

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONTRASTIVE REPRESENTATION REGULARIZATION FOR VISION-LANGUAGE-ACTION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Vision-Language-Action (VLA) models have shown its capabilities in robot manipulation by leveraging rich representations from pre-trained Vision-Language Models (VLMs). However, their representations arguably remain suboptimal, lacking sensitivity to robotic signals such as control actions and proprioceptive states. To address the issue, we introduce *Robot State-aware Contrastive Loss (RS-CL)*, a simple and effective representation regularization for VLA models, designed to bridge the gap between VLM representations and robotic signals. In particular, RS-CL aligns the representations more closely with the robot’s proprioceptive states, by using relative distances between the states as soft supervision. Complementing the original action prediction objective, RS-CL effectively enhances control-relevant representation learning, while being lightweight and fully compatible with standard VLA training pipeline. Our empirical results demonstrate that RS-CL substantially improves the manipulation performance of state-of-the-art VLA models; it pushes the prior art from 30.8% to 41.5% on pick-and-place tasks in RoboCasa-Kitchen, through more accurate positioning during grasping and placing, and boosts success rates from 45.0% to 58.3% on challenging real-robot manipulation tasks.

1 INTRODUCTION

Vision-Language-Action (VLA; [Zitkovich et al. 2023](#)) models have emerged as a powerful framework for robot manipulation, leveraging pre-trained Vision-Language Models (VLM; [Liu et al. 2023b](#)) to provide rich visual and semantic grounding for control policies. Among the state-of-the-art VLA models, the common design is to employ a generative action decoder conditioned on VLM-derived representations ([Black et al., 2025b](#); [Bjorck et al., 2025](#)). These decoders are trained with an action prediction loss, supervised by the ground-truth sequence of actions.

Prior studies have shown that fine-tuning the VLM alongside training the action decoder is essential to the action prediction performance of VLA models. This is because VLM representations are typically trained on large-scale visual instruction datasets, but have not been explicitly exposed to robotic modalities, such as low-level control actions and proprioceptive information. Consequently, training VLA models conditioned on frozen VLM representations leads to suboptimal performance, as the VLM lacks the capability to capture robotic signals ([Driess et al., 2025](#)).

Many recent works have proposed different approaches to train the VLM backbone in VLA models to tackle this issue. A widely adopted strategy is to directly update the VLM via gradients from the action prediction objective ([Black et al., 2025b](#); [Bjorck et al., 2025](#)). Beyond this, several works introduce auxiliary objectives, such as jointly training the VLM backbone with curated instruction datasets ([Yang et al., 2025](#)), or blocking gradients from the action decoder instead learning to generate intermediate subtasks and discretized actions ([Driess et al., 2025](#)). Another line of work further trains the VLM on embodied reasoning or spatial grounding tasks using robotics datasets ([Ji et al., 2025](#); [Luo et al., 2025](#); [Azzolini et al., 2025](#); [GEAR, 2025](#)), or autoregressively predicts discretized actions ([Kim et al., 2025](#); [Black et al., 2025a](#)) before fine-tuning them for continuous action prediction. While these approaches help bridge the gap between general-purpose VLM representations and the demands of action prediction, they often require additional training stages or carefully curated datasets.

In contrast, we aim to directly refine VLM representations to better serve action generation, while remaining efficient and seamlessly compatible with the existing VLA training pipelines. In particular, we focus on contrastive learning, as it provides a principled way to refine representations by defining

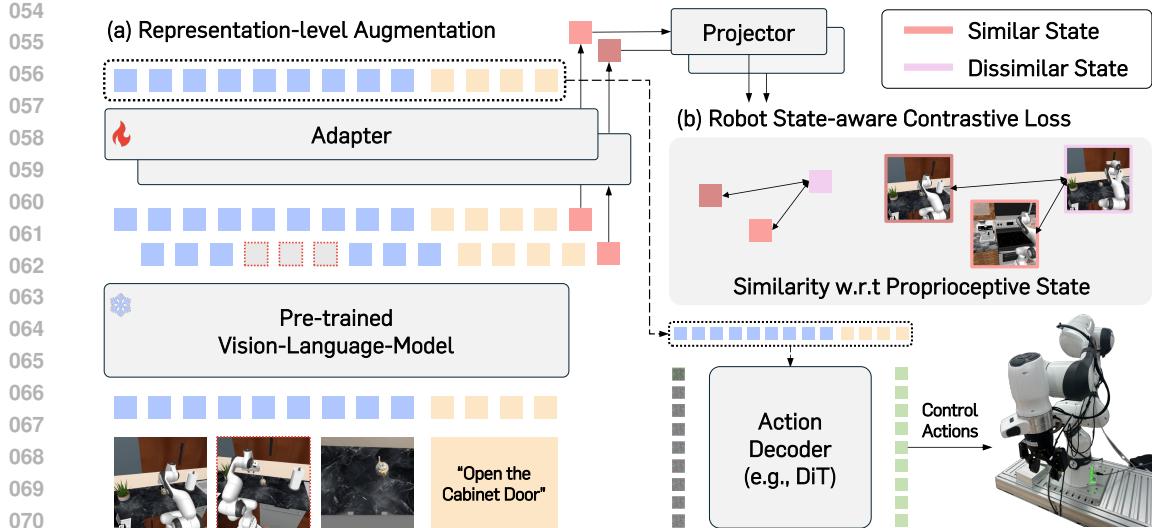


Figure 1: **Overview.** We extend the standard VLA model training framework with a contrastive regularization path. Embeddings from the pre-trained VLM are augmented by the *view cutoff* operation applied on the feature slice corresponding to a randomly selected observation view, and are optimized with our *Robot State-aware Contrastive Loss* to attract samples with similar proprioceptive states, complementing the action prediction loss.

similar and dissimilar pairs, effectively structuring the embedding space. The specific choice of pair construction determines what the embeddings should capture, ranging from semantic relations between modalities (Radford et al., 2021) to temporal dynamics and policy-relevant representations (Sermanet et al., 2018; Nair et al., 2022; Ma et al., 2023). Inspired by this perspective, we introduce a contrastive objective that explicitly guides the representations to capture robotic signals, in particular the robot’s proprioceptive states. By jointly optimizing the VLM representation with the standard action prediction loss, we forge representations that are not only semantically rich but also deeply grounded in the robot’s physical state, leading to accurate action prediction.

Contribution. In this paper, we introduce a novel self-supervised regularization objective for VLA models, termed *Robot State-aware Contrastive Loss* (RS-CL), a loss that explicitly shapes VLM representations toward capturing robotic signals. Different from the conventional contrastive loss, RS-CL assigns pairwise weights based on the distances between robot proprioceptive states, guiding the representations to better reflect robot control-relevant structure. In addition, we propose an representation-level augmentation for VLA models, called *view cutoff*. This augmentation constructs alternative embeddings by masking out the feature corresponding to a randomly selected observation view. By operating at the representation-level and minimizing the forwarding process through the pre-trained VLM, RS-CL remains lightweight and fully compatible with existing training pipeline.

We extensively evaluate the effectiveness of RS-CL under manipulation benchmarks such as RoboCasa-Kitchen (Nasiriany et al., 2024) and LIBERO (Liu et al., 2023a). For instance, RS-CL pushes the prior art VLA model from 48.2% to 53.0% (+4.8%), 63.9% to 67.2% (+3.3%), and 65.7% to 69.7% (+4.0%) on RoboCasa-Kitchen, with 30, 100, and 300 demonstrations, respectively. We emphasize that RS-CL gives larger improvement of 30.3% to 41.5% (+11.2%) on pick-and-place tasks, which requires precise positioning during grasping and placing. Finally, we show that RS-CL is applicable to real-robot hardware experiments, showing improvement from 45.0% to 58.3% (+13.3%) on challenging manipulation tasks.

In summary, our contributions are as follows:

- We introduce *Robot State-aware Contrastive Loss* (RS-CL), a novel objective for VLA models that explicitly aligns VLM representations with proprioceptive states.
- We design RS-CL to operate directly at the representation alongside the original action prediction objective. Therefore RS-CL remains lightweight and compatible with the existing training pipeline.
- We validate RS-CL across diverse training scenarios on manipulation benchmarks and real-world experiments, showing consistent improvements over the state-of-the-art VLA models.

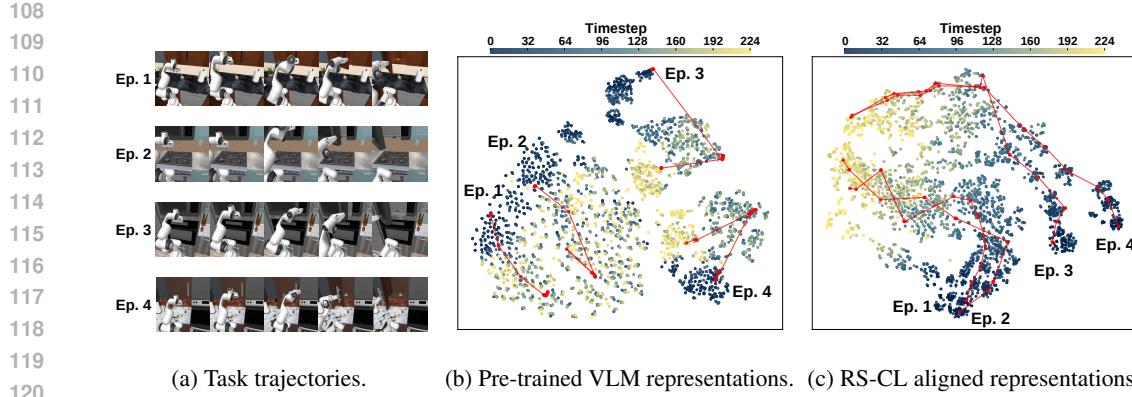


Figure 2: **Training VLM representations for action prediction.** (a) We visualize VLM embeddings of robot episodes performing the same task “Open the microwave / cabinet door” across different scenes in RoboCasa-Kitchen. (b) Pre-trained VLM representations are dominated by the visual appearance (e.g., distractor objects). (c) RS-CL guides embeddings to align with the robot’s proprioceptive states, yielding representations that capture common robotic signals (e.g., the robot’s current pose, next control action) across environments, therefore aligning all episodes by the task progress.

2 METHOD

In this section, we introduce *Robot State-aware Contrastive Loss (RS-CL)*, which enhances the action prediction capability of VLA models by guiding the representation to capture low-level robotic signals, particularly the proprioceptive states. We describe the VLA training framework in Sec. 2.1 and present our proposed method, RS-CL, in Sec. 2.2. An overview of our method is shown in Fig. 1.

2.1 VISION-LANGUAGE-ACTION MODEL

VLA models are trained to predict the next action chunk $\mathbf{A}_t = [\mathbf{a}_t, \mathbf{a}_{t+1}, \dots, \mathbf{a}_{t+H}]$ of horizon H at current timestep t , from a set of observation images from V different views $\mathbf{O}_t^V = \{\mathbf{o}_t^1, \mathbf{o}_t^2, \dots, \mathbf{o}_t^V\}$, a task instruction \mathbf{c} , and the robot’s proprioceptive state \mathbf{q} . A standard framework for VLA models (Black et al., 2025b; Bjorck et al., 2025) encodes multimodal inputs $[\mathbf{O}_t^V, \mathbf{c}]$ using a pre-trained VLM into a hidden representation, and pass it to the action decoder. In practice, we train a lightweight adapter module f_ϕ upon the VLM and freeze the VLM, following GEAR (2025). f_ϕ processes the output of the VLM as $\mathbf{h} = f_\phi(\text{VLM}(\mathbf{O}_t^V, \mathbf{c})) \in \mathbb{R}^{N \times d_{\text{model}}}$, where N is the number of input tokens for the VLM and d_{model} is the size of the hidden dimension.

An action decoder D_θ generates \mathbf{A}_t conditioned on \mathbf{h} with the current robot state \mathbf{q} . Similar to prior works (Black et al., 2025b; Bjorck et al., 2025), we adopt the DiT (Peebles & Xie, 2023) architecture for the D_θ and train with the flow-matching objective (Lipman et al., 2023; Liu, 2022):

$$\mathcal{L}_{\text{FM}}(\theta, \phi) = \mathbb{E}_s \left[\|D_\theta(\mathbf{h}, \mathbf{A}_t^s, \mathbf{q}) - (\epsilon - \mathbf{A}_t)\|_2^2 \right], \quad (1)$$

where $\mathbf{A}_t^s = s\mathbf{A}_t + (1-s)\epsilon$ is an interpolated action chunk at the flow-matching timestep $s \in [0, 1]$ sampled from a prior distribution $p(s)$. After training, D_θ generates \mathbf{A}_t through an iterative denoising process starting from a random Gaussian noise $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

2.2 ROBOT STATE-AWARE CONTRASTIVE LOSS

While VLMs acquire rich semantic representations from Internet-scale vision–language data, they lack exposure to robotic modalities such as low-level control actions and proprioceptive states. As a result, their embeddings are strongly shaped by the visual appearance and often fail to capture signals relevant to robot control. This misalignment is evident when we visualize the VLM embeddings of robot trajectories for the same manipulation task (e.g., Open the microwave / cabinet) across different environments in RoboCasa-Kitchen (see Fig. 2a). We observe that VLM embeddings are dominated by the visual cues, such as presence of large objects or background textures (see Fig. 2b), rather than control-relevant factors like the robot’s current pose or the next action needed to complete the task.

162 This misalignment motivates our central hypothesis: explicitly
 163 aligning VLM representations with their physical
 164 state will improve action prediction. Based on this hypothesis,
 165 we introduce *Robot State-aware Contrastive Loss*
 166 (*RS-CL*), an auxiliary objective for VLAs that regularizes
 167 the VLM’s representation space using supervision
 168 from the robot’s proprioceptive states. Our key idea is a
 169 contrastive loss that uses the distances between proprio-
 170 ceptive states to assign soft weights to similarity scores,
 171 which effectively guides the representation space to be
 172 aligned with robotic signals. As an auxiliary objective,
 173 *RS-CL* complements the original action prediction loss,
 174 enabling the entire model to be trained end-to-end in a
 175 single stage. Concretely, *RS-CL* consists of three key
 176 components: a *learnable summarization token* that am-
 177 orties long VLM outputs, a *weighting scheme* for robot
 178 state supervision, and a *representation-level augmentation*
 179 strategy for lightweight representation learning.

180 **Amortizing VLM embeddings for representation learning.** Applying contrastive learning on the
 181 full sequence of VLM embeddings $\mathbf{h} \in \mathbb{R}^{N \times d_{\text{model}}}$ is impractical as the sequence length N is typically
 182 large, leading to high computational cost and diluted learning signals. To address this, we introduce a
 183 *learnable summarization token* $\mathbf{u} \in \mathbb{R}^{1 \times d_{\text{model}}}$ to produce a compact representative embedding of the
 184 sequence. Specifically, \mathbf{u} is appended to the VLM output and processed by the adapter f_{ϕ} :

$$[\mathbf{h}, \mathbf{w}] = f_{\phi}(\text{VLM}(\mathbf{O}_t^V, \mathbf{c}) \oplus \mathbf{u}), \quad (2)$$

186 where \mathbf{w} denotes the output corresponding to the summarization token and \oplus denotes concate-
 187 nation along the sequence dimension. Finally, \mathbf{w} is projected by a lightweight projector g_{ψ} into
 188 $\mathbf{z} = g_{\psi}(\mathbf{w})$, providing a compact summary for contrastive learning (Chen et al., 2020), while the
 189 original embeddings \mathbf{h} serves as the conditioning input to the action decoder.

190 **Incorporating robot states into contrastive learning.** To effectively restructure the VLM repre-
 191 sentation space to capture robotic signals, we introduce a supervised contrastive learning objective
 192 assigned with *soft weights* (Khosla et al., 2020; Suresh & Ong, 2021), that incorporate the distance be-
 193 tween proprioceptive states. Conceptually, embeddings associated with similar proprioceptive states
 194 receive higher weights, are pulled closer in the representation space. We consider InfoNCE (Oord
 195 et al., 2018) for the contrastive loss, which is widely used in practice (Laskin et al., 2020; Nair et al.,
 196 2022; Ma et al., 2023). Formally, our *Robot State-aware Contrastive Loss* (*RS-CL*) is defined as a
 197 weighted variant of the InfoNCE loss:

$$\mathcal{L}_{\text{RS-CL}}(\{\mathbf{z}\}_{i=1}^B, \{\tilde{\mathbf{z}}\}_{j=1}^B; \phi, \psi) = - \sum_{i=1}^B \sum_{j=1}^B w_{ij} \log \frac{\exp(\text{sim}(\mathbf{z}_i, \tilde{\mathbf{z}}_j)/\tau)}{\sum_{k=1}^B \exp(\text{sim}(\mathbf{z}_i, \tilde{\mathbf{z}}_k)/\tau)}, \quad (3)$$

201 where $\{\tilde{\mathbf{z}}\}_{j=1}^B$ is the augmented batch of $\{\mathbf{z}\}_{i=1}^B$, sim denotes the cosine similarity, and $\tau > 0$ is a
 202 temperature that controls the sharpness of similarity. The soft weights w_{ij} are computed from the
 203 relative distance between proprioceptive states $\mathbf{q}_i, \mathbf{q}_j$. In practice, we use the Euclidean distance and
 204 formulate w_{ij} as follows:

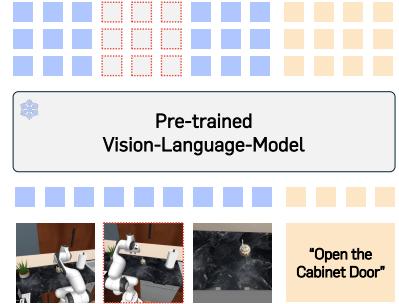
$$w_{ij} = \frac{\exp(-\|\mathbf{q}_i - \mathbf{q}_j\|_2/\beta)}{\sum_{k=1}^B \exp(-\|\mathbf{q}_i - \mathbf{q}_k\|_2/\beta)}, \quad (4)$$

205 where $\beta > 0$ is a temperature that controls the sharpness of the mapping from distance to weight.
 206 The complete training objective integrates the proposed *RS-CL* with the action prediction objective,
 207 implemented as the flow-matching loss in Eq. 1:

$$\mathcal{L} = \mathcal{L}_{\text{FM}} + \lambda \mathcal{L}_{\text{RS-CL}}, \quad (5)$$

208 where we jointly optimize θ , ϕ , and ψ .

209 **Representation augmentation for contrastive pairs.** The primary goal of our augmentation
 210 strategy is to generate diverse contrastive pairs while preserving the semantics tied to the robot’s
 211 proprioceptive states. In line with this goal, we exploit the property that VLA models commonly



212 **Figure 3: Representation-level augmentation for contrastive pairs.** View *cutoff* is an simple augmentation
 213 that randomly masks out the embedding slice of one observation view from the
 214 VLM representation.

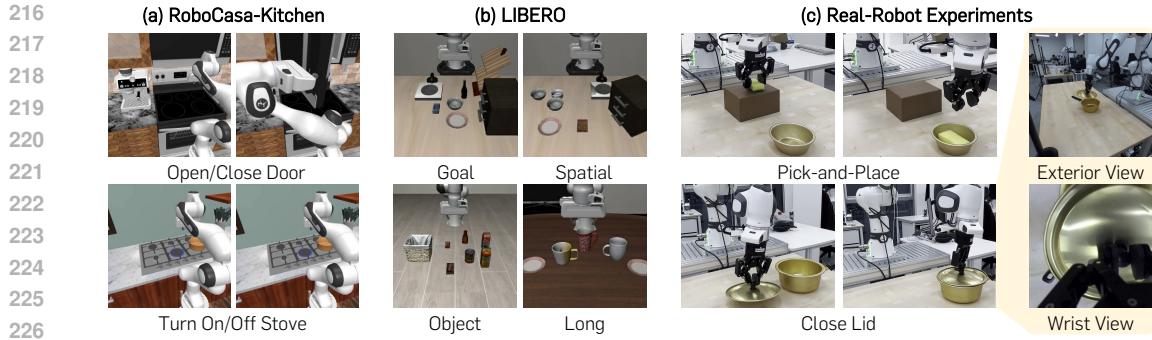


Figure 4: **Example of tasks used in our experiments.** We study RS-CL on multitask simulation benchmarks of (a) RoboCasa-Kitchen (Nasiriany et al., 2024) and (b) LIBERO (Liu et al., 2023a). In addition, we consider (c) real-robot manipulation tasks considering pick-and-place, and a close lid task, utilizing two camera viewpoints.

process observations of the same scene from multiple views, and propose *view cutoff* (See Fig. 3), a simple representation-level augmentation inspired by cutoff (Shen et al., 2020). *View cutoff* randomly selects a single view index $i \in \{1, \dots, V\}$ and masks out the corresponding feature slice from the VLM output $\text{VLM}(\mathbf{O}_t^V, \mathbf{c})$. Unlike data-level augmentations requiring additional forward passes through the VLM for each augmented batch, view cutoff operates at the representation level, obtaining alternative representations with minimal overhead. As a result, only the lightweight adapter f_ϕ and projector g_ψ are required to process the augmented variants, making the method substantially more efficient, yet still providing diverse pairs for contrastive learning.

3 EXPERIMENTS

In this section, we evaluate the effectiveness of RS-CL across diverse training scenarios. In Section 3.1, we examine its impact when applied on top of large-scale pre-trained state-of-the-art Vision-Language-Action (VLA) models on challenging multitask manipulation benchmarks: RoboCasa-Kitchen (Nasiriany et al., 2024) and LIBERO (Liu et al., 2023a). We also demonstrate its applicability to real-world tasks using a 7-DoF manipulator. In Section 3.2, we further validate RS-CL in the setting where a VLA model is trained from scratch, starting from a pre-trained VLM. For an overview of the benchmark tasks and real-robot experiments, see Fig. 4.

Implementation and training details. We adopt GR00T N1.5 (GEAR, 2025) as our baseline VLA framework and, unless otherwise specified, we follow the training and inference settings from the original implementation. For the contrastive regularization path, the projection head g_ψ is a 2-layer MLP with hidden dimension 2048 and projection dimension 128. The weighting coefficient λ for $\mathcal{L}_{\text{RS-CL}}$ is initialized to 1.0 and decayed to 0 using a cosine schedule, such that representation refinement is emphasized in early training while accurate action prediction becomes the main focus later. For proprioceptive inputs, we primarily use the end-effector position (x, y, z) , 6D rotation, and gripper state. In the real-world tasks, we additionally explore the use of absolute joint positions of the 7-DoF manipulator to examine variations in proprioceptive configurations. Further training details for each experiment are provided in Appendix B.2.

Baselines. We primarily validate RS-CL on top of the GR00T N1.5 training pipeline, a state-of-the-art VLA model trained with large-scale robot trajectories. To provide context on the benchmarks, we also report the performance of representative VLA models, including π_0 (Black et al., 2025b), π_0 -FAST (Pertsch et al., 2025), and GR00T N1 (Bjorck et al., 2025). For reproduced performance of π_0 -FAST and π_0 on RoboCasa-Kitchen, we train for 30K and 60K gradient steps, respectively, with a global batch size of 64, following the original settings as closely as possible. In Section 3.2, we include as a baseline further-training the VLM with various instructions curated with robotics data, and then fine-tuning for action prediction. We make use of state-of-the-art embodied reasoning models such as RoboBrain (Team et al., 2025), VeBrain (Luo et al., 2025), and Cosmos-Reason1 (Azzolini et al., 2025), as well as models trained for discretized action prediction (Hung et al., 2025).

270
 271 Table 1: **RoboCasa-Kitchen benchmark success rate (%)**. Results include fine-tuned performance
 272 of representative VLA models (π_0 -FAST, π_0 , and GR00T N1). Performance of GR00T N1 is from the
 273 original work (Bjorck et al., 2025), while results of π_0 , π_0 -FAST, and GR00T N1.5 are reproduced.
 274 Best and runner-up results are highlighted in **bold** and underline, respectively.

Method	30 demos			100 demos			300 demos		
	PnP	Others	Avg.	PnP	Others	Avg.	PnP	Others	Avg.
π_0 (Black et al., 2025b)	20.0	61.3	47.8	32.7	<u>71.6</u>	58.7	45.0	<u>72.9</u>	62.5
π_0 -FAST (Pertsch et al., 2025)	9.3	40.0	29.8	47.3	<u>67.5</u>	60.2	51.3	<u>71.3</u>	63.6
GR00T N1 (Bjorck et al., 2025)	0.4	25.9	17.4	2.2	47.0	32.1	22.6	63.1	49.6
GR00T N1.5 (GEAR, 2025)	30.8	56.9	48.2	<u>51.8</u>	70.0	<u>63.9</u>	<u>55.3</u>	70.9	65.7
+ RS-CL (Ours)	41.5	<u>58.8</u>	53.0	58.0	71.8	67.2	59.8	74.6	69.7

282
 283 Table 2: **LIBERO benchmark success rate (%)**. Results include fine-tuned performance of
 284 representative VLA models (π_0 -FAST, π_0 , and GR00T N1). Performance of π_0 -FAST, π_0 are from
 285 the original work (Black et al., 2025b; Pertsch et al., 2025), while the results of GR00T N1 and
 286 GR00T N1.5 are reproduced. Best results are highlighted in **bold**.

Method	Spatial	Object	Goal	Long	Avg.
π_0 (Black et al., 2025b)	96.4	98.8	95.8	85.2	94.1
π_0 -FAST (Pertsch et al., 2025)	96.4	96.8	88.6	60.2	85.5
GR00T N1 (Bjorck et al., 2025)	95.6	97.6	94.2	89.6	94.3
GR00T N1.5 (GEAR, 2025)	98.2	99.4	97.2	87.8	95.7
+ RS-CL (Ours)	98.4	98.6	98.2	90.4	96.4

294 3.1 FINE-TUNING EXPERIMENTS

295
 296 We first evaluate RS-CL in a fine-tuning scenario, where it is integrated into a state-of-the-art
 297 pre-trained VLA model. This setup tests whether RS-CL can yield additional gains on weights
 298 already optimized for large-scale action prediction, demonstrating its ability to further enhance strong
 299 pretrained policies. We adopt RoboCasa-Kitchen (Nasiriany et al., 2024) and LIBERO (Liu et al.,
 300 2023a), two multitask benchmarks as our simulation experiments. To further validate the effectiveness
 301 of our method beyond simulation, we conduct real-robot experiments on a Franka Research 3 arm,
 302 covering both in-domain and generalization performance.

303 **Setup.** RoboCasa-Kitchen consists of 24 atomic manipulation tasks in a simulated kitchen environment
 304 with three camera views (2 exterior, 1 wrist camera). We evaluate RS-CL under varying numbers
 305 of demonstrations (30, 100, 300) using the publicly available dataset generated by MimicGen (Man-
 306 dlekar et al., 2023). LIBERO is also a multitask simulation benchmark comprising four task suites:
 307 spatial, object, goal, and long (each with 10 tasks and 50 demonstrations per task), utilizing two
 308 camera views (1 exterior, 1 wrist camera). For LIBERO, we utilize the filtered dataset from Kim et al.
 309 (2024) and jointly train the four task suites (see Appendix B for details). To further assess whether
 310 RS-CL leads to more precise actions in task execution, we design our real-robot experiments primarily
 311 around pick-and-place tasks, which require accurate positioning during grasping and placing. We also
 312 introduce a challenging close-lid task, where the lid has a small handle that is more difficult to grasp
 313 than other objects. Once grasped, the wrist camera view becomes occluded, requiring placement
 314 to rely mainly using the exterior camera (see Fig. 4, right). We collect and train each method with
 315 60 expert demonstrations for 4 pick-and-place tasks across diverse objects (teddy bear, sponge, cup,
 316 cube) and environments (box, bowl, plate, basket), and the close-lid task, utilizing two camera views
 317 (1 exterior, 1 wrist camera) (see Appendix C for details).

318 **Simulation results.** Table 1 summarizes the performance of RS-CL on RoboCasa-Kitchen. Across
 319 all dataset sizes, RS-CL consistently outperforms the original GR00T N1.5 fine-tuning framework.
 320 In particular, pick-and-place tasks exhibit a substantial improvement, with success rates rising from
 321 30.3% to 41.5% (+11.2%). We attribute this gain to RS-CL’s ability to generate more accurate
 322 actions during execution, which is particularly beneficial for pick-and-place tasks requiring precise
 323 positioning during grasping and placing. We further validate this in our following real-world
 324 experiments. RS-CL also improves performance on LIBERO (Table 2), confirming its robustness
 325 across different benchmarks.

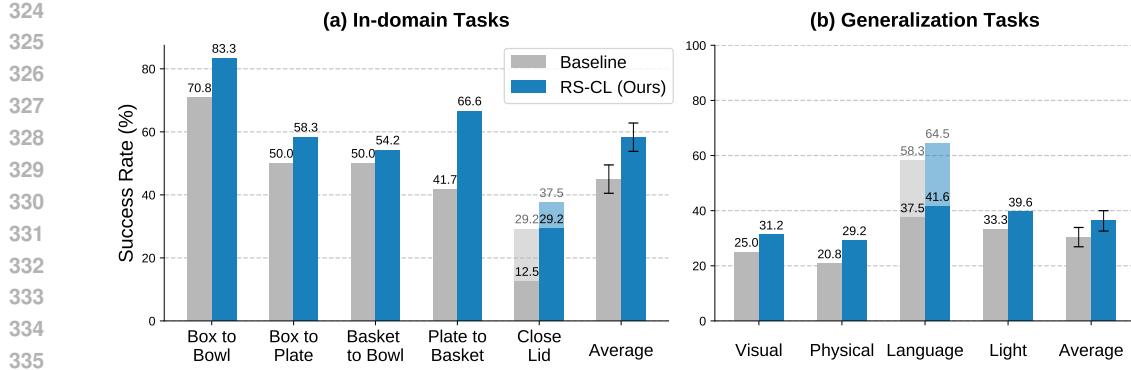


Figure 5: **Real-robot task success rate (%)**. Results on (a) in-domain tasks (4 pick-and-place and 1 close-lid task), and (b) generalization tasks (visual, physical generalization, language grounding, and light variation). For the in-domain close-lid and language grounding tasks, we report both partial success (e.g., successful pickup, language following; transparent bars) and full success (solid bars).

Figure 6: **Qualitative results on real-robot manipulation task**. Under partial-view occlusion at the wrist view, the baseline model (left) fails to align the lid with the pot, resulting in inaccurate placement. In contrast, RS-CL (right) achieves precise alignment and successful closing by effectively incorporating proprioceptive state information into its representation.

Real-robot experiment results. RS-CL consistently improves performance across real-robot tasks (see Fig. 5a). In particular, for the close-lid task, RS-CL brings improvements not only in partial success (*i.e.*, lifting the lid) but also larger gains in complete success (*i.e.*, accurately closing the pot) even under occluded viewpoints (see Fig. 6). We attribute this effect to two factors: (i) proprioceptive supervision enables more accurate positioning, and (ii) the proposed *view cutoff* augmentation promotes view-invariant representations, thereby improving robustness to partial occlusion. In addition, our generalization experiments show that RS-CL maintains strong generalization performance of VLAs across visual, physical shifts, and in the terms of language grounding (see Fig. 5b).

3.2 FROM-SCRATCH EXPERIMENTS

In this section, we evaluate the impact of RS-CL in a from-scratch training scenario, where we train a VLA model on top of general-purpose pre-trained VLM backbones of Qwen2.5-VL (Bai et al., 2025), GR00T N1.5 VLM (GEAR, 2025) and SigLIP2 (Tschannen et al., 2025). This setup directly aligns with our motivation that pre-trained VLM representations lack sensitivity to robotic signals, and allows us to validate whether explicitly aligning them to proprioceptive information yields performance gains. Furthermore, we compare the effect on RS-CL against baselines obtained by further training VLMs on robotics datasets.

Setup. We adopt RoboCasa-Kitchen as our main benchmark, and use 300 demonstrations for training all models. For the VLA training framework, we attach a randomly initialized action decoder to various pre-trained VLMs, with a lightweight adapter module f_ϕ in between. We freeze the VLM and train the adapter to refine condition representations, except for SigLIP2, where we experiment with an unfrozen VLM setting either to study how RS-CL interacts with different numbers of trainable backbone parameters. For the action decoder, we adopt a 16-layer DiT with 0.5B parameters. For the further-trained VLM baselines, we utilize RoboBrain (Team et al., 2025), VeBrain (Luo et al., 2025), and Cosmos-Reason1 (Azzolini et al., 2025), which are high-performing baselines further trained

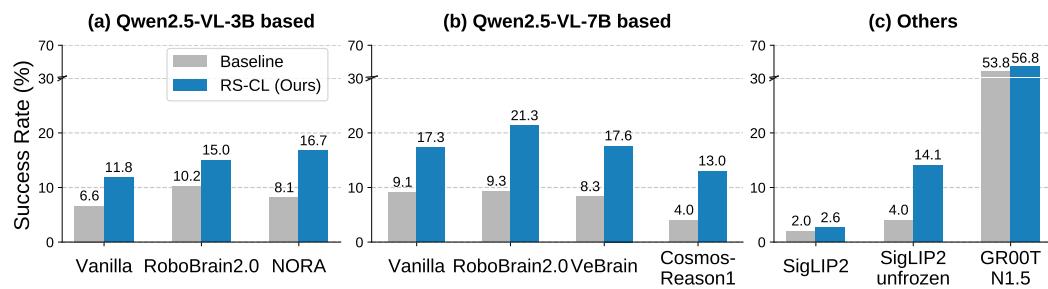


Figure 7: **From-scratch experiments.** Success rates (%) on RoboCasa-Kitchen for VLA models trained from various VLM backbones. Vanilla indicates Qwen2.5-VL. Results show the effects of RS-CL on top of backbones further trained with robotics data, based on (a) Qwen2.5-VL-3B, (b) 7B, as well as (c) SigLIP2 and GR00T N1.5 to provide diverse results across backbone and train capacity.

Table 3: **Ablation study.** Results report the average success rate (%) on RoboCasa-Kitchen with 300 demonstrations, analyzing the effect of (a) different distance definitions for soft-label supervision of robotic signals and (b) representation augmentation strategies for RS-CL.

Soft-label target	Avg.
Baseline (<i>i.e.</i> , no regularization)	65.7
No soft label (<i>i.e.</i> , InfoNCE)	67.3
Next action sequence distance	66.7
Next single action distance	66.8
Current state distance	69.7

(a) Soft-label target.

Augmentation method	Avg.
No augmentation	65.3
Token cutoff	66.3
Feature cutoff	67.5
Span cutoff	67.3
View cutoff	69.7

(b) Representation augmentation method.

from Qwen2.5-VL on embodied reasoning with robotics dataset, and NORA (Hung et al., 2025), which is trained on the Open-X-Embodiment (O’Neill et al., 2024) dataset to predict FAST (Pertsch et al., 2025) tokenized actions (see Appendix A.2 for details).

Results on general-purpose VLM backbones. Fig. 7 summarizes the effect of RS-CL when training VLA models from different pre-trained VLMs. Across all backbones, RS-CL consistently improves success rates, demonstrating that our representation regularization generalizes beyond a particular backbone model. On SigLIP2, RS-CL yields larger improvements from 4.0% to 14.1% when the backbone is unfrozen, indicating that RS-CL benefits from increased trainable capacity.

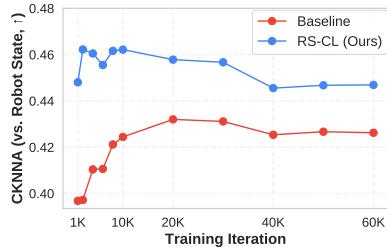
Comparison to VLM training strategy. Fig. 7 compares RS-CL with VLMs that are further trained on robotics datasets for tasks such as visual grounding, embodied reasoning, and discretized action prediction. While such further-trained VLMs, when used as conditioning models, provide only limited and often inconsistent gains across backbone families, RS-CL consistently delivers larger improvements. It achieves higher success rates than any of these adapted models on both Qwen2.5-VL-3B and 7B, and further enhances their benefits when combined with them. Even for GR00T N1.5, which is derived from Eagle 2.5 VLM (Chen et al., 2025) with enhanced grounding and reasoning capabilities, RS-CL provides additional gains. These results suggest that robotics-specific training alone may not fully close the gap between general-purpose VLM representations and the control signals required for action generation, while RS-CL effectively bridges much of this gap.

3.3 MORE ANALYSIS

Effect of soft-label supervision target. In Table 3a, we observe that standard InfoNCE improves over the baseline without contrastive learning, demonstrating the effectiveness of our training framework, namely contrastive representation regularization for VLA models (see Appendix D.1 for further analysis). However, alternative supervision signals (see Appendix B.3 for distance definition of targets) such as next action distances fall below vanilla InfoNCE. A plausible reason is that the next action itself serves as the prediction target, making it difficult to use as a reliable alignment signal. In contrast, the robot proprioceptive state provides a stable cue for representation alignment.

432
 433 **Table 4: Comparison with temporal contrastive objectives.** Results report the average success
 434 rate (%) on RoboCasa-Kitchen with 30 demonstrations, together with FLOPs per sample in the
 435 forward process in training, and wall-clock training time. Best results among non-baseline methods
 436 are highlighted in **bold**.

Method	Success rate (% , \uparrow)	FLOPs ($\times 10^{12}$, \downarrow)	Training time (hours, \downarrow)
Baseline	48.2	2.58	23.06 (+ 0.0%)
Multi-view TCN	50.0	7.53	47.77 (+107.1%)
Single-view TCN	50.3	7.53	51.87 (+124.9%)
RS-CL	53.0	2.91	23.49 (+ 1.3%)



444
 445 **Effect of representation augmentation strategy.** In
 446 Table 3b, we observe limited improvements from similar
 447 representation-level cutoff operations (Shen et al., 2020),
 448 while our proposed view cutoff achieves the highest suc-
 449 cess rate. This shows that simulating viewpoint variation
 450 is particularly beneficial for robust representation learning
 451 in multi-view robotic manipulation settings. This is in
 452 line with prior works, addressing the effects of utilizing
 453 multi-view data for representation learning (Weinzaepfel
 454 et al., 2022; Seo et al., 2023).

455 **Quantitative analysis of representation alignment.** We
 456 further measure how RS-CL improves the alignment of
 457 VLM representations with robotic signals with
 458 CKNNA (Huh et al., 2024). As shown in Fig. 8, RS-
 459 CL increases representation similarity between learned
 460 embeddings and proprioceptive features, indicating that
 461 RS-CL successfully reshapes the embedding space toward
 462 capturing control-relevant signals. Details are described
 463 in Appendix B.3.

464 **Comparison with temporal contrastive objectives.** To contextualize RS-CL among existing
 465 representation learning approaches, we compare against time-contrastive networks (TCN) (Sermanet
 466 et al., 2018), a widely used temporal contrastive method in robotics. TCN learns embeddings by
 467 enforcing that temporally close observations are mapped close together in representation space
 468 while observations from distant timesteps are pushed apart. We implement TCN as an auxiliary
 469 objective on top of GR00T-N1.5 and consider both a multi-view and a single-view variant for
 470 comparison. Details about the implementation and variants are described in Appendix B.3. Table 4
 471 shows that both the multi-view and single-view TCN objectives slightly improve the success rate
 472 over the baseline, confirming that temporal contrastive regularization can strengthen the learned
 473 representations. However, these gains come at a substantial computational cost. The FLOPs per
 474 sample nearly triple ($2.58 \times 10^{12} \rightarrow 7.53 \times 10^{12}$), and the wall-clock training time more than
 475 doubles due to additional VLM forward passes for positive/negative pairs and the overhead of mining
 476 temporally structured samples. In contrast, RS-CL achieves the highest success rate of 53.3% while
 477 only modestly increasing FLOPs and wall-clock time (+1.3%), since the augmentation strategy, *view-
 478 cutoff* operates at the representation-level after a single VLM forward pass. Overall, RS-CL serves as
 479 an effective yet lightweight regularizer integrated into end-to-end VLA training, strengthening the
 480 conditioning representations without incurring significant additional computational overhead.

4 RELATED WORK

481 **Leveraging VLM representations for robot manipulation.** Vision-Language-Action (VLA)
 482 models have shown strong capabilities in robotic control by leveraging semantically enriched features
 483 from pre-trained Vision-Language Models (VLMs) (Zitkovich et al., 2023; Driess et al., 2023; Kim
 484 et al., 2024; Black et al., 2025b; Pertsch et al., 2025; Bjorck et al., 2025). A widely used architecture
 485 for VLA models consists of a pre-trained VLM and an action decoder with its parameters (Black

486 et al., 2025b; Bjorck et al., 2025; Shukor et al., 2025; Li et al., 2024; Zhou et al., 2025; Yang et al.,
 487 2025; Wen et al., 2025), training the VLM backbone with action prediction loss. Prior works have
 488 sought to further train VLMs for core knowledge of robot manipulation such as embodied reasoning
 489 and physical grounding (Ji et al., 2025; Luo et al., 2025; Azzolini et al., 2025; GEAR, 2025), or by
 490 discretized action prediction (Kim et al., 2025; Black et al., 2025a). Other methods jointly train
 491 the VLM with the action decoder on the aforementioned objectives. (Driess et al., 2025; Yang et al.,
 492 2025). Distinct from these approaches, our method does not rely on large-scale curated robotics
 493 datasets but instead improves VLM representations via a self-supervised objective.

494 **Contrastive representation learning.** Contrastive learning has been widely adopted for acquiring
 495 transferable representations from high-dimensional inputs (Oord et al., 2018; Chen et al., 2020; He
 496 et al., 2020; Laskin et al., 2020; Radford et al., 2021). In robotics, contrastive objectives have been
 497 applied to enable robust transfer of visuomotor policies, leveraging temporal consistency (Sermanet
 498 et al., 2018; Ma et al., 2023; Nair et al., 2022) or multi-view data (Seo et al., 2023). Recent efforts
 499 extend this idea to multimodal alignment (Rana et al., 2023; Lee et al., 2025; Myers et al., 2023),
 500 producing behaviorally grounded embeddings for control. While prior contrastive methods focus on
 501 training good representations for downstream tasks, we integrate contrastive learning into end-to-end
 502 VLA training, complementing the original action prediction objective.

503

504 5 CONCLUSION

505

506 In this work, we present *Robot State-aware Contrastive Loss (RS-CL)*, a simple and effective
 507 regularization method that explicitly aligns representations with robot proprioceptive states. Our
 508 experiments demonstrate that RS-CL consistently improves VLA performances, particularly on tasks
 509 requiring reliable and precise positioning. These findings highlight the importance of incorporating
 510 control-relevant structure into condition representations to enhance action prediction. We hope this
 511 work encourages further exploration of incorporating robot-centric signals, such as object pose or
 512 tactile feedback, to advance VLA models toward more precise and versatile robotic control.

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REPRODUCIBILITY STATEMENT
541542 We provide our implementation details in Appendix A and further training and evaluation details in
543 Section 3 and Appendix B.2 for reproducibility. Datasets for our benchmark experiments are publicly
544 available, described at Appendix B.1.
545546 REFERENCES
547548 Alisson Azzolini, Junjie Bai, Hannah Brandon, Jiaxin Cao, Prithvijit Chattopadhyay, Huayu Chen,
549 Jinju Chu, Yin Cui, Jenna Diamond, Yifan Ding, et al. Cosmos-Reason1: From physical common
550 sense to embodied reasoning. *arXiv preprint arXiv:2503.15558*, 2025.551 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
552 Shijie Wang, Jun Tang, et al. Qwen2.5-VL technical report. *arXiv preprint arXiv:2502.13923*,
553 2025.554 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang,
555 Dieter Fox, Fengyuan Hu, Spencer Huang, et al. GR00T-N1: An open foundation model for
556 generalist humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.557 Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess, Adnan Esmail, Michael
558 Equi, Chelsea Finn, Niccolò Fusai, et al. $\pi_{0.5}$: A vision-language-action model with open-world
559 generalization. In *Conference on Robot Learning*, 2025a.560 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolò Fusai,
561 Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow model for
562 general robot control. In *Robotics: Science and Systems*, 2025b.563 Guo Chen, Zhiqi Li, Shihao Wang, Jindong Jiang, Yicheng Liu, Lidong Lu, De-An Huang, Wonmin
564 Byeon, Matthieu Le, Tuomas Rintamaki, et al. Eagle 2.5: Boosting long-context post-training for
565 frontier vision-language models. *arXiv preprint arXiv:2504.15271*, 2025.566 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
567 contrastive learning of visual representations. In *International Conference on Machine Learning*,
568 2020.569 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Ayzaan Wahid,
570 Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, et al. Palm-e: An embodied
571 multimodal language model. In *International Conference on Machine Learning*, 2023.572 Danny Driess, Jost Tobias Springenberg, Brian Ichter, Lili Yu, Adrian Li-Bell, Karl Pertsch, Allen Z
573 Ren, Homer Walke, Quan Vuong, Lucy Xiaoyang Shi, et al. Knowledge insulating vision-language-
574 action models: Train fast, run fast, generalize better. *arXiv preprint arXiv:2505.23705*, 2025.575 NVIDIA GEAR. GR00T N1.5: An improved open foundation model for generalist humanoid robots.
576 https://research.nvidia.com/labs/gear/gr00t-n1_5, 2025.577 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
578 unsupervised visual representation learning. In *IEEE Conference on Computer Vision and Pattern
579 Recognition*, 2020.580 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
581 hypothesis. In *International Conference on Machine Learning*, 2024.582 Chia-Yu Hung, Qi Sun, Pengfei Hong, Amir Zadeh, Chuan Li, U Tan, Navonil Majumder, Soujanya
583 Poria, et al. Nora: A small open-sourced generalist vision language action model for embodied
584 tasks. *arXiv preprint arXiv:2504.19854*, 2025.585 Yuheng Ji, Huajie Tan, Jiayu Shi, Xiaoshuai Hao, Yuan Zhang, Hengyuan Zhang, Pengwei Wang,
586 Mengdi Zhao, Yao Mu, Pengju An, et al. Robobrain: A unified brain model for robotic manipulation
587 from abstract to concrete. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2025.

594 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
 595 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In *Advances in Neural*
 596 *Information Processing Systems*, 2020.

597

598 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 599 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 600 vision-language-action model. In *Conference on Robot Learning*, 2024.

601

602 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
 603 speed and success. *arXiv preprint arXiv:2502.19645*, 2025.

604

605 Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
 606 network representations revisited. In *International Conference on Machine Learning*, 2019.

607

608 Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
 609 for reinforcement learning. In *International Conference on Machine Learning*, 2020.

610

611 Sung-Wook Lee, Xuhui Kang, Brandon Yang, and Yen-Ling Kuo. Class: Contrastive learning via
 612 action sequence supervision for robot manipulation. In *Conference on Robot Learning*, 2025.

613

614 Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
 615 Sicheng Xu, Yizhong Zhang, et al. Cogact: A foundational vision-language-action model for
 616 synergizing cognition and action in robotic manipulation. *arXiv preprint arXiv:2411.19650*, 2024.

617

618 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 619 for generative modeling. In *International Conference on Learning Representations*, 2023.

620

621 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 622 Benchmarking knowledge transfer for lifelong robot learning. In *Advances in Neural Information*
 623 *Processing Systems*, 2023a.

624

625 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Advances*
 626 *in Neural Information Processing Systems*, 2023b.

627

628 Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. *arXiv preprint*
 629 *arXiv:2209.14577*, 2022.

630

631 Gen Luo, Ganlin Yang, Ziyang Gong, Guanzhou Chen, Haonan Duan, Erfei Cui, Ronglei Tong,
 632 Zhi Hou, Tianyi Zhang, Zhe Chen, et al. Visual embodied brain: Let multimodal large language
 633 models see, think, and control in spaces. *arXiv preprint arXiv:2506.00123*, 2025.

634

635 Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
 636 Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training. In
 637 *International Conference on Learning Representations*, 2023.

638

639 Ajay Mandlekar, Soroush Nasiriany, Bowen Wen, Iretiayo Akinola, Yashraj Narang, Linxi Fan, Yuke
 640 Zhu, and Dieter Fox. Mimicgen: A data generation system for scalable robot learning using human
 641 demonstrations. In *Conference on Robot Learning*, 2023.

642

643 Vivek Myers, Andre Wang He, Kuan Fang, Homer Rich Walke, Philippe Hansen-Estruch, Ching-An
 644 Cheng, Mihai Jalobeanu, Andrey Kolobov, Anca Dragan, and Sergey Levine. Goal representations
 645 for instruction following: A semi-supervised language interface to control. In *Conference on Robot*
 646 *Learning*, 2023.

647

648 Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
 649 visual representation for robot manipulation. In *Conference on Robot Learning*, 2022.

650

651 Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
 652 Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for generalist
 653 robots. In *Robotics: Science and Systems*, 2024.

654

655 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
 656 coding. *arXiv preprint arXiv:1807.03748*, 2018.

648 Abby O'Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
 649 Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open X-Embodiment:
 650 Robotic learning datasets and RT-X models : Open x-embodiment collaboration. In *ICRA*, 2024.
 651

652 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *IEEE International
 653 Conference on Computer Vision*, 2023.

654 Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
 655 Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
 656 models. *arXiv preprint arXiv:2501.09747*, 2025.
 657

658 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 659 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 660 models from natural language supervision. In *International Conference on Machine Learning*,
 661 2021.

662 Krishan Rana, Andrew Melnik, and Niko Sünderhauf. Contrastive language, action, and state
 663 pre-training for robot learning. *arXiv preprint arXiv:2304.10782*, 2023.
 664

665 Younggyo Seo, Junsu Kim, Stephen James, Kimin Lee, Jinwoo Shin, and Pieter Abbeel. Multi-view
 666 masked world models for visual robotic manipulation. In *International Conference on Machine
 667 Learning*, 2023.

668 Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, and Sergey
 669 Levine. Time-contrastive networks: Self-supervised learning from video. In *IEEE International
 670 Conference on Robotics and Automation*, 2018.
 671

672 Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru Qu, and Weizhu Chen. A simple but tough-
 673 to-beat data augmentation approach for natural language understanding and generation. *arXiv
 674 preprint arXiv:2009.13818*, 2020.

675 Mustafa Shukor, Dana Aubakirova, Francesco Capuano, Pepijn Kooijmans, Steven Palma, Adil Zouï-
 676 tine, Michel Aractingi, Caroline Pascal, Martino Russi, Andres Marafioti, et al. Smolvla: A vision-
 677 language-action model for affordable and efficient robotics. *arXiv preprint arXiv:2506.01844*,
 678 2025.

679 Varsha Suresh and Desmond C Ong. Not all negatives are equal: Label-aware contrastive loss
 680 for fine-grained text classification. In *Conference on Empirical Methods in Natural Language
 681 Processing*, 2021.

682 BAAI RoboBrain Team, Mingyu Cao, Huajie Tan, Yuheng Ji, Minglan Lin, Zhiyu Li, Zhou Cao,
 683 Pengwei Wang, Enshen Zhou, Yi Han, et al. Robobrain 2.0 technical report. *arXiv preprint
 684 arXiv:2507.02029*, 2025.

686 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 687 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:
 688 Multilingual vision-language encoders with improved semantic understanding, localization, and
 689 dense features. *arXiv preprint arXiv:2502.14786*, 2025.
 690

691 Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Romain Brégier, Yohann Cabon, Vaibhav Arora,
 692 Leonid Antsfeld, Boris Chidlovskii, Gabriela Csurka, and Jérôme Revaud. Croco: Self-supervised
 693 pre-training for 3d vision tasks by cross-view completion. In *Advances in Neural Information
 694 Processing Systems*, 2022.

695 Junjie Wen, Minjie Zhu, Yichen Zhu, Zhibin Tang, Jinming Li, Zhongyi Zhou, Chengmeng Li,
 696 Xiaoyu Liu, Yixin Peng, Chaomin Shen, et al. Diffusion-vla: Generalizable and interpretable robot
 697 foundation model via self-generated reasoning. In *International Conference on Machine Learning*,
 698 2025.

699 Shuai Yang, Hao Li, Yilun Chen, Bin Wang, Yang Tian, Tai Wang, Hanqing Wang, Feng Zhao,
 700 Yiyi Liao, and Jiangmiao Pang. Instructvla: Vision-language-action instruction tuning from
 701 understanding to manipulation. *arXiv preprint arXiv:2507.17520*, 2025.

702 Ruijie Zheng, Jing Wang, Scott Reed, Johan Bjorck, Yu Fang, Fengyuan Hu, Joel Jang, Kaushil
703 Kundalia, Zongyu Lin, Loic Magne, et al. Flare: Robot learning with implicit world modeling. In
704 *Conference on Robot Learning*, 2025.

705
706 Zhongyi Zhou, Yichen Zhu, Minjie Zhu, Junjie Wen, Ning Liu, Zhiyuan Xu, Weibin Meng, Ran
707 Cheng, Yixin Peng, Chaomin Shen, et al. Chatvla: Unified multimodal understanding and robot
708 control with vision-language-action model. *arXiv preprint arXiv:2502.14420*, 2025.

709 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
710 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
711 to robotic control. In *Conference on Robot Learning*, 2023.

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A HYPERPARAMETERS AND IMPLEMENTATION DETAILS**
757758 **A.1 HYPERPARAMETERS**
759

760 For the weighting coefficient for $\mathcal{L}_{\text{RS-CL}}$, λ , we initialize
761 to 1.0 and decayed to 0 using a cosine schedule
762 by maximum training steps, such that representation
763 refinement is emphasized in early training while ac-
764 curate action prediction becomes the main focus later.
765 For similarity temperature τ and soft weight tem-
766 perature β , we use 0.2 and 1.0, respectively. **We**
767 **systematically analyze the sensitivity of our method**
768 **to its main hyperparameters, and observe that per-**
769 **formance remains stable over a wide range of settings,**
770 **as summarized in Table 5.**

771 **A.2 IMPLEMENTATION**
772 **DETAILS FOR FROM-SCRATCH VLA TRAINING**
773

774 We attach a randomly initialized action decoder to
775 various pre-trained VLMs, with a lightweight adapter
776 module f_ϕ in between. Following **GEAR (2025)**,
777 we define VLM($\mathbf{O}_t^V, \mathbf{c}$) as the hidden represen-
778 tation from layer 12 out of 36 layers for Qwen2.5-
779 VL-3B variants and the GR00T N1.5 backbone.
780 For Qwen2.5-VL-7B, we extract VLM($\mathbf{O}_t^V, \mathbf{c}$) from
781 layer 18 out of 28, which yields higher performance
782 in our layer ablation study on LIBERO (see Table 6).
783 For SigLIP, we instead use the final hidden represen-
784 tation as the condition embedding.

785 As the action decoder, we adopt a 16-layer DiT with
786 0.5B parameters. Empirically, we find that omit-
787 ting a projection layer to reduce embedding dimen-
788 sionality before conditioning improves performance
789 (see Table 6). Accordingly, we do not apply such
790 a layer. Instead, for Qwen2.5-VL-7B variants, we
791 use a larger attention dimension that matches its hid-
792 den size $d_{\text{model}} = 3584$, while Qwen2.5-VL-3B uses
793 $d_{\text{model}} = 2048$.

794 **Table 5: Results report the average suc-
795 cess rate (%) on RoboCasa-Kitchen with 30
796 demonstrations, analyzing the effect and sen-
797 sitivity to main hyperparameters of RS-CL.**

Hyperparameters	Avg.
baseline	48.2
λ schedule	
λ decay 1.0 → 0	53.0
λ no schedule ($\lambda = 1.0$)	50.7
λ no schedule ($\lambda = 0.5$)	51.0
Similarity temperature τ	
$\tau = 0.01$	51.6
$\tau = 0.02$	53.0
$\tau = 0.05$	52.0
$\tau = 0.1$	53.3
$\tau = 1.0$	51.1
Distance temperature β	
$\beta = 0.1$	51.2
$\beta = 1.0$	53.0
$\beta = 10.0$	49.8
Projection dimension	
Proj. dim 2048 → 64	50.9
Proj. dim 2048 → 128	53.0
Proj. dim 2048 → 256	51.2
Batch size	
baseline (bs32)	48.4
RS-CL (bs32)	51.5
baseline (bs64)	48.2
RS-CL (bs64)	53.0
Training seeds (0, 7, 42)	
baseline	49.2 / 48.8 / 48.2
RS-CL	54.7 / 51.3 / 53.0

798 **Table 6: Hidden representation layer ablations on Qwen2.5-VL-7B backbone.** We report success
799 rates (%) on the LIBERO benchmark, varying the hidden layer index used as the conditioning
800 representation for VLA models trained from scratch.

Layer	Spatial	Object	Goal	Long	Avg.
12 (with projection)	87.4	94.2	41.8	40.4	66.0
18 (with projection)	86.8	83.4	61.6	44.0	69.0
18 (no projection)	85.2	89.4	73.2	36.2	71.0
24 (with projection)	85.2	89.4	73.2	36.2	57.0

810
811

A.3 HARDWARE DETAILS AND COMPUTATION OVERHEAD

812
813
814

All experiments are conducted on a single node equipped with $2 \times$ NVIDIA A100-SXM4-80GB GPUs and 64 CPU cores. Unless otherwise noted, we use a global batch size of 64 and train for 60K optimization steps.

815
816
817
818
819

To quantify the additional cost introduced by RS-CL, we measure both floating point operations (FLOPs) and wall-clock training time for our fine-tuning experiment in RoboCasa-Kitchen. Using a FLOPs profiler, we measure the forward FLOPs per sample during training. Table 7 summarizes the compute characteristics for both fine-tuning and from-scratch training.

820
821

Table 7: Compute overhead of RS-CL. We report estimated forward FLOPs per sample and total training time for 60K steps with global batch size 64.

822
823
824
825
826
827

Method	FLOPs / sample (forward)	Training time (hrs)
Baseline	2.576×10^{12}	23.06
RS-CL	2.909×10^{12}	23.49

828
829
830
831
832

The additional wall-clock cost introduced by RS-CL is negligible (+1.25%), because the *view-cutoff* augmentation operates directly on the VLM embeddings and RS-CL only adds a lightweight projection head and soft contrastive loss on top of the backbone forward pass. In particular, it does not require extra forward passes through the VLM backbone or longer token sequences, so the dominant compute costs of training remain essentially unchanged.

833
834

A.4 ALGORITHM

835

Algorithm 1 Training VLA with Robot State-aware Contrastive Loss (RS-CL)836
837
838
839

Require: Observations \mathbf{O}_t^V , instruction \mathbf{c} , robot state \mathbf{q} , ground-truth actions \mathbf{A}_t , hyperparameters (λ, β, τ)

Ensure: Trained parameters θ, ϕ, ψ

- 1: **for** each training step **do**
- 2: $\mathbf{h} \leftarrow f_\phi(\text{VLM}(\mathbf{O}_t^V, \mathbf{c}))$ ▷ Encode inputs with frozen VLM + adapter
- 3: $[\mathbf{h}, \mathbf{w}] \leftarrow f_\phi(\text{VLM}(\mathbf{O}_t^V, \mathbf{c}) \oplus \mathbf{u})$ ▷ Append summarization token
- 4: $\mathbf{z} \leftarrow g_\psi(\mathbf{w})$ ▷ Project summarization output
- 5: $\tilde{\mathbf{z}} \leftarrow \text{ViewCutoff}(\mathbf{z})$ ▷ View cutoff; Representation-level augmentation
- 6: $\mathcal{L}_{\text{FM}} \leftarrow \|D_\theta(\mathbf{h}, \mathbf{A}_t^s, \mathbf{q}) - (\epsilon - \mathbf{A}_t)\|_2^2$ ▷ Flow-matching loss
- 7: $w_{ij} \leftarrow \frac{\exp(-\|\mathbf{q}_i - \mathbf{q}_j\|_2 / \beta)}{\sum_k \exp(-\|\mathbf{q}_i - \mathbf{q}_k\|_2 / \beta)}$ ▷ Robot state-aware contrastive loss
- 8: $\mathcal{L}_{\text{RS-CL}} \leftarrow -\sum_{i,j} w_{ij} \log \frac{\exp(\text{sim}(\mathbf{z}_i, \tilde{\mathbf{z}}_j) / \tau)}{\sum_k \exp(\text{sim}(\mathbf{z}_i, \tilde{\mathbf{z}}_k) / \tau)}$ ▷ Contrastive loss
- 9: $\mathcal{L} \leftarrow \mathcal{L}_{\text{FM}} + \lambda \mathcal{L}_{\text{RS-CL}}$ ▷ Final joint objective
- 10: Update parameters θ, ϕ, ψ via gradient descent

840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **B SIMULATION EXPERIMENT DETAILS**865 **B.1 DATASET**

866 For RoboCasa-Kitchen, we use the publicly available dataset ¹ containing 3000 demonstrations
 867 generated with MimicGen (Mandlekar et al., 2023). For LIBERO, we use the publicly available
 868 dataset ², consisting of all 270K samples from LIBERO-Spatial, LIBERO-Object, LIBERO-Goal,
 869 and LIBERO-Long, re-rendered by Kim et al. (2024).

872 **B.2 TRAINING AND EVALUATION DETAILS**

873 For fine-tuning experiments on GR00T N1.5 (GEAR, 2025), we employ the publicly available
 874 pre-trained checkpoint ³. We follow the original training and inference recipe of GEAR (2025),
 875 including the prior distribution $p(s) = \text{Beta}(\frac{a-s}{a}; 1.5, 1)$, $a = 0.999$ for sampling the flow-matching
 876 timestep s in equation 1. All models are trained with the *new_embodiment* tag. We omit the use of
 877 future tokens (Zheng et al., 2025), as they are beyond the scope of this work.

878 For RoboCasa-Kitchen, we train for 60K gradient steps with a global batch size of 64, using AdamW
 879 with a learning rate of 1e-4 under a cosine decay schedule and 3K warmup steps. For LIBERO, we
 880 adopt a smaller global batch size of 32, as this setting yields better performance in practice.

881 For π_0 and π_0 -FAST, we use the pre-trained checkpoints ⁴ ⁵ to reproduce fine-tuned performance on
 882 RoboCasa-Kitchen. We train π_0 for 60K steps and π_0 -FAST for 30K steps, both with a global batch
 883 size of 64. We set the learning rate to 2.5e-5 with cosine decay to 2.5e-6 and 1K warmup steps. At
 884 inference, we use an action horizon $H = 16$ and execute all actions without re-planning.

885 For RoboCasa-Kitchen, we evaluate all models with 1200 trials. For LIBERO, we evaluate 50 trials
 886 for each task, following Kim et al. (2024).

887 **B.3 ANALYSIS DETAILS**

888 **Soft label target distance metric.** For the ablation study on soft label targets in Sec. 3.3, we
 889 define distances as follows. For next single action and current state, we use Euclidean distance. For
 890 next action sequence, we use Dynamic Time Warping (DTW), which measures similarity between
 891 temporal sequences that may vary in speed. DTW requires an additional temperature hyperparameter
 892 γ , which we set to 10.0. The soft weight temperature β and similarity temperature τ are fixed at 1.0
 893 and 0.2, respectively.

894 **CKNNA measurement.** CKNNA (Huh et al., 2024) is a nearest-neighbor variant of kernel alignment
 895 (Kornblith et al., 2019). We randomly sample 10 trajectories per task in RoboCasa-Kitchen,
 896 totaling 240 trajectories. Each trajectory is processed with a window size of 16, yielding 4415
 897 transitions. We extract the embeddings from the adapter module f_ϕ (used as conditioning inputs to
 898 the action decoder) along with the corresponding proprioceptive states. We follow the implementation
 899 of Huh et al. (2024) and report results with $k = 10$, measuring the alignment between proprioceptive
 900 states and conditional representations in the VLA model.

901 **TCN implementation details.** Since recent VLA models consumes multi-view observations (GEAR,
 902 2025; Black et al., 2025b) in a single forward pass, the multi-view TCN variant samples negatives
 903 from timesteps outside a temporal margin range, while positives are generated by zeroing out a
 904 randomly selected camera view. The single-view TCN variant follows the original formulation,
 905 drawing positives from a nearby temporal window and negatives from a distant temporal window.
 906 Following the original work (Sermanet et al., 2018), we set the temporal margin for defining positive
 907 and negative pairs to 0.2s.

911 ¹<https://huggingface.co/datasets/nvidia/PhysicalAI-Robotics-GR00T-X-Embodiment-Sim>

912 ²<https://huggingface.co/datasets/physical-intelligence/libero>

913 ³<https://huggingface.co/nvidia/GR00T-N1.5-3B>

914 ⁴gs://openpi-assets/checkpoints/pi0_base

915 ⁵gs://openpi-assets/checkpoints/pi0_fast_base

918 C REAL WORLD EXPERIMENT DETAILS
919920 C.1 HARDWARE PLATFORM
921922 We use Franka Research 3, a 7-DoF robotic arm equipped with a Robotiq 2F-85 gripper. For visual
923 perception, we utilize the dual camera setup: a movable Stereolabs ZED 2 provides a global view, and
924 a wrist-mounted ZED Mini captures a close-range view. Teleoperated demonstrations are collected
925 using an Oculus Quest 2, and we log time-synchronized RGB images, joint states, and gripper width
926 for training and evaluation. Demonstrations are recorded at 10 Hz.
927928 C.2 REAL-WORLD TASKS
929930 The in-domain and generalization tasks (visual, physical generalization, and language grounding)
931 along with their corresponding prompts and representative key frames from the real-world evaluation,
932 are shown in Fig. 9–12.
933934 **In-domain tasks.** We introduce four pick-and-place tasks (Box to Bowl, Box to Plate, Basket to
935 Bowl, Plate to Basket), with varied objects (teddy bear, blue cube, blue cup, yellow sponge) for each
936 task (see Fig. 9).
937938 **Visual generalization.** We use in-domain objects differing in color (*e.g.*, changing a blue cube to a
939 green cube, or a yellow sponge to a blue sponge). We further introduce background variations by
940 changing the tabletop covering or the target container (see Fig. 10).
941942 **Physical generalization.** We evaluate with unseen objects not used in training, including a yellow
943 banana, purple grapes, red strawberry, and a yellow cup (different shape and texture from the blue
944 cup used in training) (see Fig. 11).
945946 **Language grounding.** We place two in-domain objects at the pick up location, and specify which
947 one to pick up (see Fig. 12).
948949 **Light variation.** We evaluate on in-domain tasks under significantly darker lighting conditions than
950 those used in training (see Fig. 13).
951952 C.3 REAL-WORLD TRAINING AND EVALUATION DETAILS
953954 **Dataset.** We collect 60 demonstrations for each pick-and-place task and and for the close-lid task.
955956 **Training.** We jointly train a model with the 4 pick-and-place tasks, and another model for the
957 close-lid task. For pick-and-place, we employ a cartesian action space with proprioceptive states, and
958 for the close-lid task we use a joint action space to cover various configurations in manipulation.
959960 **Evaluation.** For real-robot evaluation, we report the average success rate over 24 trials for each
961 pick-and-place task, with varied objects. In the close-lid task, outcomes are classified as full success
962 (lid fully closed), partial success (partially closed), or failure (not closed). For physical generalization,
963 we evaluate on unseen objects (yellow banana, purple grapes, red strawberry, yellow cup), with
964 success defined as the accurate completion of the pick-and-place. We define language following
965 as whether the gripper approaches the correct object, and task success as completing the instructed
966 pick-and-place.
967968
969
970
971

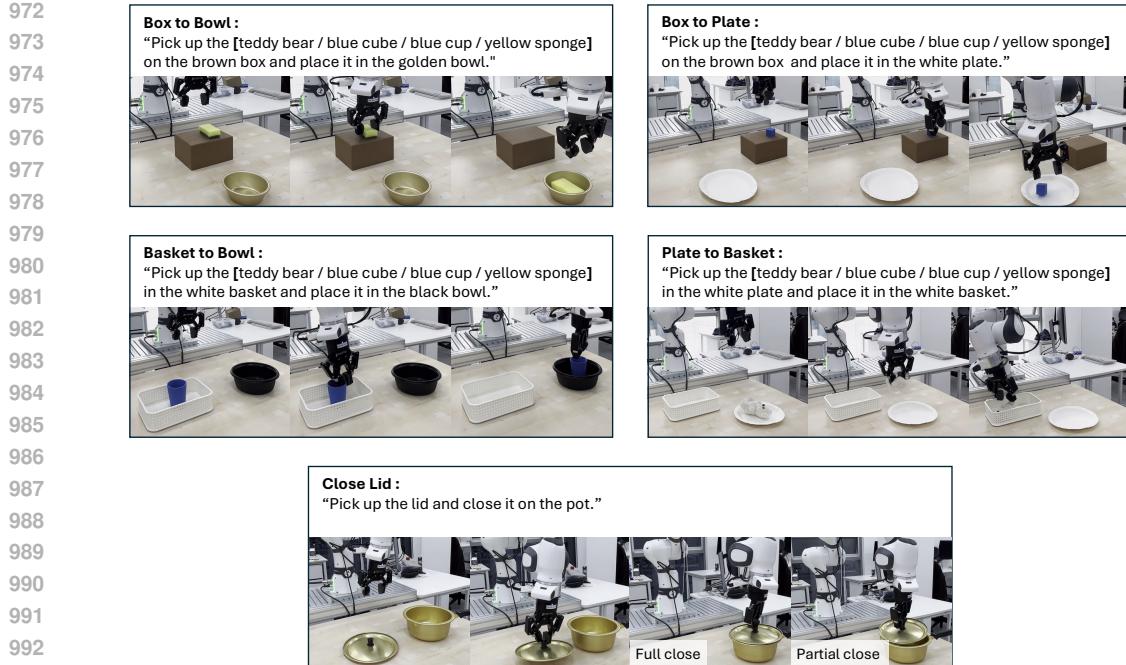


Figure 9: Real-world in-domain tasks.

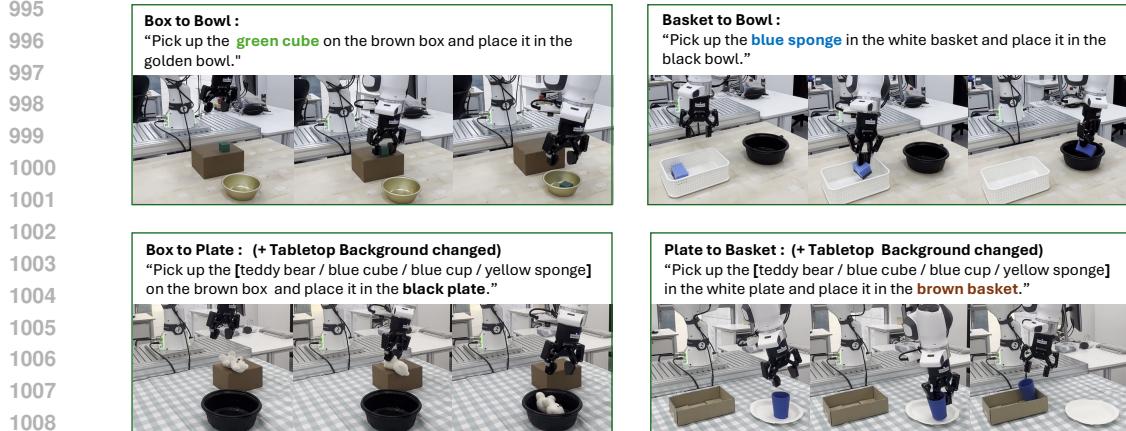


Figure 10: Real-world visual generalization tasks.

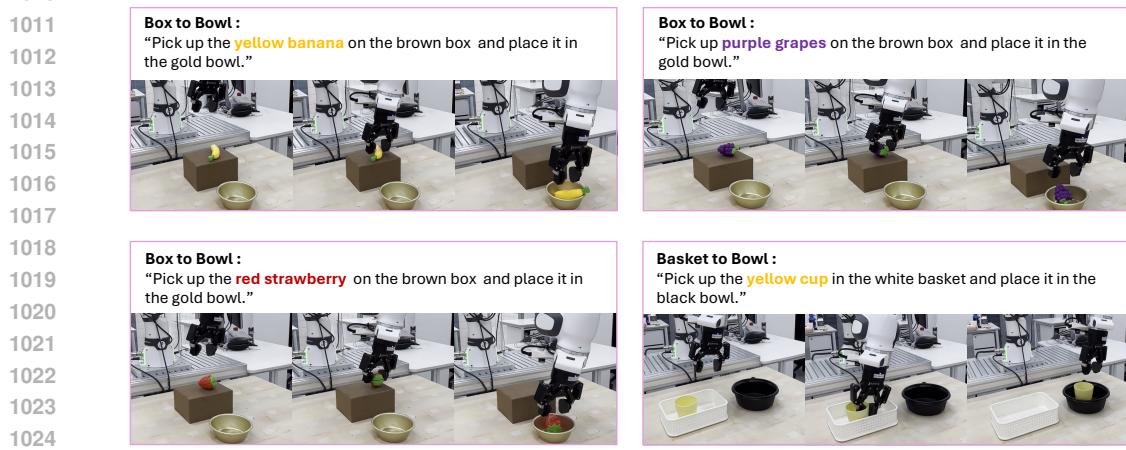


Figure 11: Real-world physical generalization tasks.

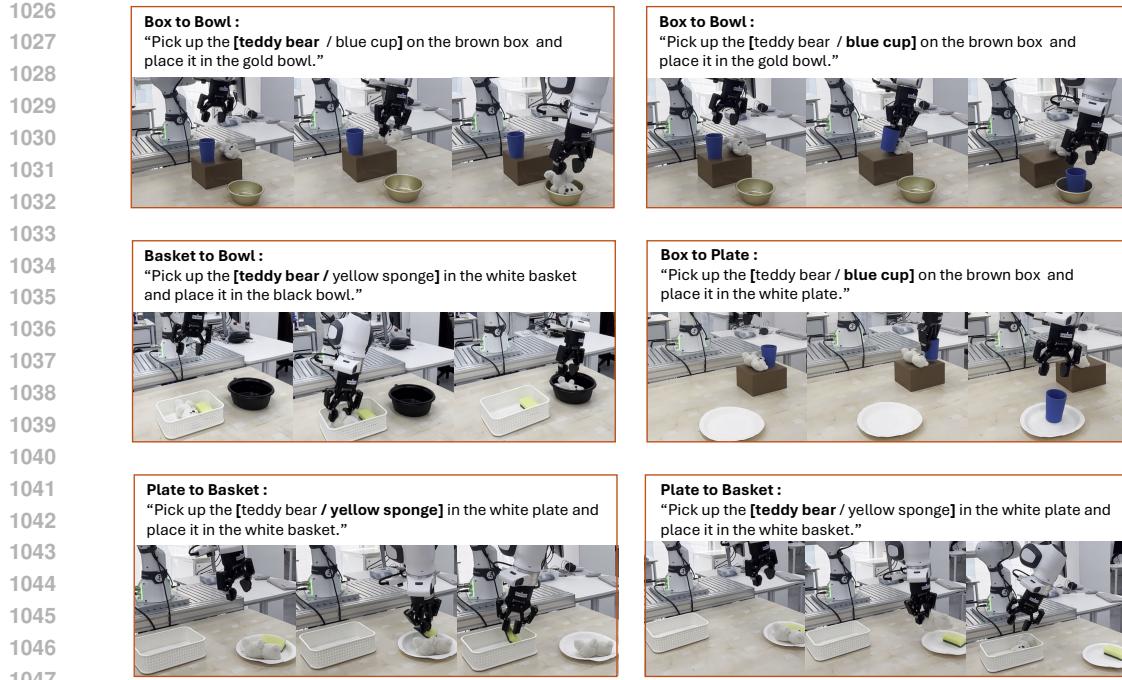


Figure 12: Real-world language grounding tasks.

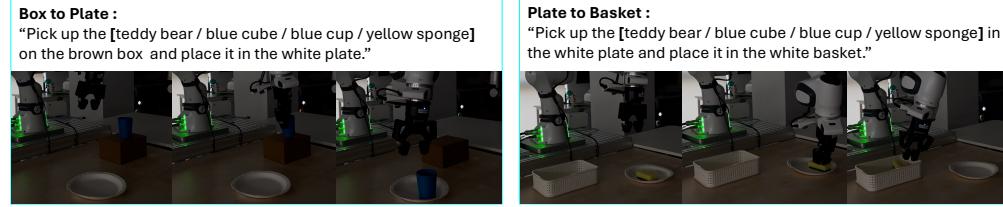


Figure 13: Real-world light variation tasks.

D FURTHER ANALYSIS

D.1 CONTRASTIVE REPRESENTATION REGULARIZATION

Table 8: RoboCasa-Kitchen benchmark success rate (%).

Method	30 demos			100 demos			300 demos		
	PnP	Others	Avg.	PnP	Others	Avg.	PnP	Others	Avg.
GR00T N1.5 (GEAR, 2025)	30.8	56.9	48.2	51.8	70.0	63.9	55.3	70.9	65.7
+ CL (Ours)	36.0	55.0	48.1	59.3	69.0	65.0	57.0	72.6	67.3
+ RS-CL (Ours)	41.5	58.8	53.0	58.0	71.8	67.2	59.8	74.6	69.7

Table 9: LIBERO benchmark success rate (%).

Method	Spatial	Object	Goal	Long	Avg.
GR00T N1.5 (GEAR, 2025)	98.2	99.4	97.2	87.8	95.7
+ CL (Ours)	97.4	99.0	97.2	87.4	95.3
+ RS-CL (Ours)	98.4	98.6	98.2	90.4	96.4

On RoboCasa-Kitchen, a contrastive representation regularization, without other supervision from low-level robotic signals (*i.e.*, InfoNCE) improves the performance of GR00T N1.5 (CL at Table 8). This result indicates the effectiveness of our proposed training framework, together with the augmentation strategy *view cutoff*. With further supervision from the robot’s proprioceptive states (RS-CL at

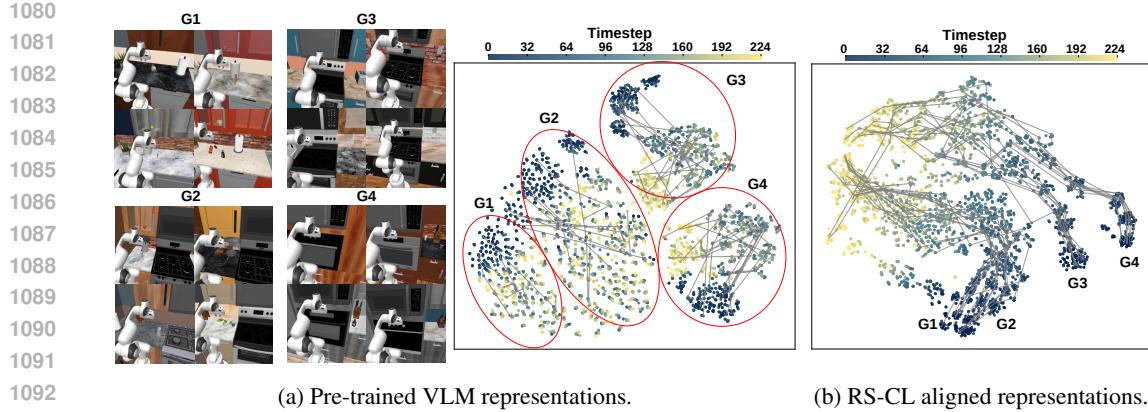


Figure 14: **Detailed visualizations of VLM representations.** (a) We visualize VLM embeddings of robot episodes performing the same task “Open the microwave / cabinet door” across different scenes in RoboCasa-Kitchen. Pre-trained VLM representations form distinct clusters primarily based on visual appearance, and the task/timestep progress trajectories (*i.e.*, gray lines starting from blue to yellow dots) are not consistently aligned across these clusters. (b) With RS-CL, the representations still preserve scene-dependent grouping, but the task progress becomes geometrically aligned across groups (*i.e.*, from bottom toward the top-left region), indicating that episodes from different environments share a common progression direction in the embedding space.

Table 8), the performance further improves, highlighting the complementary benefit of incorporating proprioceptive information into VLM representations.

On LIBERO, CL performs comparably to the baseline (95.7% vs. 95.3%), but not improvements like RoboCasa-Kichen. This is likely due to the smaller batch size, where we train RoboCasa-Kitchen with a global batch size of 64, we train LIBERO with a global batch size of 32, for better performance of baseline GR00T N1.5 (bs64: 93.40 % vs. bs32: 95.65 %). This reduces the number samples calculated in the contrastive path, leading to lower improvement. However, with supervision of proprioceptive states (**RS-CL** at Table 8), the performance improves over baseline, despite the constraints.

D.2 DETAILED VISUALIZATIONS OF VLM REPRESENTATIONS

We provide a more detailed explanation of Fig. 2 using the additional visualizations in Fig. 14. In the pre-trained VLM representation (Fig. 14a, we observe four prominent clusters (*i.e.*, G1–G4) that are clearly grouped by scene layout. Specifically, G1 corresponds to scenes where a flat, wide tabletop occupies most of the space in front of the robot; G2 to scenes with a tabletop in front and a stove or burner at the front right; G3 to scenes dominated by a stove or burner directly in front of the robot; and G4 to scenes where an oven is positioned in front of the robot. These clusters are thus primarily induced by the most visually dominant objects in the scene. However, the underlying task, “Open the microwave / cabinet door,” mainly requires the robot arm to move upward and reach an overhead door in front of the robot, which is largely independent of these dominant background objects. Consistent with this mismatch, the timestep-indexed task progress trajectories (*i.e.*, gray lines from blue to yellow) do not align across clusters, indicating that the pre-trained VLM embeddings are organized by visual appearance rather than by control-relevant task progress.

In contrast, Fig. 14b shows the condition representations of the VLA model trained with RS-CL. While episode embeddings from different scenes still form partially separated groups, the common task progress becomes geometrically aligned across these groups. Trajectories consistently evolve from the bottom toward the top-left region of the embedding space. This suggests that RS-CL reshapes the conditioning representation to be more robot-state centric, so that episodes at similar task phases are aligned even when they come from visually distinct environments, while still preserving the semantic grouping from the pre-trained VLM.

Table 10: KNN task-phase classification accuracy (%) on task trajectories across scenes. RS-CL improves the representation’s ability to classify task progress under visual changes and moves it closer to the performance obtained from ground-truth proprioceptive states.

Features	Accuracy (%)
Pre-trained VLM representation	1.2
Trained only with action prediction loss	20.3
Trained with RS-CL	22.9
Ground-truth proprioceptive state	25.6

D.3 KNN TASK-PHASE CLASSIFICATION ANALYSIS

To further analyze how RS-CL shapes the conditioning representation, we perform a cross-scene KNN task-phase classification experiment on identical manipulation trajectories replayed in different visual environments. For each trajectory, we first align the executions across scenes using Dynamic Time Warping (DTW), and discretize the aligned time axis into 32 shared task-progress classes. Each timestep is assigned a scene-invariant phase label describing where it lies in the overall execution of the task.

Given a trained model, we extract the conditioning representation at each timestep and evaluate how well it encodes task progress under visual changes by training a KNN classifier in this representation space to predict the phase labels. We compare four feature choices: (i) the pre-trained VLM representation without any robot-action training, (ii) the representation from a model trained only with the action prediction loss (baseline), (iii) the representation from a model trained with RS-CL, and (iv) the ground-truth proprioceptive state, which serves as an upper-bound reference for phase information. We use a KNN classifier with $k = 5$.

Table 10 reports the resulting cross-scene KNN classification accuracy. The pre-trained VLM features achieve only 1.2% accuracy, indicating that task progress is essentially not recoverable under visual changes from the frozen VLM representation alone. Training with RS-CL boosts accuracy to 22.9%, nearly reaching the accuracy from ground-truth proprioceptive states (25.6%). This suggests that RS-CL encourages the conditioning representation to encode state observation more reliably in a way that is robust to changes in the visual background, providing a more stable signal for the downstream action decoder.

D.4 ADAPTATION TO ANOTHER VLA ARCHITECTURE.

To verify that RS-CL remains effective regardless of the underlying action modeling paradigm of the baseline VLA model, we apply it to π_0 -FAST (Pertsch et al., 2025), an autoregressive VLA model that predicts action tokens via next-token prediction instead of flow matching. Under the RoboCasa-Kitchen fine-tuning setting, π_0 -FAST with RS-CL improves performance across all demonstration counts (see Table 11). These results suggest that, as long as the VLA model conditions its policy on a large-scale pre-trained VLM backbone, RS-CL is a broadly applicable and beneficial regularization strategy, independent of the specific action modeling design.

Table 11: **RoboCasa-Kitchen benchmark success rate (%)**. Results include fine-tuned performance of π_0 -FAST (Pertsch et al., 2025), an autoregressive VLA model and GR00T-N1.5 (GEAR, 2025), an flow-matching VLA model, with RS-CL. Best results within the same backbone indicated in **bold**.

Method	30 demos	100 demos	300 demos
π_0 -FAST (Autoregressive)	29.8	60.2	63.6
+ RS-CL (Ours)	33.2	61.1	65.2
GR00T-N1.5 (Flow-Matching)	48.2	63.9	65.7
+ RS-CL (Ours)	53.0	67.2	69.7

1188 D.5 MORE QUANTITATIVE RESULTS
11891190 We report further results of our RS-CL on a VLA trained from SigLIP2 (Tschannen et al., 2025), with
1191 varying number of demonstrations, and detailed results of our fine-tuning experiments in this section.
11921193 Table 12: **Detailed results on RoboCasa-Kitchen.** Task-wise success rates of GR00T N1.5 (GEAR,
1194 2025) trained with, and without RS-CL, by different number of demonstrations.
1195

Task	GR00T N1.5 (\mathcal{L}_{FM})			GR00T N1.5 ($\mathcal{L}_{\text{FM}} + \lambda \mathcal{L}_{\text{RS-CL}}$)		
	30 demos	100 demos	300 demos	30 demos	100 demos	300 demos
RoboCasa Kitchen (24 tasks, PnP = Pick-and-Place)						
Close Double Door	44.0	86.0	80.0	54.0	78.0	86.0
Close Drawer	96.0	96.0	96.0	96.0	96.0	96.0
Close Single Door	98.0	94.0	98.0	88.0	98.0	98.0
Coffee Press Button	70.0	82.0	90.0	86.0	94.0	92.0
Coffee Serve Mug	64.0	72.0	58.0	74.0	66.0	70.0
Coffee Setup Mug	28.0	34.0	24.0	30.0	54.0	46.0
Open Double Door	80.0	92.0	82.0	72.0	80.0	84.0
Open Drawer	46.0	58.0	74.0	44.0	54.0	76.0
Open Single Door	64.0	58.0	78.0	66.0	60.0	74.0
PnP from Cab \rightarrow Counter	28.0	42.0	54.0	38.0	54.0	60.0
PnP from Counter \rightarrow Cab	36.0	54.0	54.0	40.0	58.0	68.0
PnP from Counter \rightarrow Microwave	30.0	36.0	32.0	34.0	40.0	40.0
PnP from Counter \rightarrow Sink	28.0	66.0	58.0	40.0	60.0	68.0
PnP from Counter \rightarrow Stove	38.0	60.0	66.0	38.0	74.0	72.0
PnP from Microwave \rightarrow Counter	24.0	44.0	50.0	46.0	50.0	48.0
PnP from Sink \rightarrow Counter	40.0	52.0	60.0	54.0	62.0	68.0
PnP from Stove \rightarrow Counter	22.0	60.0	68.0	42.0	66.0	54.0
Turn Off Microwave	62.0	86.0	94.0	62.0	84.0	94.0
Turn Off Sink Faucet	72.0	86.0	92.0	70.0	94.0	88.0
Turn Off Stove	10.0	14.0	28.0	10.0	8.0	28.0
Turn On Microwave	44.0	58.0	44.0	48.0	72.0	66.0
Turn On Sink Faucet	60.0	90.0	86.0	72.0	90.0	90.0
Turn On Stove	34.0	56.0	32.0	36.0	58.0	36.0
Turn Sink Spout	38.0	58.0	78.0	32.0	62.0	70.0
Average	48.2	63.9	65.7	53.0	67.2	69.7

1217
1218 Table 13: **Detailed results on RoboCasa-Kitchen.** Task-wise success rates (%) of reproduced
1219 π_0 (Black et al., 2025b) and π_0 -FAST (Pertsch et al., 2025), by different number of demonstrations.
1220

Task	π_0			π_0 -FAST		
	30 demos	100 demos	300 demos	30 demos	100 demos	300 demos
RoboCasa Kitchen (24 tasks, PnP = Pick-and-Place)						
Close Double Door	68.0	86.0	86.0	44.0	84.0	78.0
Close Drawer	94.0	94.0	96.0	84.0	96.0	94.0
Close Single Door	94.0	98.0	96.0	84.0	90.0	72.0
Coffee Press Button	66.0	80.0	88.0	20.0	82.0	90.0
Coffee Serve Mug	80.0	66.0	64.0	44.0	66.0	68.0
Coffee Setup Mug	20.0	32.0	38.0	2.0	34.0	38.0
Open Double Door	92.0	90.0	84.0	26.0	68.0	78.0
Open Drawer	44.0	56.0	62.0	36.0	58.0	68.0
Open Single Door	58.0	64.0	70.0	44.0	70.0	66.0
PnP Cab \rightarrow Counter	14.0	22.0	18.0	12.0	22.0	30.0
PnP Counter \rightarrow Cab	32.0	44.0	46.0	8.0	58.0	48.0
PnP Counter \rightarrow Microwave	26.0	30.0	18.0	10.0	32.0	20.0
PnP Counter \rightarrow Sink	32.0	44.0	58.0	2.0	46.0	56.0
PnP Counter \rightarrow Stove	14.0	32.0	60.0	10.0	50.0	64.0
PnP Microwave \rightarrow Counter	16.0	20.0	24.0	4.0	38.0	46.0
PnP Sink \rightarrow Counter	22.0	24.0	66.0	12.0	56.0	62.0
PnP Stove \rightarrow Counter	10.0	46.0	44.0	18.0	62.0	60.0
Turn Off Microwave	64.0	84.0	96.0	68.0	98.0	96.0
Turn Off Sink Faucet	72.0	86.0	94.0	48.0	76.0	94.0
Turn Off Stove	14.0	10.0	22.0	0.0	18.0	22.0
Turn On Microwave	58.0	82.0	70.0	52.0	68.0	88.0
Turn On Sink Faucet	80.0	82.0	86.0	40.0	66.0	74.0
Turn On Stove	26.0	68.0	42.0	12.0	52.0	38.0
Turn Sink Spout	50.0	68.0	72.0	36.0	54.0	76.0
Average	47.8	58.7	62.5	29.8	60.2	63.6

1242 Table 14: **RoboCasa-Kitchen benchmark success rate (%)**. Employing SigLIP2 as our VLM
 1243 backbone, we train a VLA model from scratch and report the average success rate by different number
 1244 of demonstrations.

Method	# of Demos		
	30 demos	100 demos	300 demos
SigLIP2 backbone VLA	2.7	2.4	4.0
+ RS-CL (Ours)	8.0	9.1	14.1

1252 Table 15: **Detailed results of from-scratch experiments**. Task success rate (%) on the RoboCasa-
 1253 Kitchen benchmark trained with 300 demonstrations. All models train a VLA from scratch, starting
 1254 from each pre-trained VLM backbone. Best results within the same backbone indicated in **bold**.

Backbone Model	Success Rate		
	PnP	Others	Avg.
Qwen2.5-VL-3B (Bai et al., 2025)	2.5	8.6	6.6
+ RS-CL (Ours)	3.5	16.0	11.8
NORA (Hung et al., 2025)	1.5	11.4	8.1
+ RS-CL (Ours)	3.5	23.3	16.7
RoboBrain2.0-3B (Team et al., 2025)	2.8	13.9	10.2
+ RS-CL (Ours)	5.8	19.6	15.0
Qwen2.5-VL-7B (Bai et al., 2025)	2.5	12.4	9.1
+ RS-CL (Ours)	9.8	21.1	17.3
RoboBrain2.0-7B (Team et al., 2025)	2.3	12.8	9.3
+ RS-CL (Ours)	12.0	25.9	21.3
VeBrain-7B (Luo et al., 2025)	3.0	10.9	8.3
+ RS-CL (Ours)	7.8	20.3	17.6
Cosmos-Reason-7B (Azzolini et al., 2025)	1.0	5.5	4.0
+ RS-CL (Ours)	7.3	15.9	13.0
SigLIP2 (Tschannen et al., 2025)	0.3	2.9	2.0
+ RS-CL (Ours)	0.8	3.5	2.6
SigLIP2, unfrozen backbone	3.3	4.4	4.0
+ RS-CL (Ours)	17.3	12.5	14.1
GR00T N1.5 VLM (GEAR, 2025)	37.5	62.0	53.8
+ RS-CL (Ours)	37.8	66.3	56.8

E DISCUSSION

1280 **Limitations.** While RS-CL explicitly leverages proprioceptive states to align the representation space,
 1281 it does not incorporate further signals in robotic manipulation, such as object poses or contact forces.
 1282 These modalities often provide complementary information that is captured by robot’s proprioception
 1283 state. Extending RS-CL to integrate such modalities into the representations, represents an promising
 1284 direction for future research.

1285 **Future directions.** One promising extension is to apply RS-CL to settings with more complex
 1286 proprioceptive spaces, such as humanoid robots or dexterous hand manipulation tasks. These domains
 1287 involve high-dimensional and complex state representations, where aligning VLM embeddings with
 1288 proprioceptive signals may be even more beneficial for accurate action prediction.

F USE OF LARGE LANGUAGE MODELS

1292 Large language models were used to assist with drafting and polishing the writing of this paper.