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ABSTRACT

Understanding why gradient-based algorithms are successful in practical deep
learning optimization is a fundamental and long-standing problem. Most exist-
ing works promote the explanation that deep neural networks have smooth and
amenable nonconvex optimization geometries. In this work, we argue that this
may be an oversimplification of practical deep learning optimization by reveal-
ing a mysterious and complex optimization geometry of deep networks through
extensive experiments. Specifically, we consistently observe two distinct geomet-
ric patterns in training various deep networks: a regular smooth geometry and a
mysterious zigzag geometry, where gradients computed in adjacent iterations are
extremely negatively correlated. Also, such a zigzag geometry exhibits a fractal
structure in that it appears over a wide range of geometrical scales, implying that
deep networks can be highly non-smooth in certain local parameter regions. More-
over, our results show that a substantial part of the training progress is achieved
under such complex geometry. Therefore, the existing smoothness-based expla-
nations do not fully match the practice.

1 INTRODUCTION

Training simple neural networks is known to be an NP-complete problem (Blum & Rivest, 1988).
However, in modern machine learning, training deep neural networks turns out to be incredibly easy
in that many simple gradient-based optimization algorithms can consistently achieve low loss (Rob-
bins, 2007; Kingma & Ba, 2015; Duchi et al., 2011). Such an observation inspires researchers to
think that there might be specific simple structures of deep neural networks that make nonconvex op-
timization easy and tractable. Many works have been developed in the past decade to seek justifiable
explanations, either theoretically or empirically.

Specifically, from a theoretical perspective, many nonconvex optimization theories have been devel-
oped to explain the success of deep learning optimization. The key idea is to prove that deep neural
networks have certain nice geometries that guarantee convergence to the global minimum in non-
convex optimization. For example, many types of deep neural networks such as over-parameterized
residual networks (Zhang et al., 2019; Allen-Zhu et al., 2019b; Du et al., 2019a), recurrent net-
works (Allen-Zhu et al., 2019a), nonlinear networks (Zou et al., 2020; Zhou et al., 2016), and lin-
ear networks (Frei & Gu, 2021; Zhou & Liang, 2017) have been shown to satisfy the so-called
gradient dominant geometry (Karimi et al., 2016). On the other hand, shallow ReLU networks
(Soltanolkotabi, 2017; Zhong et al., 2017; Fu et al., 2019; Du et al., 2019b), deep residual networks
(Du et al., 2019a), and some nonlinear networks (Mei et al., 2018; Du & Lee, 2018) have been shown
to satisfy the local strong convexity geometry. Both geometry types guarantee the convergence of
gradient-based algorithms to a global minimum at a linear rate.

From an empirical perspective, researchers have found that skip connections and batch normalization
of deep networks can substantially improve the smoothness of the optimization geometry (Li et al.,
2018a; Santurkar et al., 2018; Zhou et al., 2019). Furthermore, some other works found that there
is a continuous low-loss path between the minima of deep networks (Verpoort et al., 2020; Draxler
et al., 2018). In particular, it is observed that a simple linear interpolation between the initialization
point and global optimum encounters no significant barrier for many deep networks (Goodfellow
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et al., 2015). Moreover, many networks have been shown to possess wide and flat minima that tend
to generalize well (Hao et al., 2019; Mulayoff & Michaeli, 2020).

Despite the comprehensiveness of these existing works, they all aim to promote nice geometries to
demystify the success of deep learning optimization. While this is an important step toward under-
standing deep learning, sometimes the results and conclusions can be illusional: the theories and
empirical evidence may not necessarily reflect the underlying challenge of optimization in practi-
cal deep learning. The success of deep learning optimization may be due to complicated unknown
mechanisms oversimplified by existing works. This constitutes the goal of this paper – to investi-
gate the optimization geometry of deep networks and reveal its complex and mysterious geometric
patterns that may challenge the existing perception of deep learning optimization.

1.1 OUR CONTRIBUTIONS

We apply the full batch gradient descent to train various popular deep networks on different datasets
and study the geometry along the optimization trajectory via gradient correlation-based metrics (de-
fined in Section 2). Specifically, we observe the following distinct geometric patterns.

• We consistently observe two distinct geometric patterns in all the experiments: (i) smooth geom-
etry where gradients computed in adjacent iterations are highly positively correlated (in terms of
the cosine similarity defined in eq. (2)) and point toward similar directions, and (ii) mysterious
zigzag geometry where gradients computed in adjacent iterations are highly negatively correlated
and point toward opposite directions. Interestingly, we find that for convolutional networks, the
training starts with the smooth geometry and transfers to the zigzag geometry later on. On the
contrary, the training of residual networks starts with the zigzag geometry and transfers to the
smooth geometry afterward. Moreover, a substantial part of the training loss decrease is attained
under the complex zigzag geometry in all of the experiments.

• We further investigate the mysterious zigzag geometry of deep networks and find that it has a
complex fractal structure. Specifically, when we zoom into the local geometry by training the
deep networks with very small learning rates, we still observe the same zigzag geometry. It shows
that the local geometry of deep networks can be highly non-smooth in a wide range of geomet-
rical scales. Moreover, the zigzag geometric pattern tends to be stronger when we zoom into a
smaller geometrical scale. These observations challenge the existing explanations of deep learning
optimization based on smooth-type geometries.

• Based on the local statistics of mean gradient correlation, we propose a low-cost geometry-adapted
warm-up learning rate scheduling scheme for large-batch training of residual networks. We show
that it leads to comparable convergence speed and test performance to those of the original heuris-
tic version with parameter fine-tuning.

2 PRELIMINARIES ON GRADIENT CORRELATION

To understand the optimization geometry in deep learning, we propose investigating the gradients
along the optimization trajectory generated by full-batch gradient descent. We consider full-batch
gradient descent as it is noiseless and reflects the exact underlying gradient geometry of the objective
function. Specifically, given a set of training samples {xi, yi}ni=1 where xi denotes the data and yi
denotes the corresponding label, the training objective function and the full-batch gradient descent
(GD) update at each step (k = 0, 1, . . .) are written as follows.

(Objective function): Ln(θ) :=
1

n

n∑
i=1

ℓ(hθ(xi), yi), (GD): θk+1 = θk − η∇Ln(θk), (1)

where hθ denotes the neural network model parameterized by θ, ∇ is the gradient operator with
respect to the parameter θ, η is the learning rate, and ℓ is the loss function. We will con-
sider classification tasks with the cross-entropy loss in this paper. In the training, we collect a
set of gradients generated along the optimization trajectory of full-batch gradient descent, i.e.,
{∇Ln(θ0),∇Ln(θ1), . . . ,∇Ln(θk), . . .}. These gradients determine the direction of model up-
dates and help understand the local optimization geometry of the nonconvex objective function. To
provide a quantitative understanding, we investigate the following pairwise gradient correlation of
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any pair of gradients (∇Ln(θj),∇Ln(θk)) generated in the training:

(Pairwise gradient correlation): µ(j, k) :=
⟨∇Ln(θj),∇Ln(θk)⟩

∥∇Ln(θj)∥ · ∥∇Ln(θk)∥
∈ [−1, 1], ∀ j, k (2)

where ⟨·⟩ and ∥ · ∥ denote the inner product and the ℓ2-norm of vectors, respectively. At every
epoch k, we fix a window size and compute the pairwise gradient correlations for the set of gradients
{∇Ln(θk), . . . ,∇Ln(θk+h−1)}. These gradient correlations form an h×h matrix, which illustrates
the local geometry. We choose h = 5 for visualization purposes only. Moreover, at every epoch k,
we also track the following mean gradient correlation µk over adjacent epochs within the window.

(Mean gradient correlation): µk :=
1

h− 1

h−1∑
m=1

µ(k +m− 1, k +m), k = 1, 2, ... (3)

We use h = 5 in eq. (3). The choice of h is not essential as it only affects the smoothness of the
mean gradient correlation curves.

3 MYSTERIOUS OPTIMIZATION GEOMETRY OF DEEP LEARNING

In this section, we train various modern deep networks and track the gradient correlation statistics
introduced in Section 2. From these statistics, we consistently observe a mysterious and complex
zigzag geometric pattern in practical deep learning optimization.

3.1 TRAINING CONVOLUTIONAL NETWORKS

Simple CNN. We first train a simple feed-forward CNN with three convolution blocks and one fully-
connected block on the CIFAR-10 dataset (Krizhevsky, 2009) using full-batch gradient descent with
learning rate η = 0.1 for 1500 epochs. We track the training loss, mean gradient correlation (defined
in eq. (3)) and pairwise gradient correlation matrix throughout the training process. The results are
shown in Figure 1. It can be seen that the training loss decreases to almost zero after 1000 epochs.
On the other hand, the mean gradient correlation is highly positive for the first 10 epochs and drops
to highly negative values after that. This shows that the gradients computed in adjacent epochs point
toward the same direction only at the beginning of training and point toward opposite directions later
on, implying a transition from a smooth geometry to a highly nonconvex geometry.

Figure 1: CNN training using gradient descent on CIFAR-10. Top row: training loss (left) and mean
gradient correlation (right). Bottom row: pairwise gradient correlation matrices with window size
h = 5 computed at epochs 5, 675, and 1490.

Moreover, the pairwise gradient correlation matrices reveal some interesting and mysterious geomet-
ric patterns in training. Due to space limitation, we present three representative pairwise gradient
correlation matrices computed at epochs 5, 675, and 1490 (corresponds to the red dots in the training
loss figure). We have the following observations from these matrices.
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• Epochs 1-10: smooth geometry. In the first 10 epochs, the observed pairwise gradient correla-
tion matrices are uniformly highly positive, as illustrated by the matrix computed at epoch 5 in
Figure 1. This shows that in the initial phase of the training, the gradients computed within a
small window of epochs are pointing in almost the same direction. Therefore, the optimization
geometry of CNN is smooth in the initial training phase.

• Epochs 10-700: zigzag geometry. After 10 epochs, the algorithm’s dynamic encounters a mys-
terious zigzag geometry, as illustrated by the pairwise gradient correlation matrix computed at
epoch 675 in Figure 1. Specifically, the entries along the first off-diagonal line take negative
values {−0.91,−0.92,−0.92,−0.9} that are very close to −1. This implies that the gradients
computed in the adjacent epochs (e.g., epochs 675 and 676) within this window are pointing in al-
most opposite directions. Also, the entries along the second off-diagonal line take positive values
{0.86, 0.85, 0.84} that are close to 1. This implies that the gradients computed in the epochs with
a lag order of two (e.g., epochs 675 and 677, epochs 676 and 678) within this window are pointing
in similar directions. Furthermore, the entries along the third off-diagonal line become highly
negative again, implying that the gradients computed in the epochs with a lag order of three (e.g.,
epochs 675 and 678) within this window are pointing toward opposite directions. These observa-
tions show that the optimization dynamics encounter a zigzag-type structure, and the optimization
geometry of CNN is highly nonconvex and zigzag in the middle of the training.

• Epochs 700-1500: random geometry. When the training converges and achieves near zero loss
after 1000 epochs, the pairwise gradient correlations are consistently close to zero, as illustrated
by the pairwise gradient correlation matrix computed at epoch 1490 in Figure 1. This implies that
the geometry of CNN is, to some extent, random around the global minimum.

VGG-16. We also explore the gradient correlation in training a VGG-16 network on the CIFAR-10
dataset using full-batch gradient descent with learning rate η = 0.1 for 1500 epochs. We observe
similar optimization geometry to that of CNN. The results are shown in Figure 2. The mean gradient
correlation is highly positive for most of the first 500 epochs. This is consistent with the pairwise
gradient correlation matrix computed at epoch 5 shown in the figure, whose entries are uniformly
highly positive. This shows that the gradients computed in the initial training phase are pointing
in almost the same direction, therefore implying a smooth optimization geometry. However, in
the later training phase after 500 epochs, the mean gradient correlation drops to highly negative
values, indicating an occurrence of highly nonconvex geometry. In particular, we observe the zigzag
geometric pattern in the pairwise gradient correlation matrix computed at epoch 915.

Figure 2: VGG-16 training using gradient descent on CIFAR-10

Other results and conclusion. In Appendix A, we include additional results on training the CNN
and VGG-16 networks using other datasets such as MNIST (Deng, 2012) and SVHN (Netzer et al.,
2011). From all these results, we observe a common phenomenon: the optimization geometry of
CNN and VGG-16 has a sharp transition from smooth geometry to zigzag geometry in the training.
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3.2 TRAINING RESIDUAL NETWORKS

We further train various residual networks and track the gradient correlation along the gradient
descent trajectory. Interestingly, we also observe the zigzag geometry in training residual networks,
but the overall transition of geometry is very different from that of convolutional networks.

ResNet-18. We train a standard ResNet-18 on the CIFAR-10 dataset using full-batch gradient de-
scent with learning rate η = 0.1 for 500 epochs, and track the training loss and gradient correlation.
The results are shown in Figure 3, from which one can see a very different transition of optimization
geometry compared to that of convolutional networks. Specifically, one can see that the mean gra-
dient correlation is highly negative in the first 120 epochs. This shows that the gradients computed
in adjacent epochs are negatively correlated in the initial training phase, implying a highly noncon-
vex geometry. Moreover, from the pairwise correlation matrices computed at epochs 5 and 60, one
can see that the local geometry gradually transfers to the zigzag geometry. After 150 epochs, the
mean gradient correlation increases to highly positive values, implying a very smooth optimization
geometry when approaching the minimizer. This is also supported by the pairwise correlation ma-
trix computed at epoch 490, whose entries are uniformly close to 1. To summarize, the optimization
geometry of ResNet-18 has a sharp transition from nonconvex zigzag geometry to smooth geometry.
This is very different from the optimization geometry of convolutional networks, which starts with
a relatively smooth geometry and transfers to zigzag geometry in the later training.

Figure 3: ResNet-18 training using gradient descent on CIFAR-10

ResNet-34. We further train a standard ResNet-34 on the CIFAR-10 dataset using full-batch gradient
descent with learning rate η = 0.1 for 500 epochs. The results are shown in Figure 4, where one can
observe a similar transition of geometry to that of ResNet-18.

Figure 4: ResNet-34 training using gradient descent on CIFAR-10
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Other results and conclusion. In Appendix B, we include additional results on training residual
networks using MNIST and SVHN. From all these results, we observe a common phenomenon: the
optimization geometry of residual networks has a sharp transition from nonconvex zigzag geometry
to smooth geometry in training. On the other hand, in the existing literature, it has been visualized
that the geometry of residual networks is smooth around the global minimum (Li et al., 2018b;
Garipov et al., 2018). This is consistent with our observation that the mean gradient correlation
is highly positive in the later training phase of residual networks. Our results further reveal that
residual networks have complex zigzag geometry far away from the global minimum.

3.3 FRACTAL STRUCTURE OF ZIGZAG GEOMETRY

In the previous subsections, we observed the zigzag geometry in training various deep networks us-
ing a large learning rate. Here, we further zoom into the local geometry by training these networks
with much smaller learning rates. We aim to understand if the zigzag geometry has any local struc-
ture. Figure 5 shows the training of VGG-16 on CIFAR-10 using full-batch gradient descent with
a small learning rate η = 0.01. From the mean gradient correlation figure, it can be seen that the
optimization geometry is smooth in the first 900 epochs, as also confirmed by the pairwise gradient
correlation matrix computed at epoch 5. However, after 900 epochs, the mean gradient correlation
instantly drops to highly negative values, and we start to observe the zigzag geometry as shown by
the pairwise gradient correlation matrices computed at epochs 925 and 1490.

Figure 5: VGG-16 training using gradient descent with η = 0.01 on CIFAR-10

Figure 6 further shows the training of ResNet-18 on CIFAR-10 using full-batch gradient descent
with a very small learning rate η = 0.001. It can be seen that the optimization geometry is very
smooth for the initial 50 epochs. But it starts to transfer to zigzag geometry after 400 epochs, as can
be seen from the pairwise gradient correlation matrices computed at epochs 490 and 990.

Figure 6: ResNet-18 training using gradient descent with lr=0.001 on CIFAR-10
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Other results and conclusion. In Appendix C, we include additional results on training other
models on CIFAR-10 using very small learning rates, and one can make very similar observations
(namely, zigzag geometry still appears). From all these results, it seems that the zigzag geometry
of deep networks has a complex fractal structure in that it appears within a wide range of geomet-
rical scales. It indicates that deep networks can be highly non-smooth and non-Lipschitz in a local
region of the parameter space. More interestingly, note that the variation of the entries of the zigzag
pairwise correlation matrices in Figures 5 and 6 are much larger than those of the zigzag pairwise
correlation matrices in Figures 2 and 3. This implies that the zigzag geometry tends to be more
nonconvex when zoomed into a smaller geometrical scale.

4 DISCUSSIONS

4.1 DEEP LEARNING OPTIMIZATION THEORY

The observations made in Section 3 imply that many deep neural networks belong to a small class
of functions with very special and nonconvex geometry, which is a mixture of smooth geometry and
complex zigzag geometry. In particular, the gradients under the zigzag geometry constantly shift
their directions at different geometrical scales. It implies a highly non-smooth local geometry: the
local Lipschitz constants of the gradients are ill-conditioned and change rapidly.

On the other hand, this poses a challenge to the existing developments of deep learning optimiza-
tion theory, which are often based on proving smooth and Lipschitz-type geometries of deep neural
networks that guarantee convergence to a global minimum. For example, smoothness and gradient
dominant geometry (also known as Polyak-Łojasiewicz geometry) constitute classic tools for estab-
lishing global convergence of gradient-type algorithms in nonconvex optimization (Karimi et al.,
2016; Polyak, 1963). Specifically, the gradient dominant geometry requires the optimality gap of
the objective function to be bounded by the corresponding gradient norm, i.e.,

(Gradient dominant): Ln(θ)− Ln(θ
∗) ≤ C∥∇Ln(θ)∥2, ∀θ ∈ Θ,

where C > 0 is a universal constant, Θ is a local neighborhood of the minimizer θ∗, and ∥·∥ denotes
the ℓ2-norm. This nonconvex geometry has a close connection to other (non)convex geometries,
including strong convexity (Nesterov, 2014), weak strong convexity (Necoara et al., 2019), and
error bound (Luo & Tseng, 1993), all of which guarantee linear convergence of many gradient-based
algorithms. In particular, many deep networks have been theoretically proved to have smooth and
gradient dominant geometry, including over-parameterized residual networks (Zhang et al., 2019;
Allen-Zhu et al., 2019b; Du et al., 2019a), some nonlinear networks (Zhou et al., 2016; Zou et al.,
2020) and deep linear networks (Zhou & Liang, 2017; Frei & Gu, 2021). However, this is a coarse
geometry model in practical deep learning, as it only involves the gradient norm information and
does not capture the highly non-smooth zigzag geometry observed in our experiments. Therefore,
we think the existing deep learning optimization theory cannot fully explain the success in practice,
and advanced theories are needed to explain (i) why neural networks have such complex and non-
smooth zigzag geometry and (ii) why gradient descent can overcome such non-smooth geometry
and decrease the training loss in practice.

4.2 JUSTIFICATION OF LEARNING RATE SCHEDULING

Figure 7: Red: mean gradient corre-
lation of ResNet-18 training. Green:
warm-up learning rate scheduling.

Our previous experimental observations provide justifications
for using learning rate scheduling in large-batch training of
residual networks. Specifically, it is known that training resid-
ual networks with large batch size can easily diverge when a
large learning rate is used in the initial training phase. To sta-
bilize training, researchers proposed a warm-up learning rate
scheduling scheme for large-batch training of residual net-
works (Goyal et al., 2017). The idea is to start with a very
small learning rate and gradually increase to a large learning
rate over several epochs. After that, the learning rate slowly
decreases until the training is saturated (see the green curve in
Figure 7). Our observation of mean gradient correlation in training residual networks justifies the
effectiveness of this scheduling scheme. Specifically, as illustrated in Figure 7, the mean gradient
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correlation in ResNet-18 training is highly negative in the initial training phase, which implies a
highly nonconvex optimization geometry. Therefore, it is desirable to start with a small learning
rate. After that, the gradient correlation gradually increases to highly positive values, and the ge-
ometry becomes very smooth. Therefore, a warm-up learning rate scheduling is appropriate. In
Section 5, we propose to adapt the warm-up scheduling scheme to the mean gradient correlation to
avoid parameter tuning in practice.

4.3 SIGN SHIFT OF GRADIENT ENTRIES

One interesting question is how many gradient entries shift their sign when encountering the zigzag
optimization geometry. In Figure 8, we show the pairwise gradient correlation matrix when encoun-
tering the zigzag geometry in training convolutional networks. For each entry of pairwise gradient
correlation, we calculate the percentage of the number of gradient entries with opposite signs. We
can see that when encountering the zigzag geometry in CNN training, the gradient correlations of
adjacent iterations stay around −0.92 ∼ −0.9, and about 90% of the gradient entries have opposite
signs. This shows that such a complex geometry is across the majority of the parameter dimensions
of convolutional networks. In Appendix D, we include additional results on sign shift of gradient
entries in training residual networks, where one can make similar observations.

(a) Epoch 675 of CNN training on CIFAR-10 (b) Epoch 705 of VGG-16 training on SVHN

Figure 8: Gradient sign shift in training convolutional networks

5 APPLICATION: GEOMETRY-ADAPTED LEARNING RATE SCHEDULING

The statistics of gradient correlation sketch the global optimization geometry of deep networks. In
this section, we further leverage this statistics to develop a geometry-adapted learning rate schedul-
ing scheme for large-batch training of residual networks. We focus on large-batch training for two
reasons: (i) it has become increasingly important and popular for large-scale training with parallel
computation (Goyal et al., 2017; You et al., 2018; 2019), and (ii) the noisy stochastic gradient cor-
relation can still reflect the underlying optimization geometry in the large-batch setting, as we show
in the following subsection.

5.1 IMPACT OF BATCH SIZE ON GRADIENT CORRELATION

Figure 9 shows the mean gradient correlation in training a ResNet-18 with different large-batch
sizes on CIFAR-10. In all the training, we linearly scale the learning rate based on the batch size.
It can be seen that over a wide range of large-batch sizes, the mean gradient correlation curves do
not change substantially. This implies that mean gradient correlation is a statistic that can reliably
reflect the underlying optimization geometry in large-batch training. Please refer to Appendix E for
more results on training other models, where one can make similar observations.

(a) Batch size 5000 (b) Batch size 10000 (c) Batch size 20000

Figure 9: Gradient correlation in ResNet-18 training on CIFAR-10 under different batch sizes
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5.2 GEOMETRY-ADAPTED WARM-UP LEARNING RATE SCHEDULING

In training residual networks, the standard warm-up (WU) learning rate scheduling scheme consists
of two phases, and the phase change iteration t ∈ N is heuristically chosen. In the warm-up phase
(before t-th iteration), the scheme starts from a small learning rate η0 and increases it exponentially
as ηk = exp(ωk)ηk−1 for some hyper-parameter ω > 0. In the decay phase (after t-th iteration), the
scheme decays the learning rate via certain standard schemes (e.g., cosine annealing) until the end
of the training. Here, we propose a Geometry-Adapted Warm-Up (GAWU) scheme that adaptively
chooses the phase change point according to the mean gradient correlation statistics. Specifically,
we keep tracking the mean gradient correlation in training and set the phase change point t as the first
time that the mean gradient correlation drops from positive to negative values, indicating a transition
from smooth to non-smooth geometry. Furthermore, computing the mean gradient correlation is
cheap in each iteration. It only requires storing an extra gradient calculated in the previous iteration
and computing its correlation with the current gradient.

We compare the proposed GAWU scheme with the heuristic WU scheme in training a Resnet-18
on the CIFAR-10 dataset. We use SGD as the optimizer and set the batch size to be 5000. For the
baseline WU scheme, we consider three heuristic change point settings t = 5, 10, 12, where 12 is the
best change point that leads to the highest test accuracy that we found by performing a grid search
over t. For both GAWU and WU, their warm-up phases use the same hyper-parameter ω = 0.1,
and their decay phases use the standard cosine annealing scheme with one period. We set the initial
learning rate as η0 = 0.001 for all the experiments.

Figure 10: Comparison between GAWU and WU in training
ResNet-18 on CIFAR-10.

LR schedule Test Acc (Loss)
WU (t = 5) 61%(1.08)

WU (t = 10) 74%(1.63)
WU (t = 12) 78%(1.79)

GAWU 76%(1.69)

Table 1: Test accuracy of the final
model trained by GAWU and WU.

Figure 10 shows the training loss and learning rate scheduling produced by GAWU and WU. It
can be seen that the training loss obtained under the GAWU scheme has a comparable convergence
speed to that of the training loss obtained under the WU scheme with fine-tuned parameter t = 12.
In fact, in our experiment, the change point detected by GAWU is t = 11, which is very close
to the best parameter t = 12 found empirically. This demonstrates the advantage of adapting the
learning rate to the change of the underlying optimization geometry. Moreover, the test accuracy
results presented in Table 1 further confirms the effectiveness of the GAWU scheme.

6 CONCLUSION

In this paper, we reveal that many popular deep networks have mysterious zigzag optimization geom-
etry, which has a complex fractal structure over a wide range of geometrical scales. These observa-
tions imply that deep learning optimization cannot be fully characterized by the classic optimization
theories, which crucially rely on elegant and smooth type geometries. As a future direction, we are
motivated to develop a mathematical formalization of the observed zigzag geometry and develop
advanced optimization theory to understand deep learning optimization in practice.
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