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Abstract
Retrieval-augmented generation (RAG) systems
face a fundamental challenge in aligning indepen-
dently developed retrievers and large language
models (LLMs). Existing approaches typically in-
volve modifying either component or introducing
simple intermediate modules, resulting in practi-
cal limitations and sub-optimal performance. In-
spired by human search behavior—typically in-
volving a back-and-forth process of proposing
search queries and reviewing documents, we pro-
pose C-3PO, a proxy-centric framework that fa-
cilitates communication between retrievers and
LLMs through a lightweight multi-agent sys-
tem. Our framework implements three special-
ized agents that collaboratively optimize the en-
tire RAG pipeline without altering the retriever
and LLMs. These agents work together to assess
the need for retrieval, generate effective queries,
and select information suitable for the LLMs. To
enable effective multi-agent coordination, we de-
velop a tree-structured rollout approach for re-
ward credit assignment in reinforcement learning.
Extensive experiments in both in-domain and out-
of-distribution scenarios demonstrate that C-3PO
significantly enhances RAG performance while
maintaining plug-and-play flexibility and superior
generalization capabilities. Code is available at
https://github.com/Chen-GX/C-3PO.

1. Introduction
Recent advances in retrieval-augmented generation (RAG)
for large language models (LLMs) have demonstrated re-
markable capabilities in various tasks (Anthropic, 2024;
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Hurst et al., 2024; Dubey et al., 2024; Yang et al., 2024a;
Mesnard et al., 2024; Asai et al., 2024; Chen et al., 2024a;b;
Wei et al., 2025; Sun et al., 2025b;a), empowering LLMs
to acquire up-to-date or domain-specific knowledge while
mitigating hallucinations (Gao et al., 2023; Fan et al., 2024;
Qiao et al., 2024). The effectiveness of RAG systems, how-
ever, hinges on the alignment1 between the retriever and the
LLM—an inherently challenging goal as these components
are typically developed independently without co-training.
This lack of co-training can result in semantic mismatch
and suboptimal interactions: retrievers may fail to provide
information tailored to the LLM’s needs, while LLMs may
struggle to generate effective queries or seamlessly incorpo-
rate retrieved content.

Existing approaches address this misalignment through
three main strategies: (1) fine-tuning retrievers to align
with LLM preferences, (2) optimizing LLMs to adapt to
retriever behavior, and (3) introducing intermediate mod-
ules to bridge the gap between them (Ma et al., 2023; Shi
et al., 2024; Asai et al., 2024; Wei et al., 2025; Yu et al.,
2024a;b). Despite progress, these methods face notable
challenges: fine-tuning retrievers often requires carefully
curated data and may not be feasible for commercial search
engines (Schmidt, 2014; Nakano et al., 2021), while opti-
mizing LLMs is resource-intensive and risks compromising
their original capabilities (Zhou et al., 2024). Approaches
that introduce intermediate modules to avoid modifying ei-
ther the retriever or the LLM primarily focus on optimizing
individual tasks, such as query rewriting or document rerank-
ing (Ma et al., 2023; Wang et al., 2023; Tan et al., 2024).
However, optimizing a single task in isolation often leads
to suboptimal results, as the effectiveness of RAG systems
relies on the cohesive interaction and collaboration among
multiple components throughout the entire pipeline (Fan
et al., 2024; Zhou et al., 2024).

In human’s search behavior, the process typically involves
an iterative back-and-forth process of proposing search
queries and reviewing documents until the correct response
is either found in the retrieved documents or emerges in the
person’s mind. Similarly, LLMs can emulate this process

1Here, alignment refers to the functional coordination between
retrievers and LLMs, rather than human preference alignment.
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by taking on multiple roles within a search pipeline: propos-
ing search queries, reviewing documents, deciding when
to terminate retrieval, and generating the final response,
among other tasks. However, assigning all these tasks to
LLMs results in numerous calls, leading to high computa-
tional costs, especially for complex questions. To address
this, it is desirable to design a compact proxy capable of
handling most tasks, while reserving the most challenging
ones to LLMs—such as planning the overall roadmap and
generating the final response.

Therefore, we propose C-3PO, a proxy-centric alignment
framework that employs a lightweight yet effective proxy
to facilitate seamless communication between retrievers
and LLMs without modifying them or compromising their
original capabilities. As illustrated in Figure 1, C-3PO
integrates a lightweight multi-agent collaborative system
within a single proxy model, where multiple agents work
in a human-like manner to assist the entire RAG pipeline.
To optimize this proxy, we employ multi-agent reinforce-
ment learning (MARL) for end-to-end training, treating
the retrievers and LLMs as part of the environment. To
address the key challenge of optimizing multiple agents
with distinct tasks, we introduce a tree-structured rollout
mechanism and Monte Carlo credit assignment to improve
reward distribution among different agents. In this way, our
C-3PO redistributes the sampling efforts from the question
level to the action level, enabling more efficient credit as-
signment in multi-agent systems through expectation-based
reward distribution. Experimental results demonstrate that
the RL-trained proxy achieves robust performance on both
in-domain and out-of-distribution datasets, even with un-
seen retrievers and LLMs, highlighting its plug-and-play
modularity and superior generalization capability. Our con-
tributions are summarized as follows:

• We propose C-3PO, a novel proxy-centric alignment
framework that bridges the gap between retrievers and
LLMs through a lightweight multi-agent system, en-
abling seamless integration without modifying existing
RAG components.

• We design an efficient multi-agent collaborative system
within a single proxy model that emulates human-like
search behavior, where specialized agents handle dif-
ferent aspects of the RAG pipeline while maintaining
computational efficiency.

• We develop an innovative training approach combining
MARL with a tree-structured rollout mechanism and
Monte Carlo credit assignment, effectively addressing
the challenge of optimizing multiple agents towards the
system-level performance in an end-to-end manner.

• Extensive experiments demonstrate that C-3PO achieves
superior performance across diverse datasets and exhibits
strong generalization capability with unseen retrievers

and LLMs, validating its effectiveness as a plug-and-play
solution for RAG systems.

2. Related Work
Retrieval-Augmented Generation. Retrieval-augmented
generation (RAG) has emerged as a crucial technique for
enhancing LLMs’ capabilities by incorporating external
knowledge sources (Gao et al., 2023; Yu et al., 2024b). Re-
cent studies have highlighted the importance of aligning the
retriever with the LLM to achieve superior performance (Fan
et al., 2024; Chan et al., 2024). This alignment can be ap-
proached through three main strategies: retriever fine-tuning
methods (Shi et al., 2024), LLM fine-tuning methods (Asai
et al., 2024; Wei et al., 2025; Yu et al., 2024a), and inter-
mediate modules methods (Ma et al., 2023; Wang et al.,
2023; Tan et al., 2024). However, these methods often face
practical limitations, such as focusing on local optimization,
the inability to align with commercial search engines, and
the substantial computational costs of LLM optimization.
Different from previous work, we introduce a lightweight,
proxy-centric alignment framework that implements align-
ment without modifying either the retriever or LLM while
optimizing the entire RAG pipeline holistically.

Multi-agent Systems. Multi-agent systems have recently
garnered increasing attention, especially in the context of
complex task-solving and decision-making (Guo et al.,
2024; Zhang et al., 2024; Chen et al., 2025). A ma-
jor challenge in multi-agent frameworks is credit assign-
ment—determining each agent’s contribution to the overall
system performance—which becomes particularly crucial in
multi-agent reinforcement learning (Yuan et al., 2023a; Zhu
et al., 2024). In our work, we propose Monte Carlo credit
assignment mechanism to distribute system-level rewards
to each agent in the form of expectations, enabling effective
coordination within agents.

3. Preliminaries
Before introducing C-3PO, we first review the preliminaries
of cooperative multi-agent reinforcement learning (MARL),
where multiple agents work collaboratively to accomplish
given tasks. A cooperative MARL problem is generally
formalized as a cooperative stochastic game, represented by
a tuple ⟨N , {Si}i∈N , {Ai}i∈N , T ,R⟩, where:

• N = {1, 2, ..., n} is the set of agents in the system.

• Si is the state space of agent i, where each agent main-
tains its agent-specific state information.

• Ai is the action space of agent i, defining the joint action
space A := A1 × · · · × An.

• T : {Si}i∈N ×A → {Si}i∈N is the deterministic state
transition function, specifying how the states of agents
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Figure 1. Overall framework of C-3PO. (Upper left) Essential cognitive capabilities required for effective RAG system interaction in
human-guided alignment. (Upper right) Our proxy-centric alignment simulates these human-like interaction through a lightweight
multi-agent system with collaborative strategies. (Bottom) The end-to-end optimization pipeline for our multi-agent system.

update given their joint action a ∈ A.

• R : {Si}i∈N × A × N → R is the system-level re-
ward that measures the overall task completion, where 1
indicates success and 0 otherwise.

In this cooperative setting, all agents share the same system-
level reward R and work together to accomplish the task.
Each agent follows its policy πi : Si → Ai to se-
lect actions based on its local observations. A trajectory
({si0}i∈N ,a0, {si1}i∈N ,a1, ...) represents the sequence of
agent states and joint actions, where sit ∈ Si is the state of
agent i at time step t, and at = {ait}i∈N ∈ A is the joint
action at time step t under the joint policy π = (π1, ..., πn).

4. Cooperative Multi-agent System
In this section, we elaborate on the role of each agent (Sec-
tion 4.1) with their collaborative strategies (Section 4.2).

4.1. Multiple Agents

Inspired by human behavior mentioned in the Introduction,
we design three specialized agents—Reasoning Router, In-
formation Filter, and Decision Maker—to facilitate commu-

nication between the retriever and the LLM, as illustrated
in Figure 1. These agents operate as distinct roles within a
single lightweight proxy using targeted instructions, collabo-
ratively managing various aspects of the RAG pipeline. This
unified design ensures efficient coordination while maintain-
ing simplicity for edge deployment. Formally, we define
each agent as follows:

This proxy plays the role of Reasoning Router agent to
determine the optimal reasoning strategy for a given ques-
tion from a high-level perspective. Given the current state
(the question), it selects actions using a maximum two-step
operation:

1. Decide Retrieval Necessity: If the agent outputs [No
Retrieval], the question is directly processed by the
LLM, leveraging its internalized knowledge.

2. Determine Question Complexity: If the agent outputs
[Retrieval], the agent also evaluates whether the ques-
tion requires complex reasoning.

For simple questions, the agent continues to generate a sin-
gle <query content> and interacts with the retriever to
obtain documents. The retrieved documents are then pro-
cessed by the Information Filter agent to extract relevant,
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LLM-friendly content. Finally, the LLM uses the filtered
documents to generate an answer to the question.

For complex questions, the agent outputs [Planning],
which will trigger a multi-step reasoning strategy that re-
quires coordination with multiple agents. Further details on
this strategy will be introduced later.

This proxy plays the role of Information Filter agent to pro-
cess and filter retrieved information for identifying content
suitable for LLMs. Its state space includes the question, the
retrieved documents, and the current reasoning objective (if
operating in [Planning] mode). Based on the given state,
the agent selects an action to analyze and filter relevant
documents using the following structured format:

Thought: <Analysis of each documents>
Action: [<Selected document IDs>]

This proxy plays the role of Decision Maker agent to de-
termine the optimal action within the [Planning] strategy
based on the current state. Its state space includes the ques-
tion, the LLM-generated roadmap, and the accumulated
documents from the reasoning history. Given the current
state, the agent selects an action to evaluate progress and
decide the next operation, using the following structured
format:

Thought: <Analysis of current progress and objective>
Action: {[Retrieval]<subquery content> (Con-
tinue with retrieval-filter loop), or [LLM] (Pass to LLM
for answering)}

4.2. Collaborative Strategy

With the three specialized agents defined, we now describe
how they collaborate to efficiently handle different types of
questions. Their coordination follows a structured workflow,
enabling adaptive and multi-granular information process-
ing through various strategies, as detailed below.

The Direct Answering Strategy and Single-pass Strategy
have already been introduced in the definition of the Rea-
soning Router agent, corresponding to the agent outputs
[No Retrieval] and [Retrieval]<query content>,
respectively.

Multi-Step Reasoning Strategy corresponds to the
[Planning] output by Reasoning Router agent. Designed
to address complex questions requiring a high-level roadmap
from LLM and multiple retrieval-filter loops, this strat-
egy enables iterative information gathering and reasoning
through the following three phases:

1. Generate Roadmap: The LLM decomposes the com-
plex question into a structured set of subgoals, providing

high-level guidance for the proxy.

2. Iterative Retrieval-filter Loop: Guided by the roadmap,
the Decision Maker evaluates the current progress, de-
termines the next objective, and generates subqueries for
the retrieval-filter loop. This process is carried out in
coordination with the Information Filter and continues
iteratively until the Decision Maker determines that the
accumulated documents contain sufficient information to
address all subgoals.

3. Final Answer: All accumulated information is passed to
LLM for answer generation.

Notably, generating the roadmap is the only role that is
not played by the proxy in our communication pipeline;
however, the LLM is invoked only once in the [Planning]
strategy, minimizing computational overhead. Additionally,
it is important to note that the number of retrieval-filter loops
may not directly correspond to the number of subgoals, as a
single retrieval might address multiple subgoals or require
multiple attempts for a single subgoal.

Through these three strategies, our multi-agent system adap-
tively handles questions of varying complexity. The Rea-
soning Router automatically selects the most appropriate
strategy based on the characteristics of each question: the
Direct Answering Strategy provides immediate responses
for general knowledge, the Single-pass Strategy efficiently
retrieves information for fact-based questions, and the Multi-
Step Strategy addresses complex questions through guided
iterative reasoning. This hierarchical approach ensures op-
timal resource utilization by aligning computational effort
with question complexity while potentially maintaining high
response quality. Next, the key focus is to optimize the proxy
to learn the knowledge boundaries of the LLM and master
the specific capabilities of each agent.

5. Multi-Agent Proxy Optimization
Since the final answer generated by the LLM is straightfor-
ward to evaluate as the system-level reward, it is intuitive
to employ reinforcement learning to optimize the proxy.
However, each agent within the proxy serves as an interme-
diate module, responsible for only a partial trajectory of the
RAG pipeline. This makes it difficult to define agent-level
rewards (Guinet et al., 2024). For example, a high-quality
generated query might still result in a low system-level re-
ward due to poor subsequent document filtering. To tackle
this challenge, we propose a tree-structured rollout approach
for robust on-policy learning, utilizing deterministic rollout
in the early stages and stochastic rollout in later stages.

5.1. Credit Assignment

To avoid the sparse reward in traditional single trajectory
rollout, we propose the tree-structured rollout for credit
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assignment, which distributes system-level rewards across
agents to mitigate the high variance of local rewards for
each agent. Through this way, C-3PO effectively redis-
tributes the sampling effort from the question level to the
action level while maintaining a similar computational bud-
get. The core idea is to evaluate each agent’s contribution
by forcing the Reasoning Router to explore all possible rea-
soning strategies during the rollout for each question, and
enable information sharing across different reasoning paths
through action-level exploration.

Deterministic Rollout. Given a question q, we begin
by forcing the Reasoning Router to explore both [No

Retrieval] and [Retrieval]. For the [Retrieval]

branch, we further force the agent to explore simple reason-
ing by directly generating <query content> and complex
reasoning through [Planning]. As shown in Figure 1, we
deterministically construct a decision tree during the first
stage of the rollout. Current tree, with a depth of 2, enables
simultaneous exploration of multiple reasoning paths, pro-
viding a comprehensive understanding of how each decision
impacts the final outcome.

Stochastic Rollout. Once the overall reasoning strategy
is confirmed, the subsequent rollout employs sampling to
expand the decision tree. For each non-terminal node, we
randomly sample K(t) candidate actions from the proxy
π for the i-th agent at depth t.2 Specifically, the tree is
expanded using the following children (actions):

{ait,k}
K(t)
k=1 ∼ π(·|sit, instructioni) (1)

K(t) =

{
2, if t ≤ 4

1, if t > 4
(2)

where instructioni refers to the task-specific instruction for
the i-th agent, and K(t) represents the dynamic branching
factor at depth t, balancing exploration and computational
efficiency. Each sampled action ait,k triggers a state transi-
tion governed by:

sjt+1,k = T (sit, ait,k), (3)

where j ∈ N denotes the next agent in the predefined strat-
egy (Section 4.2).3 By recursively applying this sampling
process until leaf nodes are reached, we construct a decision
tree containing multiple trajectories τ :

τ = {(sit, ait,k, sit+1,k)}i∈N ,t,k (4)

where each leaf node includes the final system-level reward
(R = 1 for success and R = 0 for failure).

2The time step t is reused as the depth of the tree. Since nodes
are expanded layer by layer in our implementation, the depth
corresponds to the time step.

3The transition function T is deterministic and involves state
updates. See Appendix B.2 for more details.

Monte Carlo Credit Assignment. Instead of constructing
a single trajectory rollout for each question, we create a
tree-structured rollout containing multiple trajectories. This
structure enables us to trace how individual decisions impact
the system-level outcome. For each agent-generated node
(sit, a

i
t), we compute its credit reward based on the expected

system-level reward:

rcredit(s
i
t, a

i
t) = Eτ∼πθ

[R(τ)|sit, ait] ≈
∑

l∈L(sit,a
i
t)
Rl

|L(sit, ait)|
,

(5)
where L(sit, a

i
t) denotes the set of leaf nodes reachable from

(sit, a
i
t), and Rl is the final reward of leaf node l.

Our proposed credit assignment mechanism offers several
key advantages over a single trajectory rollout: (1) Our
rollout thoroughly explores all possible strategies for each
question, generating numerous intermediate training exam-
ples for each agent. (2) Most importantly, while directly
redistributing a single system-level reward to agent nodes in
a single trajectory is challenging, our approach accurately
estimates the reward of each agent node in a probabilistic
expectation using the tree-structured rollout.

5.2. Training Method

For each sampled tree, we disassemble it into individual
nodes and group them by their corresponding agents, as
illustrated in Figure 1. The token sequence within each
node, along with its corresponding reward computed via
Eq (5), is added to the replay buffer for Proximal Policy
Optimization (PPO) (Schulman et al., 2017). The overall
training objective follows the standard PPO framework but
incorporates multi-agent aggregation.

LC-3PO =
∑
i∈N
Li

PPO, (6)

where the loss LPPO can represent either value loss or policy
loss. Details of the loss functions are provided in the Ap-
pendix A.1. Following the PPO recipe in Ouyang et al.
(2022), the PPO for LLMs typically requires an initial-
ization from the supervised fine-tuning model. Therefore,
we employ our tree-structured rollout with rejection sam-
pling (Yuan et al., 2023b) to collect seed data and use cross-
entropy loss for the supervised warm-up phase.

6. Experiments
6.1. Experimental Setup

Datasets. To comprehensively evaluate our C-3PO, we
experiment on both single-hop datasets including Natural
Questions (NQ) (Kwiatkowski et al., 2019), PopQA (Mallen
et al., 2023), and TriviaQA (TQA) (Joshi et al., 2017), as
well as multi-hop datasets including 2WikiMultiHopQA
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Table 1. Main results. Training / Testing with Wiki Retriever.
Multi-hop Single-hopMethods LLM

Server Proxy Tuned
Params 2Wiki HQA Musique NQ PopQA TQA Average

Direct Qwen2-72B ✗ - 41.6 45.9 20.5 53.3 24.3 76.3 43.65
Standard Qwen2-72B ✗ - 34.4 55.7 41.1 60.8 38.0 78.1 51.35

Retriever Fine-tuning
REPLUG Qwen2-72B ✗ 109M 33.5 50.4 31.9 55.6 39.3 77.6 48.05

LLM Fine-tuning
Self-RAG Qwen2-7B ✗ 7B - - - 50.4 38.5 66.2 51.70
InstructRAG Qwen2-7B ✗ 7B 35.8 - - 48.1 39.5 66.6 47.50
Auto-RAG Qwen2-7B ✗ 7B 41.8 37.8 - 53.4 36.8 63.3 46.62
Self-RAG Qwen2-72B ✗ 72B - - 56.6 40.3 78.2 58.33
InstructRAG Qwen2-72B ✗ 72B 49.7 - - 57.8 40.1 77.9 56.37
Auto-RAG Qwen2-72B ✗ 72B 47.7 45.7 - 55.3 40.9 72.1 52.34

Intermediate Module
Reranker Qwen2-72B Qwen2-7B 7B 32.8 46.4 22.6 57.2 20.9 76.3 42.70
QueryRewrite Qwen2-72B Qwen2-1.5B 1.5B 36.2 55.8 40.2 62.3 36.7 78.9 51.68
SKR-KNN Qwen2-72B ✗ - 40.6 55.6 41.3 61.9 38.8 78.1 52.71
SlimPLM Qwen2-72B Qwen2-7B 3×7B - - 24.4 62.4 - 76.2 54.33
C-3PO (Ours) Qwen2-72B Qwen2-0.5B 0.5B 66.1 66.8 49.4 63.7 46.1 80.4 62.08

↑ 16.4 ↑ 11.0 ↑ 8.1 ↑ 1.3 ↑ 5.2 ↑ 1.5
C-3PO (Ours) Qwen2-72B Qwen2-1.5B 1.5B 65.2 69.0 54.2 65.9 44.8 82.1 63.53

↑ 15.5 ↑ 13.2 ↑ 12.9 ↑ 3.5 ↑ 3.9 ↑ 3.2

(2Wiki) (Ho et al., 2020), Musique (Trivedi et al., 2022),
and HotpotQA (HQA) (Yang et al., 2018). For each dataset,
we only use 6000 randomly sampled questions instead of
the full training set.

Baseline. We compare our method against a diverse set
of baselines, including (1) Direct: Directly answer ques-
tions without retrieval. (2) Standard RAG: The standard
retrieval-augmented method retrieves documents based on
the question. (3) Retriever Fine-tuning Method: RE-
PLUG (Shi et al., 2024). (4) LLM Fine-tuning Method:
Self-RAG (Asai et al., 2024), InstructRAG (Wei et al., 2025),
and Auto-RAG (Yu et al., 2024a). (5) Intermediate mod-
ule Method: Reranker (Li et al., 2023), QueryRewrite (Ma
et al., 2023), SKR (Wang et al., 2023), and SlimPLM (Tan
et al., 2024).

Implementation Details. Following Asai et al. (2024), we
construct our retrieval system using the 2018 Wikipedia
dump (Yang et al., 2018) as the knowledge source and use
contriever-msmarco (Izacard et al., 2022) as our dense re-
triever. We utilize Qwen2-72B-Instruct (Yang et al., 2024a)
as fixed LLM server, while Qwen2-0.5B or Qwen2-1.5B is
trained as candidate lightweight proxy for efficient edge de-
ployment. In the warm-up phase, we collect 4 solutions for
each question with Qwen2-72B-Instruct. We use a learning
rate of 4e-5, with 3 epochs and a batch size of 512. For the
RL phase, we set learning rate of 5e-7 for policy model and
5e-6 for value model with a batch size of 1024 and maximal
depth of 13. More details please refer to Appendix A.

6.2. Main Results

We report the performance on both single-hop and multi-hop
datasets in Table 1. First, our C-3PO consistently outper-
forms various baselines across different datasets, achieving
superior average performance of 62.08% and 63.53% with
lightweight proxies of only 0.5B and 1.5B parameters, re-
spectively. This demonstrates the effectiveness of our proxy-
centric alignment approach in bridging the gap between the
retriever and the LLM. Second, compared to single-hop
datasets, our method yields particularly notable gains in
challenging multi-hop reasoning tasks. Specifically, C-3PO
achieves significant improvements on multi-hop datasets
(2Wiki +15.5%, HQA +13.2%, Musique +12.9%), while
maintaining strong performance on single-hop tasks (NQ
+3.5%, PopQA +3.9%, TQA +3.2%). This significant per-
formance gain suggests that, even without training original
RAG system, our C-3PO effectively enhances the coordina-
tion between the retriever and LLM, which is particularly
crucial for addressing complex multi-hop tasks. Third,
although retriever fine-tuning method (Shi et al., 2024) re-
quires fewer tuned parameters, it does not overcome the
limitations of standard RAG systems in handling complex
cognitive and multi-hop reasoning tasks. Both LLM fine-
tuning and intermediate module methods show promising
results, but are constrained by either large tuning parame-
ters (7B/72B) or inconsistent performance across different
reasoning datasets. In contrast, our C-3PO achieves consis-
tent improvements across all datasets with only 0.5B/1.5B
additional parameters, demonstrating both efficiency and
effectiveness in enhancing RAG systems.
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Table 2. Out-of-Distribution results. Testing with Google Search Engine.

OOD Datasets
+ Retrieval OOD Datasets + Retrieval + LLM Server

FQA M-RAG FQA M-RAG FQA M-RAG FQA M-RAGDataset
LLM Servers Qwen2-72B Qwen2-7B Llama3.3-70B GPT-4o-mini

Average

Direct 58.2 42.2 40.6 34.4 60.8 43.8 58.8 51.7 48.81
Standard 66.4 46.3 57.4 39.2 65.6 41.7 71.6 52.3 55.06

LLM Fine-tuning

Self-RAG 49.4 39.2 - - - - - - 44.30
InstructRAG 51.2 40.7 - - - - - - 45.95
Auto-RAG 48.6 41.6 - - - - - - 45.10

Intermediate Module

Reranker 58.2 42.3 36.0 30.7 63.4 41.1 52.0 48.8 46.56
QueryRewrite 67.2 45.9 56.8 38.5 67.4 39.2 72.0 51.8 54.85
SKR-KNN 65.6 44.1 57.8 37.8 66.6 41.7 71.2 52.5 54.66
SlimPLM 60.8 44.7 47.2 35.2 54.8 40.0 68.6 53.7 50.63

C-3PO (Ours) 72.8 50.0 61.0 41.6 71.6 47.2 74.6 55.4 59.28
↑ 5.6 ↑ 3.7 ↑ 3.2 ↑ 2.4 ↑ 4.2 ↑ 3.4 ↑ 2.6 ↑ 1.7 ↑ 4.22

6.3. Analysis of Plug-and-Play Proxy

In this section, we conduct a comprehensive investigation of
performance across three out-of-distribution (OOD) dimen-
sions, including OOD datasets, retrieval systems, and LLM
servers. This analysis aims to demonstrate that our proxy is a
plug-and-play module with superior generalization capabili-
ties. In Table 2, we assess its modularity and generalization
by introducing two recent and challenging OOD datasets:
FreshQA (FQA) (Vu et al., 2024) and MultiHop-RAG (M-
RAG) (Tang & Yang, 2024). Additionally, we replace the
retriever with the Google search engine (Schmidt, 2014) and
experiment with different LLM servers.

First, LLM fine-tuning approaches exhibit notably inferior
performance compared to the standard RAG. This signifi-
cant degradation suggests that directly fine-tuning LLMs,
while potentially effective for specific tasks, may compro-
mise the inherent generalization capabilities and lead to sub-
par OOD performance. Second, while intermediate-module
methods maintain competitive performance, their focus on
optimizing individual tasks may compromise their robust-
ness. In contrast, our C-3PO holistically optimizes all com-
munication tasks of the entire RAG pipeline through multi-
agent collaboration, effectively aligning the retriever and
LLM while preserving their inherent generalization capabil-
ities. This enables C-3PO to achieve superior generalization
across all OOD settings, consistently outperforming existing
approaches with a large margin, 4.22% over the best per-
forming baseline on average. Finally, even all three dimen-
sions are OOD, C-3PO exhibits robust performance across
different LLM servers (Qwen2-72B, Qwen2-7B, Llama3.3-

2Wiki HQA Musique NQ PopQA TQA Average
40

50

60

70

80
C-3PO
w/o Tree-structured Rollout
w/o RL
SOTA Baseline

Figure 2. Ablation Study.

70B, and GPT-4o-mini), with consistent improvements rang-
ing from 1.7% to 5.6%. This platform-agnostic performance
demonstrates the plug-and-play capability of our method,
enabling seamless integration with various retrievers and
LLM servers without requiring any modifications.

6.4. Ablation Study

Ablation on Training Paradigm. To thoroughly evaluate
the effectiveness of different components in our training
process, we conduct comprehensive ablation studies across
six in-domain datasets. Specifically, we examine the follow-
ing variants: (1) “w/o Tree-structured Rollout”: A variant
without the tree-structured rollout and Monte Carlo credit
assignment, meaning that we directly optimize each agent
using the system-level reward (a single trajectory). (2) “w/o
RL”: The performance in the supervised warm-up phase. (3)
“SOTA Baseline”: The strongest baseline of each dataset.

The experimental results reveal several key findings. First,
removing the tree-structured rollout (and Monte Carlo credit
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Table 3. Ablation Study on Collaborative Strategy.

2Wiki PopQA FQA M-RAG

C-3PO 65.2 44.8 72.8 50.0

[No Retrieval] 41.6 24.3 58.2 42.2
[Retrieval] 64.7 44.6 68.8 48.3
[Planning] 65.5 46.9 74.8 50.4

assignment) leads to unstable performance during the RL
phase, occasionally degrading below the supervised warm-
up model. This degradation can be attributed to the direct
use of system-level rewards as supervised signals for all
agents, which fails to accurately assess individual agent
contributions and may mask detrimental actions within suc-
cessful trajectories. In contrast, our Monte Carlo credit
assignment mechanism enables reward allocation in proba-
bilistic expectation through tree-structured exploration, en-
suring that each agent receives appropriate feedback for its
specific actions. Second, comparing with the supervised
warm-up model (“w/o RL”), our C-3PO achieves substan-
tial improvements across all datasets. This performance
boost demonstrates that end-to-end RL optimization effec-
tively aligns the behaviors of multiple agents towards the
system-level objectives, going beyond the limitations of
supervised learning that only optimizes for local agents.
The improvement is particularly significant on challenging
datasets like 2Wiki (+1.6%), Musique (+4.5%), PopQA
(+1.7%), and TQA (+2.0%), where sophisticated coordina-
tion among agents is crucial for task success.

Ablation on Collaborative Strategy. To better under-
stand the effectiveness of our collaborative strategy, we
conduct ablation studies on OOD datasets by forcing C-
3PO to consistently use a fixed strategy for all questions,
as shown in Table 3. Notably, [No Retrieval] only uti-
lizes the inherent knowledge of LLMs exhibit the lowest
performance, which is suited for addressing straightforward
problems. We observe that the [Planning] strategy consis-
tently achieves the best performance among other strategies,
which is reasonable given its more sophisticated reasoning
process and higher inference cost. Moreover, even our sim-
ple [Retrieval] strategy significantly outperforms other
baselines shown in Table 2, demonstrating the effectiveness
of the retrieval-filter capability in our C-3PO.

6.5. Detailed Analysis

Inference Efficiency Analysis. To investigate the inference
efficiency of C-3PO, we compare both the performance
and inference cost across different methods, as illustrated
in Figure 3. Our approach achieves superior performance
(+9.2% for in-domain and +4.2% for OOD scenarios) while
maintaining a reasonable inference time of 4.8s per ques-
tion. Although slightly slower than the Standard RAG
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method (3.6s), C-3PO yields significant performance gains
across both in-domain and out-of-generation evaluations.
Furthermore, C-3PO outperforms most methods, such as
AutoRAG (Yu et al., 2024a) and SlimPLM (Tan et al., 2024),
in both efficiency and effectiveness. This demonstrates that
C-3PO achieves an optimal balance between performance
and computational efficiency.

Training Dynamics in RL. Figure 4 depicts the average
performance trajectory of our C-3PO across six in-domain
benchmarks throughout the RL training process. The results
demonstrate consistent and stable improvement in accuracy
for both model (C-3PO-1.5B and C-3PO-0.5B) during RL
training. The final accuracy of C-3PO-1.5B (63.53%) sur-
passes that of C-3PO-0.5B (62.08%), suggesting that model
capacity plays a role in the ultimate performance ceiling.
Both models exhibit rapid improvement during the initial
training phase and eventually outperform the SFT model.
This significant improvement highlights the effectiveness of
our tree-structured multi-agent optimization framework in
optimizing multi-agent collaborative systems over time.

6.6. Performance on HLE

We evaluate our C-3PO on Humanity’s Last Exam
(HLE) (Phan et al., 2025), a recently released challenging
benchmark. We use the OOD Retrieval (Google Search) and
LLM Server (Qwen2.5-72B-Instruct (Yang et al., 2024b))

8
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Table 4. Main Results on Humanity’s Last Exam (text-only questions, evaluated with official prompt (Phan et al., 2025)).

Humanity’s Last Exam
Method

Bio/Med Chem. CS/AI Engineering Humanities Math Physics Other Avg.

Proprietary Models (For Reference)

OpenAI Deep Research - - - - - - - - 26.60
Deepseek R1 - - - - - - - - 8.54
o1 - - - - - - - - 7.75
GPT-4o - - - - - - - - 2.32

Open-Source Models

Qwen2.5-7B 5.42 3.00 1.76 3.22 4.66 3.58 1.98 4.00 3.52
Qwen2.5-72B 11.31 6.00 1.76 1.61 7.25 3.07 3.96 2.28 4.27
C-3PO (Ours) 9.95 7.00 4.86 9.67 4.66 5.43 3.46 5.71 5.79

Table 5. Comparative Analysis between C-3PO-ICL and C-3PO-RL.

Method Proxy 2Wiki HQA Musique NQ PopQA TQA Average Efficiency

C-3PO-ICL Qwen2-72B 54.1 62.5 45.5 63.4 45.7 82.9 59.01 10.7s
C-3PO-RL Qwen2-1.5B 65.2 69.0 54.2 65.9 44.8 82.1 63.53 4.8s

as our system components. As shown in Table 4, our model
achieves an average score of 5.79%, demonstrating a sig-
nificant improvement over its base model Qwen2.5-72B-
Instruct (4.27%). Notably, our model surpasses several
proprietary models like GPT-4o (2.32%) and approaches the
performance of o1 (7.75%), highlighting the effectiveness
of our method in narrowing the gap between open-source
and proprietary models.

6.7. More Analysis of C-3PO-ICL and C-3PO-RL

We further conduct a comprehensive comparison between
C-3PO-ICL (Qwen2-72B-Instruct) and C-3PO-RL (Qwen2-
1.5B), where C-3PO-ICL is used to generate seed data
through rejection sampling in our supervised warm-up
phase. Our experimental results, as presented in Table 5,
reveal several important findings. First, C-3PO-ICL demon-
strates remarkable performance, surpassing all baseline
methods across different datasets (as shown in Table 1 and
Table 2). This result validates the effectiveness of our frame-
work, where collaboration among multiple agents enables
effective alignment of the LLM and the retriever. However,
this approach faces practical limitations due to substantial
inference overhead from multiple LLM queries, making it
less suitable for efficient responses and edge deployment.

To address these limitations, we introduce a compact proxy
that significantly reduces computational requirements while
maintaining framework effectiveness. Our analysis reveals
that while C-3PO-ICL performs well overall, it may not

achieve optimal performance on more challenging tasks
(e.g., 2Wiki, HotpotQA, and Musique). Through reinforce-
ment learning, we further optimize individual agent capabil-
ities, leading to substantial improvements on the complex
tasks. In conclusion, our proxy-centric alignment frame-
work demonstrates strong performance across both variants.
While C-3PO-ICL showcases the framework’s effectiveness
through few-shot learning, C-3PO-RL offers practical ad-
vantages through reduced computational requirements and
enhanced performance on challenging tasks. Our C-3PO-RL
successfully aligns the retriever and LLM without modify-
ing either component, while facilitating edge deployment
and robust performance across diverse scenarios.

7. Conclusion
In this paper, we presented C-3PO, a proxy-centric align-
ment framework that bridges retrievers and LLMs through a
lightweight multi-agent system. By leveraging MARL with
our proposed tree-structured rollout and Monte Carlo credit
assignment, our framework effectively optimizes multiple
specialized agents toward the system-level performance
without modifying existing RAG components. Extensive
experiments demonstrate C-3PO’s superior performance
and strong generalization capability across different out-of-
distribution datasets, retrievers, and LLMs, establishing it
as a practical plug-and-play solution for RAG systems.
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A. More Implementation Details
A.1. RL Training Process

Having obtained the credit rewards that reflect each agent’s contribution, we develop an optimization framework to guide
end-to-end training across all agents. The key idea is to use these credit signals for optimizing the collaborative behavior of
the entire system. The optimization objective for our multi-agent system can be formulated as maximizing the expected
credit rewards:

J (θ) = Eτ∼πθ

[∑
i∈N

∑
t

rcredit(s
i
t, a

i
t)

]
(7)

Since each agent’s action is a sequence of tokens, we decompose this optimization using Proximal Policy Optimization
(PPO) (Schulman et al., 2017; Yuan et al., 2023a; Zhu et al., 2024) as follows:

LC-3PO =
∑
i∈N
Li

PPO(θ, ϕ) (8)

Specifically, for each agent i, we define:

Li
CLIP(θ) = Eτ∼πθ

[∑
t

∑
m

min
(
rit,m(θ)Âi

t,m, clip(rit,m(θ), 1− ϵ, 1 + ϵ)Âi
t,m

)]
(9)

where rit,m(θ) =
πθ(a

i
t,m|sit,m)

πθold (a
i
t,m|sit,m)

is the probability ratio, sit,m represents the concatenation of current state and the first m− 1

tokens in the action sequence for agent i at time step t, and ait,m denotes its m-th token. We compute the advantage estimate
using GAE (Schulman et al., 2016): Âi

t,m =
∑M−m−1

l=0 (γλ)lδit,m+l, where M is the token length of the action sequence.

To estimate state values across the multi-agent system, we employ a centralized state-value function Vϕ that takes each
agent’s state sit,m as input. The value function is optimized to minimize the mean squared error (Lowe et al., 2017):

Li
V (ϕ) = Eτ∼πθ

[∑
t

∑
m

(Vϕ(s
i
t,m)− Ĝi

t,m)2

]
(10)

where Ĝi
t,m = Âi

t,m + Vϕ(s
i
t,m) is the empirical return. The final optimization objective combines the policy and value

losses:

Li
PPO(θ, ϕ) = Li

CLIP(θ) + cvLi
V (ϕ) (11)

where cv controls the weight of the value loss. This joint objective enables end-to-end training of both policy and value
networks across all agents.

A.2. Implementation Details

Supervised Warm-up Phase: We utilize Llama-Factory (Zheng et al., 2024) as our training framework for the initial
supervised fine-tuning phase. The detailed hyper-parameters for this phase are presented in Table 6.

Reinforcement Learning Phase: For the RL training phase, we adopt OpenRLHF (Hu et al., 2024) as our primary training
framework, coupled with VLLM (Kwon et al., 2023) inference engine. The complete set of RL training hyper-parameters
is detailed in Table 7. To initialize both the policy and value models, we leverage the model obtained after one epoch of
supervised fine-tuning, with the language model head replaced by a value head for the value model.

Inference Phase: For the deployment of our system, we establish a comprehensive infrastructure that integrates multiple
components:

• Retriever Server: We construct our retrieval server using the 2018 Wikipedia dump (Yang et al., 2018) as the primary
knowledge source. We employ contriever-msmarco (Izacard et al., 2022) as our dense retriever for efficient and effective
document retrieval. Our inference code also supports Google search engine (Schmidt, 2014) as the retriever server.
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Table 6. Key hyperparameters in the supervised warm-up phase.

Hyperparameter Value

Learning Rate 4e-5
Batch size 512
#Epochs 3
Optimizer type AdamW (Loshchilov & Hutter, 2019)
Chat template Qwen (Yang et al., 2024a)
Base model Qwen2-1.5B or Qwen2-0.5B (Yang et al., 2024a)
Cutoff length 4096
Warmup ratio 0.03
LR scheduler type Cosine

Table 7. Key hyperparameters in the RL phase.

Hyperparameter Value

Learning Rate of Policy model 5e-7
Learning Rate of Value model 5e-6
Batch size 1024
KL Coefficient 0.005
Optimizer type Adam
Prompt max len 4096
Generate max len 2048
Maximal depth 13
LR scheduler type Cosine

• LLM Service: We integrate SGLang4 as our LLM server, which provides compatibility with various state-of-the-art
language models, including Qwen2-72B-Instruct (Yang et al., 2024a) and Llama3.3-70B-Instruct (Dubey et al., 2024).
Moreover, we also support GPT series models5.

• Inference Optimization: Our implementation supports two high-performance inference engines: SGLang and VLLM,
allowing users to optimize for different deployment scenarios and hardware configurations.

This modular architecture ensures both flexibility in model selection and efficiency in deployment, while maintaining robust
performance across different configurations.

A.3. Dataset Details

Table 8. Training Dataset Statistics.

Data Name Multi-Hop Single-Hop Total2WikiMultiHopQA HotpotQA Musique Natural Questions PopQA TriviaQA

Raw Data Size 167,454 90,447 19,938 79,169 12,868 78,785 448,661
Our Train Data Size 6,000 6,000 6,000 6,000 6,000 6,000 36,000
Sampling ratio 3.5% 6.6% 30.1% 7.5% 46.6% 7.6% 8.02%

In-domain Datasets. As shown in Table 8, we conduct extensive in-domain experiments on three single-hop and three
multi-hop datasets. For each dataset, we randomly sampled 6,000 instances as the training set, with sampling ratios detailed
in Table 8. Overall, we utilize only 8% of the original data as the training set. For the in-domain test sets, we randomly
sampled 1,000 instances as the test set.

4https://docs.sglang.ai/
5We use gpt-4o-mini-2024-07-18 in our out-of-generalization experiments.
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Table 9. Out-of-generalization Dataset Statistics.

FreshQA Multihop-RAG

Data Size 500 2556

Out-of-generalization Datasets. To comprehensively evaluate the plug-and-play capability of our C-3PO in out-of-
distribution generalization scenarios, we introduce two recent challenging datasets: FreshQA (Vu et al., 2024) and Multihop-
RAG (Tang & Yang, 2024). The statistics of the OOD datasets are summarized in Table 9.

A.4. Overall Algorithm

In this section, we present the inference process of C-3PO for reference, as shown in the Algorithm 1.

Algorithm 1 Inference Process of our C-3PO
input question q, the retrieval server (Retriever), the LLM server (LLM), the proxy model in our C-3PO π, instruction for

different agent (Reasoning Router, Information Filter, and Decision Maker).
output The Answer.

1: a1 ← π(q, instruction1) {Reasoning Router agent}
2: if a1==[No Retrieval] then
3: Answer← LLM(q) {Direct Answering Strategy, if q does not require retrieval}
4: else if a1==[Retrieval]<query content> then
5: docs← Retrieval(<query content>)
6: selected docs(a2)← π(q, docs, instruction2) {Information Filter agent}
7: Answer← LLM(q, selected docs) {Single-pass Strategy, if q requires retrieval and is simple question}
8: else
9: Accumulated docs← ∅

10: Roadmap← LLM(q) {a1 == [Planning]}
11: a3 ← π(q,Roadmap,Accumulated docs, instruction3) {Decision Maker agent}
12: while a3 ̸= [LLM] do
13: docs← Retrieval(<subquery content> in a3)
14: selected docs(a2)← π(q, docs, instruction2) {Information Filter agent}
15: Accumulated docs← {Accumulated docs} ∪ {selected docs}
16: a3 ← π(q,Roadmap,Accumulated docs, instruction3) {Decision Maker agent}
17: end while
18: Answer← LLM(q,Accumulated docs) {Multi-step Reasoning Strategy, if q requires retrieval and is complex}
19: end if

B. Instructions and State Transition Function
B.1. Instructions for Each Agent

In this section, we details the state space and action space fo each agent in our C-3PO.

Reasoning Router. The Reasoning Router agent operates with state space S1 = {q}, where q represents the input question.
This agent is responsible for determining whether retrieval is necessary for the given question and assessing the question
complexity when retrieval is needed. For a question that does not require retrieval, this agent outputs [No Retrieval]. If
the retrieval is needed, the agent outputs one of the following actions based on the complexity of the question q: for simple
questions requiring retrieval: [Retrieval]<query content>, initiating a single-pass retrieval-filter loop, where <query
content> defines the space of possible queries; for complex questions: [Planning], triggering the multi-step reasoning
strategy. The specific examples are as follows:
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Reasoning Router

Instruction for Reasoning Router
You are an intelligent assistant tasked with evaluating whether a given question requires further information through retrieval or
needs planning to arrive at an accurate answer. You will have access to a large language model (LLM) for planning or answering
the question and a retrieval system to provide relevant information about the query.

Instructions:
1. **Evaluate the Question**: Assess whether a precise answer can be provided based on the existing knowledge of LLM.
Consider the specificity, complexity, and clarity of the question.
2. **Decision Categories:**
- If the question is complex and requires a planning phase before retrieval, your response should be:
[Planning]
- If the question requests specific information that you believe the LLM does not possess or pertains to recent events or niche
topics outside LLM’s knowledge scope, format your response as follows:
[Retrieval] ‘YOUR QUERY HERE‘
- If you think the LLM can answer the question without additional information, respond with:
[No Retrieval]
3. **Focus on Assessment**: Avoid providing direct answers to the questions. Concentrate solely on determining the necessity
for retrieval or planning.

State of Reasoning Router
Now, process the following question:

Question: {question}

Output (All possible Actions) of Reasoning Router
% For No Retrieval
[No Retrieval]

% For Retrieval
[Retrieval]<query content> (for simple questions)
[Planning] (for complex questions)

Information Filter. The state space of Information Filter consists of the question q, the retrieved documents, and the current
objective (if in [Planning] mode), i.e., S2 = {q, retrieved documents} for single-pass strategy (Retrieval<query
content), or S2 = {q, retrieved documents, current objective} for multi-step reasoning strategy ([Planning]).

Information Filter

Instruction for Information Filter
You are an intelligent assistant tasked with analyzing the retrieved documents based on a given question and the current step’s
objectives. Your role is to determine the relevance of each document in relation to the question and the specified objectives.

Instructions:
1. **Analyze Relevance**: Evaluate each document whether it aligns with the objectives of the current retrieval step and
contains a direct answer to the question.
2. **Thought Process**: Provide a brief analysis for each document, considering both the answer content and the retrieval
objectives.
3. **Filter Documents**: After your thought process, generate a list of document indices indicating which documents to retain.

State of Information Filter
Now, process the following question:

Current step’s objectives: {objective} (only for [Planning] mode)

Question: {question}

Documents: {documents}

Output of Information Filter
Thought: <Analysis of each documents>
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Action: [<Selected document IDs>]

Decision Maker. The Decision Maker agent operates with state space S3 = {q,Accumulated Documents,Roadmap}.
Based on the current state, this agent outputs one of two possible actions: [Retrieval]<subquery content> (requesting
additional retrieval-filtering loop through the sub-query) or [LLM] (passing all accumulated documents to LLM for generating
the final answer).

Decision Maker

Instruction for Decision Maker
You are an intelligent assistant tasked with determining the next appropriate action based on the provided existing documents,
plan, and question. You have access to a large language model (LLM) for answering question and a retrieval system for gathering
additional documents. Your objective is to decide whether to write a query for retrieving relevant documents or to generate a
comprehensive answer using the LLM based on the existing documents and plan.

Instructions:
1. **Evaluate Existing Documents**: Assess the existing documents to determine if it is sufficient to answer the question.
2. **Follow the Plan**: Understand the next steps outlined in the plan.
3. **Decision Categories:**
- If the existing documents is insufficient and requires additional retrieval, respond with:
[Retrieval] ‘YOUR QUERY HERE‘
- If the existing documents is adequate to answer the question, respond with:
[LLM]
4. **Focus on Action**: Do not answer the question directly; concentrate on identifying the next appropriate action based on the
existing documents, plan, and question.

State of Decision Maker
Now, process the following question:

Existing Documents: {accumulated documents}

Roadmap: {roadmap}

Question: {question}

Output of Decision Maker
Thought: [Your analysis for current situation (need retrieval for additional informations or use LLM to answer)]
Action: [Your decision based on the analysis ([Retrieval]<subquery content> or [LLM])]

B.2. State Transition Function

Given a state sit and an action ait in each agent i ∈ N , the transition function T in our framework is deterministic. Based on
the three collaborative strategies introduced in Section 4.2, the state transitions are defined as follows:

Direct Answering Strategy ([No Retrieval]): In this strategy, the LLM directly generates the answer without retrieval,
resulting in no state transitions between agents.

Single-pass Strategy ([Retrieval]<query content>): This strategy involves a state transition between the Reasoning
Router and Information Filter agents:

T : S1 = {q} × A = {[Retrieval]<query content>} retrieval−−−−→ S2 = {q, retrieved documents} (12)

where S1 represents the initial state with the question q, and S2 represents the state for the Information Filter agent after
retrieval. The Information Filter is responsible for filtering the helpful documents based on S2.

Multi-Step Reasoning Strategy ([Planning]): This strategy involves multiple state transitions in a cyclic manner:

• Reasoning Router→ Decision Maker:

T : S1 = {q} × A = {[Planning]} [planning]−−−−−−−→ S3 = {q,Accumulated Documents,Roadmap}, (13)

19



C-3PO: Compact Plug-and-Play Proxy Optimization to Achieve Human-like Retrieval-Augmented Generation

where the roadmap is generated by the LLM and the accumulated documents is empty for initial step.
• Decision Maker→ Information Filter:

T : S3 = {q,Accumulated Documents,Roadmap} × A = {[Retrieval]<subquery content>,

current objective} retrieval−−−−→ S2 = {q, retrieved documents, current objective}, (14)

where the current objective is generated by the Decision Maker agent in S3.
• Information Filter→ Decision Maker:

T : S2 = {q, retrieved documents, current objective} × A = {Selected Documents}
filter−−→ S3new = {q,Updated Accumulated Documents,Roadmap}. (15)

This retrieval-filter loop between the Decision Maker agent and the Information Filter agent continues until the Decision
Maker outputting [LLM] or a termination condition is met. The state transitions in our C-3PO are deterministic and
well-defined, ensuring consistent behavior across the multi-agent system.

C. Additional Experimental Results
C.1. More Analysis in RL
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Figure 5. Strategy Ratio in RL training process.

Strategy Ratio during RL Training Process. As introduced in the Section 4.2, our C-3PO incorporates three distinct
strategies: Direct Answering Strategy ([No Retrieval]), Single-pass Strategy ([Retrieval]<query content>), and
Multi-Step Reasoning Strategy ([Planning]), each designed for different question complexities. Figure 5 reveals how
C-3PO dynamically adapts its strategy selection during the RL training process.

The evolution of strategy ratios shows a clear trend: the Multi-Step Reasoning Strategy gradually dominates the decision
space, stabilizing at approximately 60-70%, while the Single-pass Strategy decreases to around 30%. The Direct Answering
Strategy maintains a consistent but low ratio of about 5%. This distribution pattern offers several insights into our
framework’s learning behavior: First, the limited use of Direct Answering Strategy aligns with our experimental findings in
Table 1, confirming that solely relying on the model’s inherent knowledge is insufficient for complex question-answering
tasks. Second, the substantial proportion of Single-pass Strategy usage demonstrates our C-3PO’s ability to identify
scenarios where simple external information retrieval suffices. Most notably, the increasing preference for Multi-Step
Reasoning Strategy indicates that our C-3PO recognizes the importance of multi-step reasoning in handling complex
queries effectively. These learned ratios demonstrate that our framework effectively develops a balanced strategy selection
mechanism. By dynamically choosing appropriate strategies based on question complexity, our C-3PO achieves a balance
between computational efficiency and reasoning capability, making it well-suited for real-world applications.
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Figure 6. Depth Distribution in Test set.

Depth Distribution. Figure 6 presents the depth distribution of reasoning processes across different datasets, revealing
distinct patterns that align with the inherent complexity of each task. We observe three clear categories of reasoning
depth requirements: (1) Simple Complexity (Depth 3-5): Datasets like NaturalQuestions, PopQA, and TriviaQA show
concentrated distributions around depths 3-5, indicating that most questions in these datasets can be effectively addressed
with the Direct Answering Strategy ([No Retrieval]) and Single-pass Strategy ([Retrieval]<query content>). This
aligns with the nature of these datasets, which primarily contain straightforward factual questions. (2) Mixed Complexity:
HotpotQA and 2WikiMultiHopQA exhibit multiple peaks in the depth distribution, with notable concentrations around
depths 3-4 and depths 9-15, indicating a diverse range of question complexity. This bimodal distribution suggests that while
some questions require simple reasoning steps, others need more complex reasoning chains. (3) Complex Complexity:
Musique displaies broader distributions with significant density at higher depths (9-13), particularly pronounced in their
rightward skew. Musique’s distribution is notably spread across higher depths, consistent with its design for multi-step
reasoning questions.

These distributions validate our framework’s adaptive capability in handling queries of varying complexity. The frame-
work naturally adjusts its reasoning depth based on task requirements, demonstrating efficient resource utilization while
maintaining the ability to perform deep reasoning when necessary.

D. Additional Prompts
In this section, we supplement additional prompts based on Appendix B.

D.1. Roadmap

In the multi-step reasoning strategy, we introduce an LLM-generated roadmap as high-level guidance for our proxy. The
specific prompt and example are as follows:
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An example of Roadmap

Prompt for Roadmap
You are an expert assistant tasked with analyzing the following question and formulating a detailed plan. You will utilize a
retrieval system to gather relevant information in your planning. Your goal is to analysis the question and provide a structured
sequence of actions to address it effectively.

Instructions:
1. **Question Analysis**: Identifying the core components of the question. Determine what key information we currently know
and what additional information is needed through retrieval.
2. **Step By Step Planning**: Develop a detailed plan step by step. Focus on the planning process rather than providing direct
answers.
3. **Focus on Planning**: Keep your response clear and structured, concentrating solely on the analysis and planning aspects.

Now, process the following question:

Question: {question}

Example of generated roadmap
(Take What nationality is the director of film The Caper Of The Golden Bulls? as an example)
To answer the question, we need to find information about the director of the film ”The Caper of the Golden Bulls.” Then we
should determine which nationality is the director born using the retrieval.
Step 1: Retrieve the relevant documents that mention the film ‘The Caper of the Golden Bulls.‘
Step 2: Identify the director of the film from the retrieved documents.
Step 3: Retrieve the relevant information about ‘Which nationality is the director born¿.
Step 4: Provide the answer based on the retrieved information.

D.2. Evaluation

In our experiments, we found that traditional evaluation metrics such as Exact Match (EM) are often inaccurate, as they
strictly require identical generated answers. To address this issue, following previous work (Zheng et al., 2023; Vu et al.,
2024), we leverage an LLM to assess answer correctness by comparing the predicted answer with the ground truth. The
specific example is as follows:

Prompt of Evaluation

You are a precise answer validator. Your task is to compare the predicted answer with a set of acceptable correct answers and
determine if the prediction matches any of them.

Input format:
Question: [The question text]
Correct Answers: [Array or list of acceptable correct answers]
Predicted Answer: [The answer to be evaluated]

Rules:
1. Consider semantic equivalence, not just exact string matching
2. Ignore minor differences in formatting, spacing, or capitalization
3. For numerical answers, consider acceptable margin of error if applicable
4. For text answers, focus on the core meaning rather than exact wording
5. The predicted answer is considered correct if it matches ANY ONE of the provided correct answers
6. The matching can be exact or semantically equivalent to any of the correct answers
7. Return only “True” if the predicted answer is correct, or “False” if it is incorrect.

Now, process the following question:
Question: {question}
Correct Answer: {true answer}
Predicted Answer: {long answer}
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