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Abstract

Although existing artistic style transfer methods have achieved significant im-
provement with deep neural networks, they still suffer from artifacts such as
disharmonious colors and repetitive patterns. Motivated by this, we propose an
internal-external style transfer method with two contrastive losses. Specifically,
we utilize internal statistics of a single style image to determine the colors and
texture patterns of the stylized image, and in the meantime, we leverage the ex-
ternal information of the large-scale style dataset to learn the human-aware style
information, which makes the color distributions and texture patterns in the stylized
image more reasonable and harmonious. In addition, we argue that existing style
transfer methods only consider the content-to-stylization and style-to-stylization
relations, neglecting the stylization-to-stylization relations. To address this issue,
we introduce two contrastive losses, which pull the multiple stylization embeddings
closer to each other when they share the same content or style, but push far away
otherwise. We conduct extensive experiments, showing that our proposed method
can not only produce visually more harmonious and satisfying artistic images, but
also promote the stability and consistency of rendered video clips.

1 Introduction

Artistic style transfer is a long-standing research topic that seeks to render a photograph with a
given artwork style. Ever since Gatys et al. [10] for the first time proposed a neural method, which
leverages a pre-trained Deep Convolutional Neural Network (DCNN) to separate and recombine
contents and styles of arbitrary images, an unprecedented booming [20, 26, 15, 30, 36, 51, 48] in
style transfer has been witnessed.

Despite the recent progress, there still exists a large gap between real artworks and synthesized
stylizations. As shown in Figure 1, the stylized images usually contain some disharmonious colors
and repetitive patterns, which makes them easily distinguishable from real artworks. We argue
that this is because existing style transfer methods often confine themselves to the internal style
statistics of a single artistic image. In some other tasks (for example, image-to-image translation
[17, 60, 16, 25, 8, 18]), the style is usually learned from a collection of images, which inspires us to
leverage the external information reserved in the large-scale style dataset to improve the stylization
results in style transfer. Why is the external information so important for style transfer? Our analyses
are as follows:

Although different images in the style dataset vary greatly in fine details, they share a key commonality:
they are all human-created artworks, whose brushstrokes, color distributions, texture patterns, tones,
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Figure 1: Stylization examples. The first and second columns show the style and content images,
respectively. The other seven columns show the stylized images produced by our method, Gatys et al.
[10], AdaIN [15], WCT [30], Avatar-Net [41], LST [28], and SANet [36].

etc., are more consistent with human perception. Namely, they contain some human-aware style
information that is lacked in synthesized stylizations. A natural idea is to utilize such human-aware
style information to improve stylization results. To this end, we employ an internal-external learning
scheme during training, which takes both internal learning and external learning into consideration.
To be more specific, on the one hand, we follow previous methods [10, 20, 46, 54, 58], utilizing
internal statistics of a single artwork to determine the colors and texture patterns of the stylized
image. On the other hand, we employ Generative Adversarial Nets (GANs) [11, 39, 2, 56, 3] to
externally learn the human-aware style information from the large-scale style dataset, which is then
used to make the color distributions and texture patterns in the stylized image more reasonable and
harmonious, significantly bridging the gap between human-created artworks and AI-created artworks.

In addition, there is another problem with existing style transfer methods: they usually employ a
content loss and a style loss to enforce the content-to-stylization relations and style-to-stylization
relations, respectively, while neglect the stylization-to-stylization relations, which are also important
for style transfer. What are stylization-to-stylization relations? Intuitively, stylized images rendered
with the same style image should have closer relations in style than those rendered with different
style images. Similarly, stylized images based on the same content image should have closer relations
in content than those based on different content images. Inspired by this, in this paper we introduce
two contrastive losses: content contrastive loss and style contrastive loss that can pull the multiple
stylization embeddings closer to each other when they share the same content or style, but push far
away otherwise. To the best of our knowledge, this is the first work that successfully leverages the
power of contrastive learning [6, 12, 21, 38] in the style transfer scenario.

Our extensive experiments show that the proposed method can not only produce visually more
harmonious and plausible artistic images, but also promote the stability and consistency of rendered
video clips.

To summarize, the main contributions of this work are threefold:

• We propose a novel internal-external style transfer method which takes both internal learning
and external learning into consideration, significantly bridging the gap between human-
created and AI-created artworks.

• We for the first time introduce contrastive learning to style transfer, yielding more satisfying
stylization results with the learned stylization-to-stylization relations.

• We demonstrate the effectiveness and superiority of our approach by extensive comparisons
with several state-of-the-art artistic style transfer methods.

2 Related Work

Artistic style transfer. Artistic style transfer is an image editing task that aims at transferring artistic
styles onto everyday photographs to create new artworks. Earlier methods usually resort to traditional
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techniques such as stroke rendering [13], image analogy [14, 42, 9, 31], and image filtering [52] to
perform artistic style transfer. These methods typically rely on low-level statistics and often fail to
capture semantic information. Recently, Gatys et al. [10] discovered that the Gram matrix upon deep
features extracted from a pre-trained DCNN can notably represent the characteristics of visual styles,
which opens up the neural style transfer era. Since then, a suite of neural methods have been proposed,
boosting the development of style transfer from different concerns. Specifically, [20, 27, 46] utilize
feed-forward networks to improve efficiency. [26, 54, 36, 58, 35] refine various elements in the
stylized images (including content preservation, textures, brushstrokes, etc.) to enhance visual quality.
[7, 15, 30, 41, 28] propose universal style transfer methods to achieve generalization. [29, 47, 51]
inject random noise to the generative network to encourage diversity. Despite the rapid progress,
these style transfer methods still suffer from spurious artifacts such as disharmonious colors and
repetitive patterns.

Notice that there is another line of work [40, 24, 23, 45, 4, 5] that aims to learn an artist’s style from
all his/her artworks. In comparison, instead of learning an artist’s style, we focus on better leaning
an artwork’s style (just like the style transfer methods mentioned in the previous paragraph) with
the assist of the human-aware style information reserved in the external style dataset. Therefore, our
method is orthogonal to these works.

Image-to-image translation. Image-to-image translation (I2I) [17, 60, 16, 25, 8, 18] aims at learning
the mapping between different visual domains, which is closely related to style transfer. [60, 16]
have distinguished these two tasks: (i) I2I can only translate between content-similar visual domains
(such as horses↔zebras and summer↔winter), while style transfer does not have such limitation,
whose content image and style image can be totally different (e.g., the former is a photo of a person
and the latter is van Gogh’s The Starry Night). (ii) I2I aims to learn the mapping between two image
collections, while style transfer aims to learn the mapping between two specific images. However,
we argue that we can borrow some insights from I2I, and leverage the external information of the
large-scale style image collections to improve the stylization quality in style transfer.

Internal-external learning. Internal-external learning has shown effectiveness in various image
generation tasks, such as super-resolution, image inpainting, and so on. In detail, Soh et al. [44]
presented a fast, flexible, and lightweight self-supervised super-resolution method by exploiting both
external and internal samples. Park et al. [37] developed an internal-external super-resolution method
that facilitates super-resolution networks to further enhance the quality of the restored images. Wang
et al. [49] proposed a general external-internal learning inpainting scheme, which learns semantic
knowledge externally by training on large datasets while fully utilizes internal statistics of the single
test image. However, in the field of style transfer, existing methods only use a single artistic image to
learn style, resulting in unsatisfying stylization results. Motivated by this, in this work we propose
an internal-external style transfer method that takes both internal learning and external learning into
consideration, significantly bridging the gap between human-created and AI-created artworks.

Contrastive learning. Generally, there are three key ingredients in a contrastive learning process:
query, positive examples, and negative examples. The target of contrastive learning is to associate
a “query” with its “positive” example while disassociate the “query” with other examples that are
referred to as “negatives”. Recently, contrastive learning has demonstrated its effectiveness in the
field of conditional image synthesis. To be more specific, ContraGAN [21] introduced a conditional
contrastive loss (2C loss) to learn both data-to-class and data-to-data relations. Park et al. [38]
maximized the mutual information between input and output with contrastive learning to encourage
content preservation in unpaired image translation problems. Liu et al. [34] introduced a latent-
augmented contrastive loss to encourage images generated from adjacent latent codes to be similar
and those generated from distinct latent codes to be dissimilar, achieving diverse image synthesis.
Yu et al. [55] proposed a dual contrastive loss in adversarial training that generalizes representation
to more effectively distinguish between real and fake, and further incentivizes the image generation
quality. Wu et al. [53] improved the image dehazing result by introducing contrastive learning, which
ensures that the restored image is pulled closer to the clear image and pushed far away from the hazy
image in representation space.

Note that all the above contrastive learning methods cannot be adopted for style transfer. In this
work, we make the first attempt to adapt contrastive learning to artistic style transfer, and propose two
novel contrastive losses: content contrastive loss and style contrastive loss to learn the stylization-to-
stylization relations that are ignored by existing style transfer methods.
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Figure 2: An overview of the proposed method. (a) illustrates our basic framework, which mainly
contains a pre-trained encoder, a style-attentional transformation module, a decoder, and a discrimi-
nator. The style loss Ls and the content loss Lc are used to learn the style and content information,
respectively. The adversarial loss Ladv is used to learn the human-aware style information. (b) and (c)
depict the identity loss Lidentity and contrastive losses Ls−contra & Lc−contra, where Lidentity is
used to preserve more content structures and style characteristics in the stylized image, and Ls−contra

& Lc−contra are used to learn the stylization-to-stylization relations.

3 Proposed Method

Existing style transfer methods usually produce unsatisfying stylization results with disharmonious
colors and repetitive patterns, which makes them pretty easy to be distinguished from real artworks.
As an attempt to bridge the large gap between human-created and AI-created artworks, we propose a
novel internal-external style transfer method with two contrastive losses. The overview of our method
is shown in Figure 2. It is worth noting that our framework is built on the SANet [36] (one of the
state-of-the-art style transfer methods) backbone, which consists of an encoder E, a transformation
module T , and a decoder D. In detail, E is a pre-trained VGG-19 network [43] used to extract image
features, T is a style-attentional network that can flexibly match the semantic nearest style features
onto the content features, and D is a generative network used to transform encoded semantic feature
maps into stylized images. We extend SANet [36] with our proposed changes, and our full model is
described below.

3.1 Internal-external Learning

Let C and S be the sets of photographs and artworks, respectively. We aim to learn both the internal
style characteristics from a single artwork Is ∈ S and the external human-aware style information
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from the dataset S, and then transfer them to an arbitrary content image Ic ∈ C to create new artistic
images Isc.

Internal style learning. Following previous style transfer methods [15, 36, 1], we use a pre-trained
VGG-19 network φ to capture the internal style characteristics from a single artistic image, and the
style loss can be generally computed as:

Ls :=

L∑
i=1

‖ µ(φi(Isc))− µ(φi(Is)) ‖2 + ‖ σ(φi(Isc))− σ(φi(Is)) ‖2 (1)

where φi denotes the ith layer (Relu1_1, Relu2_1, Relu3_1, Relu4_1, and Relu5_1 layers are used in
our model) of the VGG-19 network. µ and σ represent the mean and standard deviation of feature
maps extracted by φi, respectively.

External style learning. Here, we employ GAN [11, 39, 2, 56, 3] to learn the human-aware style
information from the style dataset S. GAN is a popular generative model consisting of two networks
(i.e., a generator G and a discriminator D) that compete against each other. Specifically, we input
the stylized images produced by the generator and the artworks sampled from S to the discriminator
as fake data and real data, respectively. In the training process, the generator will try to fool the
discriminator by generating a realistic artistic image, while the discriminator will try to distinguish
generated fake artworks from real ones. Joint training of these two networks leads to a generator that
is able to produce remarkable realistic fake images with the learned human-aware style information.
The adversarial training process can be formulated as (note that our generator G contains an encoder
E, a transformation module T , and a decoder D, as shown in Figure 2 (a)):

Ladv := E
Is∼S

[log(D(Is))] + E
Ic∼C,Is∼S

[log(1−D(D(T (E(Ic), E(Is)))))] (2)

Content structure preservation. To preserve the content structure of Ic in the stylized image Isc,
we adopt the widely-used perceptual loss:

Lc :=‖ φconv4_2(Isc)− φconv4_2(Ic) ‖2 (3)

Identity loss. Similar to [36, 32, 59], we utilize the identity loss to encourage the generator G to
be an approximate identity mapping when the content image and style image are the same. In this
manner, more content structures and style characteristics can be preserved in the stylization result.
The identity loss is depicted in Figure 2 (b) and defined as:

Lidentity := λidentity1(‖ Icc − Ic ‖2 + ‖ Iss − Is ‖2)+

λidentity2

L∑
i=1

(‖ φi(Icc)− φi(Ic) ‖2 + ‖ φi(Iss)− φi(Is) ‖2)
(4)

where Icc is the output image generated when both the content image and style image are Ic. Iss is
analogous. λidentity1 and λidentity2 are the weights associated with different loss terms. For φi, we
choose Relu1_1, Relu2_1, Relu3_1, Relu4_1, and Relu5_1 layers in our experiments.

3.2 Contrastive Learning

Intuitively, stylized images rendered with the same style image should have closer relations in style
than those rendered with different style images. Similarly, stylized images based on the same content
image should have closer relations in content than those based on different content images. We refer
to such relations as stylization-to-stylization relations. Generally, existing style transfer methods only
consider the content-to-stylization and style-to-stylization relations by applying the content loss and
style loss (like Lc and Ls introduced above), while neglect the stylization-to-stylization relations. To
tackle this problem, we for the first time introduce contrastive learning to style transfer. The core idea
of contrastive learning is to associate data points with their “positive” examples while disassociate
them from the other points that are regarded as “negatives”.
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Specifically, we propose two contrastive losses: a style contrastive loss and a content contrastive loss
to learn the stylization-to-stylization relations. Note that for clearer expression, hereafter, we use
si to represent the ith style image, ci to represent the ith content image, and sici to represent the
stylized image generated with si and ci. To perform contrastive learning in every training batch, we
arrange a batch of style and content images in the following manner:

Assume the batch size = b, which is an even number. Then we get a batch of style images {s1, s2,
..., sb/2, s1, s2, ..., sb/2−1, sb/2}, and a batch of content images {c1, c2, ..., cb/2, c2, c3, ..., cb/2, c1}.
Hence, the corresponding stylized images are {s1c1, s2c2, ..., sb/2cb/2, s1c2, s2c3, ..., sb/2−1cb/2,
sb/2c1}. In this way, we ensure that for every stylized image sicj , we can find a stylized image sicx
(x 6= j) that shares the same style with it, and a stylized image sycj (y 6= i) that shares the same
content with it in the same batch. Figure 2 (c) depicts this process by taking b = 8 as an example.

Style contrastive loss. To associate stylized images that share the same style, for a stylized image
sicj , we select sicx (x 6= j) as its positive example (sicx shares the same style with sicj), and smcn
(m 6= i and n 6= j) as its negative examples. Notice that smcn represents a series of stylized images,
not just one image. Then we can formulate our style contrastive loss as follows:

Ls−contra := −log( exp(ls(sicj)
T ls(sicx)/τ)

exp(ls(sicj)T ls(sicx)/τ) +
∑
exp(ls(sicj)T ls(smcn)/τ)

) (5)

where ls = hs(φrelu3_1(·)), in which hs is a style projection network. ls is used to obtain the style
embeddings from stylized images. τ is a temperature hyper-parameter to control push and pull force.

Content contrastive loss. Similar to the style contrastive loss, to associate stylized images that share
the same content, for a stylized image sicj , we select sycj (y 6= i) as its positive example (sycj
shares the same content with sicj), and smcn (m 6= i and n 6= j) as its negative examples. We
express the content contrastive loss as:

Lc−contra := −log( exp(lc(sicj)
T lc(sycj)/τ)

exp(lc(sicj)T lc(sycj)/τ) +
∑
exp(lc(sicj)T lc(smcn)/τ)

) (6)

where lc = hc(φrelu4_1(·)), in which hc is a content projection network. lc is used to obtain the
content embeddings from stylized images.

3.3 Final Objective

We summarize all aforementioned losses and obtain the final objective of our model,

Lfinal := λ1Ls + λ2Ladv + λ3Lc + λ4Lidentity + λ5Ls−contra + λ6Lc−contra (7)
where λ1, λ2, λ3, λ4, λ5, and λ6 are hyper-parameters for striking proper balance among losses.

4 Experimental Results

In this section, we first introduce the experimental settings. Then we present qualitative and quantita-
tive comparisons between the proposed method and several baseline models. Finally, we discuss the
effect of each component in our model by conducting ablation studies.

4.1 Experimental Settings

Implementation details. We build on the recent SANet [36] backbone and extend it with our
proposed changes to further push the boundaries in automatic artwork generation. We refer to the
original paper [36] for the detailed network architecture of the encoder E, transformation module T ,
and decoder D. As for the discriminator D, we employ the multi-scale discriminator proposed by
Wang et al. [50]. The style projection network hs is a two-layer MLP (Multilayer Perceptron) with
256 units at the first layer and 128 units at the second layer. Similarly, the content projection network
hc is a two-layer MLP with 128 units at each layer. The hyper-parameter τ in Equation (5) and (6) is
set to 0.2. The loss weights in Equation (4) and (7) are set to λidentity1 = 50, λidentity2 = 1, λ1 =
1, λ2 = 5, λ3 = 1, λ4 = 1, λ5 = 0.3, and λ6 = 0.3. We train our network using the Adam optimizer
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Figure 3: Qualitative comparisons on image style transfer. The first row shows the content and
style images. The rest of the rows show the stylization results generated with different style transfer
methods.

with a learning rate of 0.0001 and a batch size of 16 for 160000 iterations. Our code is available at:
https://github.com/HalbertCH/IEContraAST.

Datasets. Like [15, 58, 36, 19], we take MS-COCO [33] and WikiArt [22] as the content dataset and
style dataset, respectively. During the training stage, we first resize the smallest dimension of training
images to 512 while preserving the aspect ratio, and then randomly crop 256 × 256 patches from
these images as input. Note that in the reference stage, our method is applicable for content images
and style images with any size.

Baselines. We choose several state-of-the-art style transfer methods as our baselines, including Gatys
et al. [10], AdaIN [15], WCT [30], Avatar-Net [41], LST [28], and SANet [36]. All these methods
are conducted by using the public codes and default configurations.

4.2 Qualitative Comparisons

In Figure 3, we show the qualitative comparisons between our method and six baselines introduced
above. We observe that Gatys et al. [10] is prone to fall in a bad local minimum (e.g., 1st, 2nd,
and 3rd columns). AdaIN [15] sometimes produces messy stylized images with unseen colors and
unwanted halation around the edges (e.g., 1st, 3rd, and 6th columns). WCT [30] often introduces
distorted patterns, yielding less-structured and blunt stylized images (e.g., 2nd, 4th, and 5th columns).
Avatar-Net [41] is hard to produce sharp details and fine brushstrokes (e.g., 1st, 4th, and 5th columns).
LST [28] usually produces less stylized images with very limited texture patterns (e.g., 2nd, 4th, and
6th columns). SANet [36] tends to apply similar repeated texture patterns among different styles
(e.g., 1st, 3rd, and 6th columns). Despite the recent progress, the gap between synthesized artistic
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Figure 4: Qualitative comparisons on video style transfer. The first row shows several video frames
and the style image. The rest of the rows show the stylization results generated with different style
transfer methods. The last column shows the heat maps of differences between different frames.

Table 1: The user study scores for different methods. The higher the better.
WikiArt Gatys et al. AdaIN WCT Avatar-Net LST SANet Ours

Preference Score - 0.143 0.118 0.099 0.087 0.125 0.161 0.267
Deception Score 0.875 0.438 0.363 0.375 0.275 0.381 0.394 0.624

images and real artworks is still very large. To further narrow this gap, we introduce internal-external
learning and contrastive learning to artistic style transfer, leading to visually more harmonious and
plausible artistic images, as shown in the 2nd row of Figure 3.

We also compare our method with 6 baselines on video style transfer, which is conducted between
a content video and a style image in a frame-wise manner. The stylization results are shown in
Figure 4. To visualize the stability and consistency of synthesized video clip, we also show the
heat maps of differences between different frames in the last column of Figure 4. As we can see,
our approach outperforms existing style transfer methods in terms of stability and consistency by a
significant margin. This can be attributed to two points: (i) external learning smooths the stylization
results by eliminating those distorted texture patterns; (ii) the proposed contrastive losses take the
stylization-to-stylization relations into consideration, pulling adjacent stylized frames closer to each
other since they share the same style and similar content.

4.3 Quantitative Comparisons

As the qualitative assessment presented above could be subjective, in this section, we resort to several
evaluation metrics to better assess the performance of the proposed method in a quantitative manner.

User study [54, 36, 24, 23, 48] is the most widely adopted evaluation metric in style transfer, which
investigates user preference over different stylization results for a more objective comparison.

Preference score. We use 10 content images and 15 style images to synthesize 150 stylized images
for each method. Then 20 content-style pairs are randomly selected for each participant and show
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Table 2: The average LPIPS distances for different methods. The lower the better.
Inputs Gatys et al. AdaIN WCT Avatar-Net LST SANet Ours

LPIPS Distance 0.231 0.488 0.369 0.460 0.341 0.326 0.372 0.317

(a) (b)

LPIPS

0.317

0.325

0.321

Preference

0.388

0.281

0.331

Figure 5: Ablation studies of external learning (abbr. EL) and contrastive learning (abbr. CL) on (a)
image style transfer and (b) video style transfer. Please zoom in for a better view and details.

them the stylized images generated by our and competing methods side-by-side in a random order.
Next, we ask each participant to choose his/her favorite stylization result for each content-style pair.
We finally collect 1000 votes from 50 participants and present the percentage of votes for each method
in the second row of Table 1. The results indicate that the stylized images generated by our method
are more preferred by human participants compared to those generated by the competing methods.

Deception score. To measure the gap between AI-created artistic images and human-created artworks,
we conduct another user study: for each participant, we show them 80 artistic images which consist
of 10 human-created artworks collected from WikiArt [22] and 70 stylized images generated by our
and 6 baseline methods (note that each method provides 10 stylized images). Then for every image,
we ask these participants to guess if it is a real artwork or not. The deception score is calculated as
the fraction of times that the stylized images generated by this method are identified as “real”. For
comparison, we also report the fraction of times that the human-created artworks are identified as
“real”. The results are shown in the third row of Table 1, where we can see that the deception rate of
our method is closest to that of human-created artworks, further demonstrating the effectiveness of
our method.

To quantitatively evaluate the stability and consistency of the proposed method on video style transfer,
we adopt LPIPS (Learned Perceptual Image Patch Similarity) [57] as the evaluation metric.

LPIPS. LPIPS is a widely used metric in the field of multimodal image-to-image translation (MI2I)
[61, 16, 25, 8] to measure diversity. In this paper, we employ LPIPS to measure the stability and
consistency of rendered clips by computing the average perceptual distances between adjacent frames.
Note that contrary to MI2I methods that expect a higher LPIPS value to achieve better diversity, we
expect a lower LPIPS value to achieve better stability and consistency. We synthesize 18 stylized
video clips for each method and report the average LPIPS distances in Table 2, where we observe that
our approach obtains the best score among all methods, consistent with the qualitative comparisons
in Figure 4.

4.4 Ablation Studies

In this section, we conduct several ablation studies to highlight the effect of different components in
our model.

We first explore the effect of external learning (abbr. EL) and contrastive learning (abbr. CL) on
image style transfer. As for internal learning, since its effect has been fully validated in existing style
transfer methods, we do not ablate it in this experiment. Figure 5 (a) shows the image stylization
results of our method with and without EL/CL. It can be observed that, without EL, the stylized
images become messier with abrupt colors and obvious distortions. The reason could be that the
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model without EL only focuses on increasing the style similarity between the stylized image and the
style image, without considering whether the color distributions and texture patterns in the stylized
image are natural and harmonious. In comparison, the model with EL can learn the human-aware
style information from the large-scale style dataset, leading to more realistic and harmonious stylized
images that cannot be distinguished from real artworks by the discriminator. In addition, we also find
that our method can better match the target style to the content image with the proposed contrastive
losses. This is because our contrastive losses can help the network to learn better style and content
representations by taking the stylization-to-stylization relations into consideration, further refining
the stylization results. The user preference results reported in the last column of Figure 5 (a) also
demonstrate that our full model has the best performance.

Similar ablation studies are also conducted on video style transfer. As shown in Figure 5 (b), the
stability degradation can be observed after we remove external learning or contrastive learning from
our method (notice the color of hair and skin), which is in line with the reported LPIPS distance. The
results indicate that both external learning and contrastive learning can improve the stability of video
style transfer. As we analyzed in Section 4.2, external learning obtains stability gains by eliminating
distorted texture patterns, and contrastive learning obtains stability gains by pulling adjacent stylized
frames closer to each other.

5 Limitations

One limitation of this work is that the proposed internal-external learning scheme and two contrastive
losses cannot be applied to learning-free style transfer methods, such as WCT [30], Avatar-Net [41],
LST [28], etc. This is because the training process is necessary for our method. Therefore, our
method can only be incorporated into learning-based methods, such as Johnson et al. [20], AdaIN
[15], SANet [36] (in this work, we mainly take SANet as our backbone to show the effectiveness and
superiority of our method), etc. Another limitation is that in the inference stage, the style images that
are too different from the training styles may not benefit from the external learning scheme, since
they are out of the learned style distributions.

6 Conclusion

In this paper, we propose an internal-external style transfer method with two novel contrastive losses.
The internal-external learning scheme learns simultaneously both the internal statistics from a single
artistic image and the human-aware style information from the large-scale style dataset. As for the
contrastive losses, they are dedicated to learning the stylization-to-stylization relations by pulling
the multiple stylization embeddings closer to each other when they share the same content or style,
but pushing far away otherwise. Extensive experiments show that our method can not only produce
visually more harmonious and satisfying artistic images, but also significantly promote the stability
and consistency of rendered video clips. The proposed method is simple and effective, and may shed
light on more future understandings of artistic style transfer from a new perspective. In the future, we
would like to extend our method to other vision tasks, for example, texture synthesis.
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