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Abstract

Latent Diffusion Models (LDMs) have markedly advanced the quality of image
inpainting and local editing. However, the inherent latent compression often intro-
duces pixel-level inconsistencies, such as chromatic shifts, texture mismatches, and
visible seams along editing boundaries. Existing remedies, including background-
conditioned latent decoding and pixel-space harmonization, usually fail to fully
eliminate these artifacts in practice and do not generalize well across different
latent representations or tasks. We introduce PixPerfect, a pixel-level refinement
framework that delivers seamless, high-fidelity local edits across diverse LDM
architectures and tasks. PixPerfect leverages (i) a differentiable discriminative pixel
space that amplifies and suppresses subtle color and texture discrepancies, (ii) a
comprehensive artifact simulation pipeline that exposes the refiner to realistic local
editing artifacts during training, and (iii) a direct pixel-space refinement scheme
that ensures broad applicability across diverse latent representations and tasks.
Extensive experiments on inpainting, object removal, and insertion benchmarks
demonstrate that PixPerfect substantially enhances perceptual fidelity and down-
stream editing performance, establishing a new standard for robust and high-fidelity
localized image editing.

1 Introduction

Image inpainting 28} [13} 3] and local editing [66, 42} 55] aim to modify a specified image region
according to high-level instructions, such as a text prompt [S7] or a reference image [6l 4 1] while
ensuring the coherence with surrounding pixels. As an atomic operation for interactive image
editing, it plays a fundamental role for applications ranging from object removal, insertion, to
creative content regeneration. Recent advances in text-to-image generation models, particularly latent
diffusion models (LDMs) [38]], have driven remarkable progress in image inpainting [13} |3 [20]]
and local editing [7, |41} 55]]. These methods perform diffusion processes [18]] in a low-dimensional
and semantically compressed latent space [[12] and demonstrate impressive capacity in generating
complex and semantically coherent visual content guided by textual or structural cues.

However, latent local editing methods often struggle to maintain pixel-level consistency between
synthesized regions and their surrounding context [47]]. Specifically, the latent encoding and decoding
inherent in these approaches often introduces low-level compression errors, such as color and textures
mismatch, hindering the pixel-level matching with the original background. Furthermore, when the
edited region is pasted-back into the source image, small visual differences usually become more
pronounced, producing visible mismatches at the boundaries. Such artifacts are usually hard to
eliminate. In fact, our experiment found that more expressive latent representations, such as the
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16-channel VAE in FLUX [3]], often exacerbate local editing artifacts due to poor generalization
during diffusion inference. Such visual artifacts, as shown in Fig.[dand Fig.[5] are a mixture of: i)
chromatic shifts at editing boundaries, ii) misaligned textures, inconsistent noise or grain patterns,
and iii) visible seams arising from content discontinuities and they typically persist across diverse
inpainting and local editing methods, posing a fundamental challenge that undermines both perceptual
fidelity and practical usability across a wide spectrum of editing applications.

Several approaches have been explored to mitigate local editing artifacts. First, latent-space modi-
fications integrate background information during generation: Asymmetric-VQGAN enriches the
latent decoder with partial background inputs for context-aware decoding [65]], and ASUKA intro-
duces color augmentation during decoder training to simulate uniform chromatic discrepancies [47].
Second, post-hoc pixel-level harmonization methods refine the synthesized region after generation:
naive Poisson blending solves for seamless gradient transitions [36], while DiffHarmony++ employs
a learning-based harmonization model for pixel-level adjustment [63]]. Despite these advancements,
subtle hue shifts, texture mismatches, and content discontinuities often persist for those methods, as
human perception remains sensitive to minute visual discrepancies at editing boundaries. Moreover,
the reliance on a specific latent space [65, 47] limits the generalization of these methods to alternative
representations and diverse editing scenarios.

In this work, we identified three fundamental challenges associated with local editing artifacts and
proposed PixPerfect as a general-purpose, high-fidelity, and pixel-level artifact removal framework
for inpainting and local editing. Our proposed framework addresses three unsolved issues:

(i) Subtle visual difference: how to eliminate persistent and cumbersome boundaries artifacts
caused by subtle but perceptible pixel-value difference or noise-pattern discrepancies?

(ii) Complexity of local-editing artifacts: how to handle the complexity of the artifacts that mixes
chromatic shifts, inconsistent noise or grain patterns, and content discontinuities?

(iii) Generalization: how to develop a unified solution that generalizes across diverse latent
diffusion models, latent spaces [38, 3] or applications?

Consequently, we propose three novel contributions to address those issues. First, we propose a
novel discriminative pixel space that transforms the RGB color space into a more discriminative
representation where subtle hue and texture mismatches between an edited region and its background
become more perceptible. Such a differentiable transformation is incorporated as a loss to enhance the
model sensitivity for more precise color and texture alignment. Second, we design a comprehensive
data pipeline that simulates local editing artifacts in a realistic setting. Our data pipeline simulates
a diverse set of inpainting degradations including non-uniform color shifts, texture inconsistencies,
noise pattern variations, and content discontinuities, thereby enabling the refiner to learn across
multiple failure modes. Third, we formulate the refinement process as pixel-level refinement as
opposed to latent decoding compared to prior works [65}47], yielding a general-purpose solution for
inpainting and local-editing artifact removal.

With extensive evaluations and visualizations across a diverse set of inpainting and local editing
models, we demonstrate that the refiner can robustly correct local editing artifacts and consistently
improve the performance and visual quality of a wide range of existing methods. As such, our
approach yields higher quantitative scores and visibly superior results, and noticeably, it significantly
boosts a wide spectrum of state-of-the-art methods for image inpainting, object removal and object
insertion. All these evidence shows the effectiveness and necessity of our proposed scheme for
achieving high-quality image inpainting and localized editing.

2 Related Work

Image Inpainting and Local Editing. Image inpainting and local editing are confined to masked
regions. GAN-based approaches [34} 154, 160, 4, 43| 28, [13] achieve structure recovery by learn-
ing semantic priors, often enhanced by attention [53, |31} [37]] and multi-scale feature fusion [56].
Diffusion-based methods, including RePaint [32], Stable Diffusion inpainting [38]], and FLUX-
Fill [3], demonstrate strong inpainting capabilities but may produce inconsistencies around mask
boundaries or hallucinate unfaithful content. Beyond pure inpainting, local editing extends the scope
to broader semantic manipulations. Works like BrushNet [20]] and CLIPAway [11] adopt masked
diffusion pipelines guided by CLIP or user input, while OmniPaint [55] and FreeCompose [[7] support
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Figure 1: Given a partially composited image generated by latent diffusion model, PixPerfect refines
the output to correct harmonization artifacts between the synthesized region and the background. A
discriminative color-space transformation is employed to enhance sensitivity to subtle chromatic and
textural discrepancies, thereby improving color harmonization and texture coherence.

both object removal and insertion. Other methods explore region-specific editing via retrieval-based
augmentation [6, 42} 41]], layout control [29]], or hybrid latent/image-space optimization [1} 2]]. De-
spite promising results, latent-diffusion based methods still struggle to seamlessly blend the edits and
maintain local consistency. We propose the universal method PixPerfect to solve this issue.

Improving Image Details for Diffusion Models. Latent diffusion models [38, 3] compress images
with VAEs [23], causing loss of fine details. To solve this issue, various works have explored
enhancing latent representations. Consistency-aware training [40] and frequency-aware VAEs [49]
aim to preserve structure during compression, while decoder-based improvements [12} |33} 165] target
the reconstruction phase. In small domains, post-generation methods [5}46]] provides enhancement for
generated contents. Masked generative priors [4, 47, 48] offer better fidelity by supervising denoising
with partial reconstructions. However, these approaches still fall short of full consistency [48| |47]].
We argue ensuring consistency in pixel space is a more refined approach and present a pixel space
refiner.

Image Harmonization and Refinement. Image harmonization aims to correct appearance in-
consistencies between a composited foreground and its background. Early learning-based meth-
ods [44], 18, 130] cast harmonization as an image-to-image translation problem, adjusting the fore-
ground’s illumination and color to match the context. Attention-based and multi-scale designs
[9} 15} 124] improve blending along object boundaries. Recent works introduce contrastive learning
[L6], transformer-based harmonization [19], and diffusion models [64} 27]] semantic shifts. In image
enhancement, generic correctors such as ARCNN for JPEG artifacts [10]], lens aberration correction
[52], and deep sharpening networks [45] 26] further improve realism. However, existing harmo-
nization methods are typically designed for manually composited inputs where the foreground is a
complete, well-defined object pasted into a clean background. In contrast, diffusion-based inpainting
involves arbitrary-shaped masked regions with potentially complex semantics. Moreover, many
harmonization models focus on aligning the foreground appearance, but do not explicitly enforce
background consistency, making them less suitable for correcting seams introduced by latent diffu-
sion. Our work bridges this gap by addressing both semantic restoration and foreground-background
consistency within a unified refinement framework tailored to latent diffusion artifacts.

3 Methods

Inpainting and local editing aim to modify a region of an original image x,,;, yielding an edited result
Tgen that alters only pixels within a binary mask m < 0, 1XW while preserving background content.
LDM-based approaches frequently introduce inconsistencies along mask boundaries following latent
decoding and background compositing. To overcome this limitation, PixPerfect employs a pixel-level
refinement network implemented as a generative adversarial network (GAN) [14]], denoted as G, to
restore pixel-level coherence. The refiner produces

Lpred = G(wgena m)7
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Figure 2: The effect of discriminative pixel space on enhancing subtle background mismatch.

such that x,q aligns closely with the pixel-consistent oracle image x4 in both the edited region
and its surroundings.

3.1 The Discriminative Pixel Space

Precise alignment of color and texture between synthesized regions and the surrounding background
is essential for achieving pixel consistent and seamless results. In the inpainting and image harmo-
nization literature, this objective is commonly enforced via minimizing a combination of /; loss,
perceptual losses and mask-conditioned adversarial loss on the pixel-space to constrain chromatic
and structural similarity,

»Cpixclfspacc = wq - ||wprcd - mgtHl + way - ||¢(:Bprcd) - ¢(wgt)”1 + w3 - D(mgcnvm)a (1)

where ¢(-) denotes perceptual feature extractor [58]], D is the mask-conditioned adversarial loss and
w are balancing weights.

However, refinement networks trained with only these loss frequently produce outputs with subtle yet
persistent hue shifts, mismatched texture or noise patterns, and visible seams that remain detectable
by expert observers during high-fidelity editing. In fact, this issue arises across GAN-based inpaint-
ing [43} 160, [61], image harmonization [63]], and latent decoding methods [65} |47]] across various
settings.

We argue that such visual distortions are due to the insensitivity of the conventional pixel-space
objectives to subtle color or textures misalignments. To overcome this limitation, we introduce a
discriminative pixel space that amplifies perceptual discrepancies between the synthesized region
and its background. Specifically, we define a discriminative tone mapping function fy: R? — R3
parameterized by 6, which transforms pixel value vector z[p] € [0,1]3 at each location p into a
discriminative color space, thereby rendering color and texture mismatches more salient.

The visual effect of the tone mapping fy is illustrated in Fig. After applying fy, both the
prediction and the ground-truth are projected into the discriminative pixel space via Ypred = fo(Zpred)
and yg; = fo(xat), respectively, where subtle color and texture mismatches between foreground
and background are amplified. Accordingly, we define the discriminative pixel space loss as the
combination of /1, perceptual and conditioned adversarial loss using the same weighting:

)Cdiscfspace = wq - |ypred - ygt||1 + we - ||¢(ypred) - ¢(ygt)||1 + ws - D/(ygem m) 2)

Designing the tone mapping function fy is critical to enable the discriminative pixel space. Accord-
ingly, fg must be differentiable, computationally lightweight, and adaptive to individual samples at
training stage. To satisfy these requirements, we parameterize fy as a polynomial regression, yielding
a closed-form, sample-specific, differentiable mapping. Specifically, the regression is defined as:

Yo=Y Pea®l, 3)

for each channel ¢ € {R,G, B}, D is the polynomial degree and 0 = (p.1,--- ,pc p) are the
parameters. To facilitate content discrimination, the regression inputs are defined as the pixel values
of the predicted image T y,.q and regression targets are specified by an image that amplifies the hue
difference between &y,,cq and g within the composition mask:

Yamp = Lgt + ﬂ (wpred - xgt)v

where S > 1 controls the amplification strength. For the implementation, the Moore—Penrose
pseudoinverse [35]] is employed to compute the regression coefficients. To improve training stability,
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Figure 3: Artifact Simulation Pipelines. Each module illustrates one of the three simulated artifact
types used to train our refiner. (Left) Non-uniform color shifting is created via local jittering and
gradient blending. (Middle) Texture-pattern mismatches are simulated through JPEG artifacts,
noise, and VAE decoding distortions applied selectively inside or outside the mask. (Right) Content
discontinuity is emulated by expanding the mask boundary and applying off-the-shelf inpainting
followed by background recomposition.

we apply balanced sampling to select an equal number of pixels inside and outside the mask, and g is
drawn uniformly from [20, 40]. Finally, the outputs are clamped to valid ranges after tone mapping.

As such, our overall training objective is a combination of the original pixel-space loss and the
discriminative pixel-space loss:

L= Epixel—space + Ldisc—space- (4)

3.2 Simulating Local Editing Artifacts

Training a high-quality refiner requires diverse, controllable supervision that reflects the degradations
introduced by LDM-based inpainting and editing. Relying on real diffusion outputs for supervision
poses two challenges: (i) artifact distributions vary across models and prompts, hindering the
construction of a consistent training set; and (ii) the ground-truth image x4 for a partially edited
output T4, is often unavailable or ambiguous, particularly when large semantic gaps or content
hallucinations occur.

To overcome these limitations, we design a synthetic artifact simulation pipeline that generates
training pairs (®gen, Zgt) by injecting controlled degradations into clean images. Unlike prior
work [47], our simulation reproduces the complex, realistic local editing artifacts observed in diffusion
outputs. Specifically, the pipeline applies a mixture of non-uniform color shifts, texture-pattern
inconsistencies, content-mismatch discontinuities, soft and hard boundary effects, and autoencoder
reconstruction artifacts. Each degradation module operates exclusively within masked regions,
preserving background integrity and providing a clear learning signal for harmonization. Please refer
to the supplementary material for further details.

Non-uniform Color Shifting. Inpainting and local editing often introduce chromatic discrepancies
relative to surrounding background, which can be especially pronounced over heterogeneous regions
(e.g., skylines). To model these effects, a non-uniform color augmentation pipeline is devised as
opposed to [47]]. First, uniform color shifts are simulated by applying random color jitter within the
masked region [22]]. Next, non-uniform chromatic variations are synthesized by alpha-blending two
independently color-jittered versions of the input using a randomly generated gradient mask. This
gradient alpha map produces spatially varying hue and luminance shifts that closely mimic realistic
color artifacts. The alpha-blending process can be formulated as

Tsim = & - Timg + (1 - Oé) * Tjit- ©)



Simulating Texture-Pattern Mismatch. Diffusion-based inpainting often yields region-specific
texture distortions—such as blurring, inconsistent noise patterns, smoothed details, the absence of
background JPEG compression artifacts, and altered texture distributions due to latent decoding.
To replicate these defects, the simulation pipeline introduces independent texture transformations
within and outside the masked region. Specifically, the masked region undergoes random VAE
reconstructions [38 3] and Gaussian smoothing, while the background is subjected to JPEG compres-
sion artifacts. In addition, separate stochastic texture synthesis processes are applied to foreground
and background, generating distinct noise and detail characteristics that mimic real-world texture
mismatches.

Simulating Content Discontinuities. Partial compositing of generated content onto existing back-
grounds can induce slight misalignments or content discrepancies at mask boundaries, yielding
visible seams that compromise object integrity. To emulate this artifact, an off-the-shelf inpainting
method [6160] reconstructs a narrow band straddling the mask edge, perturbing pixels on both sides
of the boundary. The original background pixels are then composited back into the masked region,
producing training examples that exhibit realistic boundary discontinuities similar to those introduced
by diffusion-based edits. This simulation supplies the refiner with explicit examples of seam artifacts,
enabling targeted correction.

Mixing Soft and Hard Boundary. Latent diffusion local edits often produce both feathered (soft)
or abrupt (hard) seams that may be offset from the true composition boundary. To simulate these
artifacts, we randomly perturb the composition mask for artifact generation with morphological
dilation and erosion, then apply Gaussian blur with random kernel size to generate soft transitions.
Blending content with these augmented masks enables our pipeline to generalize across both smooth
and sharp seam artifacts.

3.3 Noise-adding and Inference-time Pooling

Following the recent GAN-based approach [21]], we apply moderate Gaussian noise augmentation to
the input pixels to stabilize the GAN training. Furthermore, as inference-time scaling has recently
been recently proven to be effective for multiple domains related LLM and GenAl models. Inspired
by this idea, we propose a simple yet effective inference-time pooling tricks to further boost the
performance. Our intuition is by apply the refiner on different color jittering variation of the input

image and perform pooling, a better refiner output can be produced. Specifically, given an initial

image Tgen, we propose N random color jittering inside the mask, resulting asgc)n fortel,---,N.

Then we apply the refiner to the jittered image, and we propose to use the difference between

input and refiner output ||ac(i) — G(acgc)n, m)||; as an indicator to determine how well the input

pred
image is close to the grouth-truth. Finally, the best refiner output is selected as acgre)d whereas
i* = argmin; [z — (@, m)]1.

4 Experiments

4.1 Experiment Settings

Implementation details Our model is built upon the CMGAN architecture [61] and trained on a
curated dataset of approximately 300 million images at 1024x1024 resolution. Optimization uses
Adam with a learning rate of 0.0005 and a batch size of 32. We interoperate larger perceptual and 11
weight, i.e. w1 = 64, ws = 5, w3 = 1 to enforce color consistency. the perceptual loss is computed
using LPIPS [58] following [12]. For the tone mapping function, the maximal polynomial degree
is set to D = 5 to avoid overfitting. Training is performed on a cluster of 32 NVIDIA A100 GPUs
within one week. Further details are provided in the supplementary material.

Evaluation Dataset We evaluate PixPerfect on three major tasks—inpainting, object removal, and
object insertion. For inpainting, we follow prior works and use two standard datasets: Places2 [|62]]
and MISATO [47]. Places?2 is a large-scale scene-centric dataset from which we randomly sample
2000 validation images and apply irregular masks of varying shapes and sizes to simulate occlusions.
MISATO consists of 2000 512x512 images, each paired with a generated mask, specifically curated
for evaluating semantic inpainting. For object removal, we use the RORDS dataset [39]], which



Dataset MISATO Places2
Method FID| LPIPS| L1} PSNRT U-IDST P-IDST | FID] LPIPS| L1} PSNRt U-IDSt P-IDST

SDv1.5-PixPerfect 1325 0.171  0.044  20.40 17.24 1089 | 1891 0.228 0.067 18.07 15.05 8.82

SDv1.5 [38] ‘18.15 0229 0.068 19.01 9.55 4.03 ‘21.45 0270 0.088 17.22 11.34 5.04
SDv2 [38] ‘

18.68  0.236  0.067 19.04 8.24 3.83 ‘ 21.13 0271  0.086 17.25 11.16 5.29

SDv2-PixPerfect 1628  0.189  0.048 19.81 13.13 7.71 19.12 0231  0.069 17.90 15.45 8.82
FLUX-Fill [3] 14.66  0.195 0.062 20.90 8.39 3.18 19.05 0.240 0.074 1933 7.89 3.12
FLUX-Fill-AsyVQ [65] | 1599  0.202  0.057  20.91 7.46 3.33 1828 0.244  0.073  19.07 14.49 8.47
FLUX-Fill-DH [63] 14.02  0.190  0.056  20.89 10.38 4.79 18.18 0.236  0.071  18.99 10.48 4.74

FLUX-Fill-PixPerfect | 10.87 0.141 0.036 22.18 18.09 9.53 15.61  0.194 0.052  20.04 19.08 11.69

Table 1: Quantitative comparison on MISATO and Places2. Our method substantially improves upon
existing inpainting approaches and significantly reduces the FID score for FLUX-Fill [3].

contains 500 image pairs with human-annotated foreground masks and corresponding clean back-
ground ground-truths. For object insertion, we evaluate on a dataset of 300 triplets, each comprising
a background image, a foreground object, and a ground-truth composite image.

Benchmark We evaluate the quality of generated images using a comprehensive set of metrics
covering both perceptual similarity and pixel-level accuracy. These include FID[17] for distributional
alignment, LPIPS[58]] for perceptual similarity, .1 and PSNR for reconstruction fidelity, and P-IDS
/ U-IDS [60] to assess perceptual discriminability. In addition, for the object insertion task where
ground truth composite image is not reliable, we report no-reference image quality scores such as
MUSIQ [23] and MANIQA [51]] to reflect global perceptual coherence. Together, these metrics
provide a balanced evaluation across visual quality, semantic consistency, and low-level accuracy.

4.2 Comparison results

Inpainting PixPerfect is evaluated on latent diffusion-based inpainting models including SDv1.5,
SDv2, and FLUX-Fill, across MISATO and Places2 datasets in Tabm PixPerfect consistently im-
proves both perceptual (FID, LPIPS, IDS) and pixel-level (L1, PSNR) metrics over all baselines.
Notably, the FLUX-Fill-PixPerfect achieves new state-of-the-art results. We further compare PixPer-
fect with the decoder-based method Asymmetric VQ-GANJ[65] and the harmonization-based method
DiffHarmony++ [63]. On both datasets, PixPerfect outperforms these methods by a clear margin
across all metrics, demonstrating its effectiveness in correcting diffusion-induced artifacts.

Qualitative comparisons in Fig. ] further highlight the differences. We paste back original unmasked
regions to reveal editing artifacts. Both Asymmetric VQ-GAN and DiffHarmony++ show noticeable
color shifts or texture inconsistency, particularly around mask boundaries or semantically complex
regions. In contrast, PixPerfect produces sharper transitions and better-aligned textures, yielding
more coherent and natural completions.

Object removal We evaluate PixPerfect on four representative diffusion-based object removal
models: BrushNet [20], CLIPAway [11]], PowerPaint [66], and OmniPaint [55]. Tab. Q] shows the
results on the RORDS dataset. PixPerfect consistently improves all baselines across FID, LPIPS, L1,
and PSNR, confirming its effectiveness across a diverse range of architectures and scenes. Even for
the strongest model OmniPaint, PixPerfect significantly reduces the FID from 23.05 to 18.87 and
improves PSNR from 24.67 to 27.96, demonstrating its capacity to refine already plausible outputs
and further enhance structural fidelity and perceptual quality. Fig. [5|shows a representative example
where editing artifacts overlap with soft shadows on reflective surfaces. PixPerfect eliminates the
artifacts while preserving natural cues, resulting in coherent and visually consistent completions.
These results highlight the robustness of PixPerfect in complex real-world removal scenarios and its
utility as a general refinement module across diverse generative pipelines.

Object Insertion We evaluate PixPerfect on four representative diffusion-based object insertion
models: Pbe [50]], ObjectStitch [41], AnyDoor [6], and OmniPaint [S5]]. Tab.reports quantitative
results across both full-reference metrics (FID, LPIPS, L1) and no-reference perceptual scores
(MUSIQ, MANIQA). PixPerfect consistently improves all baselines across all metrics, reflecting
better structural alignment and visual fidelity after refinement. The gains are particularly large in
models with more evident compositional artifacts, such as Pbe and ObjectStitch. Even in more
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Figure 4: Qualitative comparison of inpainting results on MISATO [47] and Places?2 [62]. PixPer-
fect consistently restores coherent structure and appearance across mask boundaries, and produces
more accurate color and texture transitions compared to Asymmetric VQGAN [63]] and DiffHar-
mony++ [63].

Input image

After local editing Refined

OmniPaint Removal

Anydoor Insertion

removal case, it removes the hue artifact while restoring realistic reflections and shadows. In the
insertion example, it aligns fine-grained textures around the boundary, producing seamless integration
between the inserted object and its background.



Method | FID, LPIPS| LI, PSNRT Method | FIDJ LPIPS) LI, MUSIQT MANIQA?T

BrushNet [20] | 148.99  0.224  0.0604  20.00 Pbe [50] 97.53 0269 0.0856  69.33 0.4746
+PixPerfect | 14454 0152  0.0390 2131 +PixPerfect | 9121 0236  0.0793  71.04 0.5070
CLIPAway [I1] | 63.69  0.193  0.0593 20.78 ObjectStitch [4T] | 89.14 0264  0.0838  69.27 0.4051
+PixPerfect | 5478  0.113 00337 23.04 +PixPerfect | 8674 0238  0.0790  71.38 0.5060
PowerPaint [66] | 5333 0170  0.0613  20.75 AnyDoor [6] | 73.17 0251  0.0794  68.53 0.4306
+PixPerfect | 4340  0.097 00321 2350 +PixPerfect | 7174 0223 00764 7153 0.5058
OmniPaint [33] | 23.05  0.094 0.0420 24.67 OmniPaint (53] | 56.80  0.186  0.0713 7032 0.5029
+PixPerfect | 18.87  0.060  0.0206 27.96 +PixPerfect | 5742 0181 00678 7154 0.5066
Table 2: Object removal results. Table 3: Object insertion results.

advanced models, PixPerfect yields measurable improvements, indicating that subtle inconsistencies
are still prevalent in modern diffusion-based insertion pipelines and can be effectively resolved
through targeted refinement. Fig.[5]shows an insertion example the edited image suffers from severe
texture mismatch. PixPerfect is capable of restoring textures that are consistent with the background.

4.3 Ablation Studies

To validate the effectiveness of each component in PixPerfect, we conduct an incremental ablation
study based on FLUX-Fill, using the MISATO dataset for evaluation. Starting from the baseline, we
progressively integrate each proposed module and report the results in Tab. 4] Applying a simple
paste-back operation, which restores the unmasked regions from the original image, already yields
substantial reductions in LPIPS and L1. This confirms that background distortion is a key source of
degradation in latent diffusion-based inpainting.

Introducing the refiner—our base architecture for artifact suppression—further improves FID and
LPIPS, though the gains remain modest without additional guidance. The key performance leap comes
from adding the enhancement loss in the proposed discriminative pixel space. This transformation
amplifies subtle chromatic and structural inconsistencies that are often overlooked in standard pixel
space, enabling the refiner to align texture and color more precisely. As a result, all metrics improve
significantly.

Ablation studies are further conducted on the variant of the discriminative pixel-space design. First,
the influence of the polynomial degree in[3]is examined by varying the degree value during training.
Unless otherwise stated, our default degree is set to d = 6. Empirical observations indicate that
a low degree such as d = 2 leads to only limited tonal correction, reducing the loss effectiveness,
whereas excessively high degrees such as d = 10 tend to overemphasize local details and generate
outputs that deviate from the natural image distribution thus degrading performance. In addition,
we examined a high-dimensional discriminative space variant that applies the discriminative trans-
formation to VGG16 feature maps before computing the LPIPS loss. From the experiment, this
variant achieves competitive performance, suggesting that our method is generalizable to a higher-
dimensional discriminative space. However, its performance is slightly worse than the original
pixel-space implementation, which we hypothesize is due to the loss of spatial precision along
editing boundaries caused by spatial downsampling of feature maps. Furthermore, an alternative
pixel-space enhancement loss is evaluated by employing HAAR decomposition to separate both the
prediction and ground truth into low- and high-frequency components. Independent ¢; losses are
then applied to each band, with a larger weight assigned to the low-frequency term to emphasize
subtle chromatic variations. However, this design yields inferior results, as band-wise reweighting is
difficult to integrate with perceptual or adversarial objectives, which are essential for high-quality
image synthesis. Finally, incorporating the inference-time pooling strategy further stabilizes the
predictions, mitigating noise and improving overall visual coherence.

5 Limitations and Broader Impacts

PixPerfect is a refinement module designed to correct low-level artifacts in diffusion-based inpainting
and local editing. While effective in improving color consistency and texture alignment, it cannot
correct major semantic errors from the generative model. Its performance depends on the availability
of reasonably accurate initial predictions and pre-defined edited regions.



Method | FID, LPIPS| LI}

FLUX-fll [3]] 14.6585  0.1950 0.0621
+ paste-back 14.4022  0.1701 0.0395
+ refiner 13.9874  0.1698 0.0402
+ enhance loss (d=6, default) 10.9014  0.1425 0.0365
enhance loss (d=2) 11.2244  0.1431 0.0362
enhance loss (d=10) 11.0018  0.1407 0.0361
enhance loss on VGG features 11.0525 0.1421  +0.0360
Haar-based re-weighted loss 11.3816  0.1431 0.0375
+ inference time pooling (PixPerfect) | 10.8675 0.1414  0.0363

Table 4: Ablation study on the MISATO dataset. Each component of PixPerfect progressively
improves inpainting quality across perceptual and pixel-wise metrics.

PixPerfect can support a wide range of socially beneficial applications, such as accessible photo
editing, digital restoration of historical or damaged media, and assistive tools for creators with
limited visual or technical expertise, by improving visual fidelity and reducing editing artifacts.
However, similar with other generative tools, it may also be misused for producing more convincing
manipulated content. The method does not introduce new identity or demographic biases, but it
inherits any biases present in upstream diffusion models and training datasets.

6 Conclusion

PixPerfect is presented as a general-purpose refinement module designed to rectify harmonization
failures in LDM-based inpainting and local editing. By integrating a discriminative pixel-space
objective, a realistic artifact simulation pipeline, and a direct pixel-level refinement framework, Pix-
Perfect effectively mitigates chromatic shifts, texture misalignments, and boundary seams exhibited
by a variety of diffusion-based editing models. Comprehensive evaluations across multiple tasks
and architectures demonstrate substantial gains in perceptual fidelity and quantitative performance.
Furthermore, as a lightweight, plug-and-play component, PixPerfect generalizes robustly to diverse
editing scenarios. These findings highlight the potential to a pixel-consistent and reliable local image
editing pipeline.
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Appendix

Supplementary Material for “PixPerfect: Seamless Latent Diffusion Local Editing
with Discriminative Pixel-Space Refinement”

A The Latent Space Spatial Disentanglement Issue

Latent diffusion models operates on a compact latent space. However, the latent space are spa-
tially entangled and not suitable for pixel-wise tasks. In this section, we study the latent space
disentanglement issue.

Latent diffusion models encode images into a compressed latent space with an autoencoder. However,
this latent representation lacks spatial disentanglement, limiting its suitability for fine-grained local
editing. To illustrate this issue, we design a controlled experiment shown in Fig.[§] We encode both
the original image and its masked counterpart using FLUX VAE [3], then construct a hybrid latent
by combining the unmasked background from the masked input with the masked region from the
original. This ensures that the latent representation differs only within a small localized area.

If the VAE decoder preserved spatial locality, such a localized change would not affect the reconstruc-
tion outside the masked region. However, the decoded image exhibits global shifts in background
appearance, even where latent features remain unchanged. This behavior highlights a fundamental
limitation of the latent space: local modifications can induce unintended global effects due to en-
tangled representations. These observations motivate our refinement strategy, which operates in the
pixel space to preserve spatial locality and ensure coherent integration between edited and unedited
regions.

[ ]
Decoder

Decoder

latents

100 200 300 400 500

Figure 6: Replacing only the masked region in latent space leads to background drift in the decoded
image, suggesting spatial entanglement in latent-based inpainting.

B More Experiments

B.1 Efficiency Analysis

While improving visual consistency and perceptual fidelity is the primary goal of our refinement
framework, it is also critical that the added refinement stage does not significantly increase the overall
runtime. To this end, we analyze the computational cost of PixPerfect in comparison to the underlying
latent diffusion sampling process.

Our refiner operates as a single-stage feed-forward network in the pixel space, and introduces
negligible overhead compared to the iterative denoising procedure of diffusion models. For example,
when applied to a 512x512 image on a single NVIDIA A100 GPU, the diffusion sampling with
FLUX-Fill [3] takes approximately 9.7 seconds, whereas our refiner adds only 2.7 seconds, accounting
for only 21.8% of the total inference time.

Notably, our approach remains more efficient than additional diffusion-based refinement stage.
This efficiency stems from two factors: (1) PixPerfect requires only a single forward pass without
iterative sampling, and (2) its architecture is lightweight and resolution-agnostic, enabling low-latency
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execution. Even when inference-time pooling is enabled, the overall runtime remains within 1.3x of
the baseline, while yielding measurable improvements in visual quality.

These results indicate that PixPerfect can be seamlessly integrated into existing diffusion pipelines
with minimal computational cost, offering substantial perceptual gains at a fraction of the runtime.

B.2 Comparisons with Poisson Blending

In the main paper, we have presented the comparisons with decoder-based method Assymetric
VQ-GAN [65] and harmonization-based method DiffHarmony [64]. In this section we will provide
additional analysis about Poisson blending. Poisson blending is a classical gradient-domain technique
widely used for seamless image compositing. It estimates a smooth transition between a source
(edited) region and a target (background) image by solving for pixel values that minimize gradient
differences while respecting boundary conditions.

However, applying Poisson blending in the context of inpainting or local editing typically requires
access to a reliable gradient field within the masked region. In practice, this is often approximated
using the ground truth content in the masked area to compute the desired gradients. While this
produces visually smooth results, it introduces a critical ground-truth leakage issue—information
that is unavailable at test time is used during blending. Consequently, Poisson blending cannot be
considered a fair or deployable baseline in real-world settings.

Although Poisson blending relies on inaccessible ground-truth information, we still present some
qualitative comparison results. We apply Poisson blending on the outputs of FLUX-Fill [3] using
ground-truth-masked gradients to simulate its ideal behavior. Fig. [7]shows representative examples
comparing our method with Poisson blending. While the latter can reduce abrupt seams at the
boundary, it often introduces unnatural hue propagation and fails to correct texture inconsistencies or
geometric artifacts introduced during the generation process. Furthermore, when the inpainted results
differ from the original ground truth image, the Poisson blending will blend the masked part into the
tone of the original ground truth and produce unnatural seams. In contrast, our method produces
more coherent integration with the background, better preserves structural details, and eliminates
color/texture artifacts without relying on inaccessible ground-truth information.

These results highlight that Poisson blending falls short in correcting complex local editing artifacts.
Our learning-based refiner not only avoids the pitfalls of ground-truth leakage but also achieves better
perceptual quality through semantically aware refinement.

B.3 More Qualitative results

To further illustrate the effectiveness and generalization of our approach, we present additional
qualitative results for the two local editing tasks: object removal and object insertion. These tasks
requires image editing within a masked area and keep the background unchanged.

In the object removal examples shown in Fig.[8] we present qualitative results from three represen-
tative baselines: OmniPaint [S5], PowerPaint [[66] and CLIPAway [[L1]. As indicated by the red
arrows, baseline inpainting results often exhibit low-level inconsistencies, such as chromatic shifts,
particularly in regions of clean background such as floors and tables. In contrast, our method effec-
tively eliminates these artifacts, yielding smooth and contextually coherent background completions
without disrupting the surrounding scene geometry.

In the object insertion results shown in Fig.[9] we visualize our refinement performance on outputs
from ObjectStitch [41], AnyDoor [6], and PBE [50]. In these cases, challenges arise from the need to
harmonize inserted objects with scene textures and lighting. As highlighted in the magnified insets,
baseline results often suffer from blurry transitions, scale-inconsistent textures, or unnatural object
boundaries. Our method noticeably improves local consistency by refining high-frequency texture
alignment, enhancing boundary sharpness, and reducing chromatic discrepancies—Ileading to more
realistic and visually pleasing composites.

Overall, these examples demonstrate the general applicability of our method across diverse models
and editing scenarios. In both insertion and removal tasks, PixPerfect consistently enhances visual
quality by resolving local inconsistencies that are challenging for latent diffusion models alone. We
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Original Image Masked Image Inpainted Image Poisson Blending PixPerfect

Figure 7: Qualitative comparison between our method and Poisson blending for FLUX-Fill inpainting
outputs. While Poisson blending reduces edge discontinuities, it often introduces hue bleeding
and fails to correct texture or structural artifacts. Further more in the cases where the inpainted
results differ from the ground truth image (e.g. second row), poisson blending will tend to mimic
the ground truth and produce unnatural results. In contrast, PixPerfect produces cleaner transitions,
preserves scene structure, and avoids tone inconsistency without relying on inaccessible ground-truth
information.

encourage readers to examine the highlighted regions closely to appreciate the subtle yet impactful
improvements brought by our approach.

C Implementation Details

Architecture and Training. The refiner is built on the CMGAN architecture [61]]. However, we
replace the bottleneck fully-connected layer with a global average pooling operation, thereby making
the network fully convolutional. In addition, we apply channel pruning to reduce the model size. Our
final model contains 41M parameters. Training employs R1 regularization with v = 1 and utilizes the
CoModGAN mask generation scheme [39] to generate random masks on-the-fly. During an initial
warm-up phase, the discriminative pixel-space loss remains disabled. A constant learning rate of
5 x 10~* is applied throughout the training.

Details on Color Shifting Augmentation. Three complementary color-shifting schemes are em-
ployed. First, linear gradient color augmentation constructs a mask « by projecting normalized x—y
coordinate grids onto a randomly oriented unit vector and normalizing the result; the final image
is obtained by alpha-blending this mask with a color-jittered version of the input. Second, random
blob color augmentation synthesizes one or more soft ellipses per image—each defined by a random
center, semi-axes sampled from a fraction of the image dimensions, and a random rotation—where
pixel intensities decay smoothly from center to boundary; overlapping ellipses merge via a maximum
operator to produce distinct, softly blended circular regions. Third, uniform jitter augmentation
simulates spatially invariant color shifts by blending a uniformly color-jittered image with the original
input using a fixed blending ratio. We provide an artifact generation pipeline that describes the artifact
types and their corresponding augmentation probabilities in [5]
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Input image After removal Refined

OmniPaint

PowerPaint

CLIPAway

Figure 8: Qualitative comparisons on object removal. Red arrows highlight residual artifacts such as
color inconsistency produced by baseline diffusion models. Our method effectively eliminates such
artifacts.

Input image After insertion Refined

ObjectStitch

Anydoor

Pbe

Figure 9: Qualitative comparisons on object insertion. The highlighted insets reveal artifacts in
baseline results, such as blurry edges, inconsistent textures, and poor object blending. Our refinement
enhances boundary sharpness, aligns local textures, and achieves more seamless visual integration.
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Table 5: Summary of artifact types and their corresponding augmentation probabilities.
Artifact Type | Description | Probability

Content Discontinuity Small misalignments / missing pixels 0.5
near mask edges

Background Color Augmentation | Non-uniform hue / brightness variations 0.8
applied to the background

Foreground Color Augmentation | Non-uniform / uniform / gradient color 0.8
perturbations applied to the foreground
region

Soft/Hard Boundary Mixing Mixing soft / hard boundaries to mimic 1.0
visual seams at compositional borders

Sensor Noise / JPEG / Blur Injecting noise / JPEG compression / 0.5
blur into foreground and/or background
regions

VAE Compression Artifacts Introducing compression artifacts sim- 0.5
ulated by a pretrained VAE to the fore-
ground

A minimal demo script for reproducing the “seam” artifacts of Flux inpainting [3] model. To
facilitate reproducibility, we attached a minimal demo script that reproduces the boundary artifacts
for the official FLUX-Fill model [3]].

import torch

import numpy as np

from PIL import Image, ImageDraw

from diffusers import FluxFillPipeline
from diffusers.utils import load_image

# === Define input image path ===

input_image_path = "/your/image/path" # TOD0O: change to the input image path
# === Load input image ===

image = load_image (input_image_path).convert ("RGB")

width, height = image.size

# === Generate irregular mask ===

def generate_irregular_mask(width, height, max_shapes=5):
mask = Image.new("L", (width, height), 0)
draw = ImageDraw.Draw(mask)

for _ in range(np.random.randint (1, max_shapes + 1)):
shape_type = np.random.choice(["ellipse", "polygon"])

if shape_type == "ellipse":
x0, yO = np.random.randint (0, width - 50), np.random.randint(0, height
<~ - 50)
x1, y1 = x0 + np.random.randint (40, 120), yO + np.random.randint (40,
< 120)
draw.ellipse([x0, yO, x1, y1], £il1=255)
else:

num_points = np.random.randint(3, 8)
points = [(np.random.randint(0, width), np.random.randint(0, height))
« for _ in range(num_points)]

draw.polygon(points, £ill=255)
return mask.convert ("RGB")

mask = generate_irregular_mask(width, height)
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# === Load FLUX inpainting pipeline ===
pipe = FluxFillPipeline.from_pretrained(

"black-forest-labs/FLUX.1-Fill-dev",
torch_dtype=torch.bfloatl6

).to("cuda")

# === Run FLUX-Fill ===
output = pipe(

image=image,

mask_image=mask,

prompt= nn R

height=height,

width=width,

guidance_scale=30, # The default value provided on the official huggingface page
num_inference_steps=50, # The default value provided on the official

~ huggingface page

max_sequence_length=512 # The default wvalue provided on the official

~ huggingface page

) .images[0]

# === Composite: restore unmasked regions from original image ===
image_np = np.array(image)

output_np = np.array(output)

mask_np = np.array(mask.convert("L"))

inpainted_np = output_np.copy()

inpainted_np[mask_np < 128] = image_np[mask_np < 128]

inpainted = Image.fromarray(inpainted_np)

# === Save outputs ===
image.save("original.png")
mask.save ("mask.png")
inpainted.save("inpainted.png")

Code 1: A minimal demo script for reproducing the “seam” artifacts of Flux inpainting [3|] model.

References

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended diffusion for text-driven editing of
natural images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 18208-18218, 2022.

Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended latent diffusion. ACM Transactions
on Graphics (Proc. SIGGRAPH), 42(4):1-10, 2023.

Black Forest Labs. FLUX, 2024. URL https://github.com/black-forest-labs/flux.
Accessed: 2025-05-15.

Chenjie Cao, Qiaole Dong, and Yanwei Fu. Learning prior feature and attention enhanced
image inpainting. 2022.

Jie Chen, Shizhan Li, You Zhang, Ying Zhang, Chen Change Loy, and Ziwei Liu. HiFaceGAN:
Face renovation via collaborative suppression and replenishment. In Proceedings of the ACM
International Conference on Multimedia (MM), pages 1553-1562, 2021.

Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor:
Zero-shot object-level image customization. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 6593-6602, 2024.

Zhekai Chen, Wen Wang, Zhen Yang, Zeqing Yuan, Hao Chen, and Chunhua Shen. Freecom-
pose: Generic zero-shot image composition with diffusion prior. In European Conference on
Computer Vision, pages 70-87. Springer, 2024.

Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling, Weiyuan Li, and Liqing Zhang.
Dovenet: Deep image harmonization via domain verification. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 8394-8403, 2020.

16


https://github.com/black-forest-labs/flux

[9] Xiaodong Cun and Chi-Man Pun. Improving the harmony of the composite image by spatial-
separated attention module. IEEE Transactions on Image Processing, 29:4759-4771, 2020.

[10] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Compression artifacts removal
by a deep convolutional network. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 576-584, 2015.

[11] Yigit Ekin, Ahmet Burak Yildirim, Erdem Eren Caglar, Aykut Erdem, Erkut Erdem, and Aysegul
Dundar. Clipaway: Harmonizing focused embeddings for removing objects via diffusion models.
Advances in Neural Information Processing Systems, 37:17572—-17601, 2024.

[12] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 12873—-12883, 2021.

[13] Chunjiang Fu, Minghao Wang, Qinghao Hu, and Liang Zhao. Text-guided co-modulated
generative adversarial network for image inpainting. In 2024 9th International Conference on
Big Data Analytics (ICBDA), pages 92-97. IEEE, 2024.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications
of the ACM, 63(11):139-144, 2020.

[15] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, and Bing Zheng. Intrinsic image
harmonization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 16367-16376, 2021.

[16] Zonghui Guo, Dongsheng Gu, Haiyong Zheng, Zhaorui Gu, Bing Zheng, and Junyu Dong. Im-
age harmonization with style contrastive learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 17592-17601, 2022.

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

[18] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840-6851, 2020.

[19] Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, and Simon
Chen. Image harmonization with transformer. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 14870-14880, 2021.

[20] Xuan Ju, Xian Liu, Xintao Wang, Yuxuan Bian, Ying Shan, and Qiang Xu. Brushnet: A
plug-and-play image inpainting model with decomposed dual-branch diffusion. In European
Conference on Computer Vision, pages 150-168. Springer, 2024.

[21] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and
Taesung Park. Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10124-10134, 2023.

[22] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila.
Training generative adversarial networks with limited data. In Proc. NeurIPS, 2020.

[23] Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image
quality transformer. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 5148-5157, 2021.

[24] Zhanghan Ke, Chunyi Sun, Lei Zhu, Ke Xu, and Rynson Lau. Harmonizer: Learning to perform
white-box image and video harmonization. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 753-770, 2022.

[25] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

17



[26] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. DeblurGAN-v2: Deblur-
ring (orders-of-magnitude) faster and better. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), pages 8878-8887, 2019.

[27] Jiajie Li, Jian Wang, Chen Wang, and Jinjun Xiong. Image harmonization with diffusion model.
arXiv:2306.10441, 2023.

[28] Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, and Jiaya Jia. Mat: Mask-aware transformer
for large hole image inpainting. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10758-10768, 2022.

[29] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng Gao, Chunyuan
Li, and Yong Jae Lee. GLIGEN: Open-set grounded text-to-image generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
22511-22521, 2023.

[30] Jun Ling, Han Xue, Li Song, Rong Xie, and Xiao Gu. Region-aware adaptive instance
normalization for image harmonization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 9361-9370, 2021.

[31] Hongyu Liu, Bin Jiang, Yi Xiao, and Chao Yang. Coherent semantic attention for image
inpainting. In Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 4170-4179, 2019.

[32] Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc
Van Gool. Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 11461-11471,
2022.

[33] Feng Luo, Jinxi Xiang, Jun Zhang, Xiao Han, and Wei Yang. A sampling-space mixture of
experts and frequency-augmented decoder approach. arXiv preprint arXiv:2310.12004, 2023.

[34] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2536-2544, 2016.

[35] Roger Penrose. A generalized inverse for matrices. Proceedings of the Cambridge Philosophical
Society, 51(3):406-413, 1955.

[36] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In Seminal Graphics
Papers: Pushing the Boundaries, Volume 2, pages 577-582. 2023.

[37] Yurui Ren, Xiaoming Yu, Ruonan Zhang, Thomas H Li, Shan Liu, and Ge Li. Structureflow:
Image inpainting via structure-aware appearance flow. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 181-190, 2019.

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684—-10695, 2022.

[39] Min-Cheol Sagong, Yoon-Jae Yeo, Seung-Won Jung, and Sung-Jea Ko. Rord: A real-world
object removal dataset. In BMVC, page 542, 2022.

[40] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

[41] Yizhi Song, Zhifei Zhang, Zhe Lin, Scott Cohen, Brian Price, Jianming Zhang, Soo Ye Kim,
and Daniel Aliaga. Objectstitch: Object compositing with diffusion model. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18310-18319,
2023.

[42] Yizhi Song, Zhifei Zhang, Zhe Lin, Scott Cohen, Brian Price, Jianming Zhang, Soo Ye Kim,
He Zhang, Wei Xiong, and Daniel Aliaga. Imprint: Generative object compositing by learning
identity-preserving representation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8048—-8058, 2024.

18



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha,
Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lempitsky.
Resolution-robust large mask inpainting with fourier convolutions. In Proceedings of the
IEEE/CVF winter conference on applications of computer vision, pages 2149-2159, 2022.

Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, Xin Lu, and Ming-Hsuan Yang.
Deep image harmonization. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3789-3797, 2017.

Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Chen Change Loy, and
Yu Qiao. ESRGAN: Enhanced super-resolution generative adversarial networks. In Proceedings
of the European Conference on Computer Vision Workshops (ECCVW), 2018.

Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. Towards real-world blind face restoration
with generative facial prior. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9168-9178, 2021.

Yikai Wang, Chenjie Cao, and Yanwei Fu. Towards stable and faithful inpainting. arXiv preprint
arXiv:2312.04831, 2023.

Yuhang Xie, Liang Chen, Ge Li, Zhouhui Lin, Yongjian Wu, and Dejing Dou. Mate: Mask-aware
transformer for large-hole image inpainting. In Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Masanori Yamada, Heecheol Kim, Kosuke Miyoshi, and Hiroshi Yamakawa. Favae: Sequence
disentanglement using information bottleneck principle. arXiv preprint arXiv:1902.08341,
2019.

Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen,
and Fang Wen. Paint by example: Exemplar-based image editing with diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
18381-18391, 2023.

Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang,
and Yujiu Yang. Maniqa: Multi-dimension attention network for no-reference image quality
assessment. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 1191-1200, 2022.

Raymond Yeh, Chen Chen, Teck Yian Lim, Alexander Schwing, Mark Hasegawa-Johnson, and
Minh Do. Semantic image inpainting with perceptual and contextual losses. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
5485-5493, 2018.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas Huang. Generative image
inpainting with contextual attention. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5505-5514, 2018.

Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-form image
inpainting with gated convolution. In Proceedings of the IEEE/CVF international conference
on computer vision, pages 4471-4480, 2019.

Yongsheng Yu, Ziyun Zeng, Haitian Zheng, and Jiebo Luo. Omnipaint: Mastering object-
oriented editing via disentangled insertion-removal inpainting. arXiv preprint arXiv:2503.08677,
2025.

Yanhong Zeng, Jianlong Fu, Hongyang Chao, and Baining Guo. Aggregated contextual
transformations for high-resolution image inpainting. IEEE Transactions on Visualization and
Computer Graphics, 29(7):2972-2983, 2023.

Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, and In So Kweon. Text-to-image
diffusion models in generative ai: A survey. arXiv preprint arXiv:2303.07909, 2023.

19



[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unrea-
sonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 586-595, 2018.

Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I Chang, and Yan
Xu. Large scale image completion via co-modulated generative adversarial networks. In
International Conference on Learning Representations (ICLR), 2021.

Shengyu Zhao, Jonathan Cui, Yilun Sheng, Yue Dong, Xiao Liang, Eric I Chang, and Yan Xu.
Large scale image completion via co-modulated generative adversarial networks. arXiv preprint
arXiv:2103.10428, 2021.

Haitian Zheng, Zhe Lin, Jingwan Lu, Scott Cohen, Eli Shechtman, Connelly Barnes, Jianming
Zhang, Ning Xu, Sohrab Amirghodsi, and Jiebo Luo. Image inpainting with cascaded modula-
tion gan and object-aware training. In European conference on computer vision, pages 277-296.
Springer, 2022.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A
10 million image database for scene recognition. /EEFE transactions on pattern analysis and
machine intelligence, 40(6):1452-1464, 2017.

Pengfei Zhou, Fangxiang Feng, Guang Liu, Ruifan Li, and Xiaojie Wang. Diffharmony++:
Enhancing image harmonization with harmony-vae and inverse harmonization model. In ACM
MM, 2024.

Pengfei Zhou, Fangxiang Feng, and Xiaojie Wang. Diffharmony: Latent diffusion model meets
image harmonization. In Proceedings of the 2024 International Conference on Multimedia
Retrieval, pages 1130-1134, 2024.

Zixin Zhu, Xuelu Feng, Dongdong Chen, Jianmin Bao, Le Wang, Yinpeng Chen, Lu Yuan, and
Gang Hua. Designing a better asymmetric vqgan for stablediffusion, 2023.

Junhao Zhuang, Yanhong Zeng, Wenran Liu, Chun Yuan, and Kai Chen. A task is worth one
word: Learning with task prompts for high-quality versatile image inpainting. In European
Conference on Computer Vision, pages 195-211. Springer, 2024.

20



NeurlIPS Paper Checklist

@

(i)

(iii)

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims made
in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

» It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]

Justification: The paper does not explicitly discuss its limitations. However, potential limita-
tions might exist.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution is
low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

* The authors should discuss the computational efficiency of the proposed algorithms and

how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to address

problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.

21



Guidelines:
* The answer NA means that the paper does not include theoretical results.

e All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

 All assumptions should be clearly stated or referenced in the statement of any theorems.
* The proofs can either appear in the main paper or the supplemental material, but if they
appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
(iv) Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main

experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all the information needed to reproduce the baseline methods
and our proposed method in the supplementary.

Guidelines:
* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived well
by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good
way to accomplish this, but reproducibility can also be provided via detailed instructions
for how to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are appropriate to
the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(i) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(ii) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(iii) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(iv) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

(v) Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

Answer:
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(vi)

(vii)

Justification: The proposed method has been integrated into a commercial product and relies
on proprietary code and datasets, so it will not be open-sourced at this time. However, we have
provided detailed descriptions of the architecture, training pipeline, and evaluation settings
in the main paper and supplementary material to support faithful reproduction of the main
experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

e At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We have provided all these necessary information in the main paper and the
supplementary material.
Guidelines:
* The answer NA means that the paper does not include experiments.
» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
 The full details can be provided either with the code, in appendix, or as supplemental
material.
Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer:
Justification: We do not report error bars due to the high computational cost of running multiple
full training cycles, which is prohibitive in our setting. Furthermore, our method consistently
achieves substantial improvements over all baselines across multiple datasets and metrics. The
performance gains are large and systematic—often exceeding typical variance ranges reported
in prior work—making the observed differences highly unlikely to be attributable to random
fluctuations.
Guidelines:
* The answer NA means that the paper does not include experiments.
 The authors should answer "Yes" if the results are accompanied by error bars, confidence
intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.
* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).
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(viii)

(ix)
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* The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).
* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We have provided all these necessary information in the main paper and the
supplementary material.
Guidelines:
* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster, or
cloud provider, including relevant memory and storage.

» The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute than
the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We strictly follow the NeuralPS Code of Ethics.
Guidelines:
¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special considera-
tion due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [Yes]

Justification: We have discussed both potential positive societal impacts and negative societal
impacts of the work performed.

Guidelines:
* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal impact
or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models that
generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible

release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper have no such risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

» Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper have been properly
credited. The license and terms of use explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets|has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

« For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.
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New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce or release any new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

 The paper should discuss whether and how consent was obtained from people whose asset
is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well
as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution)
were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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Guidelines:

* The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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