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Abstract

Machine learning models are known to be susceptible to adversarial perturbation.
One famous attack is the adversarial patch, a sticker with a crafted pattern that
makes the model incorrectly predict the object it is placed on. This attack presents
a critical threat to cyber-physical systems such as autonomous cars. Despite the
significance of the problem, conducting research in this setting has been difficult;
evaluating attacks and defenses in the real world is exceptionally costly while
synthetic data are unrealistic. In this work, we propose the REAP (REalistic
Adversarial Patch) Benchmark, a digital benchmark that allows the user to evaluate
patch attacks on real images, and under real-world conditions. Built on top of
the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs.
Each sign is augmented with a pair of geometric and lighting transformations,
which can be used to apply a digitally generated patch realistically onto the sign,
while matching real-world conditions. Using our benchmark, we perform the first
large-scale assessments of adversarial patch attacks under realistic conditions. We
release our benchmark publicly at https://github.com/wagner-group/
reap-benchmark.

1 Introduction

Research has shown that machine learning models lack robustness against adversarially chosen
perturbations. One particularly concerning type of attack is the adversarial patch attack [Brown et al.,
2018, Eykholt et al., 2018, Karmon et al., 2018, Sitawarin et al., 2018, Chen et al., 2019, Liu et al.,
2019b, Patel et al., 2019, Sharma et al., 2019, Zhao et al., 2019, Huang et al., 2020, Wu et al., 2020].
These are real-world attacks, where the objective of the attacker is to print out a patch, physically
place it in a scene, and cause a vision network processing the scene to malfunction. These attacks are
especially concerning because of the impact they could have on autonomous vehicles which have
already been demonstrated both in academic settings [Liu et al., 2019a, Evtimov et al., 2017, Sato
et al., 2021], as well as in the real world [Tencent Keen Security Lab, 2019].

Despite the significant risks that adversarial patch attacks pose, research on these attacks has stalled.
This is in large part because quantitatively evaluating this threat is challenging. Researchers turn
to one of two techniques: either, physically create their attacks and try them out on real objects, or
digitally evaluate patch attacks using images containing simulated patches. Both of these approaches
have major drawbacks. Although the former approach is more realistic, the sample size is so small
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Our Benchmark

Adversarial Patch Evaluation in Previous Work

Figure 1: Past work (top row) ignores many real-world factors which might yield a misleading
evaluation. Our benchmark (bottom row) supports a more realistic rendering of the patch attack on
road signs, simulating the effect of the pose, location, and lighting on rendering and image capture.

that it is impossible to compare the results across different papers. In contrast, a digital simulation
can allow us to obtain some quantitative measures, but it is difficult to ensure that the simulation
accurately captures all of the challenges that arise in the real world. See Fig. 1 (top row) for examples
of past works, where the patch is not constrained to be on the target object, does not respect the pose
and shape of the object, and/or ignores the lighting conditions.

The REAP Benchmark: In this work, we propose the REalistic Adversarial Patch Benchmark
(REAP), the first large-scale standardized benchmark for security against patch attacks. Motivated by
the aforementioned shortcomings of prior evaluations, REAP is designed to have:

1. Large scale evaluation: REAP consists of a collection of 14,651 images of road signs drawn
from the Mapillary Vistas dataset. This allows us to use REAP to draw quantitative conclusions

2. Realistic patch rendering: REAP comes with tooling to realistically render any digital patch
onto every road sign in the dataset. It accounts for location, camera angle, lighting conditions, etc.

3. Realistic image distribution: REAP consists of images of signs taken under realistic conditions,
mimicking for instance what a self-driving car would see from its sensors.

Additionally, with our new benchmark, we have found some interesting preliminary results. (i)
Existing patch attacks are, in fact, not that effective. (ii) Performance on synthetic data is not
reflective of performance on REAP. We believe that REAP will help support research in patch attacks
by enabling a more accurate evaluation. We plan to release REAP publicly before the conference.

2 Related Work

Small scale, real-world tests. A common methodology used to test the adversarial patch is to
print it out, physically place it onto an object, and capture pictures or videos of the patch for
evaluation [Brown et al., 2018, Eykholt et al., 2018, Sitawarin et al., 2018, Chen et al., 2019, Zhao
et al., 2019, Hoory et al., 2020, Huang et al., 2020, Wu et al., 2020]. While realistic, this method has
some downsides. First, it is time-consuming and hence limits the number of images that can be used
for testing. Consequently, one cannot extract quantitative conclusions from the results of these tests.
Additionally, the methodologies vary across different papers so it is hard to compare their results.

Digital simulation. The other approach is to simulate the effects of the adversarial patch by digitally
inserting it into the image. The advantage is scalability. Most of existing work simply apply the patch
to the image at some random position, and with some simple transformations [Karmon et al., 2018,
Liu et al., 2019b, Hoory et al., 2020, Zhang et al., 2020, Rao et al., 2020, McCoyd et al., 2020, Xiang
and Mittal, 2021, Wang et al., 2021]. Our benchmark is arguably more realistic as shown in Fig. 1.
The benchmarks most similar to the one we propose are the ones in Zhao et al. [2019] and Huang
et al. [2020]. Zhao et al. [2019] consider the realistic orientation of the signs and the patches, but they
only use synthetic stop signs. Huang et al. [2020] produce a benchmark of 20 fully virtual scenes,
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Figure 2: The automated procedure we use to extract the keypoints from each traffic sign.

Figure 3: The rightmost stop sign has a patch rendered
with a perspective and relighting transform making it more
realistic. The first and second images have patches that are
too bright whereas the first and third images have patches
that do not respect the sign’s orientation.
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Figure 4: Computing relighting param-
eters (top) and applying the transform
(bottom).

over which a user can control multiple cameras and lighting conditions. However, their dataset is
small and does not consider road signs or corresponding attacks on autonomous vehicles

3 Adversarial Patch Benchmark

Our dataset, built on top of Mapillary Vistas [Neuhold et al., 2017], consists of a collection of images
containing traffic signs. Each sign comes with a segmentation mask, and we label them with one
of 11 classes based on their shape and size, which is by design also associated with their semantics.
However, the main additional feature of our benchmark is the associated rendering transformation.
This transformation allows us to apply a digital patch on the sign in a way that respects the scaling,
orientation, and lighting of the sign in the image. Moreover, this process is fully differentiable, which
allows our dataset to be used to generate patch attacks and to apply defenses such as adversarial
training. Fig. 2 and Fig. 4 give an overview of the process to obtain these transformations which we
will describe in Section 3.1. In total, we label 14,651 traffic signs across 8,433 images.

3.1 Transformations

When digitally applying a patch to a sign, we utilize two types of transformations: 3D or perspective
transform to the patch to simulate the orientation and relighting transform to account for the varying
lighting conditions. The importance of these transformations is highlighted in Fig. 3.

Geometric transformation. To determine the parameters of the perspective transform, we need four
keypoints for each sign in our dataset. We infer the keypoints for a particular traffic sign using only
its segmentation mask (which is provided in the Mapillary Vistas dataset) by following these steps
(also visualized in Fig. 2): first, we find the contour of the segmentation mask, and then compute a
convex hull around it to correct minor annotation errors. Next, we fit an ellipse and/or a polygon to
the convex full to identify the shape of the signs. Lastly, we match the vertices to the canonical ones
and then simply take the four predefined vertices as the keypoints.

Relighting transform. Each traffic sign in our dataset has two associated relighting parameters,
³, ´ ∈ R. Given a patch P, its relighted version Prelighted = ³P + ´ is rendered on the scene as
depicted on the bottom row of Fig. 4. We infer ³, ´ by matching the histogram of the original sign
(e.g., the real stop sign on the upper-right of Fig. 4) to a canonical image (e.g., the synthetic stop sign
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Table 1: ASR and FNR of the adversarial patches on the two traffic sign detectors. One adversarial
patch is generated per class of traffic signs. For sign-specific metrics, see Table 4.

Patch Size Benchmarks
Faster R-CNN YOLOv5

mFNR mFNRw mASR mASRw mFNR mFNRw mASR mASRw

No patch
Synthetic 11.8 17.4 n/a n/a 10.8 9.6 n/a n/a
Ours 16.2 17.4 n/a n/a 14.2 14.5 n/a n/a

Small
(10”×10”)

Synthetic 54.4 67.3 49.6 61.8 75.9 73.6 72.2 70.4
Ours 35.1 30.5 24.7 17.7 46.1 32.5 44.4 24.9

Medium
(10”×20”)

Synthetic 69.7 87.3 67.7 85.6 88.2 90.8 85.0 88.3
Ours 47.9 42.6 40.5 32.4 60.1 48.6 58.7 42.6

Large
(two 10”×20”)

Synthetic 98.1 98.1 99.5 99.5 100 100 100 100
Ours 79.3 84.2 76.2 81.7 85.9 90.0 85.0 89.3

on the upper-left): in particular, we set ´ as the 10th percentile of all the pixel values on that sign and
³ as the difference between the 10th and 90th percentile.

4 Experiments on our Benchmark

Our benchmark can be used with a broad range of threat models. However, in this paper, we only
focus on an attacker that tries to make traffic signs disappear or be misclassified.

4.1 Experiment Setup

Traffic sign detectors. We experiment with two models: Faster R-CNN [Ren et al., 2015] and
YOLOv5 [Jocher et al., 2022]. Both models are trained on the MTSD dataset [Ertler et al., 2020]. We
report false negative rate (FNR) along with the attack success rate (ASR), defined in Appendix C.2.

Synthetic benchmark. We use canonical synthetic signs, one per class, as a baseline to compare
our REAP benchmark to. Similarly to Eykholt et al. [2018], the synthetic sign is placed at a random
location in the image and randomly rotated between 0 and 15 degrees. The synthetic benchmark can
be used for both generating and testing the adversarial patch. For testing, we use a total of 5,000
images randomly selected from our REAP benchmark.

Attack algorithms. We use the RP2 attack [Eykholt et al., 2018] to generate adversarial patches
for YOLOv5, and the Shapeshifter attack [Chen et al., 2019] for Faster R-CNN, as each attack was
created for a specific type of model. We generate one patch per one sign class. We also generate an
adversarial patch using a synthetic sign as has been done in prior work, and we use whichever patch
performs better. For more detail on the setup, please see Appendix C.

4.2 Results

Patch attacks against road signs are less effective than previously believed. From Table 1,
a 10”×10” adversarial patch only succeeds for about 18% and 25% of the signs on our realistic
benchmark. Even though we use undefended models (normally trained without any special data
augmentation), attacks are not very effective. For comparison, a universal adversarial perturbation
under ℓ2 and ℓ∞ norms achieves above 80% success rate [Moosavi-Dezfooli et al., 2017].

We also experimented with a “per-image” attack where we generate one adversarial patch for each
instance of a traffic sign, as opposed to one patch per class (see Table 8). ASR for the “per-image”
attack is much higher than a per-class patch (40% relative increase on average). While such attacks
are harder to generate and might be more fragile in practice, this result suggests that better attack
algorithms may exist and that a specifically targeted adversary could still be an important threat.

ASR measured on synthetic data is not predictive of ASR measured on our realistic benchmark.
We compared our benchmark to a synthetic benchmark (described earlier) intended to be represen-
tative of the methodology often found in prior work. Table 1 show that there is a large difference
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Figure 5: Comparison of ASR on synthetic benchmark vs on our realistic benchmark for the two
models. The dashed line marks the points with an equal ASR on both synthetic and our benchmarks.

between metrics as measured on such a synthetic benchmark compared to our benchmark. The gap
can be up to 50 percentage points on average.

Fig. 5a compares ASR on the two benchmarks by class of the traffic signs. If the two ASRs were
similar, all data points would be close to the diagonal dashed line. Instead, most of the data points
are below the line, suggesting that the synthetic benchmark consistently overestimates the ASR.
Moreover, there is no clear relationship between the two measurements of ASR as the ordering is
not preserved, and the gap varies significantly among different sign classes. Additional results and
samples from our benchmark can be found in Appendix D and Appendix E, respectively.
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A X-Risk Sheet

A.1 Long-Term Impact on Advanced AI Systems

In this section, please analyze how this work shapes the process that will lead to advanced AI systems
and how it steers the process in a safer direction.

1. Overview. How is this work intended to reduce existential risks from advanced AI systems?
Answer: This work is intended to serve as a new benchmark for future research on adversarial
patches, both attacks, and defenses. We believe that a realistic and diverse benchmark would be
an important driving force in achieving a more adversarially robust system. Since realism and
practicality are the main factors of adversarial patches (even more so than other types of attacks),
we design our benchmark to specifically prioritize these properties.

2. Direct Effects. If this work directly reduces existential risks, what are the main hazards, vulnera-
bilities, or failure modes that it directly affects?
Answer: This work does not come with a method to directly reduce AI existential risks. They
serve as an evaluation tool and a standardized benchmark for future work.

3. Diffuse Effects. If this work reduces existential risks indirectly or diffusely, what are the main
contributing factors that it affects?
Answer: Our main contribution in this work is the realistic benchmark which can be used for many
different purposes. Naturally, it can be used as the main and standardized dataset for comparing
different attack and defense algorithms. With more considerations, it can also be part of safety
team resources, test requirements, safety constraints, or future standards in the field.

4. What’s at Stake? What is a future scenario in which this research direction could prevent the
sudden, large-scale loss of life? If not applicable, what is a future scenario in which this research
direction be highly beneficial?
Answer: We believe that our research here will have a large impact on future academic research
in the domain of physical adversarial examples. Ultimately, this line of research hopes to come up
with robust and reliable cyber-physical systems, e.g., autonomous vehicles, that can truly benefit
and safely coexist with humans in society. We hope that our work will be an important step
towards that goal.

5. Result Fragility. Do the findings rest on strong theoretical assumptions; are they not demonstrated
using leading-edge tasks or models; or are the findings highly sensitive to hyperparameters? □

6. Problem Difficulty. Is it implausible that any practical system could ever markedly outperform
humans at this task? ⊠

7. Human Unreliability. Does this approach strongly depend on handcrafted features, expert
supervision, or human reliability? □

8. Competitive Pressures. Does work towards this approach strongly trade off against raw intelli-
gence, other general capabilities, or economic utility? □

A.2 Safety-Capabilities Balance

In this section, please analyze how this work relates to general capabilities and how it affects the
balance between safety and hazards from general capabilities.

9. Overview. How does this improve safety more than it improves general capabilities?
Answer: The benchmark we created has almost the sole intention of improving the robustness
against adversaries. It can also be used for research on general robustness.

10. Red Teaming. What is a way in which this hastens general capabilities or the onset of x-risks?
Answer: This benchmark can be used by both attackers and defenders alike. However, it does not
necessarily benefit attackers who wish to launch such an attack in practice since the adversary in
this case would be better off collecting his or her own data from a specific target sign and scene.
Rather, our benchmark is better suited for testing the capabilities of attack and defense algorithms
in diverse settings.

11. General Tasks. Does this work advance progress on tasks that have been previously considered
the subject of usual capabilities research? □
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12. General Goals. Does this improve or facilitate research towards general prediction, classification,
state estimation, efficiency, scalability, generation, data compression, executing clear instructions,
helpfulness, informativeness, reasoning, planning, researching, optimization, (self-)supervised
learning, sequential decision making, recursive self-improvement, open-ended goals, models
accessing the Internet, or similar capabilities? □

13. Correlation With General Aptitude. Is the analyzed capability known to be highly predicted by
general cognitive ability or educational attainment? □

14. Safety via Capabilities. Does this advance safety along with, or as a consequence of, advancing
other capabilities or the study of AI? □

A.3 Elaborations and Other Considerations

15. Other. What clarifications or uncertainties about this work and x-risk are worth mentioning?
Answer: N/A

B Additional Details of REAP Benchmark

B.1 Basic Usage

REAP benchmark provides simple tooling for rendering adversarial patch onto desired traffic signs.
This tool consists of three main components:

1. reap_annotations.csv: The annotation for each sign in our REAP benchmark corresponds
to one row in this csv file. We load it in as a pandas.DataFrame object and read from it as
we iterate through each sample from the dataset.

2. RenderObject class: We create one RenderObject for each sign we want to apply an
adversarial patch to. RenderObject holds the parameters of the geometric and the relighting
transforms for that sign and also applies the transformations when called by RenderImage. We
use two separate subclasses to implement RenderObject for the real signs in REAP benchmark
and for the synthetic data.

3. RenderImage class: We wrap each sample in a RenderImage object. RenderImage

holds the original image and a dictionary of multiple RenderObject’s. Once
RenderObject.apply_objects() is called, it loops through all of its RenderObject’s
and applies the transformed adversarial patches to the image.

Below we show a snippet of how this tool is generally used for applying patches for the REAP
benchmark. This process can be applied during both the attack generation and the evaluation.
Our Github repository (https://github.com/wagner-group/reap-benchmark) also
contains a real example of how this is used with the Detectron2 framework [Wu et al., 2019].1

# Given input parameters

sample: Dict[str, Any] # An input sample (e.g., loaded by Detectron2)

img_df: pandas.DataFrame # DataFrame of REAP annotation for this image

adv_patch: torch.Tensor # Generated adversarial patch

patch_mask: torch.Tensor # Binary mask of adversarial patch

obj_id: int # ID of object to apply patch to

# Create RenderImage object around a given sample

rimg: RenderImage = RenderImage(sample, img_df, **rimg_kwargs)

# Create RenderObject of obj_id in rimg

rimg.create_object(obj_id, **robj_kwargs)

# Load adv patch to associated RenderObject

robj: RenderObject = rimg.get_object(obj_id)

robj.load_adv_patch(adv_patch=adv_patch, patch_mask=patch_mask)

1https://github.com/facebookresearch/detectron2
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Table 2: Dimension of the sign by classes in the REAP benchmark.

Traffic Sign Class Width (mm) Height (mm) Number of Samples in REAP

Circle 750 750 7971
Triangle 900 789 636
Upside-down triangle 1220 1072 824
Diamond (S) 600 600 317
Diamond (L) 915 915 1435
Square 600 600 1075
Rectangle (S) 458 610 715
Rectangle (M) 762 915 544
Rectangle (L) 915 1220 361
Pentagon 915 915 133
Octagon 915 915 637

# Render adv_patch on rimg and post process it into desired format

img_render: torch.Tensor = rimg.apply_objects()

img_render = rimg.post_process_image(img_render)

# Perform inference on rendered image

outputs: Dict[str, Any] = predict(img_render)

The operations on the image and the adversarial patch are implemented with PyTorch and the
Kornia package [Riba et al., 2020], which also uses PyTorch underneath, so the entire process
can be executed on a GPU or a CPU and is entirely differentiable. Our hardware setup (one Nvidia
Tesla V100 with six CPU cores) can evaluate anywhere between one to two images per second with
the default resolution of 1536×2048 pixels. This includes data loading, preprocessing, applying a
patch to at least one sign on that image, and running an inference. The total evaluation of our REAP
benchmark is about five hours. The total time depends mostly on the number of CPU cores (e.g., using
twice as many CPU cores cuts down the total runtime by about half) and not on the GPU specs since
we evaluate one image at a time and not in batch. In the next section (Appendix B.5), we provide
additional details of how the transforms are applied and what is going on inside of RenderObject.

B.2 Traffic Sign Classification

Our first step is to simplify the attack setting by grouping traffic signs of a similar shape and size
together. The original MTSD dataset has over 300 classes so we hope to take a subset of them with a
common and fairly standardized size. For example, we do not take generic directional signs because
there is no standard size for them at all. In the end, we end up with 11 classes in total plus one
background class where all the remaining signs belong. Then, we assign the dimension to each class
according to the official guideline published by the U.S. Department of Transportation. Table 2
summarizes the dimension we assign to all the signs.

This dimension only approximates the true size which we have no way of measuring given that the
camera specifications and the distance to the signs are not known. This leads to two limitations:
First, signs within a single class may actually be of different sizes because each sign has more than
one standard size which mostly depends on the type of road it is placed on. The second is that both
MTSD and Mapillary Vistas contain signs from all over the world, not only from the US. Hence, the
dimension may not be consistent across countries. Nevertheless, we argue that this approximation
is more realistic than naively specifying the patch size relative to the sign size in pixels (e.g., “each
patch covers 10% of the sign”) because sign sizes vary significantly between classes.

After mapping the original MTSD classes to our new 11 classes, we train a ResNet-18 [He et al.,
2016] on all of the signs from MTSD. These signs are cropped by leaving 10% padding between the
sign border and the patch border on all four sides. The cropped patches are then resized to 128×128
pixels. We trained the ResNet-18 with a batch size of 128, a learning rate of 0.1, and a weight decay
of 5× 10−4. We use the validation set to early stop the training where the model achieves slightly
above 97% accuracy. Lastly, we use the trained ResNet to classify traffic signs in the Mapillary
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Figure 6: Class distribution of the traffic signs in our REAP
benchmark.

Circle Triangle            Upside-down triangle     Diamond (S)

Diamond (L)                Square                  Rectangle (S)           Rectangle (M)

Rectangle (L)             Pentagon Octagon

Figure 7: Images of the synthetic signs
we use for generating and evaluating
adversarial patches under the synthetic
benchmark.

dataset. We also combine the training and the validation sets together. We ignore signs that are
classified as the background class and discard images that do not contain any non-background sign.

B.3 Geometric Transformation

To determine the parameters of the perspective transform, we need four keypoints for each sign in our
dataset. We infer the keypoints for a particular traffic sign using only its segmentation mask (which is
provided in the Mapillary Vistas dataset) by following the four steps below (also visualized in Fig. 2):

1. Find contours: First, we find the edge or the contour of the segmentation mask.
2. Compute convex hull: Then, we find the convex hull of the contour to correct annotation errors

and occlusion. This does not affect the already correct masks which should already be convex.
3. Fit polygon and ellipse: We try to fit an ellipse to the convex hull, to find circular signs. If the

fitted ellipse results in a larger error than some threshold, we know that the sign is not circular and
therefore fit a polygon instead.

4. Cross verify: We verify that the shape obtained from the previous step matches with the ResNet’s
prediction. If not, the sign is flagged for manual inspection.

The last step is finding the keypoints. For polygons, we first match the vertices to the canonical ones
and then simply take the four predefined vertices as the keypoints. For circular signs, we use the
ends of their major and minor axes as the four keypoints. Then, we use these keypoints to infer a
perspective transform appropriate for this sign. Triangular signs are a special case as we can only
identify a maximum of three keypoints which means we can only infer a unique affine transform
(six degrees of freedom). Note that this transform is a linear transformation, and hence is fully
differentiable. Lastly, we manually check all annotations and correct any errors.

B.4 Relighting Transformation

Each traffic sign in our dataset has two associated relighting parameters, ³, ´ ∈ R. Given a patch
P, its relighted version Prelighted = ³P + ´ is rendered on the scene as depicted on the bottom row
of Fig. 4. We infer ³, ´ by matching the histogram of the original sign (e.g., the real stop sign on
the upper-right of Fig. 4) to a canonical image (e.g., the synthetic stop sign on the upper-left): in
particular, we set ´ as the 10th percentile of all the pixel values (aggregated over all three RGB
channels) on that sign and ³ as the difference between the 10th and 90th percentile. In doing so,
we make an assumption that the relighting can be approximated with a linear transform where ³
and ´ represent contrast and brightness adjustments, respectively. We choose the 10th and the 90th
percentiles, instead of the 1st and the 99th, to filter noise in the real image. Finally, note that like
before, since this transformation is linear, it is differentiable.
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Adversarial Patch               Mask

1. Canonical form 3. Match keypoint2. Lighting transform

4. Geometric transform
5. Apply patch using mask

Original image

Figure 8: REAP’s procedure for applying lighting and geometric transforms to a digitally generated
adversarial patch.

Table 3: Performance of the models on two different datasets without attacks. “MTSD” represents
the test set of the MTSD dataset on which the models are trained. mAP is the mean average precision,
commonly used to represent performance in object detection tasks. We follow COCO’s method for
computing mAP [Lin et al., 2014]. mAPw is the class-weighted version analogous to mFNR and
mFNRw which are defined in Appendix C.2.

Datasets
Faster R-CNN YOLOv5

mFNR ↓ mFNRw ↓ mAP ↑ mAPw ↑ mFNR ↓ mFNRw ↓ mAP ↑ mAPw ↑

MTSD 29.9 29.7 55.0 56.0 17.2 14.7 69.3 71.3
Our Benchmark 16.2 17.4 67.0 64.4 14.2 14.5 69.7 69.6

B.5 Applying the Transforms

Fig. 8 summarizes the steps to apply an adversarial patch using our REAP benchmark. Given a patch
and a corresponding mask with respect to the canonical sign, we first apply relighting transform on
the patch. Then, we use the annotated keypoints of the target sign to determine the parameters of the
perspective transform which is then applied to both the patch and the mask. Throughout this paper,
we use bilinear interpolation for any geometric transform. Finally, the transformed patch is applied to
the image using the transformed mask.

To be precise, let X , P , and M denote the original image, the adversarial patch, and the patch mask,
respectively. The final image X

′ is obtained by the following equation

X
′ = tg (M)» tg (tl (P )) + (1− tg (M))»X (1)

where tg(·) and tl(·) are the geometric and the relighting transforms which in fact, depend on the
annotated parameters associated with X .

We note that the mask is concatenated to the patch, and both are applied with the same geometric
transform and interpolation. Therefore, tg (M) is no longer a binary mask like M . This creates an
effect where the transformed patch blends in more cleanly with the sign than the nearest interpolation
does. Additionally, we also clip the pixel values after applying each transform to ensure that they
always stay between 0 and 1.

C Detailed Experiment Setup

C.1 Attack Algorithms

Here, we describe hyperparameters of the attack as well as the benchmarks. We re-implement both
the RP2 and the ShapeShifter attacks based on the description provided in the paper. The ShapeShifter
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Figure 9: Examples of Small (10" x 10"), Medium (10" x 20") and Large (two 10" x 20") patches
applied to random signs from our benchmark.

Table 4: Attack success rates by sign classes under synthetic vs our REAP benchmarks. “Avg” is an
average, and “WAvg” is a weighted average by the number of samples in each class in our benchmark.
The patch size is 10′′ × 10′′.

Models Bench Circ Tri UTri Dia(S) Dia(L) Squ Rec(S) Rec(M) Rec(L) Pen Oct Avg WAvg

Faster
R-CNN

Syn 69.3 95.2 5.4 98.9 37.4 100.0 99.7 21.2 17.0 0.1 1.0 49.6 61.8
REAP 12.7 24.6 0.8 68.3 2.2 52.0 62.0 27.4 16.7 2.8 2.5 24.7 17.7

YOLOv5
Syn 69.7 82.3 16.6 90.7 80.0 86.3 98.6 87.3 81.3 86.5 14.9 72.2 70.4
REAP 14.2 51.7 7.7 59.5 11.0 52.9 86.9 66.7 37.0 83.3 17.8 44.4 24.9

attack has an official and publicly available implementation in Tensorflow so we are able to compare
our code to theirs directly.2

For both attacks, our default hyperparameters include 64×64 patch and object dimension, EoT
rotation with a maximum 15 degrees, and no color jitter for EoT. We use Adam optimizer with a step
size of 0.01 for 1,000 iterations. The ¼ parameter used to encourage low-frequency patterns is set to
10−5. We find that the choices of the patch dimension and ¼ do not affect the ASR when varying in a
reasonable range. We use the same set of hyperparameters when generating adversarial patches from
both our REAP and the synthetic benchmark.

We assume that the adversary has access to 50 held-out images from our benchmark. Each of the 11
classes in our dataset has a specific set of 50 images which are all guaranteed to contain at least one
sign of the class that is being attacked.

C.2 Evaluation Metrics

Here, we define a successful attack as a patch that makes the sign either (i) undetected or (ii) classified
to a wrong class (i.e., one of the other 11 classes, or the background class). Similarly to previous
work, we measure the effectiveness of an attack by the attack success rate (ASR), defined as follows.
Given a list of signs {xi}

N
i=1

and the corresponding perturbed version (i.e., with an adversarial patch

applied to it) {x′

i}
N
i=1

,

Attack Success Rate =

∑N

i=1
1xiis detected ' 1x′

i
is not detected

∑N

i=1
1xiis detected

. (2)

Additionally, we also report false negative rate (FNR), which is simply the fraction of signs that the
model fails to detect and classify correctly. We report both metrics for each class of the signs as well
as their average (mFNR and mASR). We also compute an average of the metrics weighted by the
number of samples in each class (mFNRw and mASRw).

D Additional Experiments

ASR by Classes for All Patch Sizes. Table 4, Table 5, and Table 6 contain a breakdown of ASR by
sign class for the three patch sizes in Table 1. It is evident that the synthetic data do not overestimate
the ASR on average but consistently across almost every traffic sign class. The trend is also consistent
for all patch sizes. The gap becomes narrower for the two 10× 20 patches as the ASR reaches 100%
on both the synthetic and our benchmarks. However, it is almost undeniable that a patch of this size
covers the majority of the sign area and is, in no way, inconspicuous.

2https://github.com/shangtse/robust-physical-attack
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Table 5: Attack success rates by sign classes under synthetic vs our REAP benchmarks with the patch
size is 10”×20”.

Models Bench Circ Tri UTri Dia(S) Dia(L) Squ Rec(S) Rec(M) Rec(L) Pen Oct Avg WAvg

Faster
R-CNN

Syn 98.0 99.7 0.3 100.0 75.7 100.0 100.0 92.7 71.0 1.6 5.4 67.7 85.6
REAP 27.8 63.2 0.6 89.7 7.1 64.7 87.4 54.8 39.2 6.9 3.6 40.5 32.4

YOLOv5
Syn 96.2 95.0 21.6 99.8 71.3 100.0 100.0 97.3 99.2 99.6 55.3 85.0 88.3
REAP 36.7 69.4 7.8 78.0 13.1 82.6 92.4 78.8 58.0 91.3 37.9 58.7 42.6

Table 6: Attack success rates by sign classes under synthetic vs our REAP benchmarks with two
patches of size 10”×20”.

Models Bench Circ Tri UTri Dia(S) Dia(L) Squ Rec(S) Rec(M) Rec(L) Pen Oct Avg WAvg

Faster
R-CNN

Syn 100 100 99.9 100 100 100 100 100 79.6 100 100 98.1 99.5
REAP 88.2 86.7 20.1 99.6 53.5 99.7 100.0 95.5 40.5 63.9 90.3 76.2 81.7

YOLOv5
Syn 100 100 100 100 100 100 100 100 100 100 100 100 100
REAP 97.7 85.3 37.6 99.0 64.5 98.6 100.0 98.4 58.0 98.4 97.9 85.0 89.3

ASR under varying hyperparameters of the synthetic benchmark. We conduct an additional
ablation study to compare the effects of the hyperparameters of the synthetic benchmark as mentioned
in Appendix C. Fig. 10 shows a similar scatter plot to Fig. 5a but with all the hyperparameters we
have swept. This plot further strengthens the conclusions that the synthetic benchmark overestimates
ASR and that it is not predictive of the ASR on our REAP benchmark. These observations persist
across all the hyperparameter choices.

Additionally, Fig. 10 demonstrates that there is a large variation in the ASRs measured by the synthetic
benchmark when the hyperparameters vary. For instance, changing the rotation can affect the ASR
up to 20%–40% for many signs. This emphasizes that results reported on a synthetic benchmark
are sensitive to its hyperparameters, and we should take special care when using one. On the other
hand, our REAP benchmark does not have a similar set of hyperparameters to sweep over since the
transformations as well as the sign sizes are fixed with respect to each image.

The lighting transform affects the attack’s effectiveness more than the geometric transform.
Table 7 shows results from an ablation study showing how the transformations our benchmark applies
to the patch affect its ASR. For both YOLOv5 and Faster R-CNN, our realistic lighting transform has
a much larger effect than the geometric transform. Without the lighting transform, the average ASR
increases by approximately 10 percentage points for YOLOv5, and 15 pp for Faster R-CNN. This
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Figure 10: A scatter plot similar to Fig. 5a where each point denotes a pair of ASRs measured by
the synthetic and our REAP benchmark for each class of the signs and also for each hyperparameter
choice for the synthetic benchmark. Particularly, we sweep three hyperparameters that control (a)
patch and object dimension, (b) the range of rotation degree used in EoT, and (c) the color jitter
intensity used in EoT.
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Table 7: Attack success rate on our realistic benchmark when other choices of transformations are
applied. “No 3D” means the perspective transform is replaced by only translation and scaling. “No
light” means there is no relighting transform, but we still apply the perspective transform.

Models Transform Circ Tri UTri Dia(S) Dia(L) Squ Rec(S) Rec(M) Rec(L) Pen Oct mASR mASRw

Faster
R-CNN

No 3D 13.0 24.8 0.3 62.6 2.7 55.2 62.0 25.6 17.2 5.6 2.7 24.7 18.0
No light 30.8 44.1 1.5 77.0 6.3 62.5 80.8 41.7 47.6 2.8 6.1 36.5 32.3
Ours 12.7 24.6 0.8 68.3 2.2 52.0 62.0 27.4 16.7 2.8 2.5 24.7 17.7

YOLOv5
No 3D 16.6 49.8 8.1 57.2 11.4 61.3 90.6 66.2 39.9 88.9 16.0 46.0 26.8
No light 26.7 60.0 8.5 70.1 14.8 62.8 92.6 72.1 55.0 86.5 22.6 52.0 34.6
Ours 14.2 51.7 7.7 59.5 11.0 52.9 86.9 66.7 37.0 83.3 17.8 44.4 24.9

Table 8: Attack success rate of the per-image attack on our realistic benchmark. The model is Faster
R-CNN, and the patch size is 10′′ × 10′′.

Metrics Circ Tri UTri Dia(S) Dia(L) Squ Rec(S) Rec(M) Rec(L) Pen Oct Avg. WAvg.

FNR 34.2 42.4 7.6 87.5 16.6 76.1 94.1 53.9 42.5 15.4 9.6 43.6 37.9
ASR 20.1 35.3 1.7 86.4 3.7 72.5 88.1 44.2 22.0 8.3 5.0 35.2 26.4
AP 46.3 55.7 63.9 29.4 65.1 26.3 3.9 46.2 56.2 61.5 77.5 48.4 47.1

observation explains why the synthetic benchmark as well as synthetic evaluations in previous works
overestimate ASR, as prior works do not consider lighting.

Per-image attack. As another ablation study, we experiment with the worst-case possible attack on
our benchmark where the adversary can generate a unique adversarial patch for each image and is
also aware of how the patch will appear in the image exactly. This setting is similar to the commonly
studied “white-box” attack in the adversarial example literature. This threat model is particularly
unrealistic for patch attacks because, in the real world, the adversary cannot predict apriori how
the video or the image of the patch will be taken. Nonetheless, theoretically, this measurement is
useful because the ASR in this setting should be the upper bound of any other setting including the
“per-class” threat model we have considered throughout the paper.

Table 8 reports the per-image ASR on our REAP benchmark. We only compute the ASR for Faster
R-CNN because this experiment is computationally expensive even when we reduce the attack
iterations from 1,000 to 200. This experiment takes about 10 days to finish on an Nvidia GTX V100
GPU. On average, the per-image attack results in about 10 percentage points higher ASR than the
per-class attack. This is a significant increase (about 40% relatively).

However, in the absolute sense, the ASR is only 35%, i.e., the patch attack only succeeds about
one-third of the time in the worst-case scenario. There are two ways to interpret this observation:
first, it could mean that an object detection model may be more robust to physical attacks than the
researchers expect, and this makes coming up with an effective defense easier. The second way to
view this result is that the previously proposed attack algorithms are far from optimal, and there is a
large room for improvement from the attacker’s side.

E Additional Visualization of the Benchmark

In Fig. 12, we select six images from our benchmark with the 10”×10” patch applied, one from each
sign class.
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Figure 11: Random samples of traffic signs from each of the 11 classes (one per row) applied with a
10”×10” adversarial patch using the transforms from our REAP benchmark. The numbers on the left
indicate class ID (0: Circle, 1: Triangle, 2: Upside-down triangle, 3: Diamond (S), 4: Diamond (L),
5: Square, 6: Rectangle (S), 7: Rectangle (M), 8: Rectangle (L), 9: Pentagon, 10: Octagon).
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(a) Circle (b) Triangle

(c) Diamond (L) (d) Square

(e) Rectangle (L) (f) Octagon

Figure 12: Examples of images from our benchmark after applying the 10”×10” patch. The sub-
caption indicates the target sign class. We try to select images that the signs are large enough to see
on the printed paper.
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