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Abstract
Pre-trained generalist policies are rapidly gaining
relevance in robot learning due to their promise
of fast adaptation to novel, in-domain tasks.
This adaptation often relies on collecting new
demonstrations for a specific task of interest and
applying imitation learning algorithms, such as
behavioral cloning. However, as soon as several
tasks need to be learned, we must decide which
tasks should be demonstrated and how often?
We study this multi-task problem and explore an
interactive framework in which the agent adap-
tively selects the tasks to be demonstrated. We
propose AMF (Active Multi-task Fine-tuning),
an algorithm to maximize multi-task policy per-
formance under a limited demonstration budget
by collecting demonstrations yielding the largest
information gain on the expert policy. We derive
performance guarantees for AMF under regular-
ity assumptions and demonstrate its empirical ef-
fectiveness to efficiently fine-tune neural policies
in complex and high-dimensional environments.

1. Introduction
The availability of large pre-trained models has trans-
formed entire areas of machine learning, from computer
vision (Krizhevsky et al., 2012; He et al., 2016; Dosovitskiy
et al., 2021; Radford et al., 2021), to natural language
processing (Radford et al., 2019; Brown et al., 2020) and
generative modeling in general (Ho et al., 2020; Esser et al.,
2024). This paradigm has started to extend to robotics
and control (Collaboration, 2023; Ma et al., 2024), in
particular for systems for which demonstrations are readily
available (Octo Model Team et al., 2024), or can be easily
collected (Zhao et al., 2023). Even when demonstrations
are not easily obtained, scaling laws in reinforcement learn-
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Figure 1: Interactive loop between agent and expert. We
consider a scenario where we receive a pre-trained policy,
and are able to obtain expert demonstrations of tasks.
We study how to select tasks (in blue) to obtain the best-
performing policy after as few demonstrations as possible.

ing (Ceron et al., 2024b;a; Nauman et al., 2024) suggest the
possibility of leveraging large pre-trained policies. These
“generalist” policies have decent performance on many tasks,
and can be fine-tuned on particular set of tasks while lever-
aging their previously learned representations and skills. We
investigate whether representations of pre-trained policies
can be used to significantly bootstrap learning progress.

As a motivating example, consider a household robot that
is delivered with a pre-trained “generalist” policy, and
deployed in different conditions than those observed in
its training data. While the robot may achieve some tasks
in a zero-shot fashion (e.g. simple pick-and-place), other
tasks might necessitate further fine-tuning (e.g. cooking an
omelette). The robot should be able to interactively request
demonstrations to compensate for its shortcomings. We
seek to answer which demonstrations should be requested
from the user to achieve the best performance, as quickly
as possible.

If the agent only needs to perform well in a single task,
the fine-tuning process conventionally relies on behavioral
cloning (Chen et al., 2021; Reed et al., 2022; Bousmalis
et al., 2024) of expert demonstrations. As collecting demon-
strations is in general costly, the number of demonstrations
required, and thus the expert’s effort, should be minimized.
However, as each demonstration should solve the same task,
the allocation of the expert’s effort is straightforward. The
multi-task case presents the more nuanced problem of select-
ing which tasks to demonstrate, and when. This motivates
the main focus of this work: provided a pre-trained pol-
icy, how can we maximize multi-task performance with a
minimal number of additional demonstrations?

To address this problem, we propose AMF (Active Multi-
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task Fine-tuning), which selects maximally informative
demonstrations. AMF parallels recent work on active super-
vised fine-tuning of neural networks (Hübotter et al., 2024).
To this end, AMF relies on estimates of the demonstrations’
information gain on the expert policy. We prove that in suffi-
ciently regular Markov decision processes, AMF converges
to the expert policy. We then focus on practical scenarios
where policies are represented as neural networks. We show
that, despite additional challenges, AMF can effectively
guide active task selection in such settings, leading to better
policies after fewer demonstrations. Our contributions are:

• We propose AMF, an algorithm for multi-task policy
fine-tuning that maximizes the information gain of
demonstrations about the expert policy.

• We prove statistical guarantees for AMF, which ex-
tend the results of Hübotter et al. (2024) to dynamical
systems.

• We empirically scale AMF to high-dimensional tasks
involving pre-trained neural policies.

• We additionally propose a practical approach to alle-
viate catastrophic forgetting in pre-trained neural poli-
cies, which benefits arbitrary data selection strategies.

2. Related Work
Learning-based control and active data selection are both
well-established research directions. This section discusses
some topical works in either direction, and clarifies the
novelty and placement of this work with respect to them.

Behavioral Cloning Numerous imitation learning ap-
proaches have been developed with the goal of distilling
knowledge from high-quality demonstrations to a control
policy (Osa et al., 2018). Within this family of techniques,
behavioral cloning (BC, Bain & Sammut, 1995; Ross & Bag-
nell, 2010) aims to maximize policy performance by mini-
mizing the distance of its actions to demonstrated actions,
simply through supervised learning. While BC may suffer
from accumulating errors (Ross et al., 2011), its empirical
effectiveness has seen increasing support when high-quality
demonstrations are readily available (Kumar et al., 2022).
Next to recent empirical successes (Chi et al., 2023), formal
analysis has also advanced (Spencer et al., 2021; Block et al.,
2024a; Belkhale et al., 2024; Foster et al., 2024), and estab-
lished provable performance guarantees for BC policies (Xu
et al., 2020; Maran et al., 2023; Block et al., 2024b).

Multi-task and Generalist Policies Traditionally, behav-
ioral cloning has mostly been deployed in a single-task
setting. Multi-task learning in sequential decision-making
has largely been investigated in the context of reinforcement
learning (Teh et al., 2017; Sodhani et al., 2021; Yu et al.,
2021; Sun et al., 2022; Cho et al., 2022; Hendawy et al.,
2023). Moreover, the recent rise of multi-task generative

models (Brown et al., 2020) has been mirrored by explo-
ration of multi-task, or generalist policies, often trained via
imitation learning (Reed et al., 2022; Bousmalis et al., 2024;
Collaboration, 2023). These recent works mostly build upon
algorithms developed for the single-task case, and simply
integrate task-conditioning as part of the state. While sev-
eral works hand-select parts of large, open-source robotics
datasets for pre-training (Octo Model Team et al., 2024),
active data selection for multi-task fine-tuning has not been
addressed. Prior work on meta-learning has studied how
one can explicitly meta-learn the ability to adapt to task
demonstrations (Finn et al., 2017). We find this capability
to emerge even from models that are not explicitly trained
in this way, and focus on which demonstrations to obtain.

Data Selection The idea of directing a sampling process
to gather information has been central to machine learning
research and studied extensively in experimental de-
sign (Chaloner & Verdinelli, 1995), active learning (Settles,
2009) and reinforcement learning (Mehta et al., 2022).
Most work on active data selection summarizes data without
focusing on a particular task (e.g., Sener & Savarese, 2017;
Ash et al., 2020; Holzmüller et al., 2023; Lightman et al.,
2023), which has been predominantly applied to pre-training.
Recently, adapting models after pre-training and during
deployment has gained interest. Several works, mostly in
computer vision, focus on unsupervised fine-tuning on a test
instance (Jain & Learned-Miller, 2011; Krause et al., 2018;
Sun et al., 2020; Wang et al., 2021b; Chen et al., 2022). We
focus instead on supervised fine-tuning of learning-based
controllers in dynamical systems. Our approach extends
work on task-directed data selection (Kothawade et al.,
2020; Wang et al., 2021a; Kothawade et al., 2022; Bickford
Smith et al., 2023), which has recently been applied to
the supervised fine-tuning of large-scale neural networks
in vision (Hübotter et al., 2024) and language (Rotman &
Reichart, 2022; Xia et al., 2024; Hübotter et al., 2025).

3. Background
3.1. Multi-Task Reinforcement Learning

The multi-task setting can be modeled by casting the en-
vironment as a contextual Markov decision process (MDP)
M = (S,A, C, P,R, γ, µ0) where S ∈ RNS and A ∈
RNA are possibly continuous state and action spaces. C is a
(potentially infinite) set of tasks, with each task represented
by anNC-dimensional vector c ∈ RNC . P : S×A → ∆(S)
models the transition probabilities (∆(S) represents the
set of probability distributions over S), R : S × C → R
is a scalar reward function, γ ∈ (0, 1) is a discount factor
and µ0 ∈ ∆(S) is the initial state distribution. In this
setting, a policy is simply a state-and-task-conditional
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action distribution π : S × C → ∆(A)1. Any given policy
induces a task-conditional distribution over trajectories:

τπ

((
s0, a0, s1, a1, . . .

)
| c
)
=

µ0(s0)

∞∏
t=0

π(at | st, c) · P (st+1 | st, at).

The discounted returns for a specific task c ∈ C or a task
distribution µc ∈ ∆(C) are, respectively,

Jπ
c = E

(s0,... )∼τπ(c)

∞∑
t=0

γtR(st, c) and Jπ
µc

= E
c∼µc

Jπ
c .

Reinforcement learning algorithms traditionally aim
directly at maximizing Jπ

µc
, which is notoriously chal-

lenging. In the scope of this work, we instead consider
an imitation learning setting, in which expert demon-
strations from an optimal policy π⋆ are provided. In
particular, we focus on behavioral cloning algorithms,
which reduce control to a supervised learning problem.
Given a set of N task-conditioned, H-length trajectories
τ̂1:N = (si0, a

i
0, . . . , s

i
H−1, a

i
H−1)

N
i=1 with task labels c1:N ,

behavioral cloning proposes a proxy objective for the policy
π: an empirical estimate of the log-likelihood under the data
distribution: Jπ

proxy = 1
N

∑N
i=1

∑H−1
t=0 logπ(ait | sit, ci).

If trajectories τ1:N are obtained from the optimal policy,
cover the support of the desired task distribution µc, and the
searched policy class is sufficiently rich, the maximizer of
Jπ

proxy will also maximize Jπ
µc

as N and H increase. How-
ever, in general, there is a clear mismatch between Jπ

proxy
and Jπ

µc
(Xu et al., 2020; Maran et al., 2023). Nonetheless,

the optimization of Jπ
proxy is a relatively straightforward su-

pervised learning problem, while the full RL problem raises
several convergence issues, particularly in the offline setting
(Levine et al., 2020). Thus, we use Jπ

µc
only for evaluation,

and carry out optimization through the proxy objective.

3.2. Active Policy Fine-Tuning

In this work, we consider an active fine-tuning scheme for
multi-task policies. The goal is to fine-tune a pre-trained pol-
icy to perform well on a desired task distribution µc using as
few expert demonstrations as possible. The agent is allowed
N sequential queries for demonstrations according to the
fine-tuning budget. The n-th query should consist of a task
cn ∈ C. Once the agent selects a task, feedback is received
from the optimal policy π⋆ : S × C → A (i.e., an optimal
demonstrator). At each round the agent receives an H-step
demonstration conditioned on the chosen task cn. This can
be seen as a single measurement from a stochastic process
over trajectories τ : C → ∆((S × A)H). Each observed
trajectory up to round n is stored in a dataset (c1:n, τ̂1:n),

1We use π and π to denote stochastic and deterministic policies,
respectively, and π(s, c) for realizations.

which can be used to fine-tune the policy, and condition the
agent’s query at step n + 1. The process is repeated for
N rounds, with the goal of producing a fine-tuned policy
that maximizes the expected returns for the desired task
distribution µc. We note that the fine-tuning process does
not assume access to the pre-training data distribution. This
setting is both realistic, as large pre-training datasets are
rarely publicly available, and challenging, as it prohibits any
naive data rebalancing strategy.

Modeling assumptions We take a Bayesian perspective on
active multi-task fine-tuning, by assuming a Bayesian model
π over policies. We assume that demonstrations follow a
noisy expert: π̃(s, c) = π⋆(s, c) + ϵ(s, c) where ϵ(s, c) is
independent noise. We remark, however, that AMF can also
be understood from a non-Bayesian perspective as selecting
tasks that most quickly minimize the size of frequentist
confidence sets around the optimal policy.

4. Method
The active multi-task fine-tuning problem outlined so far re-
quires active data selection for sample-efficient learning. We
thus build on top of principled active learning approaches for
non-sequential domains (Hübotter et al., 2024), and propose
AMF, which selects queries that maximize the expected
information gain about the expert policy over its occupancy:

cn = argmax
c′∈C

E
H−1∑
t=0

I(π(st, c); τ (c′) | c1:n−1, τ1:n−1),

with c ∼ µc, (s0, . . . ) ∼ τ (c), τ1:n−1 ∼ τ (c1:n−1). (1)

We show in Section 4.1 that, under certain regularity
assumptions, the policy learned by AMF converges to the
expert policy and matches its performance. These results
constitute a first-of-its-kind performance guarantee for
active multi-task fine-tuning. The main novelties of this
guarantee are the extension of prior work to sequential do-
mains where the visited trajectory (s0, a0, s1, . . . ) ∼ τ (cn)
is unknown when selecting the task cn for a demonstration,
and the connection to imitator performance. In Section 4.2,
we discuss the design choices that make AMF amenable
to optimization in practical settings.

4.1. Performance Guarantees

We begin by presenting the performance guarantees for
AMF. Our proof builds upon rates for uncertainty reduction,
then ties these to probabilistic convergence guarantees to
π⋆, finally resulting in performance guarantees within the
MDP. We summarize the main result here, and include a
formal proof in Appendix A.

Informal Assumption 4.1. We make these assumptions:

1. The expert policy π⋆ is deterministic, Lipschitz-
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smooth, lies in the reproducing kernel Hilbert space
Hk(S ×C) of the kernel k with norm ∥π⋆∥k <∞ and
induces a Lipschitz-smooth Q-function.

2. The noise ϵ(s, c) affecting demonstrations is condition-
ally ρ-sub-Gaussian and bounded.

3. The dynamics of the contextual MDP M are Lipschitz-
smooth with bounded support, the initial state dis-
tribution µ0 has bounded support, and the reward is
Lipschitz-smooth.

Under these assumptions, we prove the following perfor-
mance guarantee for active multi-task behavioral cloning.
Informal Theorem 4.2 (Performance guarantees for active
multi-task BC). Let all regularity assumptions hold. If each
demonstrated task of length H is selected according to the
criterion in Equation 1, then with probability 1 − δ the
performance difference between the expert policy π⋆ and
the imitator policy πn after n demonstrations can be upper
bounded:

Jπ⋆

µc
− Jπn

µc
≤ O(γ(Hn))/

√
n,

where πn is the mean of π at round n and γ(Hn) is the
maximum information gain about the expert policy from
Hn samples, and is sublinear for a large class of problems.
The O(·) notation suppresses all multiplicative terms that
do not depend on n.

Intuitively, this theorem proves that the imitator will
eventually achieve the demonstrator’s performance in
smooth, regular MDPs with sublinear γ(Hn) (for a formal
definition, we refer to Lemma A.6 in the Appendix). We can
also prove a more general result under weaker assumptions:
as long as the policy is regular, the imitator will reach the
noisy expert performance in arbitrary, non-smooth MDPs,
albeit only in expectation. A full derivation of this further
result can be found in Appendix B.

4.2. Practical Algorithms

Theorem 4.2 guarantees that, under regularity assumptions,
the adaptive demonstration sampling scheme leads to con-
vergence of the imitator’s performance to the optimal one.
However, this criterion involves state occupancies and a con-
ditional entropy term, which are hard to access or estimate
in practice. Thus, here we derive a practical objective to be
deployed in general settings. We first rephrase the objective
from Equation 1 in its entropy form:

cn =argmin
c′∈C

E
H−1∑
t=0

H(π(st, c) | c′, τ ′, c1:n−1, τ1:n−1),

with c ∼ µc, (s0, . . . ) ∼ τ (c), τ ′ ∼ τ (c′),

τ1:n−1 ∼ τ (c1:n−1). (2)

where we use the definition of mutual information
I(·|τ (c′)) = H(·)−H(·|τ (c′)), drop the first entropy term

as it does not depend on c′, and rewrite the second entropy
term as an expectation over τ (c′). As long as the task space
C is finite and its cardinality is tractable, the argmin opera-
tor can be evaluated exhaustively, and the expectation over
the task distribution µc can be computed exactly. When
this is not the case, the argmin can be optimized through
discretization, or with sampling-based optimizers. The ex-
pectation over µc is also not particularly problematic, as it
can be computed in closed form (if C is discrete) or esti-
mated empirically through sampling, as µc is assumed to
be known. However, two issues need to be resolved: (i)
computing the expectation over the noisy expert’s trajectory
distribution τ , and (ii) estimating the conditional entropy
term H(· | ·).

Occupancy estimation Computing the expectation
over a policy’s occupancy over states or trajectories is in
general intractable in continuous state spaces. Fortunately,
a coarse empirical estimate can be obtained as soon as few
expert demonstrations become available. The expectation
Eτ1:n−1∼τ (c1:n−1)(·) can be estimated through a single
sample, which is always available in the form of the trajec-
tories τ̂1:n−1 collected so far, as they have effectively been
sampled from τ (c1:n−1). However, the remaining two ex-
pectations (i.e., Eτ ′∼τ (c′)(·) and E(s0,... )∼τ (c)(·)) involve
the distribution over trajectories for an arbitrary task, which
might not have been demonstrated yet. We observe that, at
round n, the tasks demonstrated so far induce the empirical
distribution µ̂c(·) = 1

n−1

∑n−1
i=1 δci(·), while the trajecto-

ries collected similarly induce τ̂ (·) = 1
n−1

∑n−1
i=1 δτ̂i(·),

where δ indicates the Dirac delta distribution. We can show
that expectations over the trajectory distribution for an
arbitrary task c ∈ C can be estimated through importance
sampling (i.e., by sampling trajectories from τ̂ (·) instead
of τ (·|c)): Eτ∼τ (·|c) f(τ) = Eτ∼τ̂ (·)

τ (τ |c)
τ̂ (τ) f(τ). The

importance weights can then be estimated as

τ (τ |c)
τ̂ (τ)

≈ τ (τ |c)∫
c′∈C µ̂c(c′)τ (τ |c′)

=
τ (τ |c)

1
n−1

∑n−1
i=1 τ (τ |ci)

=
(n− 1)µ0(s0)

∏H−1
t=0 π̃(at|st, c)P (st+1|st, at)∑n−1

i=1 µ0(s0)
∏H−1

t=0 π̃(at|st, ci)P (st+1|st, at)

=
(n− 1)

∏H−1
t=0 π̃(at|st, c)∑n−1

i=1

∏H−1
t=0 π̃(at|st, ci)

:= w(τ, c) (3)

where τ = (s0, a0, . . . ) and π̃ can be approximated with the
current estimate of π. Intuitively, the likelihood ratio of a
trajectory under two different tasks only depends on the like-
lihood of actions under the policy, and thus does not require
knowledge of the MDP. As the estimate may be inaccurate
for small numbers of samples, in practice the algorithm can
invest the first few rounds to query a single demonstration
for each of the tasks (in case they are countable and few) or
to sample the task space uniformly. On the other hand, the

4



Active Multi-task Policy Fine-tuning

high-variance of the estimate can be controlled by practical
solutions such as clipping. We present the resulting empir-
ical estimate for Equation 2 in full in Appendix C, and a
qualitative analysis of importance weights in Appendix K.

Entropy estimation The estimation of conditional en-
tropy terms such as H(· | ·) has been widely researched
in the literature. When the policy is represented through a
Gaussian process GP (µ, k) (Williams & Rasmussen, 2006)
with known mean function µ and kernel k,2 the entropy
can be directly quantified by the predicted variance. Let
us denote a state-task tuple as x = (s, c), and let X be the
sample vector obtained from concatenating states and tasks
from previous trajectories (e.g., c1:n−1, τ1:n−1, c

′, τ ′). The
unconditional entropy can be measured in closed form as
H(π(x)) = 1

2 log(2πk(x, x)) +
1
2 , and the conditional en-

tropy can be obtained by simply replacing the kernel k with
k̂X(x, x) = k(x, x)−k(x,X)[k(X,X)+σ2

ϵ I]
−1k(X,x),

where σ2
ϵ is the variance of the observation noise ϵ(s, c), as-

suming it is distributed according to a zero-mean Gaussian.

Algorithm 1 AMF

Input: initial policy π0, budget N , desired task distr. µc

Output: fine-tuned policy πN
Initialize dataset D0 = ∅
for n ∈ [0, . . . , N − 1] do

Compute cn as the solution to Eq. 2
Collect new demonstration τn for task cn
if n+ 1 % B = 0 then
Dn+1 = Dn+1−B ∪ {cn−B+1:n, τn−B+1:n}
Update πn+1 from πn+1−B with Dn+1

end if
end for

Thus, when the policy can be modeled as a GP, the only
approximation needed concerns occupancy estimation. We
refer to this first, practical instantiation as AMF-GP, and
present a general algorithmic framework in Algorithm 1.
Application of the method to policies parameterized by neu-
ral networks will adopt the same scheme. It will also require
additional care on two distinct topics: kernel approximtions
and mitigation of catastrophic forgetting.

Kernel approximations When the policy is parameter-
ized through a neural network, estimation of the conditional
entropy is far less straightforward. First, we cannot as-
sume the availability of ad-hoc techniques for uncertainty
estimation (e.g., Dropout (Srivastava et al., 2014; Gal &
Ghahramani, 2016) or ensembles (Lakshminarayanan et al.,
2017)), as they might not be featured in pre-trained models.

2For simplicity, we consider a single-output GP, but general-
ize to multi-dimensional policies with multi-output GPs in both
experiments and formal proofs.

Even if the pre-trained model was perturbed and ensembled
for fine-tuning, the ensemble disagreement would not cap-
ture the pre-training data distribution. Second, access to
pre-training data is in general unrealistic, or hard to manage
due to size and ownership of large robotic datasets.

Nevertheless, we can leverage the approximation of neural
networks as a linear functions over an embedding space
π(s, c; θ) = β⊤ϕθ(s, c), where both weights β and em-
beddings ϕθ(·) exist in a p-dimensional latent space (Lee
et al., 2019; Khan et al., 2019). This technique does not
violate any of the practical constraints listed above, and
allows us to adapt the machinery introduced in GP set-
tings. While several embedding strategies exist (Jacot et al.,
2018; Devlin et al., 2019; Holzmüller et al., 2023), we adopt
loss gradient embeddings (Ash et al., 2020). Assuming
the prior β ∼ N (0, I), the policy π(s, c; θ) can be mod-
eled by a Gaussian Process with kernel kθ((s, c), (s′, c′)) =
⟨ϕθ(s, c), ϕθ(s′, c′)⟩. When coupled with this approxima-
tion, the conditional entropy objective in Equation 2 can be
reformulated:

cn = argmin
c′∈C

E
c∼µc, (s0,... )∼τ (c)
τ1:n−1∼τ (c1:n−1)

τ ′∼τ (c′)

H−1∑
t=0

K(st, c,X), (4)

whereK(st,c,X) :=kθ(xt,X)[kθ(X,X)+σ2
ϵ I]

−1kθ(X,xt),
xt = (st, c), and X is the vector of states and tasks in
(c′, τ ′, c1:n−1, τ1:n−1). As the collected dataset grows, the
conditioning on previous trajectories τ1:n−1 can instead be
addressed by fine-tuning the network’s parameters θ (e.g.,
through conventional gradient descent), resulting in updates
in the embedding function ϕθ.

Dealing with forgetting Catastrophic forgetting is an in-
herent challenge to neural function approximation under
shifts to the training distribution, as optimization over new
data is non-local, and may undo learning progress (Mc-
Closkey & Cohen, 1989; French, 1999). This issue is critical
in our setting, as actively guiding the fine-tuning distribution
will necessarily accentuate the distribution shift from pre-
training. Common strategies for its mitigation often involve
rehearsal (Atkinson et al., 2021; Verwimp et al., 2021) or
regularization (Kirkpatrick et al., 2017). Unfortunately, the
former is not possible in this setting due to lack of access
to pre-training data, and the latter was not found to be em-
pirically effective (see Appendix H). Scale and a diverse
pre-training dataset can also mitigate forgetting (Ramasesh
et al., 2022), but neither can be controlled during fine-tuning.

We thus propose a practical algorithmic solution to alleviate
catastrophic forgetting when fine-tuning multi-task policies.
Intuitively, we would like the policy to retain the skills it
mastered during pre-training, while focusing on novel tasks
during fine-tuning. Inspired by previous works in behavioral
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No mismatch (12/12 tasks demonstrated) AMF-GP Uniform Mismatch (6/12 tasks demonstrated)

Figure 2: Experiments in GP settings for a 2D integrator (see Figure 3). AMF-GP selects tasks that minimize the policy’s
posterior entropy and improves the agent’s returns faster than uniform task sampling. In the middle, the improvement in final
return over the baseline is greater when the pre-training distribution does not perfectly match the evaluation distribution µC
and only demonstrates fewer tasks. We report return and entropy curves for non-mismatched and mismatched pre-training
(left and right, respectively). We plot means and 90% simple bootstrap confidence intervals over 10 random seeds ; dots
and crosses mark corresponding measurements.

priors (Bagatella et al., 2022) and offline RL (Kumar
et al., 2020), we propose retain a copy of the pre-trained
policy, which we refer to as prior (πp). For a given state
s ∈ S and task c ∈ C, we can then linearly combine
actions sampled from the fine-tuned policy π with those
sampled from the prior: a = α(c)â+ (1− α(c))ā, where
â ∼ π(·|s, c), ā ∼ πp(·|s, c). Crucially, α(c) ∈ [0, 1] is
a task-dependent weight trained through gradient descend
on an proxy behavior cloning loss, with an additional
conservative penalty that encourages closeness to 0. As
a result, actions will drift towards the fine-tuned policy’s
output as soon as it robustly outperforms pre-training
performance on a given task. Tasks which are not improved
during fine-tuning will rely instead on samples from the
prior, and will not be forgotten. We refer to this technique
as Adaptive Prior, and present a detailed description and a
comparison to continual learning techniques in Appendix H.

By combining the approximations required by AMF-GP
with the described solutions for estimating entropy and pre-
venting catastrophic forgetting, we obtain a method for ac-
tive multi-task fine-tuning of policies parameterized via
neural networks, which we refer to as AMF-NN.

5. Experiments
The experiment section is designed to evaluate active multi-
task fine-tuning and provide an empirical answer to several
questions. We thus reserve a section to each of them. Addi-
tional evaluations are reported in Appendix D, E and F.

5.1. When is AMF beneficial?

When none of the assumptions listed in Section 4.1 is vio-
lated, AMF is guaranteed to converge to the optimal policy.
We furthermore investigate whether AMF also results in

faster empirically faster convergence with respect to naive
approaches to data collection. To do so, we compare AMF
to uniform i.i.d. sampling from the set of tasks C. First, we
consider a classic 2D integrator as a benchmark environ-
ment (see Figure 3). The agent is a pointmass initialized in
the origin, and can directly control its 2D velocity, which is
integrated over the past trajectory to return the current state.
We can define a continuous task space, in which each task
consists of reaching a point on a circle centered on the ori-
gin, and the agent is rewarded with the negative Euclidean
distance to it. The evaluation distribution µc assigns equal
probability to 12 points in different directions. The initial
state distribution is deterministic, dynamics are both deter-
ministic and smooth, while the expert policy is smooth and
corrupted with i.i.d. Gaussian noise. We model the policy
as a Gaussian Process with a RBF kernel, and we condition
it on a pre-training dataset of 12 noisy demonstrations. We
then collect 40 additional demonstrations by running both
AMF-GP and uniform sampling.

Figure 3: 2D integrator.
Starting from the origin,
each task involves
reaching a given point
on a circle, as shown
by differently colored
trajectories.

As a sanity check, we first con-
sider a perfectly uniform pre-
training regime, in which each
evaluation task is demonstrated
exactly once. The pre-training
task distribution µD ∈ ∆(C)
thus perfectly matches the eval-
uation task distribution µC (Fig-
ure 2, left). As it actively
minimizes the policy’s entropy,
AMF-GP increases the policy’s
returns slightly faster when
compared to uniform sampling
of demonstrations. We then ex-
tend this evaluation to more re-
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Figure 4: AMF with neural policies in Frankakitchen (top) and Metaworld (bottom). Experiments are repeated for state
and RGB inputs (left and right). We evaluate both mismatched and non-mismatched settings. AMF-NN is overall desirable,
and highly beneficial for mismatched pre-training distributions. We report means and 90% simple bootstrap confidence
intervals over 10 seeds.

alistic pre-training distributions, characterised by a mis-
match with respect to the evaluation distribution: µC ̸= µD
(Figure 2, middle), and compare the final performance of
the two methods as the pre-training budget is allocated to a
decreasing number of tasks. As the pre-training distribution
diverges from µC (e.g., when only 6/12 tasks are demon-
strated in Figure 2, right), we observe that the performance
gap between uniform task sampling and AMF-GP grows
larger. This is to be expected, as in this case the informa-
tion gain from the next demonstration heavily depends on
the queried task, and taking the argmax of the criterion in
Equation 1 is significantly better than choosing a random
task. Intuitively, in this case, uniform sampling of tasks
fails to reliably provide demonstrations for tasks that were
observed less often during pre-training.

5.2. Can AMF scale to high-dimensional tasks?

In realistic settings, the assumptions enabling a formal anal-
ysis of AMF are soon violated. As the complexity of the
environments of interest increases, most modern behavior
cloning applications rely on neural networks for policy pa-
rameterization (Reed et al., 2022; Chi et al., 2023). Moti-
vated by this pattern, we now study a second version of our
method, AMF-NN, and evaluate its ability to scale to com-
plex, high-dimensional tasks. We consider two common

benchmarks for multi-task learning, both with a finite set of
tasks.

• In Metaworld (Yu et al., 2020) we create a scene with
a robotic arm, a cup and a faucet, defining 4 tasks:
moving the cup to two distinct positions, opening and
closing the faucet.

• In FrankaKitchen (Fu et al., 2020), we consider 5 tasks,
namely turning a knob on or off, opening a pivoting or
a sliding cabinet, or opening the microwave door.

In both environments, we evaluate AMF-NN when learning
from state measurements, as well as from raw pixels. In
the first case, the policy is simply parameterized through a
MLP, while in the second the MLP receives the embedding
of a pre-trained visual encoder (Nair et al., 2022). The
policy is pre-trained on ≈ 15 total demonstrations, which
we allocate either uniformly across all tasks, or only on half
of them, reproducing the non-mismatched and mismatched
regimes from the previous experiments. Afterwards, when
learning from state measurements, we apply AMF-NN
for 20 iterations, collecting one demonstrations at each
iteration. To compensate for the increased complexity, in
visual settings we instead provide 2 demonstrations per
each task selected and only evaluate 10 iterations.

Figure 4 reports average multi-task success rates at each iter-
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Figure 5: AMF performance with alternative
uncertainty estimation schemes.
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Figure 6: Evaluation on Robomimic. AMF-NN is widely applicable
(e.g., to diffusion policies).

ation compared to a random uniform task selection scheme.
For the baseline, we additionally report performance with an
adaptive prior, highlighting how this solution prevents per-
formance degradation due to catastrophic forgetting of pre-
training demonstrations. As reported in the previous section,
AMF is beneficial under distribution mismatch, in which
the pre-training dataset does not exactly cover the evalua-
tion distribution µC . As a sanity check, we also observe
that, when pre-training demonstrates all tasks equally and
a uniform task allocation would be very effective, AMF’s
performance matches this naive baseline.

These trends are consistent across both environments, and
both modalities. For a qualitative analysis of the strategy
induced by AMF, we refer to Appendix I and J.

5.3. How do uncertainty estimates for AMF compare?

As entropy estimation is at the core of AMF-NN, we addi-
tionally compare the adopted GP approximation with loss-
gradient embeddings to other approaches from the liter-
ature. In particular, we also consider an alternative GP
approximation using last-layer embeddings (Holzmüller
et al., 2023), as well as test-time Dropout (Loquercio et al.,
2020). The latter simply selects the task maximizing prior
entropy, that is argmaxc∈C E

∑H−1
t=0 H(π(st, c) | τ1:n−1),

with τ1:n−1 ∼ τ (c1:n−1) and (s0, . . . ) ∼ τ (c). Both of
these schemes are in practice desirable, as they do not re-
quire access to action labels. However, we observe that
these two schemes are less effective in driving task selec-
tion. Hence, as shown in Figure 5 (and in Appendix G),
multi-task performance is in general lower, suggesting that
the entropy estimation technique is important for AMF-NN.

5.4. Can AMF be applied to off-the-shelf models?

As AMF-NN has minimal requirements (essentially, access
to a differentiable pre-trained prior is sufficient), it should
be widely applicable. In this section we investigate further
scaling our evaluation to more complex tasks, multi-modal
demonstrators and modern policy classes. We consider the

Robomimic benchmark, which involves four long-horizon,
precise manipulation tasks (up to ≈700 steps). While exper-
iments in previous sections rely on demonstrations collected
by scripted policies or RL agents, expert trajectories are in
this case provided by humans; due to the increased scale,
we sample 20 demonstrations for the task selected at each
iteration. Finally, we fine-tune a larger generative model,
namely a diffusion policy (Chi et al., 2023), which remains
compatible with AMF-NN.

Despite the change in data source and architectures, the
results we observe in Figure 6 are consistent with those
reported in previous settings: active fine-tuning and an
adaptive prior are overall helpful, especially when the pre-
training distribution does not match the evaluation distribu-
tion µC .

6. Discussion
As generalist robotic policies gain prominence, a new
set of challenges and opportunities emerge. This work
responds to this trend by investigating an active multi-task
fine-tuning scheme, which adaptively selects the task to
be demonstrated for sample-efficient multi-task behavioral
cloning. This approach is developed from first principles,
extending a formally-motivated, information-based criterion
to trajectories over dynamic systems. The resulting method
is both formally supported by novel performance guarantees
and widely applicable. Moreover, a practical instantiation
enables sample-efficient multi-task fine-tuning across GP
and neural network policy classes.

Naturally, active multi-task fine-tuning has several limita-
tions. When coupled with neural networks, the algorithm
relies on uncertainty estimation techniques, which remain
an open problem. While the approximation we leverage
is informative in our experiments, AMF could benefit if
large pre-trained policies would allow other off-the-shelf
uncertainty quantification techniques (e.g., through model
ensembling during pre-training). Second, we found the per-
formance of AMF to depend naturally on the pre-training
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data distribution. While AMF induces efficient learning for
mismatched pre-training distributions, it naturally brings
more modest gains when the pre-trained policy is equally
capable for all tasks, and uniform task sampling is sufficient.

On top of addressing the current limitations, this work sug-
gests multiple interesting directions. An extensive empirical
evaluation of active fine-tuning with large-scale generalist
policies is clearly desirable, but remains infeasible at the
moment due to the scarce availability of open-source cali-
brated benchmarks. Another future research direction would
involve direct estimation of the RL objective, thus removing
the dependence on non-equivalent BC proxy objectives.
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A. Performance guarantees under regularity assumptions
This sections retrieves guarantees on the performance of the imitator policy as a function of the number of provided
demonstrations n. At first, this analysis focuses on policies over a single-dimensional action space. An extension to
multi-dimensional outputs is introduced later on. The general sketch of the proof can be informally described as follows:

• we first introduce the regularity assumptions required for the guarantees;

• we then show that, in Lipschitz, bounded MDPs, the effect of stochasticity on information gain at each round can be
controlled;

• we show how the variance over the imitator’s policy shrinks according to the maximum information gain at each round,
which in turn depends on the maximum information gain over a set of queries to the expert;

• starting from the previous result, we leverage a well-known theorem (Abbasi-Yadkori, 2013) to retrieve a probabilistic,
anytime guarantee on the error of the imitator;

• we quantify the relationship between the imtator’s error and its performance, thus retrieving our main theoretical result.

A.1. Assumptions

It is clear that bounding imitation performance would be hopeless without any regularity assumption, as slight errors in the
imitator’s policy could result in arbitrary differences in return. We thus introduce the following:

Assumption A.1. (Regular, noisy policy) We assume that the optimal policy π⋆ ∼ GP (µ, k) with known mean function
µ and kernel k. Furthermore the noise ϵ(s, c) is mutually independent and zero-mean Gaussian, with known variance
ρ2(s, c) > 0 for all (s, c) ∈ S × C.

In order to motivate further assumptions, let us recall the criterion from Equation 1:

cn = argmax
c′∈C

E
τ1:n−1∼τ (c1:n−1)
c∼µc, (s0,... )∼τ (c)

H−1∑
t=0

I(π(st, c); τ (c′) | c1:n−1, τ1:n−1). (5)

Through this section, we will use a slightly more precise formulation:

cn = argmax
c′∈C

E
τ1:n−1∼τ (c1:n−1),τ∼τ (c′)

c∼µc, (s0,... )∼τ (c)

H−1∑
t=0

I(π(st, c); π̃(τ, c′) | c1:n−1, τ1:n−1), (6)

in which we clarify that the mutual information is only computed with respect to the actions of the noisy expert, and overload
the notation with π̃(τ, c′) = (π̃(si, c

′))H−1
0 for τ = (si, ai)

H−1
0 . The criterion selects the task cn with the greatest expected

mutual information between the policy and the trajectory associated with the task. We note that, the objective produces a
fully deterministic sequence of tasks, as all stochasticity is resolved in the expectation. Nevertheless, the actual sequence
of states at which the demonstrator is queried remains stochastic. For this reason, we require the following two sets of
assumptions to ensure that information gained along empirical trajectories is not arbitrarily smaller than the expected one.

Assumption A.2. (Lipschitz, bounded MDP and policy) Given the contextual MDP M = (S,A, C, P,R, γ, µ0) and the
noisy expert π̃ we assume that, for every {(s, c, a), (s′, c′, a′)} ⊆ S × C ×A:

• the support of the initial state distribution µ0 is bounded by an ϵµ0
-ball

max
sl,sh∈supp(µ0)

∥sh − sl∥2 ≤ ϵµ0 ,

• the transition kernel P is LP -smooth

W(P (·|s, a), P (·|s′, a′)) ≤ LP · d((s, a), (s′, a′)),
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where d((s, a), (s′, a′)) = ∥s − s∥2 + ∥a − a′∥2, and W(·, ·) is the Wasserstein 1-distance with respect to d(·, ·);
furthermore, the support of P (·|s, a) is bounded by an ϵP -ball

max
sl,sh∈supp(P (·|s,a))

∥sh − sl∥2 ≤ ϵP ,

• the reward function R is LR-smooth

|R(s, c, a)−R(s′, c′, a′)| < LR · d((s, c, a), (s′, c′, a′)),

where d((s, c, a), (s′, c′, a′)) = ∥s− s∥2 + ∥c− c′∥2 + ∥a− a′∥2,

• the noisy expert π̃ is Lπ-smooth

W(π̃(·|s, c, a), P (·|s′, c′, a′)) ≤ Lπ · d((s, c, a), (s′, c′, a′)),

where d((s, c, a), (s′, c′, a′)) = ∥s−s∥2+∥c− c′∥2+∥a−a′∥2 and W(·, ·) is the 1-Wasserstein distance with respect
to d(·, ·); furthermore, the support of π̃(·|s, a) is bounded by an ϵπ-ball

max
al,ah∈supp(π̃(·|s,c))

∥ah − al∥2 ≤ ϵP ,

• finally, the Q-function for the expert π⋆ is LQ-smooth

|Qπ⋆

(s, c, a)−Qπ⋆

(s′, c′, a′)| ≤ LQ · d((s, c, a), (s′, c′, a′)).

We note that smoothness of the noisy expert is guaranteed by construction if the expert π⋆ is Lπ-smooth.

Assumption A.3. (Smooth MI) For every pair of sequences of trajectories {τ1:n−1, τ
′
1:n−1} ⊆ (S ×A)H(n−1), (s, c) ∈

S × C, c1:n−1 ∈ Cn−1, τ̃ ∈ (S ×A)H and cn ∈ C, we assume that the mutual information at step n is LI -smooth with
respect to the mean square deviation of collected trajectories:

|I(π(s, c); π̃(τ̃ , cn)|c1:n−1, τ1:n−1)− I(π(s, c); π̃(τ̃ , cn)|c1:n−1, τ
′
1:n−1)| ≤ LI · d(τ1:n−1, τ

′
1:n−1),

where d((s0,1, a0,1, . . . sH,n−1, aH,n−1), (s
′
0,1, a

′
0,1, . . . s

′
H,n−1, a

′
H,n−1) =

1
n−1

∑n−1
m=1(

∑H−1
t=0 ∥st,m−s′t,m∥22+∥at,m−

a′t,m∥22)
1
2 is the mean square deviation over the concatenation of trajectories.

A.2. Proof

We first prove that, under Assumptions A.2 and A.3, the effect of stochasticity on the mutual information at step n is
bounded.

Lemma A.4. Let Assumptions A.2 and A.3 hold. Fix a sequence of tasks c1:n−1 and consider two arbitrary sequences of
trajectories τ1:n−1 and τ ′1:n−1 sampled from τ (c1:n−1). Fix one state-task pair (s, c) ∈ S × C, one task cn ∈ C and one
trajectory τ̃ ∼ τ (cn). Let ϵn = 8H

3
2 (1 + max(LP , Lπ))

H max(ϵ0, ϵπ, ϵP ). The difference in mutual information when
conditioning on the two sequences of trajectories can be bounded:

|I(π(s, c); π̃(τ̃ , cn)|τi:n−1)− I(π(s, c); π̃(τ̃ , cn)|τ ′i:n−1)| ≤ ϵn.

Proof. Under Assumption A.3 it is sufficient to show that stochasticity in the MDP does not cause the demonstrator’s
trajectories to deviate excessively. This is a direct consequence of smoothness and boundedness, which we assume in
Assumption A.2, and can be shown by induction. Let us fix a task cn ∈ C and consider two trajectories τ, τ ′ ∼ τ (cn). For
the two initial states (s0, s′0), boundedness of the initial state distribution µ0 implies that ∥s0 − s′0∥2 ≤ ϵµ0 . Now, assuming
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that the distance between two states (st, s′t) is bounded as ∥st − s′t∥2 ≤ ϵt, we have that

ϵt+1 := ∥st+1 − s′t+1∥2 (7)
(i)

≤ W(P (·|st, at), P (·|s′t, a′t)) + 2ϵP (8)
≤ LP · (∥st − s′t∥2 + ∥at − a′t∥2) + 2ϵP (9)
= LP · (ϵt + ∥at − a′t∥2) + 2ϵP (10)
(ii)

≤ LP · (ϵt +W(π̃(·|st, ct), π̃(·|s′t, c′t)) + 2ϵπ) + 2ϵP (11)
≤ Lπ · (ϵt + Lπ · ∥st − s′t∥2 + 2ϵπ) + 2ϵP (12)
= LP · (ϵt + Lπ · ϵt + 2ϵπ) + 2ϵP (13)
= LP · ((Lπ + 1) · ϵt + 2ϵπ) + 2ϵP (14)
= LP (1 + Lπ)ϵt + 2(LP ϵπ + ϵP ) (15)
:= Aϵt +B, (16)

where Lemma N.2 was used in (i) and (ii); Assumption A.2 and the fact that ct = c′t were used through the rest of the
derivation. The recurrence relation can be easily unrolled as

ϵt ≤ Atϵ0 +

t−1∑
i=0

AiB (17)

≤ Atϵ0 +max(At−1, 1)Bt (18)

≤ max(A, 1)t(ϵ0 +Bt) (19)

= max(LP (1 + Lπ), 1)
t(ϵ0 + 2t(LP ϵπ + ϵP )) (20)

≤ (1 + LP )
t(1 + Lπ)

t(ϵ0 + 2t((1 + LP )ϵπ + ϵP )) (21)

≤ (1 + LP )
t(1 + Lπ)

t(2t(1 + LP )max(ϵ0, ϵπ, ϵP )) (22)

= 2t(1 + LP )
t+1(1 + Lπ)

t max(ϵ0, ϵπ, ϵP ), (23)

thus bounding the L2 distances between states at each step of the trajectory ϵt = ∥st − s′t∥2. We note that the distance
between actions can also be easily bound by Lemma N.2: ∥at − a′t∥2 ≤ Lπϵt + 2ϵπ . This can in turn be related to distances
over trajectories. Let us fix c1:n−1 ∈ C and consider τ1:n−1, τ

′
1:n−1 ∼ τ (c1:n−1). We have that

d(τ1:n−1, τ
′
1:n−1) =

1

n− 1

n−1∑
m=1

(

H−1∑
t=0

∥st,m − s′t,m∥22 + ∥at,m − a′t,m∥22)
1
2 (24)

≤ (

H−1∑
t=0

ϵ2t + (Lπϵt + 2ϵπ)
2)

1
2 (25)

≤ (

H−1∑
t=0

ϵ2t + (Lπϵt + ϵt)
2)

1
2 (26)

= (

H−1∑
t=0

ϵ2t + (1 + Lπ)
2ϵ2t )

1
2 (27)

≤ (

H−1∑
t=0

2(1 + Lπ)
2ϵ2t )

1
2 (28)

= (2(1 + Lπ)
2
H−1∑
t=0

ϵ2t )
1
2 (29)

=
√
2(1 + Lπ)(

H−1∑
t=0

ϵ2t )
1
2 (30)
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≤
√
2(1 + Lπ)(Hϵ

2
H−1)

1
2 (31)

=
√
2H(1 + Lπ)ϵH−1 (32)

≤
√
2H(1 + Lπ) · 2(H − 1)(1 + LP )

H(1 + Lπ)
H−1 max(ϵ0, ϵπ, ϵP ) (33)

≤ 4H
3
2 (1 + LP )

H(1 + Lπ)
H max(ϵ0, ϵπ, ϵP ) (34)

≤ 8H
3
2 (1 + max(LP , Lπ))

H max(ϵ0, ϵπ, ϵP ). (35)

Having obtained an upper bound on the distance between sequences of trajectories, the result follows naturally from
smoothness of mutual information according to Assumption A.3.

We can now focus on the main result. We start by introducing an important measure, quantifying the maximum information
gain at each round:

Γn := max
c′∈C

ψn(c
′) = max

c′∈C
E

τ1:n−1∼τ (c1:n−1)
τ ′∼τ (c′)

c∼µc, (s0,... )∼τ (c)

H−1∑
t=0

I(π(st, c); π̃(τ ′, c′) | c1:n−1, τ1:n−1) (36)

We note that the criterion in Equation 6 takes the argmax of the same quantity Γn maximizes over. As common in the
literature (Bogunovic et al., 2016; Kothawade et al., 2020; Hübotter et al., 2024), we make a standard assumption on
diminishing informativeness.

Assumption A.5. For each n, i ∈ N with i ≤ n, the maximum information gain at round n is not greater than the maximum
information gain at round i:

Γn ≤ Γi.

This can be leveraged to show that the expected mutual information is sublinear in the number of rounds n. From this
point, we overload the notation and allow policies (e.g., π) to map vector to random vectors, that is π((x0, . . . , xn−1)) =
(π(x0), . . . ,π(xn−1)) for (x0, . . . , xn−1) ∈ (S × C)n.

Lemma A.6. Under Assumptions A.1 and A.5, if (c0, . . . , cn) follows the criterion in Equation 6, then Γn ≤ H
n γ(Hn),

where γ(Hn) = maxX⊆S×C
|X|≤Hn

I(π(S × C); π̃(X)).

Proof.

Γn =
1

n

n−1∑
i=0

Γn (37)

(i)

≤ 1

n

n−1∑
i=0

Γi (38)

=
1

n

n−1∑
i=0

max
c′∈C

E
τ1:n−1∼τ (c1:n−1)

τ ′∼τ (c′)
c∼µc, (s0,... )∼τ (c)

H−1∑
t=0

I(π(s0, c); π̃(τ ′, c′) | c1:n−1, τ1:n−1) (39)

(ii)
=

1

n

n−1∑
i=0

E
τ1:n−1∼τ (c1:n−1)

τ ′∼τ (cn)
c∼µc, (s0,... )∼τ (c)

H−1∑
t=0

I(π(s0, c); π̃(τ ′, cn) | c1:n−1, τ1:n−1) (40)

=
1

n
E

c∼µc

(s0,... )∼τ (c)

H−1∑
t=0

E
τn∼τ (cn)

τ1:n−1∼τ (c1:n−1)

n−1∑
i=0

I(π(s0, c); π̃(τn, cn) | c1:n−1, τ1:n−1) (41)
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(iii)
=

1

n
E

c∼µc

(s0,... )∼τ (c)

H−1∑
t=0

E
τn∼τ (cn)

τ1:n−1∼τ (c1:n−1)

I(π(s0, c); π̃(τ1:n, c1:n)) (42)

≤ 1

n
E

c∼µc

(s0,... )∼τ (c)

H−1∑
t=0

max
X⊆S×C
|X|=Hn

I(π(s0, c); π̃(X)) (43)

≤ 1

n
E

c∼µc

(s0,... )∼τ (c)

H−1∑
t=0

max
X⊆S×C
|X|=Hn

I(π(S × C); π̃(X)) (44)

=
H

n
max

X⊆S×C
|X|=Hn

I(π(S × C); π̃(X)) (45)

=
H

n
γ(Hn) (46)

where (i) follows from Assumption A.5, (ii) follows from Equation 6, (iii) is due to the chain rule of mutual information. We
note that γn = maxX⊆S×C, |X|≤n I(π(S × C); π̃(X)) is sublinear for a large class of GPs. In this cases, a looser upper
bound would be H2 γn

n .

This bound on expected round-wise mutual information can then be leveraged to describe how the total variance shrinks
over rounds.

Lemma A.7. (Uniform convergence of marginal variance, following Hübotter et al. (2024)) Under Assumption A.1, A.2
and A.3, for any n ≥ 0 and (s, c) ∈ S × C,

σ2
n(s, c) ≤ (1 + ϵn)

2σ̄2Γn

τ2min
,

where σ̄2 = max(s,c)∈S×C σ
2
0(s, c) + ρ2(s, c) and τmin = mins,c∈S×C Eτ∼τ (c) 1s∈τ .

Proof.

σ2
n(s, c) = Var[π(s, c) | c1:n, τ1:n] (47)

=
(
Var[π(s, c) | c1:n, τ1:n] + ρ2(s, c)

)
− ρ2(s, c) (48)

= Var[π̃(s, c) | c1:n, τ1:n]−Var[π̃(s, c) | π(s, c), c1:n, τ1:n] (49)
(i)

≤ σ̄2 log

(
Var[π̃(s, c) | c1:n, τ1:n]

Var[π̃(s, c) | π(s, c), c1:n, τ1:n]

)
(50)

= 2σ̄2I(π(s, c); π̃(s, c) | c1:n, τ1:n) (51)

= 2σ̄2 1

Eτ∼τ (c) 1s∈τ
E

τ∼τ (c)
1s∈τI(π(s, c); π̃(s, c) | c1:n, τ1:n) (52)

(ii)

≤ 2σ̄2

τmin
E

τ∼τ (c)
1s∈τI(π(s, c); π̃(s, c) | c1:n, τ1:n) (53)

≤ 2σ̄2

τmin
E

τ∼τ (c)
1s∈τI(π(s, c); π̃(τ, c) | c1:n, τ1:n) (54)

≤ 2σ̄2

τmin
E

τ∼τ (c)
I(π(s, c); π̃(τ, c) | c1:n, τ1:n) (55)

≤ 2σ̄2

τmin

1

E c∼µc

(s0,... )∼τ (c)
1s∈(s0,... )

E
c∼µc

(s0,... )∼τ (c)

1s∈(s0,... ) E
τ∼τ (c)

I(π(s, c); π̃(τ, c) | c1:n, τ1:n) (56)

≤ 2σ̄2

τ2min
E

c∼µc

(s0,... )∼τ (c)

1s∈(s0,... ) E
τ∼τ (c)

I(π(s, c); π̃(τ, c) | c1:n, τ1:n) (57)
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=
2σ̄2

τ2min
E

c∼µc

τ∼τ (c)
(s0,... )∼τ (c)

1s∈(s0,... )I(π(s, c); π̃(τ, c) | c1:n, τ1:n) (58)

≤ 2σ̄2

τ2min
E

c∼µc

τ∼τ (c)
(s0,... )∼τ (c)

1s∈(s0,... )

H−1∑
t=0

I(π(st, c); π̃(τ, c) | c1:n, τ1:n) (59)

≤ 2σ̄2

τ2min
E

c∼µc

τ∼τ (c)
(s0,... )∼τ (c)

H−1∑
t=0

I(π(st, c); π̃(τ, c) | c1:n, τ1:n) (60)

(iii)

≤ (1 + ϵn)
2σ̄2

τ2min
E

c∼µc

τ∼τ (c)
(s0,... )∼τ (c)

H−1∑
t=0

E
τ1:n−1∼τ (c1:n−1)

I(π(st, c); π̃(τ, c) | c1:n, τ1:n) (61)

= (1 + ϵn)
2σ̄2

τ2min
E

τ1:n−1∼τ (c1:n−1)
τ∼τ (c)

c∼µc, (s0,... )∼τ (c)

H−1∑
t=0

I(π(st, c); π̃(τ, c) | c1:n, τ1:n) (62)

≤ (1 + ϵn)
2σ̄2

τ2min
max
c′∈C

E
τ1:n−1∼τ (c1:n−1)

τ ′∼τ (c′)
c∼µc, (s0,... )∼τ (c)

H−1∑
t=0

I(π(st, c); π̃(τ ′, c′) | c1:n, τ1:n) (63)

= (1 + ϵn)
2σ̄2Γn

τ2min
. (64)

where (i) follows from Lemma N.1 and monotonicity of variance, (ii) holds as the state s is within the support of τ (·|c), and
(iii) follows from Lemma A.4 as the difference between the expected mutual information and the mutual information for a
realized trajectory is less than the difference in mutual information for two arbitrary realized trajectories.

This result can then be translated to the agnostic setting, for a regular policy π⋆, which we still model through the stochastic
process π. Without loss of generality we will assume that the prior variance is bounded by Var[π(s, c)] ≤ 1.
Lemma A.8. (Well-calibrated confidence intervals, following Abbasi-Yadkori (2013)) Pick δ ∈ (0, 1). Assume that π⋆

lies in the RKHS Hk(C) of the kernel k with norm ||π⋆||k < ∞, the noise ϵn is conditionally ρ-sub-Gaussian, and γn is
sublinear in n. Let βn(δ) = ∥π⋆∥k + ρ

√
2(γ(Hn) + 1 + log(1/δ)). Then, for any n > 1 and (s, c) ∈ S × C, GP (µn, k)

is an all-time well-calibrated model of π⋆. Thus, jointly with probability at least 1− δ,

|π⋆(s, c)− µn(s, c)| ≤ βn(δ)σn.

We note that βn(δ) depends on γ(Hn) as Hn samples from the demonstrator’s policy are collected up to round n. Combining
Lemmas A.7 and A.8 we easily get for all (s, c) ∈ S × C and n ≥ 0 with probability 1− δ:

|π⋆(s, c)− µn(s, c)|
Lemma A.8

≤ βn(δ)σn
Lemma A.7

≤ βn(δ)
(
(1 + ϵn)

2σ̄2Γn

τ2min

) 1
2

(65)

While the analysis has so far dealt with a scalar π⋆, a simple union bound can guarantee that

∥π⋆(s, c)− µn(s, c)∥1 ≤ β′
n(δ)∥σ̄∥1

(
(1 + ϵn)

2Γn

τ2min

) 1
2

(66)

with probability at least 1 − δ for an action space of dimension |A|, where now β′
n(δ) = ∥π⋆∥k +

ρ
√
2(γ(Hn) + 1 + log(|A|/δ)). From now on, we will refer to µn as πn. We are thus able to globally bound the L1

distance of the imitator policy with respect to the expert policy with high probability under active fine-tuning.

18



Active Multi-task Policy Fine-tuning

It is clear that, even if this distance is small, the performance of an imitator which does not exactly match the expert
(πn(s, c) ̸= π⋆(s, c) for some (s, c) ∈ S × C) can be arbitrarily low for arbitrary MDPs. It is however possible to show that,
as long as the Q-function of the expert is smooth, the performance gap to the expert can be controlled. We note that, in
case γLP (1 + Lπ⋆) < 1, then the Q-function Qπ⋆

is guaranteed to be LQ-Lipschitz continuous with LQ ≤ LR

1−γLP (1+Lπ⋆ )

(Rachelson & Lagoudakis, 2010). If smoothness holds, it is easy to connect the divergences in action space to performance
gaps (Maran et al., 2023).

Lemma A.9. Let π and π′ denote two deterministic policies. If the state-action value function Qπ′
is LQπ′ -Lipschitz

continuous, then:

|Jπ − Jπ′ | ≤
LQπ′

1− γ
Es∼dπ [∥π′(s, c)− π(s, c)∥1].

Proof. Given a function f : A → R, we denote the Lipschitz semi-norm ∥f(·)∥L = supa,a′∈A
|(f(a)−f(a′)|

∥a−a′∥2
. We have:

Jπ − Jπ′ (i)
=

1

1− γ
Es∼dπ

[
Ea∼π(·|s,c)[A

π′
(s, c, a)]

]
(67)

=
1

1− γ
Es∼dπ

[
Ea∼π(·|s)[Q

π′
(s, c, a)]− V π′

(s, c)

]
(68)

=
1

1− γ
Es∼dπ

[∫
a∈A

π(a | s)Qπ′
(s, c, a)− V π′

(s, c)

]
(69)

=
1

1− γ
Es∼dπ

[∫
a∈A

Qπ′
(s, c, a)[π(a | s, c)− π′(a | s, c)]

]
(70)

≤ 1

1− γ
Es∼dπ

[∫
a∈A

sup
s,c∈S×C

Qπ(s, c, a)[π(a | s, c)− π′(a | s, c)]
]

(71)

(ii)

≤ 1

1− γ
Es∼dπ

[
∥ sup
s,c∈S×C

Qπ′
(s, c, ·)∥LW(π(· | s, c), π′(· | s, c))

]
(72)

(iii)

≤
LQπ′

1− γ
Es∼dπ [W(π(· | s, c), π′(· | s, c))] (73)

(iv)
=

LQπ′

1− γ
Es,c∼dπ [∥π(· | s, c)− π′(· | s, c)∥1] (74)

where (i) follows from the performance difference lemma (Kakade & Langford, 2002), (ii) follows from the definition
of L1 Wasserstein distance, (iii) holds as LQπ ≥ ∥ sups,c∈S×C Q

π(s, c, ·)∥L and (iv) follows from both policies being
deterministic. The proof is completed by taking the absolute value on both sides.

So far, we have shown rates of convergence for the imitator, and connected its error to performance. Our main formal result
can be shown by coordinating the lemmas so far presented.

Theorem A.10. (Performance guarantees for active multi-task BC) Let Assumptions A.2, A.3 and A.5 hold. Pick δ ∈ (0, 1).
Assume that π⋆ lies in the RKHS Hk(C) of the kernel k with norm ||π⋆||k <∞, the noise ϵn is conditionally ρ-sub-Gaussian,
and γn is sublinear in n. If each demonstrated task is selected according to the criterion in Equation 1, then with probability
at least 1− δ the performance difference between the expert policy π⋆ and the imitator policy πn after n demonstrations
can be upper bounded:

Jπ⋆ − Jπn ≤
√
2LQπ⋆∥σ̄∥1
τmin(1− γ)

(
(1 + ϵn)β

′2
n (δ)Γn

) 1
2

= O(γ(Hn))/
√
n,

where ϵn = 8H
3
2 (1 + max(Lπ, LP ))

H max(ϵ0, ϵπ, ϵP ). Furthermore, if γn = O(log n) (e.g., for linear kernels), then
Jπ⋆ − Jπ n→∞→ 0.
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Proof.

Jπ⋆ − Jπ (i)
= |Jπ − Jπ⋆ | (75)
Lemma A.9

≤ LQπ⋆

1− γ
Es∼dπ⋆ [∥πn(s, c)− π⋆(s, c)∥1] (76)

Lemma A.7,A.8

≤ LQπ⋆

1− γ
· β′

n(δ)∥σ̄∥1
(
(1 + ϵn)

2Γn

τ2min

) 1
2

(77)

=

√
2LQπ⋆ ∥σ̄∥1
τmin(1− γ)

(
(1 + ϵn)β

′2
n (δ)Γn

) 1
2

(78)

where (i) is due to the fact that Jπ⋆ ≥ Jπ for any policy π, and the expectation fades due to uniform convergence. The only
terms with a dependency on n are β′

n(δ) = O(γ
1
2

(Hn)) and Γn = O(γ(Hn))/n, which can be combined in the asymptotic

notation in the Theorem. If γn = O(log n), then Jπ⋆ − Jπ = O(log n)/
√
n

n→∞→ 0. For a summary of magnitudes of γn
for common kernels, we refer to Table 3 in Hübotter et al. (2024).

B. Guarantees in non-Lipschitz MDPs
The main result reported in Theorem A.10 provides anytime guarantees on the agent’s performance, assuming smoothness
in the MDP. However, it is possible to replace this assumption with a weaker one, at the cost of only retaining guarantees in
expectation. This weaker version of the theorem can be retrieved by simply assuming smoothness on the noise, rather than
on the MDP, and leveraging results recently presented by Maran et al. (2023).
Assumption B.1. The noise distribution ϵ is Lℓ-TV-Lipschitz continuous.

This assumption is satisfied by a large class of Gaussian and sub-Gaussian distributions (Maran et al., 2023). We can build
upon Assumption A.5 and Lemma A.6, and start by providing a weaker version of Lemma A.7.
Lemma B.2. (Uniform convergence of marginal variance in expectation) Under Assumption A.1, for any n ≥ 0 and
(s, c) ∈ S × C,

E
τ1:n−1∼τ (c1:n−1)

σ2
n(s, c) ≤

2σ̄2Γn

τ2min
,

where σ̃2 = max(s,c)∈S×C σ
2
0(s, c) + ρ2(s, c) and τmin = mins,c∈S×C Eτ∼τ (c) 1s∈τ .

Proof. We resume from Inequality 60 in the proof of Lemma A.7:

σ2
n(s, c) ≤

2σ̄2

τ2min
E

c∼µc

τ∼τ (c)
(s0,... )∼τ (c)

H−1∑
t=0

I(π(st, c); π̃(τ, c) | c1:n, τ1:n) (79)

Therefore,

E
τ1:n−1∼τ (c1:n−1)

σ2
n(s, c) ≤ E

τ1:n−1∼τ (c1:n−1)
τ∼τ (c)

c∼µc, (s0,... )∼τ (c)

2σ̄2

τ2min

H−1∑
t=0

I(π(st, c); π̃(τ, c) | c1:n, τ1:n) (80)

≤ max
c′∈C

E
τ1:n−1∼τ (c1:n−1)

τ ′∼τ (c′)
c∼µc, (s0,... )∼τ (c)

2σ̄2

τ2min

H−1∑
t=0

I(π(st, c); π̃(τ ′, c′) | c1:n, τ1:n) (81)

=
2σ̄2Γn

τ2min
. (82)
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Having bounded variance at each round, this time in expectation, we can invoke Lemma A.8 to bound the expected distance
to the optimal policy with high probability:

E
τ1:n−1∼τ (c1:n−1)

∥π⋆(s, c)− µn(s, c)∥1 ≤ β′
n(δ)∥σ̄∥1

(2Γn

τ2min

) 1
2

(83)

Instead of leveraging bounds for the imitator’s performance in Lipschitz-smooth settings, we can instead use the fact that
the expert’s actions are corrupted by smooth noise. In this setting, it is instead possible to control the suboptimality of the
imitator with respect to the noisy expert. We report the following Theorem from Maran et al. (2023), and refer to the original
work for the proof.

Lemma B.3. Let π⋆, π̃ and π denote the expert, noisy expert and imitator policy, respectively. If Assumption B.1 holds,
then:

J π̃ − Jπ ≤ 2LℓQmax

1− γ
Es∼µπ̃

[W(π⋆(· | s), π(· | s))],

where Qmax = max(s,c,a)∈S×C×A |Q(s, a)|π and W represents the Wasserstein 1-distance.

As the expert π⋆ and the imitator πn are both deterministic, this implies that

J π̃ − Jπ
n ≤ 2LℓQmax

1− γ
Es∼µπ̃

∥(π⋆(· | s), π(· | s))∥1. (84)

By invoking this Lemma, we can thus conclude that, with probability at least 1− δ

E
τ1:n−1∼τ (c1:n−1)

J π̃ − Jπn ≤ 2
3
2LℓQmax∥σ̄∥1
τmin(1− γ)

β′
n(δ)Γ

1
2
n = O(γ(Hn)n

− 1
2 ). (85)

Therefore, if γn = O(log n), then Eτ1:n−1∼τ (c1:n−1) J
π̃ − Jπ = O( logn√

n
)

n→∞→ 0. While these performance guarantees
only hold in expectation, they arise from minimal assumptions, mostly regarding the policy class and the perturbation noise,
and can thus be applied to arbitrary MDPs.

C. Practical Objective
Following up on the approximations reported in Section 4.2, we present the empirical estimate of the objective that is used
through experiments. In particular, we show how the expectations in Equation 2 may be approximated with finite samples.
The original criterion is expressed as

cn = argmin
c′∈C

ϕn(c
′) = argmin

c′∈C
E

τ1:n−1∼τ (c1:n−1), τ
′∼τ (c′)

c∼µc, (s0,... )∼τ (c)

H−1∑
t=0

H(π(st, c) | c′, τ ′, c1:n−1, τ1:n−1). (86)

An empirical estimate can be derived as follows:
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ϕn(c
′) = E

τ1:n−1∼τ (c1:n−1), τ
′∼τ (c′)

c∼µc, (s0,... )∼τ (c)

H−1∑
t=0

H(π(st, c) | c′, τ ′, c1:n−1, τ1:n−1) (87)

(i)≈ E
τ ′∼τ (c′)

c∼µc, (s0,... )∼τ (c)

H−1∑
t=0

H(π(st, c) | c′, τ ′, c1:n−1, τ̂1:n−1) (88)

(ii)≈ 1

|Ĉ|
∑
c∈Ĉ

E
τ ′∼τ (c′)

(s0,... )∼τ (c)

H−1∑
t=0

H(π(st, c) | c′, τ ′, c1:n−1, τ1:n−1) (89)

=
1

|Ĉ|
∑
c∈Ĉ

E
τ ′∼τ̂

(s0,... )∼τ̂

τ (τ ′|c′)
τ̂ (τ ′)

τ ((s0, . . . )|c)
τ̂ ((s0, . . . ))

H−1∑
t=0

H(π(st, c) | c′, τ ′, c1:n−1, τ1:n−1) (90)

=
1

|Ĉ|
∑
c∈Ĉ

E
τ ′∼τ̂

(s0,... )∼τ̂

w(τ ′, c′)w((s0, . . . ), c)

H−1∑
t=0

H(π(st, c) | c′, τ ′, c1:n−1, τ1:n−1) (91)

(iii)≈ 1

|Ĉ|(n− 1)2

∑
c∈Ĉ

∑
τ ′∈τ̂1:n−1

(s0,... )∈τ̂1:n−1

w(τ ′, c′)w((s0, . . . ), c)

H−1∑
t=0

H(π(st, c) | c′, τ ′, c1:n−1, τ1:n−1), (92)

where (i) uses a single sample to estimate the expectation over past trajectories, (ii) uses a sample-based approximation
to the target task distribution µc, and (iii) uses the importance sampling trick introduced in Section 4.2, with w(τ, c) =
(n−1)

∏H−1
t=0 π̃(at|st,c)∑n−1

i=0

∏H−1
t=0 π̃(at|st,ci)

. This final approximate objective does not involve expectations, and can be efficiently computed. The

complexity of evaluating the criterion for a single task c′ scales linearly with the number of samples in Ĉ and quadratically
with the number of rounds n. However, the dependency on the number of rounds can be removed by evaluating the second
sum over a fixed number of trajectories sampled among τ1:n−1, ensuring that the complexity does not depend on the round.

D. Additional results for AMF-GP
Figure 2 only reports full return curves for two representative pre-training settings, namely those involving 6/12 and 12/12
demonstrated tasks. We here report full results for each task allocation, spanning from 1/12 to 12/12 demonstrated tasks.
For each setting, we report both average multi-task return and average policy entropy curves.

E. Additional results for AMF-NN
Results in Figure 4 are computed over two representative pre-training distributions: one allocating pre-training demon-
strations uniformly over all tasks, the other one only demonstrating the first two tasks. We report these results again, and
compare them with those for several other pre-training distributions in which tasks have been shuffled. Results are reported
for FrankaKitchen in Figure 8 and for Metaworld in Figure 9, and are consistent with patterns observed in Figure 4.
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Figure 7: Additional results in GP settings for a 2D integrator (see Figure 3). AMF-GP results in improved sample efficiency
across all pre-training regimes, and is particularly effective for skewed pre-training distributions (e.g., when pre-training
demonstrations have been allocated to 1/12 or 6/12 tasks).
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Figure 8: Additional results for AMF-NN in FrankaKitchen with state inputs. We evaluate several allocations of the
pre-training demonstrations, as labeled below each plot (e.g., the label [8, 8, 0, 0, 0] indicates that 8 demonstrations were
provided for each of the first two tasks each, and none for the remaining tasks).
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Figure 9: Additional results for AMF-NN in Metaworld with state inputs. We evaluate several allocations of the pre-training
demonstrations, as labeled below each plot (e.g., the label [8, 8, 0, 0] indicates that 8 demonstrations were provided for each
of the first two tasks each, and none for the remaining tasks).
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Figure 10: Evaluation on life-like WidowX tasks. AMF-NN
can be applied to large-scale settings.

This section investigates scaling our evaluation to recently
published open-source generalist policies. For this pur-
pose, we choose Octo (Octo Model Team et al., 2024).
This model relies on a transformer backbone for integrat-
ing multimodal information (in the form of state sensors,
camera images and text or RGB task descriptions), and
uses a diffusion-based policy head for action prediction
(Chi et al., 2023). For computational reasons, we will
focus on fine-tuning the action head alone. Octo is pre-
trained on a large-scale real-world robotic dataset (Col-
laboration, 2023), and is thus designed for inference on
physical hardware. Nonetheless, a recently proposed eval-
uation suite enables simulated evaluations that statistically
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correlate with real-world results (Li et al., 2024). We thus collect rollouts from a pre-trained Octo agent on the WidowX tasks,
and filter them to only include successes, akin to self-distillation schemes (Bousmalis et al., 2024). On availability of such
self-supervised demonstrations, we then apply AMF-NN for 5 iterations, providing 2 demonstrations in each round. The
results are reported in Figure 10. As all evaluation tasks are largely demonstrated in the pre-training dataset (Collaboration,
2023), and the evaluation is significantly noisier with respect to other benchmarks, we find that the performance of AMF-NN
falls within confidence intervals of uniform task collection, confirming the trend we observed for uniform pre-training
distributions in Figure 4. Nonetheless, we observe that it constitutes an effective method for data selection, and can be
applied as a drop-in replacement for fine-tuning of off-the-shelf models.3

G. Uncertainty ablation
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Figure 11: Additional results for AMF-NN in Meta-
world with state inputs and different uncertainty quan-
tification techniques.

Section 5.3 evaluates alternative uncertainty quantification
schemes in FrankaKitchen for two representative pre-training
distributions. This Section extends these results to include re-
sults for Metaworld (see Figure 11). Results are consistent with
those so far reported, suggesting that loss gradient embeddings
are an important component for the empirical performance of
AMF-NN.

H. Mitigating forgetting
The ability of neural networks to adapt to shifts in training dis-
tribution while retaining information is an important object of
interest in lifelong and continual learning (Wang et al., 2024). In
general, learned models display a trade-off between their ability
to integrate novel information, and their memory of previously
observed training samples. Arguably, common neural network
architectures can easily fit new data (save for loss of plasticity (Lyle et al., 2023)), but are known to forget previous
information, often catastrophically. This problem is of utmost relevance in our setting, in which the pre-trained network is
not just leveraged as a useful initialization, but may already capable of solving some tasks. Hence, the fine-tuning procedure
should be careful not to disrupt this ability.

Several methods aimed at mitigating forgetting can be traced back to rehearsal (Riemer et al., 2019; Chaudhry et al., 2019)
and regularization (Kirkpatrick et al., 2017) strategies. While rehearsal approaches are often effective, they also require
access to pre-training data, which is unrealistic in our setting. Hence we consider two common regularization technique,

3This evaluation also reports an interesting trend, that is a vast reduction in catastrophic forgetting, to the point that an adaptive prior is
almost not necessary. This anecdotal evidence can be seen as an instance of a general trend of mitigated catastrophic forgetting in large
models (Ramasesh et al., 2022).
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Figure 12: Performance of AMF-NN with several techniques to mitigate forgetting. Darker shades represent stronger
regularization coefficients. L2, EWC regularization are not effective in this setting.
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Figure 13: Success rates (blue) and mixing coefficients α(c) (grey) over training in Kitchen with skewed pre-training. α
grows quickly for novel tasks, and more conservatively for those that were demonstrated during pre-training.

namely L2-regularization to the pre-trained weights, and EWC (Kirkpatrick et al., 2017). The latter can be seen as a more
nuanced version of the former, which adaptively scales the regularization strength according to the curvature of the loss
landscape. Unfortunately, we find these methods to be insufficient in our setting, as reported in Figure 12. When coupled
with large regularization weights, the asymptotical performance of L2-regularization and EWC is significantly limited.
When regularization weights are too low, they recover the performance of a naive baseline. Intermediate values were found
to interpolate between the two behaviors, without addressing the forgetting issue. As a result, the policy quickly loses
information on its pre-training tasks, thus rendering adaptive data selection strategies ineffective.

This motivates our adoption of a novel technique to alleviate forgetting, which we refer to as Adaptive Prior. Inspired by
previous works in behavioral priors (Bagatella et al., 2022) and offline RL (Kumar et al., 2020), we linearly combine the
policy’s output with that of a prior (in practice, a frozen copy πp of the pre-trained policy). When an action needs to be
sampled, we instead output a linear combination of actions sampled from the fine-tuned policy π and the prior πp: for a
given state-task pair (s, c) ∈ S × C, the action selected is a = α(c)â+(1−α(c))ā, where â ∼ π(·|s, c) and ā ∼ πp(·|s, c).
The weight α(c) ∈ [0, 1] is task-dependent and learnable: ideally, it would be high when the fine-tuned policy is more
suitable for the task, and low when the prior is instead preferable. In practice, it may be a per-task learnable parameter
for finite task spaces, or the output of a parametrized function (e.g., a neural network) in continuous task spaces. While
this formulation departs from existing ones (Bagatella et al., 2022), in which the action is instead sampled from a mixture
of policy and prior, it enables a simple update rule for α, which remains applicable when the policy class does not allow
straightforward likelihood evaluation (e.g., Diffusion policies). Under the assumption that both π and πp are isotropic
Gaussians, the BC loss computed with respect to the linear combinations of actions simplifies to a simple mean squared
error:

Lα
BC =

1

N

N∑
i=1

H−1∑
t=0

∥ait − (α(ci)â+ (1− α(ci))ā)∥2, (93)

where â ∼ π(·|sit, ci), ā ∼ πp(·|sit, ci) and τ̂1:N = (si0, a
i
0, . . . , s

i
H−1, a

i
H−1)

N
i=1 is the dataset of N task-conditioned,

H-length trajectories with task labels c1:N . As this loss function is differentiable with respect to α(c), the weight can be
easily trained through gradient descent. Intuitively, this gradient pushes weights up for tasks in which the fine-tuned policy
is more accurate than the pre-trained one. As π is fine-tuned on the dataset used for estimating Lα

BC, its performance can be
easily overestimated. Thus, we propose to introduce a conservative penalty term, which encourages the weight to be updated
only if the fine-tuned policy π significantly outperforms the prior πp: Lα = Lα

BC + β 1
N

∑N
i=1 α(ci). We remark that, in our

empirical evaluation, the Gaussian assumption is often violated; nevertheless, we found this update rule to be empirically
effective across models and tasks. To illustrate, we visualize trajectories of mixing weights α(c) during fine-tuning in Figure
13. We consider a mismatched setting, in which the pre-training distribution largely demonstrates the first two tasks in
Kitchen, and does not cover the remaining tree. During early training, AMF-NN mostly samples demonstrations for the
last three tasks. Thus, π quickly improves, and the respective mixing coefficients converge to 1. On the other hand, πp

outperforms π on the first two tasks for the majority of training, α remains low and evaluation performance does not drop as
actions are largely sampled from πp.
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Figure 14: Extended results from Figure 4, including a privileged “rebalancing” baseline.

I. Does AMF rebalance demonstration counts?
In discrete task spaces, counting the number of demonstrations for each task is possible. In this case, a naive data selection
strategy would simply request demonstrations for tasks that have been demonstrated the least in the past. If all tasks require
a similar amount of demonstrations, this would empirically perform very well. In our setting, however, data selection
algorithms do not have knowledge of pre-training data. For this reason, a count could only be kept with respect to the
fine-tuning demonstrations: actively balancing this count would lead to a near-uniform task selection, and recover the
performance of uniform sampling in expectation.

Nevertheless, we implement this “rebalancing” criterion as a privileged baseline, which assumes access to the pre-training
task distribution. We evaluate it in the standard settings for AMF-NN from Figure 4. In Figure 14, we observe that AMF-NN
is able to match the performance of this privileged baseline, despite having no knowledge of the pretraining distribution.

This implies that AMF can infer information on the pre-training phase through estimation of the policy’s uncertainty, and is
capable of automatically recovering a “rebalancing” strategy. Moreover, AMF-NN considers the reduction in entropy across
several tasks: hence, it can in contrast focus on tasks that are harder to learn or that could, in principle, lead to learning
progress on other tasks. Further empirical evidence for these behaviors is shown in Appendix J.

J. Single-task performance
This Section presents a detailed look at the data selection strategies induced by AMF-NN. For this purpose, we consider the
main experiments in Kitchen and Metaworld outlined in Figure 4, and plot single-task success rates, as well as the amount of
demonstrations collected over time. For reference, asymptotic single-task success rates on Metaworld and Kitchen converge
between 70% and 100%, depending on the task.

In the case of skewed pre-training (Fig. 15 and 17), we observe that AMF samples tasks that were not present in the
pretraining dataset more often, without having access to any direct information on the pre-training distribution.
Moreover, even if multiple tasks have the same frequency in the pre-training distribution, AMF will prefer the ones that
induce a larger reduction in posterior uncertainty: for instance, in Metaworld, AMF selects Close Faucet more often
than Open Faucet, despite the fact that both were similarly demonstrated during pre-training. We remark that these task
selection strategies arise naturally from our information-based criterion in Equation 1, without any direct information on the
pre-training distribution, nor any explicit policy evaluation.
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Figure 17: Single-task curves for skewed pre-training in Metaworld. Dashed lines represent demonstrations counts, with
grey lines displaying the (inaccessible) count of pre-training demonstrations.
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Figure 18: Single-task curves for uniform pre-training in Metaworld. Dashed lines represent demonstrations counts, with
grey lines displaying the (inaccessible) count of pre-training demonstrations.
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Figure 15: Single-task curves for skewed pre-training in Kitchen. Dashed lines represent demonstrations counts, with grey
lines displaying the (inaccessible) count of pre-training demonstrations.
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Figure 16: Single-task curves for uniform pre-training in Kitchen. Dashed lines represent demonstrations counts, with grey
lines displaying the (inaccessible) count of pre-training demonstrations.
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K. Analysis of Importance Weights
Importance weights (as introduced in Equation 3) allow estimating the expert’s occupancy for arbitrary tasks. Naturally,
the quality of importance weights depends on many factors, including the dimensionality of the trajectory space, and the
density with which available data covers it. In this section, we report a qualitative evaluation of importance weights for both
AMF-GP and AMF-NN (Figures 19 and 20, respectively). In both cases, we find that informative weights can be retrieved
eventually, given the proper amount of clipping (as described in Appendix M). While in early rounds of the algorithm,
weights can be inaccurate, leading to a poor estimate of the objective, we observe that the quality of importance sampling
weights improves within a handful of rounds.

Task space
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Figure 19: Analysis of importance sampling weights for AMF-GP. We consider the skewed pre-training setting from Figure
2, and compute importance weights after 1, 5 and 9 rounds. We sample four tasks c0:3, represented by vertical dashed lines
of different colors. For each task ci, we collect a demonstration τi and sweep over c′ ∈ C on the x-axis; we plot w(τi, c′)
with solid lines. We observe that importance weights are uninformative in early parts of training, but converge to more
accurate values within a few rounds.
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Figure 20: Analysis of importance sampling weights for AMF-NN. We consider the skewed pre-training setting from Figure
4, and compute importance weights after 1, 10 and 19 rounds. We visualize weights for both Kitchen (top) and Metaworld
(bottom). As the task set is discrete, we consider all tasks (ci ∈ C), and collect one demonstration τi for each. The entry of
each colormap at row i and column j represents w(τj , ci). Again, we observe that at the beginning of training importance
weights can be inaccurate, particularly for tasks ci that have not been sufficiently demonstrated. However, as more data is
collected and the policy specializes to each task, the weights converge.
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L. Criterion vs returns
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Figure 21: Didactic example on correlation between pre-
training distribution over tasks (top), evaluations of the AMF
criterion for each task (middle) and return after fine-tuning on
a demonstration for a given task (bottom).

As a didactic example, we evaluate the criterion optimized
by AMF-GP in a particular instance. We adopt the set-
tings presented in Section 5.1, and pre-train a GP policy
by providing 50 demonstrations in the 2D integrator envi-
ronment, uniformly sampled among tasks in the top half
of the target circle. We represent the task space along
one dimension, and plot the smoothed pre-training dis-
tribution on the top of Figure 21. The second row of the
Figure displays the evaluation of the criterion in Equation
2 for 100 tasks uniformly sampled across the entire task
space. By comparison with the plot above, it is evident
that the criterion is significantly lower for tasks that have
not yet been demonstrated. These tasks are also those
that, if demonstrated, would lead to a greater increase in
multi-task performance after fine-tuning, as reported in
the bottom row of Figure 21. In this instance, it’s easy
to see that the criterion leads to selection of tasks which
have not been demonstrated sufficiently, and that will thus
lead to greater policy performance.

M. Implementation Details
In order to ease reproducibility, we open-source our code-
base on the project’s repo.4 Furthermore, we describe
several implementation details in the following sections.

M.1. Metrics

All metrics are reported in the form of their mean and
the 90% simple bootstrap confidence intervals over 10
random seeds.

M.2. GP settings

In GP settings (5.1), each expert demonstration involves 5 steps, is corrupted with Gaussian noise and collected by a scripted
policy. As the task space is continuous, the criterion is simply optimized via uniform random shooting, with a budget of 100.
Multi-task returns are averaged over 20 episodes per task.

M.3. Neural network settings

M.3.1. ENVIRONMENTS

We evaluate AMF-NN across four environment suites, namely FrankaKitchen, Metaworld, Robomimic and WidowX. For
the first two, demonstrations are ≈ 50 steps, while while for the latter two they involve up to 700 steps, and 100 steps
respectively. In FrankaKitchen, demonstrations are provided by Kumar et al. (2024), and collected by trained SAC agents.
In Metaworld, demostrations are instead collected by the scripted policies provided (Yu et al., 2020). In Robomimic,
demonstrations are provided by proeficient human demonstrators (Mandlekar et al., 2021). Finally, in WidowX successful
trajectories are collected by Octo-small (Octo Model Team et al., 2024) itself and filtered according to success labels, in
an instance of self-supervised distillation. Furthermore, in the case of WidowX, the initial position of the object is not
randomized, as we found this to result in very inconsistent performance for the data collection policy. In the first two suites,
50 attempts for each task are evaluated, while evaluation on Robomimic and WidowX involves 25 attempts.

4github.com/marbaga/amf
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M.3.2. BEHAVIOR CLONING

The MLP policy has with 2 layers and 256 units per layer, with layer normalization (Ba, 2016). The Diffusion policy shares
architecture and hyperparameters with the original implementation (Chi et al., 2023). Task conditioning are word embedding
extracted by a sentence transformer (all-MiniLM-L6-v2) (HuggingFace, 2026). Policies are pre-trained for 200 epochs with
batch size of 256, learning rate of 10−4 using the AdamW optimizer(Loshchilov & Hutter, 2019).

M.3.3. IMPORTANCE SAMPLING WEIGHTS

In GP setting, importance weights are computed from the Gaussian policy distribution, and log-probabilities are clipped to
the range [−12, 0]. In NN settings, for deterministic policies, we interpret the policy’s output as the mean of a Gaussian
with fixed standard deviation σ = 1.0, and only clip log-probabilities for numerical stability. In experiments involving
pre-trained Octo policies, we evaluated two solutions. One option consisted of fitting a Gaussian distribution through
maximum likelihood methods to samples from the diffusion policy, and was found to underperform. We thus treat the Octo
policy as strictly deterministic: with continuous action spaces, this simplifies importance sampling weights to w(c, τ) = 1 in
case τ is a demonstration provided exactly for task c, and 0 otherwise. We note that this solution cannot be used to evaluate
the criterion on yet unobserved tasks, but remains feasible when tasks are finite and few.

M.3.4. AMF

Each fine-tuning round involves 3000 gradient steps, each with a batch size of 256. We warm-start each algorithm by
collecting the first |C| demonstrations uniformly, as mentioned in Section 4.2. In the case of loss-gradient embeddings,
we found it to be beneficial to use a separate copy of the policy for task selection, which is not trained on these initial
trajectories (which thus can be seen as a small “validation” set).

M.3.5. ADAPTIVE PRIOR

We found relatively high learning rates for the mixing weight α to work well: all experiments use a learning rate of 1.0.
The conservative coefficient β was tuned for each suite, and is set to 0.01 for all but Kitchen, in which it takes the value of
0.001.

M.4. Runtime

Each experimental run for AMF-NN takes at most 5 hours with GPU acceleration. In this case, data selection itself requires
less than 1 second per round, and can be significantly sped up by reducing the sampling budget. AMF-GP experiments can
be reproduced within 10 minutes on CPU.

N. Useful inequalities
Lemma N.1. If a, b ∈ (0,M ] for some M > 0 and b ≥ a then

b− a ≤M · log
(
b

a

)
.

If additionally, a ≥M ′ for some M ′ > 0 then

b− a ≥M ′ · log
(
b

a

)
.

Proof. Let f(x) def
= log x. By the mean value theorem, there exists c ∈ (a, b) such that

1

c
= f ′(c) =

f(b)− f(a)

b− a
=

log b− log a

b− a
=

log
(
b
a

)
b− a

.

Thus,

b− a = c · log
(
b

a

)
< M · log

(
b

a

)
.
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Under the additional condition that a ≥M ′, we obtain

b− a = c · log
(
b

a

)
> M ′ · log

(
b

a

)
.

Lemma N.2. Let us consider two spaces X ∈ Rn, Y ∈ Rm, and a conditional distribution p : X → ∆(Y ) whose support
supp(p(·|x)) is bounded by a ball of radius ϵ for all x ∈ X , that is

max
yl,yh∈suppp(·|x)

∥yh − yl∥2 ≤ ϵ.

For all (x, x′) ⊆ X , y ∼ p(·|x) and y′ ∼ p(·|x′) it holds that

∥y − y′∥2 ≤ W(p(·|x), p(·|x′)) + 2ϵ,

where K denotes the Wasserstein 1-distance.

Proof.

∥y − y′∥ ≤ max
y∈supp(p(·|x))
y′∈supp(p(·|x′))

∥y − y′∥2 (94)

(i)

≤ min
y∈supp(p(·|x))
y′∈supp(p(·|x′))

∥y − y′∥2 + 2ϵ (95)

(ii)

≤ W(p(·|x), p(·|x′)) + 2ϵ, (96)

where (i) follows from the triangle inequality, and (2) is due to the fact that the integral of the distance between two points in
Y for any coupling is greater than the minimum distance.
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