledge Editing Methods on 3 LLMs and 2 Domains.
Generalization Scores (%) are measured by the accuracy on five types of Generalization Evaluation
Question-answer Pairs including Rephrased Questions (“rephrase”), two types of Yes-or-No Questions
with Yes or No as answers (“yes” or “no”), Multi-Choice Questions (“mc”), Reversed Questions
(“reversed”). The “average” refers to the averaged scores over five types of questions. The domain is
“technology”.
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E.2 PORTABILITY SCORES OF KNOWLEDGE EDITING METHODS ON MORE DOMAINS

(a) Llama2-7B, business (b) Llama2-7B, entertainment (c) Llama2-7B, event

(d) Llama3-8B, business (e) Llama3-8B, entertainment (f) Llama3-8B, event

(g) Mistral-v0.3-7B, business (h) Mistral-v0.3-7B, entertainment (i) Mistral-v0.3-7B, event

Figure 13: Portability Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Portability Scores (%) are measured by the accuracy on Portability Evaluation Questions, which are
Efficacy Evaluation Questions when with N hops. The Portability Evaluation Questions are the same
as Efficacy Evaluation Questions when N is 1. The domains include “business”, “entertainment”,
and “event”.
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(a) Llama2-7B, geography (b) Llama2-7B, health (c) Llama2-7B, technology

(d) Llama3-8B, geography (e) Llama3-8B, health (f) Llama3-8B, technology

(g) Mistral-v0.3-7B, geography (h) Mistral-v0.3-7B, health (i) Mistral-v0.3-7B, technology

Figure 14: Portability Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Portability Scores (%) are measured by the accuracy on Portability Evaluation Questions, which are
Efficacy Evaluation Questions when with N hops. The Portability Evaluation Questions are the same
as Efficacy Evaluation Questions when N is 1. The domains include “geography”, “health”, and
“technology”.
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(a) Llama2-7B, art

(b) Llama3-8B, art

(c) Mistral-v0.3-7B, art

Figure 15: Portability Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Portability Scores (%) are measured by the accuracy on Portability Evaluation Questions, which are
Efficacy Evaluation Questions when with N hops. The Portability Evaluation Questions are the same
as Efficacy Evaluation Questions when N is 1. The domain is “art”.
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E.3 ROBUSTNESS SCORES OF KNOWLEDGE EDITING METHODS ON MORE DOMAINS

(a) Llama2-7B, business (b) Llama2-7B, entertainment (c) Llama2-7B, event

(d) Llama3-8B, business (e) Llama3-8B, entertainment (f) Llama3-8B, event

(g) Mistral-v0.3-7B, business (h) Mistral-v0.3-7B, entertainment (i) Mistral-v0.3-7B, event

Figure 16: Robustness Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Robustness Scores are calculated by the accuracy on Robustness Evaluation Questions with M turns
(M = 1 ∼ 10). We regard Efficacy Scores as the Robustness Scores when M is 0. The domains
include “business”, “entertainment”, and “event”.
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(a) Llama2-7B, geography (b) Llama2-7B, health (c) Llama2-7B, technology

(d) Llama3-8B, geography (e) Llama3-8B, health (f) Llama3-8B, technology

(g) Mistral-v0.3-7B, geography (h) Mistral-v0.3-7B, health (i) Mistral-v0.3-7B, technology

Figure 17: Robustness Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Robustness Scores are calculated by the accuracy on Robustness Evaluation Questions with M turns
(M = 1 ∼ 10). We regard Efficacy Scores as the Robustness Scores when M is 0. The domains
include “geography”, “health”, and “technology”.
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(a) Llama2-7B, art 

(b) Llama3-8B, art

(c) Mistral-v0.3-7B, art

(a) Llama2-7B, art 

(b) Llama3-8B, art

(c) Mistral-v0.3-7B, art
Figure 18: Robustness Scores of Knowledge Editing Methods on 3 LLMs and 3 Domains.
Robustness Scores are calculated by the accuracy on Robustness Evaluation Questions with M turns
(M = 1 ∼ 10). We regard Efficacy Scores as the Robustness Scores when M is 0. The domain is
“art”.
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