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Abstract

We present a new computing model for intrinsic rewards in reinforcement
learning that addresses the limitations of existing surprise-driven explo-
rations. The reward is the novelty of the surprise rather than the surprise
norm. We estimate the surprise novelty as retrieval errors of a memory net-
work wherein the memory stores and reconstructs surprises. Our surprise
memory (SM) augments the capability of surprise-based intrinsic motiva-
tors, maintaining the agent's interest in exciting exploration while reducing
unwanted attraction to unpredictable or noisy observations. Our experi-
ments demonstrate that the SM combined with various surprise predictors
exhibits e�cient exploring behaviors and signi�cantly boosts the �nal per-
formance in sparse reward environments, including Noisy-TV, navigation
and challenging Atari games.

1 Introduction

What motivates agents to explore? Successfully answering this question would enable agents
to learn e�ciently in formidable tasks. Random explorations such as ε-greedy are ine�cient
in high dimensional cases, failing to learn despite training for hundreds of million steps in
sparse reward games (Bellemare et al., 2016). Alternative approaches propose to use intrinsic
motivation to aid exploration by adding bonuses to the environment's rewards (Bellemare
et al., 2016; Stadie et al., 2015). The intrinsic reward is often proportional to the novelty
of the visiting state: it is high if the state is novel (e.g. di�erent from the past ones (Badia
et al., 2020; 2019)) or less frequently visited (Bellemare et al., 2016; Tang et al., 2017).
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Figure 1: Montezuma Revenge: surprise novelty better re�ects the originality of the envi-
ronment than surprise norm. While surprise norm can be signi�cant even for dull events
such as those in the dark room due to unpredictability, surprise novelty tends to be less
(3rd and 6th image). On the other hand, surprise novelty can be higher in truly vivid states
on the �rst visit to the ladder and island rooms (1st and 2nd image) and reduced on the
second visit (4th and 5th image). Here, surprise novelty and surprise norm are quanti�ed
and averaged over steps in each room.

Another view of intrinsic motivation is from surprise, which refers to the result of the
experience being unexpected, and is determined by the discrepancy between the expectation
(from the gent's prediction) and observed reality (Barto et al., 2013; Schmidhuber, 2010).
Technically, surprise is the di�erence between prediction and observation representation
vectors. The norm of the residual (i.e. prediction error) is used as the intrinsic reward.
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Here, we will use the terms �surprise� and �surprise norm� to refer to the residual vector
and its norm, respectively. Recent works have estimated surprise with various predictive
models such as dynamics (Stadie et al., 2015), episodic reachability (Savinov et al., 2018) and
inverse dynamics (Pathak et al., 2017); and achieved signi�cant improvements with surprise
norm (Burda et al., 2018a). However, surprise-based agents tend to be overly curious about
noisy or unpredictable observations (Itti and Baldi, 2005; Schmidhuber, 1991). For example,
consider an agent watching a television screen showing white noise (noisy-TV problem). The
TV is boring, yet the agent cannot predict the screen's content and will be attracted to the
TV due to its high surprise norm. This distraction or "fake surprise" is common in partially
observable Markov Decision Process (POMDP), including navigation tasks and Atari games
(Burda et al., 2018b). Many works have addressed this issue by relying on the learning
progress (Achiam and Sastry, 2017; Schmidhuber, 1991) or random network distillation
(RND) (Burda et al., 2018b). However, the former is computationally expensive, and the
latter requires many samples to perform well.

This paper overcomes the "fake surprise" issue by using surprise novelty - a new concept
that measures the uniqueness of surprise. To identify surprise novelty, the agent needs to
compare the current surprise with surprises in past encounters. One way to do this is to equip
the agent with some kind of associative memory, which we implement as an autoencoder
whose task is to reconstruct a query surprise. The lower the reconstruction error, the lower
the surprise novelty. A further mechanism is needed to deal with the rapid changes in
surprise structure within an episode. As an example, if the agent meets the same surprise
at two time steps, its surprise novelty should decline, and with a simple autoencoder this
will not happen. To remedy this, we add an episodic memory, which stores intra-episode
surprises. Given the current surprise, this memory can retrieve similar �surprises� presented
earlier in the episode through an attention mechanism. These surprises act as a context
added to the query to help the autoencoder better recognize whether the query surprise has
been encountered in the episode or not. The error between the query and the autoencoder's
output is de�ned as surprise novelty, to which the intrinsic reward is set proportionally.

We argue that using surprise novelty as an intrinsic reward is better than surprise norm. As
in POMDPs, surprise norms can be very large since the agent cannot predict its environment
perfectly, yet there may exist patterns of prediction failure. If the agent can remember these
patterns, it will not feel surprised when similar prediction errors appear regardless of the
surprise norms. An important emergent property of this architecture is that when random
observations are presented (e.g., white noise in the noisy-TV problem), the autoencoder can
act as an identity transformation operator, thus e�ectively �passing the noise through� to
reconstruct it with low error. We conjecture that the autoencoder is able to do this with
the surprise rather than the observation as the surprise space has lower variance, and we
show this in our paper. To make our memory system work on the surprise level, we adopt
an intrinsic motivation method to generate surprise for the memory. The surprise generator
(SG) can be of any kind based on predictive models and is jointly trained with the memory
to optimize its own loss function. To train the surprise memory (SM), we optimize the
memory's parameters to minimize the reconstruction error.

Our contribution is to propose a new concept of surprise novelty for intrinsic motivation. We
argue that it re�ects better the environment originality than surprise norm (see motivating
graphics Fig. 1). In our experiments, the SM helps RND (Burda et al., 2018b) perform well
in our challenging noisy-TV problem while RND alone performs poorly. Not only with RND,
we consistently demonstrate signi�cant performance gain when coupling three di�erent SGs
with our SM in sparse-reward tasks. Finally, in hard exploration Atari games, we boost the
scores of 2 strong SGs, resulting in better performance under the low-sample regime.

2 Methods

2.1 Surprise Novelty

Surprise is the di�erence between expectation and observation (Ekman and Davidson, 1994).
If a surprise repeats, it is no longer a surprise. Based on this intuition, we hypothesize that
surprises can be characterized by their novelties, and an agent's curiosity is driven by the
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Figure 2: Surprise Generator+Surprise Memory (SG+SM). The SG takes input It from
the environment to estimate the surprise ut at state st. The SM consists of two modules:
an episodic memory (M) and an autoencoder network (W). M is slot-based, storing past
surprises within the episode. At any timestep t, given surprise ut,M retrieves read-out uet
to form a query surprise qt = [uet , ut] to W. W tries to reconstruct the query and takes the
reconstruction error (surprise novelty) as the intrinsic reward rit.

surprise novelty rather than the surprising magnitude. Moreover, surprise novelty should
be robust against noises: it is small even for random observations. For example, watching a
random-channel TV can always be full of surprises as we cannot expect which channel will
appear next. However, the agent should soon �nd it boring since the surprise of random
noises reoccurs repeatedly, and the channels are entirely unpredictable.

We propose using a memory-augmented neural network (MANN) to measure surprise nov-
elty. The memory remembers past surprise patterns, and if a surprise can be retrieved from
the memory, it is not novel, and the intrinsic motivation should be small. The memory
can also be viewed as a reconstruction network. The network can pass its inputs through
for random, pattern-free surprises, making them retrievable. Surprise novelty has an inter-

esting property: if some event is unsurprising (the expectation-reality residual is
−→
0 ), its

surprise (
−→
0 with norm 0) is always perfectly retrievable (surprise novelty is 0). In other

words, low surprise norm means low surprise novelty. On the contrary, high surprise norm
can have little surprise novelty as long as the surprise can be retrieved from the memory
either through associative recall or pass-through mechanism. Another property is that the
variance of surprise is generally lower than that of observation (state), potentially making
the learning on surprise space easier. This property is formally stated as follows.

Proposition 1. Let X and U be random variables representing the observation and surprise
at the same timestep, respectively. Under an imperfect SG, the following inequality holds:

∀i :
(
σXi
)2 ≥ (σUi )2

where
(
σXi
)2

and
(
σUi
)2
denote the i-th diagonal elements of var(X) and var(U), respectively.

Proof. See Appendix E.

2.2 Surprise Generator

Since our MANN requires surprises for its operation, it is built upon a prediction model,
which will be referred to as Surprise Generators (SG). In this paper, we adopt many well-
known SGs (e.g. RND (Burda et al., 2018b) and ICM (Pathak et al., 2017)) to predict the
observation, compute the surprise ut and its norm for every step in the environment. The
surprise norm is the Euclidean distance between the expectation and the actual observation:

‖ut‖ = ‖SG (It)−Ot‖ (1)

where ut ∈ Rn is the surprise vector of size n, It the input of the SG at step t of the episode,
SG (It) and Ot the SG's prediction and the observation target, respectively. The input It
is speci�c to the SG architecture choice, which can be the current (st) or previous state,
action (st−1, at). The observation target Ot is usually a transformation (can be identical or
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random) of the current state st, which serves as the target for the SG's prediction. The SG
is usually trained to minimize:

LSG = Et [‖ut‖] (2)

Here, predictable observations have minor prediction errors or little surprise. One issue is
that a great surprise norm can be simply due to noisy or distractive observations. Next, we
propose a remedy for this problem.

2.3 Surprise Memory

The surprise generated by the SG is stored and processed by a memory network dubbed
Surprise Memory (SM). It consists of an episodic memoryM and an autoencoder network
W, jointly optimized to reconstruct any surprise. At each timestep, the SM receives a
surprise ut from the SG module and reads content uet from the memoryM. {uet , ut} forms
a surprise query qt to W to retrieve the reconstructed q̃t. This reconstruction will be used
to estimate the novelty of surprises forming intrinsic rewards rit. Fig. 2 summarizes the
operations of the components of our proposed method. Our 2 memory design e�ectively
recovers surprise novelty by handling intra and inter-episode surprise patterns thanks toM
andW, respectively. M can quickly adapt and recall surprises that occur within an episode.
W is slower and focuses more on consistent surprise patterns across episodes during training.

Here the query qt can be directly set to the surprise ut. However, this ignores the rapid
change in surprise within an episode. Without M, when the SG and W are �xed (during
interaction with environments), their outputs ut and q̃t stay the same for the same input It.
Hence, the intrinsic reward rit also stays the same. It is undesirable since when the agent
observes the same input at di�erent timesteps (e.g., I1 = I2), we expect its curiosity should
decrease in the second visit (ri1 <r

i
2). Therefore, we design SM withM to �x this issue.

The episodic memory M stores representations of surprises that the agent encounters
during an episode. For simplicity,M is implemented as a �rst-in-�rst-out queue whose size
is �xed as N . Notably, the content of M is wiped out at the end of each episode. Its
information is limited to a single episode. M can be viewed as a matrix: M ∈ RN×d,
where d is the size of the memory slot. We denote M (j) as the j-th row in the memory,
corresponding to the surprise ut−j . To retrieve fromM a read-out uet that is close to ut, we
perform content-based attention (Graves et al., 2014) to compute the attention weight as

wt (j) =
(utQ)M(j)>

‖(utQ)‖‖M(j)‖ . The read-out fromM is then uet = wtMV ∈ Rn. Here, Q ∈ Rn×d

and V ∈ Rd×n are learnable weights mapping between the surprise and the memory space.
To force the read-out close to ut, we minimize:

LM = Et [‖uet − ut‖] (3)

The read-out and the SG's surprise form the query surprise to W: qt = [uet , ut] ∈ R2n.

M stores intra-episode surprises to assist the autoencoder in preventing the agent from
exploring �fake surprise� within the episode. Since we train the parameters to reconstruct
ut using past surprises in the episode, if the agent visits a state whose surprise is predictable
from those in M, ‖uet − ut‖ should be small. Hence, the read-out context uet contains no
extra information than ut and reconstructing qt fromW becomes easier as it is equivalent to
reconstructing ut. In contrast, visiting diverse states leads to a more novel read-out uet and
makes it more challenging to reconstruct qt, generally leading to higher intrinsic reward.

The autoencoder network W can be viewed as an associative memory of surprises that
persist across episodes. At timestep t in any episode during training, W is queried with qt
to produce a reconstructed memory q̃t. The surprise novelty is then determined as:

rit = ‖q̃t − qt‖ (4)

which is the norm of the surprise residual q̃t − qt. It will be normalized and added to the
external reward as an intrinsic reward bonus. The details of computing and using normalized
intrinsic rewards can be found in Appendix C.

We implementW as a feed-forward neural network that learns to reconstruct its own inputs.
This kind of autoencoder has been shown to be equivalent to an associative memory that
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Figure 3: Noisy-TV: (a) mean-normalized intrinsic reward (MNIR) produced by RND and
RND+SM at 7 selected steps in an episode. (b) Average task return (mean±std. over 5
runs) over 4 million training steps.

supports memory encoding and retrieval through attractor dynamics (Radhakrishnan et al.,
2020). The query surprise is encoded to the weights of the network via backpropagation as
we minimize the reconstruction loss below:

LW = Et
[
rit
]
= Et [‖W (qt)− qt‖] (5)

Here, q̃t = W (qt). Intuitively, it is easier to retrieve non-novel surprises experienced many
times in past episodes. Thus, the intrinsic reward is lower for states that leads to these
familiar surprises. On the contrary, rare surprises are harder to retrieve, which results in
high reconstruction errors and intrinsic rewards. W is like a long-term inter-episode asso-
ciative memory. Unlike slot-based memories, it has a �xed memory capacity, can compress
information and learn data representations. We could store the surprise in a slot-based
memory across episodes, but the size of this memory would be autonomous, and the data
would be stored redundantly. Hence, the quality of the stored surprise will reduce as more
and more observations come in. Readers can refer to Appendix A to see the architecture
details and how W can be interpreted as implementing associative memory. The whole sys-
tem SG+SM is trained end-to-end by minimizing the following loss: L = LSG +LM +LW .
Here, we block the gradients from LW backpropagated to the parameters of SG to avoid
trivial reconstructions of qt. Pseudocode of our algorithm is presented in Appendix B.

3 Experimental Results

3.1 Noisy-TV: Robustness against Noisy Observations

We use Noisy-TV, an environment designed to fool exploration methods (Burda et al.,
2018b; Savinov et al., 2018), to con�rm that our method can generate intrinsic rewards
that (1) are more robust to noises and (2) can discriminate rare and common observations
through surprise novelty. We simulate this problem by employing a 3D maze environment
with a random map structure. The TV is not �xed in speci�c locations in the maze to
make it more challenging. Instead, the agent �brings� the TV with it and can choose to
watch TV anytime. Hence, there are three basic actions (turn left, right, and move forward)
plus an action: watch TV. When taking this action, the agent will see a white noise image
sampled from standard normal distribution and thus, the number of TV channels can be
considered in�nity. The agent's state is an image of its viewport, and its goal is to search
for a red box randomly placed in the maze (+1 reward if the agent reaches the goal). The
baseline is RND (Burda et al., 2018b), a simple yet strong SG that is claimed to obviate the
stochastic problems of Noisy-TV. Our SG+SM model uses RND as the SG, so we name it
RND+SM. Since our model and the baseline share the same RND architecture, the di�erence
in performance must be attributed to our SM.

Fig. 3 (a) illustrates the mean-normalized intrinsic rewards (MNIR)1 measured at di�erent
states in our Noisy-TV environment. The �rst two states are noises, the following three
states are common walls, and the last two are ones where the agent sees the box. The

1See Appendix C for more information on this metric.
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Task Baseline RND/SM ICM/SM NGU/SM AE/SM

KD 0.0±0.0 48.3±26/79.3±4 5.9±5/4.7±3 64.4±3/83.4±4 1.4±1/91.2±6
DO -27.0±0.7 -13.6±8/70.8±11 -27.7±2/43.6±16 -23.9±3/48.6±28 -5.1±2/67.5±13

LC 78.0±1.7 25.0±35/71.1±5 56.2±40/84.6±1 42.2±40/69.5±5 29.0±6/70.9±2

Table 1: MiniGrid: test performance after 10 million training steps. The numbers are
average task return×100 over 128 episodes (mean±std. over 5 runs). Bold denotes best
results on each task. Italic denotes that SG+SM is better than SG regarding Cohen e�ect
size less than 0.5.

MNIR bars show that both models are attracted mainly by the noisy TV, resulting in the
highest MNIRs. However, our model with SM su�ers less from noisy TV distractions since its
MNIR is lower than RND's. We speculate that SM is able to partially reconstruct the white-
noise surprise via pass-through mechanism, making the normalized surprise novelty generally
smaller than the normalized surprise norm in this case. That mechanism is enhanced in SM
with surprise reconstruction (see Appendix D.1 for explanation).

On the other hand, when observing red box, RND+SM shows higher MNIR than RND. The
di�erence between MNIR for common and rare states is also more prominent in RND+SM
than in RND because RND prediction is not perfect even for common observations, creating
relatively signi�cant surprise norms for seeing walls. The SM �xes that issue by remembering
surprise patterns and successfully retrieving them, producing much smaller surprise novelty
compared to those of rare events like seeing red box. Consequently, the agent with SM
outperforms the other by a massive margin in task rewards (Fig. 3 (b)).

As we visualize the number of watching TV actions and the value of the intrinsic reward
by RND+SM and RND over training time, we realize that RND+SM helps the agent take
fewer watching actions and thus, collect smaller amounts of intrinsic rewards compared to
RND. We also verify that our proposed method outperforms a simpli�ed version of SM
using counts to measure surprise novelty and a vanilla baseline that does not use intrinsic
motivation. The details of these results are given in Appendix D.1.

3.2 MiniGrid: Compatibility with Different Surprise Generators

We show the versatility of our framework SG+SM by applying SM to 4 SG backbones: RND
(Burda et al., 2018b), ICM (Pathak et al., 2017), NGU (Badia et al., 2019) and autoencoder-
AE (see Appendix D.2 for implementation details). We test the models on three tasks from
MiniGrid environments: Key-Door (KD), Dynamic-Obstacles (DO) and Lava-Crossing (LC)
(Chevalier-Boisvert et al., 2018). If the agent reaches the goal in the tasks, it receives a +1
reward. Otherwise, it can be punished with negative rewards if it collides with obstacles
or takes too much time to �nish the task. These environments are not stochastic as the
Noisy-TV but they still contain other types of distraction. For example, in KD, the agent
can be attracted to irrelevant actions such as going around to drop and pick the key. In
DO, instead of going to the destination, the agent may chase obstacle balls �ying around
the map. In LC the agent can commit unsafe actions like going near lava areas, which
are di�erent from typical paths. In any case, due to reward sparsity, intrinsic motivation
is bene�cial. However, surprise alone may not be enough to guide an e�cient exploration
since the observation can be too complicated for SG to minimize its prediction error. Thus,
the agent quickly feels surprised, even in unimportant states.

Table 1 shows the average returns of the models for three tasks. The Baseline is the PPO
backbone trained without intrinsic reward. RND, ICM, NGU and AE are SGs providing the
PPO with surprise-norm rewards while our method SG+SM uses surprise-novelty rewards.
The results demonstrate that models with SM often outperform SG signi�cantly and always
contain the best performers. Notably, in the LC task, SGs hinder the performance of the
Baseline because the agents are attracted to dangerous vivid states, which are hard to
predict but cause the agent's death. The SM models avoid this issue and outperform the
Baseline for the case of ICM+SM. Compared to AE, which computes intrinsic reward based
on the novelty of the state, AE+SM shows a much higher average score in all tasks. That
manifests the importance of modeling the novelty of surprise instead of states.
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Task EMI♠ LWM♠ RND♠ LWM♦ LWM+SM♦ RND♦ RND+SM♦

Freeway 33.8 30.8 33.3 31.1 31.6 22.2 22.2
Frostbite 7,002 8,409 2,227 8,598 10,258 2,628 5,073

Venture 646 998 707 985 1,381 1,081 1,119

Gravitar 558 1,376 546 1,242 1,693 739 987

Solaris 2,688 1,268 2,051 1,839 2,065 2,206 2,420

Montezuma 387 2,276 377 2,192 2,269 2,475 5,187

Norm. Mean 61.4 80.6 42.2 80.5 97.0 50.7 74.8

Norm. Median 34.9 60.8 32.7 66.5 83.7 58.3 84.6

Table 2: Atari: average return over 128 episodes after 50 million training frames (mean over
5 runs). ♠ is from a prior work (Ermolov and Sebe, 2020). ♦ is our run. The last two rows
are mean and median human normalized scores. Bold denotes best results. Italic denotes
that SG+SM is signi�cantly better than SG regarding Cohen e�ect size less than 0.5.

To analyze the di�erence between the SG+SM and SG's MNIR structure, we visualize the
MNIR for each cell in the map of Key-Door in Appendix's Figs. 5 (b) and (c). We create
a synthetic trajectory that scans through all the cells in the big room on the left and, at
each cell, uses RND+SM and RND models to compute the corresponding surprise-norm
and surprise-novelty MNIRs, respectively. As shown in Fig. 5 (b), RND+SM selectively
identi�es truly surprising events, where only a few cells have high surprise-novelty MNIR.
Here, we can visually detect three important events that receive the most MNIR: seeing
the key (bottom row), seeing the door side (in the middle of the rightmost column) and
approaching the front of the door (the second and fourth rows). Other less important cells
are assigned very low MNIR. On the contrary, RND often gives high surprise-norm MNIR
to cells around important ones, which creates a noisy MNIR map as in Fig. 5 (c). As a
result, RND's performance is better than Baseline, yet far from that of RND+SM. Another
analysis of how surprise novelty discriminates against surprises with similar norms is given
in Appendix's Fig. 8.

3.3 Atari: Sample-efficient Benchmark

We adopt the sample-e�ciency Atari benchmark (Kim et al., 2019) on six hard exploration
games where the training budget is only 50 million frames. We use our SM to augment
2 SGs: RND (Burda et al., 2018b) and LWM (Ermolov and Sebe, 2020). Unlike RND,
LWM uses a recurrent world model and forward dynamics to generate surprises. Details
of the SGs, training and evaluation are in Appendix D.3. We run the SG and SG+SM in
the same codebase and setting. Table 2 reports our and representative results from prior
works, showing SM-augmented models outperform their SG counterparts in all games (same
codebase). In Frostbite and Montezuma Revenge, RND+SM's score is almost twice as many
as that of RND. For LWM+SM, games such as Gravitar and Venture observe more than
40% improvement. Overall, LWM+SM and RND+SM achieve the best mean and median
human normalized score, improving 16% and 22% w.r.t the best SGs, respectively. Notably,
RND+SM shows signi�cant improvement for the notorious Montezuma Revenge.

We also verify the bene�t of the SM in the long run for Montezuma Revenge and Frostbite.
As shown in Fig. 4 (a,b), RND+SM still signi�cantly outperforms RND after 200 mil-
lion training frames, achieving average scores of 10,000 and 9,000, respectively. The result
demonstrates the scalability of our proposed method. When using RND and RND+SM to
compute the average MNIR in several rooms in Montezuma Revenge (Fig. 1), we realize
that SM makes MNIR higher for surprising events in rooms with complex structures while
depressing the MNIR of fake surprises in dark rooms. Here, even in the dark room, the
movement of agents (human or spider) is hard to predict, leading to a high average MNIR.
On the contrary, the average MNIR of surprise novelty is reduced if the prediction error can
be recalled from the memory.

Finally, measuring the running time of the models, we notice little computing overhead
caused by our SM. On our Nvidia A100 GPUs, LWM and LWM+SM's average time for one
50M training are 11h 38m and 12h 10m, respectively. For one 200M training, RND and
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Figure 4: (a,b) Atari long runs over 200 million frames: average return over 128 episodes.
(c) Ablation study on SM's components. (d) MiniWorld exploration without task reward:
Cumulative task returns over 100 million training steps for the hard setting. The learning
curves are mean±std. over 5 runs.

RND+SM's average times are 26h 24m and 28h 1m, respectively. These correspond to only
7% more training time while the performance gap is signi�cant (4000 scores).

3.4 Ablation Study

Role of Memories Here, we use Minigrid's Dynamic-Obstacle task to study the role of
M and W in the SM (built upon RND as the SG). Disabling W, we directly use ‖qt‖ =
‖[uet , ut]‖ as the intrinsic reward, and name this version: SM (no W). To ablate the e�ect
ofM, we remove uet from qt and only use qt = ut as the query to W, forming the version:
SM (no M). We also consider di�erent episodic memory capacity and slot size N -d=
{32− 4, 128− 16, 1024− 64}. As N and d increase, the short-term context expands and
more past surprise information is considered in the attention. In theory, a bigM is helpful
to capture long-term and more accurate context for constructing the surprise query.

Fig. 4 (c) depicts the performance curves of the methods after 10 million training steps.
SM (no W) and SM (noM) show weak signs of learning, con�rming the necessity of both
modules in this task. Increasing N -d from 32−4 to 1024−64 improves the �nal performance.
However, 1024− 64 is not signi�cantly better than 128− 16, perhaps because it is unlikely
to have similar surprises that are more than 128 steps apart. Thus, a larger attention span
does not provide a bene�t. As a result, we keep using N = 128 and d = 16 in all other
experiments for faster computing. We also verify the necessity ofM and W in Montezuma
Revenge and illustrate how M generates lower MNIR when 2 similar event occurs in the
same episode in Key-Door (see Appendix D.4).

No Task Reward In this experiment, we remove task rewards and merely evaluate the
agent's ability to explore using intrinsic rewards. The task is to navigate 3D rooms and get
a +1 reward for picking an object (Chevalier-Boisvert, 2018). The state is the agent's image
view, and there is no noise. Without task rewards, it is crucial to maintain the agent's
interest in unique events of seeing the objects. In this partially observable environment,
surprise-prediction methods may struggle to explore even without noise due to lacking in-
formation for good predictions, leading to usually high prediction errors. For this testbed,
we evaluate random exploration agent (Baseline), RND and RND+SM in 2 settings: 1 room
with three objects (easy), and 4 rooms with one object (hard).

To see the di�erence among the models, we compare the cumulative task rewards over 100
million steps (see Appendix D.4 for details). RND is even worse than Baseline in the easy
setting because predicting causes high biases (intrinsic rewards) towards the unpredictable,
hindering exploration if the map is simple. In contrast, RND+SM uses surprise novelty,
generally showing smaller intrinsic rewards (see Appendix Fig. 12 (right)). Consequently,
our method consistently demonstrates signi�cant improvements over other baselines (see
Fig. 4 (d) for the hard setting).

4 Related works

Intrinsic motivation approaches usually give the agent reward bonuses for visiting novel
states to encourage exploration. The bonus is proportional to the mismatch between the

8
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predicted and reality, also known as surprise (Schmidhuber, 2010). One kind of predictive
model is the dynamics model, wherein the surprise is the error of the models as predicting the
next state given the current state and action (Achiam and Sastry, 2017; Stadie et al., 2015).
One critical problem of these approaches is the unwanted bias towards transitions where the
prediction target is a stochastic function of the inputs, commonly found in partially observ-
able environments. Recent works focus on improving the features of the predictor's input
by adopting representation learning mechanisms such as inverse dynamics (Pathak et al.,
2017), variational autoencoder, random/pixel features (Burda et al., 2018a), or whitening
transform (Ermolov and Sebe, 2020). Although better representations may improve the
reward bonus, they cannot completely solve the problem of stochastic dynamics and thus,
fail in extreme cases such as the noisy-TV problem (Burda et al., 2018b).

Besides dynamics prediction, several works propose to predict other quantities as functions
of the current state by using autoencoder (Nylend, 2017), episodic memory (Savinov et al.,
2018), and random network (Burda et al., 2018b). Burda et al. (2018) claimed that using a
deterministic random target network is bene�cial in overcoming stochasticity issues. Other
methods combine this idea with episodic memory and other techniques, achieving good
results in large-scale experiments (Badia et al., 2020; 2019). From an information theory
perspective, the notation of surprise can be linked to information gain or uncertainty, and
predictive models can be treated as parameterized distributions (Achiam and Sastry, 2017;
Houthooft et al., 2016; Still and Precup, 2012). Furthermore, to prevent the agent from
unpredictable observations, the reward bonus can be measured by the progress of the model's
prediction (Achiam and Sastry, 2017; Lopes et al., 2012; Schmidhuber, 1991). However, these
methods are complicated and hard to scale, requiring heavy computing. A di�erent angle to
handle stochastic observations during exploration is surprsie minimization (Berseth et al.,
2020; Rhinehart et al., 2021). In this direction, the agents get bigger rewards for seeing
more familiar states. Such a strategy is somewhat opposite to our approach and suitable for
unstable environments where the randomness occurs separately from the agents' actions.

These earlier works rely on the principle of using surprise as an incentive for exploration and
di�er from our principle that utilizes surprise novelty. Also, our work augments these existing
works with a surprise memory module and can be used as a generic plug-in improvement
for surprise-based models. We note that our memory formulation di�ers from the memory-
based novelty concept using episodic memory (Badia et al., 2019), momentum memory (Fang
et al., 2022), or counting (Bellemare et al., 2016; Tang et al., 2017) because our memory
operates on the surprise level, not the state level. In our work, exploration is discouraged
not only in frequently visited states but also in states whose surprises can be reconstructed
using SM. Our work provides a more general and learnable novelty detection mechanism,
which is more �exible than the nearest neighbour search or counting lookup table.

5 Discussion

This paper presents Surprise Generator-Surprise Memory (SG+SM) framework to compute
surprise novelty as an intrinsic motivation for the reinforcement learning agent. Exploring
with surprise novelty is bene�cial when there are repeated patterns of surprises or random
observations. For example, in the Noisy-TV problem, our SG+SM can harness the agent's
tendency to visit noisy states such as watching random TV channels while encouraging it
to explore rare events with distinctive surprises. We empirically show that our SM can
supplement three surprise-based SGs to achieve more rewards in fewer training steps in
three grid-world environments. In 3D navigation without external reward, our method
signi�cantly outperforms the baselines. On two strong SGs, our SM also achieve superior
results in hard-exploration Atari games within 50 million training frames. Even in the
long run, our method maintains a clear performance gap from the baselines, as shown in
Montezuma Revenge and Frostbite. If we view surprise as the �rst-order error between the
observation and the predicted, surprise novelty�the retrieval error between the surprise and
the reconstructed memory, is essentially the second-order error. It would be interesting to
investigate the notion of higher-order errors, study their theoretical properties, and utilize
them for intrinsic motivation in our future work.
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Appendix

A W as Associative Memory

This section will connect the associative memory concept to neural networks trained with
the reconstruction loss as in Eq. 5. We will show how the neural network (W) stores
and retrieves its data. We will use 1-layer feed-forward neural network W to simplify the
analysis, but the idea can extend to multi-layer feed-forward neural networks. For simplicity,
assumingW is a square matrix, the objective is to minimize the di�erence between the input
and the output of W :

For simplicity, assuming W is a square matrix, the objective is to minimize the di�erence
between the input and the output of W :

L = ‖Wx− x‖22 (6)

Using gradient descent, we update W as follow,

W ←W − α ∂L
∂W

←W − 2α (Wx− x)x>

←W − 2αWxx> + 2αxx>

←W
(
I − 2αxx>

)
+ 2αxx>

where I is the identity matrix, x is the column vector. If a batch of inputs {xi}Bi=1 is used
in computing the loss in Eq. 6, at step t, we update W as follows,

Wt =Wt−1 (I − αXt) + αXt

where Xt = 2
∑B
i=1 xix

>
i . From t = 0, after T updates, the weight becomes

WT =W0

T∏
t=1

(I − αXt)− α2
T∑
t=2

XtXt−1

T∏
k=t+1

(I − αXk) + α

T∑
t=1

Xt (7)

Given the form of Xt, Xt is symmetric positive-de�nite. Also, as α is often very small
(0<α � 1), we can show that ‖I − αXt‖ < 1 − λmin (αXt) < 1. This means as

T →∞,
∥∥∥W0

∏T
t=1 (I − αXt)

∥∥∥→ 0 and thus, WT → α2
∑T
t=2XtXt−1

∏T
k=t+1 (I − αXk) +

α
∑T
t=1Xt independent from the initialization W0. Eq. 7 shows how the data (Xt)

is integrated into the neural network weight Wt. The other components such as

α2
∑T
t=2XtXt−1

∏T
k=t+1 (I − αXk) can be viewed as additional encoding noise. Without

these components (by assuming α is small enough),

WT ≈ α
T∑
t=1

Xt

= α

T∑
t=1

B∑
i=1

xi,tx
>
i,t

or equivalently, we have the Hebbian update rule:

W ←W + xi,t ⊗ xi,t
where W can be seen as the memory, ⊗ is the outer product and xi,t is the data or item
stored in the memory. This memory update is the same as that of classical associative
memory models such as Hop�eld network and Correlation Matrix Memory (CMM) .
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Given a query q, we retrieve the value in W as output of the neural network:

q′ = q>W

= q>R+ α

T∑
t=1

qXt

= q>R+ 2α

T∑
t=1

B∑
i=1

q>xi,tx
>
i,t

where R = W0

∏T
t=1 (I − αXt) − α2

∑T
t=2XtXt−1

∏T
k=t+1 (I − αXk). If q is presented to

the memory W in the past as some xj , q
′ can be represented as:

q′ = q>R+ 2α

T∑
t=1

B∑
i=1,i6=j

q>xi,tx
>
i,t + 2αq>

(
qq>

)
= q>R︸︷︷︸+2α

T∑
t=1

B∑
i=1,i6=j

q>xi,tx
>
i,t︸ ︷︷ ︸+2α ‖q‖ q>

noise cross talk

Assuming that the noise is insigni�cant thanks to small α, we can retrieve exactly q given
that all items in the memory are orthogonal2. As a result, after scaling q′ with 1/2α, the

retrieval error (
∥∥∥ q′2α − q

∥∥∥) is 0. If q is new to W , the error will depend on whether the items

stored in W are close to q. Usually, the higher the error, the more novel q is w.r.t W .

B SM's Implementation Detail

In practice, the short-term memoryM is a tensor of shape [B,N, d] where B is the number
of actors, N the memory length and d the slot size. B is the SG's hyperparameters and
tuned depending on tasks based on SG performance. For example, for the Noisy-TV, we
tune RND as the SG, obtaining B = 64 and directly using them for M. N and d are the
special hyperparameters of our method. As mentioned in Sec. 3.4, we �x N = 128 and
d = 16 in all experiments. As B increases in large-scale experiments, memory storage for
M can be demanding. To overcome this issue, we can use the uniform writing trick to
optimally preserve information while reducing N (Le et al., 2019).

Also, for W, by using a small hidden size, we can reduce the requirement for physical
memory signi�cantly. Practically, in all experiments, we implement W as a 2-layer feed-
forward neural network with a hidden size of 32 (2n → 32 → 2n). The activation is tanh.
With n = 512 d = 16, the number of parameters of W is only about 65K. Also, Q ∈ Rn×d
and V ∈ Rd×n have about 8K parameters. In total, our SM only introduces less than 90K
trainable parameters, which are marginal to that of the SG and policy/value networks (up
to 10 million parameters).

The join training of SG+SM is presented in Algo. 2. We note that vector notations in the
algorithm are row vectors. For simplicity, the algorithm assumes 1 actor. In practice, our
algorithm works with multiple actors and mini-batch training.

C Intrinsic Reward Normalization

Following (Burda et al., 2018b), to make the intrinsic reward on a consistent scale, we nor-
malized the intrinsic reward by dividing it by a running estimate of the standard deviations

2By certain transformation, this condition can be reduced to linear independence
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Algorithm 1 Intrinsic rewards computing via SG+SM framework.

Require: ut, and our surprise memory SM consisting of a slot-based memoryM, parame-
ters Q, V , and a neural network W

1: Compute LSG = ‖ut‖
2: QueryM with ut, retrieve u

e
t = wtMV where wt is the attention weight

3: Compute LM = ‖uet − ut.detach()‖
4: Query W with qt = [uet , ut], retrieve q̃t =W(qt)
5: Compute intrinsic reward rit = LW = ‖q̃t − qt.detach()‖
6: return LSG, LM, LW

Algorithm 2 Jointly training SG+SM and the policy.

Require: bu�er, policy πθ, surprise-based predictor SG, and our surprise memory SM
consisting of a slot-based memoryM, parameters Q, V , and a neural network W

1: Initialize πθ, SG, Q, W
2: for iteration = 1, 2, ... do
3: for t = 1, 2, ...T do
4: Execute policy πθ to collect st, at, rt, forming input It = st, ... and target Ot
5: Compute surprise ut = SG (It)−Ot.detach() (Eq. 1)
6: Compute intrinsic reward rit using Algo. 1
7: Compute �nal reward rt ← rt + βrit/r

std
t

8: Add (It, Ot, st−1, st, at, rt) to bu�er
9: Add utQ toM
10: if done episode then clearM
11: end for
12: for k = 1, 2, ..,K do
13: Sample It, Ot from bu�er
14: Compute surprise ut = SG (It)−Ot.detach() (Eq. 1)
15: Compute LSG, LM, LW using Algo. 1
16: Update SG, Q and W by minimizing the loss L = LSG + LM + LW
17: Update πθ with sample (st−1, st, at, rt) from bu�er using backbone algorithms
18: end for
19: end for

of the intrinsic returns. This normalized intrinsic reward (NIR) will be used for training. In
addition, there is a hyperparameter named intrinsic reward coe�cient to scale the intrinsic
contribution relatively to the external reward. We denote the running mean's standard
deviations and intrinsic reward coe�cient as rstdt and β, respectively, in Algo. 2. In our
experiments, if otherwise stated, β = 1.

We note that when comparing the intrinsic reward at di�erent states in the same episode (as
in the experiment section), we normalize intrinsic rewards by subtracting the mean, followed
by a division by the standard deviation of all intrinsic rewards in the episode. Hence, the
mean-normalized intrinsic reward (MNIR) in these experiments is di�erent from the one
used in training and can be negative. We argue that normalizing with mean and std. of the
episode's intrinsic rewards is necessary to make the comparison reasonable. For example,
in an episode, method A assigns all steps with intrinsic rewards of 200; and method B
assigns novel steps with intrinsic rewards of 1 while others 0. Clearly, method A treats all
steps in the episode equal, and thus, it is equivalent to giving no motivation for all of the
steps in the episode (the learned policy will not motivate the agent to visit novel states).
On the contrary, method B triggers motivation for novel steps in the episodes (the learned
policy will encourage visits to novel states). Without normalizing by mean subtraction, it
is tempting to conclude that the relative intrinsic reward of method A for a novel step is
higher, which is technically incorrect.
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Figure 5: Key-Door: (a) Example map in Key-Door where the light window is the agent's
view window (state). MNIR produced for each cell in a manually created trajectory for
RND+SM (b) and RND (c). The green arrows denote the agent's direction at each location.
The brighter the cell, the higher MNIR assigned to the corresponding state.

D Experimental Details

D.1 Noisy-TV

We create the Noisy-TV environment by modifying the Maze environment (MazeS3Fast-v0)
in the MiniWorld library (Apache License) (Chevalier-Boisvert, 2018). The backbone RL
algorithm is PPO. We adopt a public code repository for the implementation of PPO and
RND (MIT License)3. In this environment, the state is an image of the agent's viewport.
The details of architecture and hyperparameters of the backbone and RND is presented in
Table 4. Most of the setting is the same as in the repository. We only tune the number
of actors (32, 128, 1024), mini-batch size (4, 16, 64) and ε-clip (0.1, 0.2, 0.3) to suit our
hardware and the task. After tuning with RND, we use the same setting for our RND+SM.

Fig. 6 reports all results for this environment. Fig. 6 (a) compares the �nal intrinsic reward
(IR) generated by RND and RND+SM over training time. Overall, RND's IR is always
higher than RND+SM's, indicating that our method is signi�cantly reduces the attention
of the agent to the noisy TV by assigning less IR to watching TV. Fig. 6 (b) compares the
number of noisy actions between two methods where RND+SM consistently shows fewer
watching TV actions. That con�rms RND+SM agent is less distracted by the TV.

As mentioned in the main text, RND+SM is better at handling noise than RND. Note that
RND aims to predict the transformed states by minimizing ‖SG (st)− fR(st)‖ where fR is a
�xed neural network initialized randomly. If RND can learns the transformation, it can pass-
through the state, which is similar to reconstruction in an autoencoder. However, learning
fR can be harder and require more samples than learning an identity transformation since fR
is non-linear and complicated. Hence, it may be more challenging for RND to pass-through
the noise than SM.

Another possible reason lies in the operating space (state vs. surprise). If we treat white
noise as a random variable X, a surprise generator (SG) can at most learn to predict the
mean of this variable and compute the surprise U = E [X|Y ] − X where Y is a random
factor that a�ects the training of the surprise generator. The factor Y makes the SG
produce imperfect reconstruction E [X|Y ]4. Here, SG and SM learn to reconstruct X and
U , respectively. We can prove that the variance of each feature dimension in U is smaller
than that of X (see Sec. E). Learning an autoencoder on surprise space is more bene�cial
than in state space since the data has less variance and thus, it may require less data points
to learn the data distribution.

Fig. 6 (c) reports performance of all baselines. Besides RND and RND+SM, we also
include PPO without intrinsic reward as the vanilla Baseline for reference. In addition, we
investigate a simple implementation of SM using count-based method to measure surprise
novelty. Concretely, we use SimHash algorithm to count the number of surprise c(ut) in a
similar manner as (Bellemare et al., 2016) and name the baseline RND+SM (count). The

3https://github.com/jcwleo/random-network-distillation-pytorch
4In this case, the perfect reconstruction is E [X]
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Figure 6: Noisy-TV's learning curves over training steps: (a) Average NIR. (b) Number of
watching actions. (c) Average return. All curves are averaged over 5 runs (mean±std).

intrinsic reward is then β/
√
c(ut). We tune the hyperparameter β = {0.5, 1, 5} and the hash

matrix size kh = {32, 64, 128, 256} and use the same normalization and training process to
run this baseline. We report the learning curves of the best variant with β = 0.5 and
kh = 128. The result demonstrates that the proposed SM using memory-augmented neural
networks outperforms the count-based SM by a signi�cant margin. One possible reason is
that count-based method cannot handle white noise: it always returns high intrinsic rewards.
In contrast, our SM can somehow reconstruct white noise via pass-through mechanism and
thus reduces the impact of fake surprise on learning. Also, the proposed SM is more �exible
than the count-based counterpart since it learns to reconstruct from the data rather than
using a �x counting scheme. The result also shows that RND+SM outperforms the vanilla
Baseline. Although the improvement is moderate (0.9 vs 0.85), the result is remarkable
since the Noisy-TV is designed to fool intrinsic motivation methods and among all, only
RND+SM can outperform the vanilla Baseline.

D.2 MiniGrid

The tasks in this experiment are from the MiniGrid library (Apache License) (Chevalier-
Boisvert et al., 2018). In MiniGrid environments, the state is a description vector repre-
senting partial observation information such as the location of the agents, objects, moving
directions, etc. The three tasks use hardest maps:

• DoorKey: MiniGrid-DoorKey-16x16-v0

• LavaCrossing: MiniGrid-LavaCrossingS11N5-v0

• DynamicObstacles: MiniGrid-Dynamic-Obstacles-16x16-v0

The SGs used in this experiment are RND (Burda et al., 2018b), ICM (Pathak et al., 2017),
NGU (Badia et al., 2019) and AE. Below we describe the input-output structure of these
SGs.

• RND: It = st and Ot = fR (st) where st is the current state and fR is a neural
network that has a similar structure as the prediction network, yet its parameters
are initialized randomly and �xed during training.

• ICM: It = (st−1, at) and Ot = st where s is the embedding of the state and a the
action. We note that in addition to the surprise loss (Eq. 2), ICM is trained with
inverse dynamics loss.

• NGU: This agent reuses the RND as the SG (It = st and Ot = fR (st)) and combines
the surprise norm with an KNN episodic reward. When applying our SM to NGU,
we only take the surprise-based reward as input to the SM. The code for NGU is
based on this public repository https://github.com/opendilab/DI-engine.

• AE: It = st and Ot = st where s is the embedding of the state. This SG can
be viewed as an associative memory of the observation, aiming to remember the
states. This baseline is designed to verify the importance of surprise modeling.
Despite sharing a similar architecture, it di�ers from our SM, which operates on
surprise and have an augmented episodic memory to support reconstruction.
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Hyperparameters ICM AE

PPO's state 3-layer feedforward 3-layer feedforward
encoder net (Tanh, h=256) net (Tanh, h=256)

SG's surprise 4-layer feedforward 3-layer feedforward
predictor net (ReLU, h=512) net (Tanh, h=512)

Intrisic Coef. β 1 1
Num. Actor B 64 64
Minibatch size 64 64
Horizon T 128 128

Adam Optimizer's lr 10−4 10−4

Discount γ 0.999 0.999
Intrinsic γi 0.99 0.99
GAE λ 0.95 0.95

PPO's clip ε 0.2 0.2

Table 3: Hyperparameters of ICM and AE (PPO backbone).
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Figure 7: Minigrid's learning curves over 10 million training steps (mean±std. over 5 runs).

The backbone RL algorithm is PPO. The code for PPO and RND is the same as in Sec.
D.1. We adopt a public code repository for the implementation of ICM (MIT License)5.
We implement AE ourselves using a 3-layer feed-forward neural network. For the SGs, we
only tune the number of actors (32, 128, 1024), mini-batch size (4, 16, 64) and ε-clip (0.1,
0.2, 0.3) for the DoorKey task. We also tune the architecture of the AE (number of layers:
1,2 or 3, activation tanh or ReLU) on the DoorKey task. After tuning the SGs, we use the
same setting for our SG+SM. The detailed con�gurations of the SGs for this experiment
are reported in Table 3 and Table 4.

The full learning curves of the backbone (Baseline), SG and SG+SM are given in Fig. 7. To
visualize the di�erence between surprise and surprise residual vectors, we map these in the
synthetic trajectory to 2-dimensional space using t-SNE projection in Fig. 8. The surprise
points show clustered patterns for high-MNIR states, which con�rms our hypothesis that
there exist familiar surprises (they are highly surprising due to high norm, yet repeated).
In contrast, the surprise residual estimated by the SM has no high-MNIR clusters. The SM
transforms clustered surprises to scatter surprise residuals, resulting in a broader range of
MNIR, thus showing signi�cant discrimination on states that have similar surprise norm.

D.3 Atari

The Atari 2600 Games task involves training an agent to achieve high game scores. The
state is a 2d image representing the screen of the game.

5https://github.com/jcwleo/curiosity-driven-exploration-pytorch
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Figure 8: Key-Door: t-NSE 2d representations of surprise (ut) and surprise residual (q̂t−qt).
Each point corresponds to the MNIR at some step in the episode. Color denotes the MNIR
value (darker means higher MNIR). The red circle on the left picture shows an example
cluster of 6 surprise points. Surprise residuals of these points are not clustered, as shown
in 6 red circles on the right pictures. In other words, surprise residual can discriminate
surprises with similar norms.

Hyperparameters MiniGrid Noisy-TV+MiniWorld Atari

PPO's state 3-layer feedforward 3-layer Leaky-ReLU CNN with 3-layer Leaky-ReLU CNN with

encoder net (Tanh, h=256) kernels kernels

{12/32/8/4, 32/64/4/2, 64/64/3/1} {4/32/8/4, 32/64/4/2, 64/64/3/1}
+2-layer feedforward net +2-layer feedforward net

(ReLU, h=256) (ReLU, h=256)

RND's surprise 3-layer feedforward 3-layer Leaky-ReLU CNN with 3-layer Leaky-ReLU CNN with

predictor net (Tanh, h=512) kernels kernels

{1/32/8/4, 32/64/4/2, 64/64/3/1} {1/32/8/4, 32/64/4/2, 64/64/3/1}
+2-layer feedforward net +2-layer feedforward net

(ReLU, h=512) (ReLU, h=512)

Intrinsic Coef. β 1 1 1
Num. Actor B 64 64 128
Minibatch size 64 64 4
Horizon T 128 128 128

Adam Optimizer's lr 10−4 10−4 10−4

Discount γ 0.999 0.999 0.999
Intrinsic γi 0.99 0.99 0.99
GAE λ 0.95 0.95 0.95

PPO's clip ε 0.2 0.1 0.1

Table 4: Hyperparameters of RND (PPO backbone).
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Figure 9: Atari low-sample regime: learning curves over 50 million frames (mean±std. over
5 runs). To aid visualization, we smooth the curves by taking average over a window sized
50.

SG and RL backbone implementations We use 2 SGs: RND and LWM. RND uses a
PPO backbone as in previous sections. On the other hand, LWM uses DQN backbone with
CNN-based encoder and GRU-based value function. The LWM SG uses GRU to model
forward dynamics of the environment and thus its input is: It = (st−1, at, ht−1) where st−1
is the embedding of the previous state, at the current action, and ht−1 the hidden state of
the world model GRU. The target Ot is the embedding of the current state st.

RND follows the same implementation as in previous experiments. We use the public code
of LWM provided by the authors6 to implement LWM. The hyperparameters of RND and
LWM are tuned by the repository's owner (see Table 4 for RND and refer to the code or
the original paper (Ermolov and Sebe, 2020) for the details of LWM implementation). We
augment them with our SM of default hyperparameters N = 128, d = 16.

Training and evaluation We follow the standard training for Atari games, such as stack-
ing four frames and enabling sticky actions. All the environments are based on OpenAI's
gym-atari's NoFrameskip-v4 variants (MIT Liscence)7 . After training, we evaluate the
models by measuring the average return over 128 episodes and report the results in Table.
2. Depending on the setting, the models are trained for 50 or 200 million frames.

Results Fig. 9 demonstrates the learning curves of all models in 6 Atari games under the
low-sample regime. LWM+SM and RND+SM clearly outperfrom LWM and RND in Frost-
bite, Venture, Gravitar, Solaris and Frostbite, Venture, Gravitar and MontezumaRevenge,
respectively. Table 5 reports the results of more baselines.

D.4 Ablation study

Role of Memories We conduct more ablation studies to verify the need for the shortM
and long-term (W) memory in our SM. We design additional baselines SM (no W) and SM
(no M) (see Sec. 3.4), and compare them with the SM with full features in Montezuma
Revenge and Frostbite task. Fig. 10 (a) shows that only SM (full) can reach an average
score of more than 5000 after 50 million training frames. Other ablated baselines can only
achieve around 2000 scores.

6https://github.com/htdt/lwm
7https://github.com/openai/gym
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Task EMI♠ EX2♠ ICM♠ AE-SH♠ LWM♠ RND♠ LWM♦ LWM+SM♦ RND♦ RND+SM♦

Freeway 33.8 27.1 33.6 33.5 30.8 33.3 31.1 31.6 22.2 22.2

Frostbite 7,002 3,387 4,465 5,214 8,409 2,227 8,598 10,258 2,628 5,073

Venture 646 589 418 445 998 707 985 1,381 1,081 1,119

Gravitar 558 550 424 482 1,376 546 1,242 1,693 739 987

Solaris 2,688 2,276 2,453 4,467 1,268 2,051 1,839 2,065 2,206 2,420

Montezuma 387 0 161 75 2,276 377 2,192 2,269 2,475 5,187

Norm. Mean 61.4 40.5 46.1 52.4 80.6 42.2 80.5 97.0 50.7 74.8

Norm. Median 34.9 32.3 23.1 33.3 60.8 32.7 66.5 83.7 58.3 84.6

Table 5: Atari: test performance after 50 million training frames (mean over 5 runs). ♠ is
from a prior work (Ermolov and Sebe, 2020). ♦ is our run. The last two rows are mean and
median human normalized scores. Bold denotes best results. Italic denotes that SG+SM is
signi�cantly better than SG regarding Cohen e�ect size less than 0.5.
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Figure 10: Ablation study: average returns (mean±std.) over 5 runs.

We also shows the impact of the episodic memory in decreasing the intrinsic rewards for
similar states as discussed in Sec. 2.3. We select 3 states in the MiniGrid's KeyDoor task
and computes the MNIR for each state, visualized in Fig. 11. At the step-1 state, the MNIR
is low since there is nothing special in the view of the agent. At the step-15 state, the agent
�rst sees the key, and get a high MNIR. At the step-28 state, the agent drops the key and
sees the key again. This event is still more interesting than the step-1 state. However, the
view is similar to the one in step 15, and thus, the MNIR decreases from 0.7 to 0.35 as
expected.

No Task Reward The tasks in this experiment are from the MiniWorld library (Apache
License) (Chevalier-Boisvert, 2018). The two tasks are:

• Easy: MiniWorld-PickupObjs-v0

• Hard: MiniWorld-FourRooms-v0

The backbone and SG are the same as in Sec. D.1. We remove the task/external reward
in this experiment. For the Baseline, without task reward, it receives no training signal

step 1: -0.66 step 15: 0.70 step 28: 0.33
(
(

Figure 11: MiniGrid's KeyDoor: MNIR of SM at di�erent steps in an episode.
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Figure 12: MiniWorld: Exploration without task reward. Left: Cumulative task returns
over 100 million training steps for two setting: Easy (1 room, 3 objects) and Hard (4 rooms,
1 object). Right: The average intrinsic reward over training time. The learning curves are
taken average (mean±std.) over 5 runs

and thus, showing a similar behavior as a random agent. Fig. 12 illustrates the running
average of cumulative task return and the intrinsic reward over training steps. In the
Easy mode, the random Baseline can even perform better than RND, which indicates that
biased intrinsic reward is not always helpful. RND+SM, in both modes, shows superior
performance, con�rming that its intrinsic reward is better to guide the exploration than
that of RND.

E Theoretical Property of Surprise Space's Variance

Let X be a random variable representing the observation at some timestep, a surprise
generator (SG) can at most learn to predict the mean of this variable and compute the
surprise U = E [X|Y ]−X where Y is a random factor that a�ect the prediction of SG and
makes it produce imperfect reconstruction E [X|Y ] instead of E [X]. For instance, in the
case of an autoencoder AE as the SG, X and U are stand AE(st)− st, respectively.

Let us denote Z = E (X|Y ), then E [Z|Y ] = Z and E
[
Z2|Y

]
= Z2. We have

var (X) = var(X − Z + Z)

= var(X − Z) + var(Z) + 2cov(X − Z,Z)
= var(X − Z) + var(Z) + 2E[(X − Z)Z]− 2E[X − Z]E[Z]

Using the Law of Iterated Expectations, we have

E[X − Z] = E[E[X − Z|Y ]]

= E[E [X|Y ]− E [Z|Y ]]

= E [Z − Z] = 0

and

E[(X − Z)Z] = E[E[(X − Z)Z|Y ]]

= E[E[XZ − Z2|Y ]]

= E[E (XZ|Y )− E
(
Z2|Y

)
]

= E[ZE (X|Y )− Z2]

= E[Z2 − Z2] = 0

Therefore,

var (X) = var(X − Z) + var(Z)

Let CXii , C
X−Z
ii and CZii denote the diagonal entries of these covariance matrices, they are

the variances of the components of the random vector X, X −Z and Z, respectively. That
is,
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(
σXi
)2

=
(
σX−Zi

)2
+
(
σZi
)2

⇒
(
σXi
)2 ≥ (σX−Zi

)2
=
(
σUi
)2

In our setting, X and U represents observation and surprise spaces, respectively. Therefore,
the variance of each feature dimension in surprise space is smaller than that of observation

space. The equality is obtained when
(
σZi
)2

= 0 or E (X|Y ) = E (X). That is, the SG's
prediction is perfect, which is unlikely to happen in practice.

F Limitations

Our method assumes that surprises have patterns and can be remembered by our surprise
memory. There might exist environments beyond those studied in this paper where this
assumption may not hold, or surprise-based counterparts already achieve optimal explo-
ration (e.g., perfect SG) and thus do not need SM for improvement (e.g., Freeway game).
In addition, M and W require additional physical memory (RAM/GPU) than SG meth-
ods. Finally, a plug-in module like SM introduces more hyperparameters, such as N and d.
Although we �nd the default values of N=128 and d=16 work well across all experiments
in this paper, we recommend adjustments if users apply our method to novel domains.
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