ON COMPUTATION AND GENERALIZATION OF GROUP RELATIVE POLICY OPTIMIZATION

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

028

029

031 032 033

034

035

037

040

041

042

043

044

046

047

048

050 051

052

ABSTRACT

Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) has rapidly become a critic-free default for aligning LLMs, yet its statistical and computational foundations remain unclear. We close this gap by providing the first unified theory of GRPO that simultaneously addresses generalization and optimization in the original, practitioner-used formulation and over multiple outer iterations. On the generalization side, we derive sequential (multi-iteration) PAC-Bayes–Bernstein bounds under Markov mixing that concentrate the *empir*ical GRPO surrogate around its population counterpart across all iterations; a Transformer path-norm corollary yields substantially tighter capacity terms than spectral norms. We further prove a TRPO-style return bridge showing that ascent in the population GRPO surrogate provably improves true return, with explicit, controllable bias from clipping and KL regularization. On the optimization side, we establish non-PL stationarity guarantees for SGDM and AdamW (both $O(1/\sqrt{K})$) and provide complementary PL-based rates, with variance controlled by $t_{\text{mix}}/(G\sqrt{K})$. Together with interactive information-theoretic lower bounds, our results deliver the first end-to-end, multi-iteration statistical and computational guarantees for GRPO with function approximation. Experiments corroborate the predicted trends and offer practical guidance on group size, clipping, and KL weight; code will be released.

1 Introduction

Large-language models (LLMs) have evolved from static next-token predictors into interactive agents capable of multi-step theorem proving, autonomous code generation, and complex tool use. These tasks are naturally modelled as ergodic Markov decision processes (MDPs) in which rewards are sparse, delayed, and temporally correlated (Levin & Peres, 2017). Such structure violates the IID assumptions that underpin the bulk of classic generalization theory, creating an urgent demand for RL algorithms whose statistical properties are understood in the presence of Markov dependence. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is still the default fine-tuning engine for LLM alignment, but its reliance on a learned value critic doubles GPU memory, inflates wall-clock time, and introduces a delicate bias-variance trade-off that is hard to tune in practice (Guo et al., 2025). Empirically, mis-estimation of long-horizon returns often destabilizes PPO and forces practitioners to fall back on costly additional rollouts or auxiliary losses.

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a critic-free, memory-lean alternative to PPO that computes a group-relative baseline over G trajectories while reusing clipped-importance weights. It reduces memory by about $2\times$ and variance on long-horizon tasks, and powers DeepSeek-R1.

Variants and applications span Hybrid GRPO (Sane, 2025), completion pruning (Lin et al., 2025), and multimodal VLMs (EvolvingLMMs-Lab, 2025; Shen et al., 2025; Liu et al., 2025), yet a principled understanding under Markov dependence, momentum, and adaptive optimizers remains elusive.

Prior policy-gradient analyses often assume IID data or ignore optimizer dynamics. Recent advances in self-normalized martingale concentration (Bercu & Touati, 2019; Fan et al., 2019), localized PAC-Bayes (Alquier et al., 2024), and Transformer path norms (Limmer et al., 2024) have not been unified for critic-free objectives like GRPO with ergodic data and AdamW (Loshchilov & Hutter,

2017). Closing this gap yields deployment-ready guarantees, principled hyper-parameter choices, and clarity on capacity vs. variance.

Notation. We fix the total number of sampled trajectories to N and partition them into M:=N/G groups of equal size $G\geq 2$. For a single trajectory τ , let $R(\tau)$ be its (discounted) return and write $\sigma_R^2:=\operatorname{Var}\big[R(\tau)\big]$. The underlying Markov chain mixes in time t_{mix} , i.e. $\max\alpha(k),\beta(k)\leq e^{-k/t_{\mathrm{mix}}}$ for the usual α - and β -coefficients. Policy parameters are denoted by $\theta\in\Theta$; π_θ is the corresponding stochastic policy and $J(\theta):=\mathbb{E}_{\tau\sim\pi_\theta}[R(\tau)]$ its population return. We use θ_{old} for the pre-update parameters in a given outer iteration and write $r_t(\theta)=\pi_\theta(a_t\mid s_t)/\pi_{\theta_{\mathrm{old}}}(a_t\mid s_t)$ for the importance ratio. We denote by π_{ref} a frozen reference policy (e.g., SFT) used for KL regularization. When forming the GRPO surrogate, $A_{g,i}$ and \bar{R}_g denote the centred advantages defined in (1); ε is the clipping threshold for importance weights, and λ_{KL} is the weight on the KL regulariser. Optimization iterates use step sizes α_t (SGD) or $\eta/\sqrt{t+1}$ (AdamW); $\beta\in[0,1)$ stands for Polyak momentum in SGDM, while (β_1,β_2) are the first- and second-moment decay factors in AdamW. Unless stated otherwise, constants c,c_1,\ldots are universal.

Our contributions. We provide the first comprehensive multi-iteration theoretical treatment of GRPO under Markov dependence, modern capacity control, and adaptive optimization.

- Sequential PAC-Bayes–Bernstein bounds. We derive high-probability multi-iteration generalization bounds for GRPO using self-normalized Bernstein inequalities and localized PAC-Bayes. The bounds scale with mixing time t_{mix} , group size G, return variance σ_R^2 , and the posterior path-length $\sum_k \text{KL}(Q_k \parallel Q_{k-1})$.
- Transformer path-norm corollary. Mapping block Rademacher complexity to the single-path capacity of deep Transformers (Limmer et al., 2024) yields bounds up to ×5 tighter than spectral-norm estimates.
- Interactive information-theoretic lower bounds. An Assouad–Fano construction with interaction Chen et al. (2024) shows that $\sqrt{t_{\rm mix}\sigma_R^2/N}$ is minimax-optimal, certifying the sharpness of our upper bounds.
- Optimization guarantees beyond PL. We prove PL-based rates for SGDM, and non-PL stationarity results with $\widetilde{O}(1/\sqrt{K})$ for both SGDM and AdamW, with variance terms that scale as $t_{\rm mix}/(G\sqrt{K})$.
- **Return-bridge for GRPO.** A TRPO-style monotonic improvement theorem relates the population GRPO surrogate to true return, with explicit control of clipping and KL terms.

Road-map. Section 2 reviews related work; Sections 3–4 present preliminaries and generalization results (with lower bounds); Section 5 covers optimization; Section 4.3 links surrogate and return; Section 6 provides experiments. Proofs are in the Appendix.

2 RELATED WORKS

2.1 RL TECHNIQUES IN LLMs/VLMs

RL has proven effective for adapting large pre-trained models to specialized tasks (Wang et al., 2024b), often by optimizing metrics or human feedback that are otherwise challenging to incorporate via purely supervised methods. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is perhaps the most frequently used RL method in LLM alignment settings due to its stability and tractable updates (Ouyang et al., 2022; Sun et al., 2023). In recent years, RL-VLM-F (Wang et al., 2024c) puts forward an approach that queries a vision-language foundation model to produce pairwise preference labels from a single text task description and raw image observations, learns a reward function from those labels. LeReT (Hsu et al., 2025) introduces a reinforcement-learning framework that lets an LLM iteratively "try" and re-weight its own search queries. Until very recently, GRPO (Shao et al., 2024; Guo et al., 2025) was proposed as a variant that uses multiple output samples per prompt, computing relative rewards within each group. This strategy has empirically demonstrated stable training behaviors, suggesting that group-based baselines can mitigate

high variance in reward signals. However, the study of group-wise advantage estimation in large autoregressive models using transformers (Vaswani et al., 2017) has primarily been empirical, leaving a theoretical gap that we aim to address.

2.2 THEORETICAL ANALYSIS OF RL TECHNIQUES

On the theoretical front, policy gradient methods such as TRPO (Schulman et al., 2015) or PPO (Schulman et al., 2017) have been the subject of extensive investigation. However, existing results often assume linear function approximation or focus on simpler tabular settings to establish sample efficiency or convergence guarantees (Haarnoja et al., 2018; Janner et al., 2019; Huang et al., 2021; Yarats et al., 2021; Liu et al., 2023b). Kobilarov (2015) derives finite-sample PAC guarantees on both expected cost and constraint-violation probability for policies generated by iterative stochastic policy optimization. Moreover, Liu et al. (2019) shows that Neural Proximal/Trust Region Policy Optimization converges at a sub-linear rate to the globally optimal policy in episodic MDPs and Cai et al. (2020) delivers the first policy-optimization method that explores provably efficiently, establishing a regret bound for episodic linear-function-approximation MDPs. In contrast, GRPO departs from single-sample advantage estimation by employing a relative reward mechanism among a batch of outputs, eliminating the need for a learned value function. This raises new analytical questions regarding how bounding reward differences and group sizes might impact generalization and convergence. Our work provides explicit bounds that are specialized to this group-relative policy update, contributing novel insights into both generalization and optimization.

2.3 THEORETICAL ANALYSIS OF LLMS/VLMS

Despite empirical progress, formal explanations for transformer performance are limited. Work on overparameterized geometry and dynamical-systems views (Sanford et al., 2023; Huang et al., 2023; Vasudeva et al., 2024; Allen-Zhu & Li, 2023a; Ye et al., 2024a;b; Allen-Zhu & Li, 2023b;c; 2024) largely treats supervised learning. Policy-based objectives change the data distribution through generation, leaving theory sparse. We analyze autoregressive policies under GRPO and provide guarantees relevant to LLMs/VLMs (Liu et al., 2023a; 2024; Sun et al., 2023).

3 PRELIMINARIES

3.1 ERGODIC MDPS, MIXING TIME AND POLICY PERFORMANCE

We review ergodic Markov decision processes and mixing time definitions (Levin & Peres, 2017).

Definition 1 (Ergodic MDP). An MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \gamma)$ is *ergodic* if the induced Markov chain under *any* stationary policy admits a unique stationary distribution ρ_{∞} .

Definition 2 (Mixing Time). The underlying Markov chain of an ergodic MDP is said to mix in time t_{mix} if $\max\{\alpha(k), \beta(k)\} \leq e^{-k/t_{\text{mix}}}$ for $k \geq 0$, where $\alpha(k)$ and $\beta(k)$ are the standard alphaand beta-mixing coefficients, respectively (see Appendix K for details on mixing coefficients).

Let $\tau=(s_0,a_0,\dots)$ be a trajectory generated by policy π_θ . The (discounted) return satisfies $|R(\tau)| \leq (1-\gamma)^{-1}$. The objective $J(\theta) = \mathbb{E}_{\tau \sim \pi_\theta}[R(\tau)]$ is differentiable; its score-function gradient is

$$\nabla_{\theta} J(\theta) = \mathbb{E} \left[\left(\sum_{t=0}^{\infty} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(a_{t} \mid s_{t}) \right) R(\tau) \right].$$

3.2 TRAJECTORY BLOCKING AND CENTRED ADVANTAGES

Given N trajectories, we slice them into M = N/G groups of size G and define

$$\bar{R}_g = \frac{1}{G} \sum_{i=1}^{G} R_{g,i}, \qquad A_{g,i} = R_{g,i} - \bar{R}_g.$$
 (1)

A direct calculation shows $Var(A_{g,i})=(1-\frac{1}{G})\sigma_R^2$, matching the regenerative-block variance for Markov chains (Bertail & Portier, 2019).

3.3 THE GRPO OBJECTIVE AND TRAINING LOOP

Following Shao et al. (2024); Guo et al. (2025), we clip importance weights and penalize divergence from a *frozen* reference policy π_{ref} . The per-outer-iteration empirical GRPO surrogate is

$$\widehat{J}_{GRPO}(\theta; \theta_{old}) = \frac{1}{N} \sum_{g=1}^{M} \sum_{i=1}^{G} \sum_{t \ge 0} \min(r_{g,i,t}(\theta) A_{g,i}, \operatorname{clip}(r_{g,i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon) A_{g,i}) - \lambda_{KL} \operatorname{KL}(\pi_{\theta} \parallel \pi_{ref}).$$
(2)

We optimize (2) over *multiple outer iterations*. In iteration k we set $\theta_{\text{old}} \leftarrow \theta_k$, collect $M_k \times G$ trajectories under $\pi_{\theta_{\text{old}}}$, form group-centred advantages via (1), and apply $u_k \geq 1$ gradient steps on θ using SGDM or AdamW, yielding θ_{k+1} . The reference π_{ref} remains fixed throughout training.

For generalization we compare the empirical surrogate to its *population* counterpart. Denote by $\widetilde{J}_{\mathrm{GRPO}}(\theta;\theta_{\mathrm{old}})$ the expectation of (2) over trajectories collected under $\pi_{\theta_{\mathrm{old}}}$ (with the same clipping and KL terms). Our block and sequential bounds will concentrate $\widehat{J}_{\mathrm{GRPO}}(\theta;\theta_{\mathrm{old}})$ around $\widetilde{J}_{\mathrm{GRPO}}(\theta;\theta_{\mathrm{old}})$.

Surrogate gradients. Unclipped surrogate gradients are unbiased; clipping induces a controlled bias. Precise bounds are stated and proved in Appendix A (Lemma 3).

4 GENERALIZATION OF GRPO

We develop both the generalization upper bound and lower bound of GRPO.

4.1 BLOCK-DEPENDENT PAC-BAYES UPPER BOUND

4.1.1 Self-normalized Martingale Inequality

Theorem 1 (Self-normalized Bernstein (Fan et al., 2019)). Let $(X_t, \mathcal{F}_t)_{t\geq 0}$ be a square-integrable martingale difference sequence with $\sum_{t=1}^n \mathbb{E}[X_t^2 \mid \mathcal{F}_{t-1}] = V_n$ a.s. For any $\lambda \in (0,1)$ and c>0,

$$\mathbb{P}\big[\textstyle\sum_{t=1}^n X_t \geq \sqrt{2(1+c)V_n\ln\frac{1}{\lambda}} \ + \ \tfrac{1+c}{3}\,\ln\frac{1}{\lambda}\big] \ \leq \ \lambda.$$

We use this inequality to control block-sum deviations via the predictable quadratic variation of the block martingale. A self-contained adaptation to our blocked setting is given in Appendix G.1; see also Appendix M for the original Fan–Grama–Liu statement.

This theorem is a cornerstone for our analysis, as it allows for sharp concentration inequalities for sums of dependent random variables, such as the block sums encountered in GRPO, without requiring uniform boundedness assumptions typically found in classical Bernstein inequalities. Its self-normalising property is particularly adept at handling the variance structure that arises from blocked data.

Application to Blocked Trajectories. Define the block sums $Z_g := \sum_{i=1}^G \left(\widehat{J}_{g,i} - \mathbb{E}[\widehat{J}_{g,i}]\right)$ where $\widehat{J}_{g,i}$ is the per-trajectory GRPO contribution. Because blocks are at least ℓ^\star time steps apart (regenerative blocking), $(Z_g)_{g=1}^M$ is a martingale difference sequence w.r.t. the σ -field $\mathcal{G}_g = \sigma(\tau_{1:g})$ (see Appendix G.1). Invoke Theorem 1 with $X_g = Z_g$, n = M, and $c = \frac{2}{3}(1-\gamma)^{-1}/\left(t_{\text{mix}}\sigma_R^2(1-\frac{1}{G})\right)$ to recover the block-Bernstein tail in Lemma 2.

4.1.2 VARIANCE-ADAPTIVE LOCALIZED PAC-BAYES

Theorem 2 (Block PAC-Bayes–Bernstein (posterior-averaged)). Fix prior Π over Θ . For any data-dependent posterior Q and confidence $0 < \delta < 1$, with probability $\geq 1 - \delta$ over the draw of

216
217
218 $\mathbb{E}_{\theta \sim Q} \left[\left| \widehat{J}_{GRPO}(\theta; \theta_{old}) - \widetilde{J}_{GRPO}(\theta; \theta_{old}) \right| \right]$ 219
220 $\leq 2 \widehat{\mathcal{R}}_{M}(\mathcal{F}_{rel}) + \sqrt{\frac{2(1+\eta) t_{mix} \sigma_{R}^{2} (1-\frac{1}{G})}{N}} \left(KL(Q \| \Pi) + \ln \frac{2}{\delta} \right)$ 221 $+ \frac{(1+\eta)(1-\gamma)^{-1} \left(KL(Q \| \Pi) + \ln \frac{2}{\delta} \right)}{N}.$ (3)

where $\eta > 0$ is a variance-radius parameter chosen by the localized bound of Alquier et al. (2024).

The full proof appears in Appendix D. The bound decomposes into a capacity term $2\widehat{\mathcal{R}}_M(\mathcal{F}_{\mathrm{rel}})$, a variance-driven term scaling as $\sqrt{t_{\mathrm{mix}}\sigma_R^2(1-\frac{1}{G})/N}$, and a linear-in-1/N bias from bounded returns. Smaller t_{mix} tightens the deviation. The G-dependence is mixed: the variance factor $(1-\frac{1}{G})$ increases slightly with larger G, while the capacity term typically decreases as the number of blocks M=N/G shrinks.

The deviation behaves as if the effective sample size were $N_{\rm eff} \asymp N/\left(t_{\rm mix}(1-\frac{1}{G})\right)$: faster mixing increases $N_{\rm eff}$, whereas larger group size G slightly decreases $N_{\rm eff}$. Increasing G increases the variance factor $\sqrt{1-\frac{1}{G}}$ but reduces the number of blocks M=N/G that drive the block Rademacher complexity; in practice, a moderate G can lower the overall bound when the capacity term dominates. Localized posteriors Q (small $\mathrm{KL}(Q\|\Pi)$) further tighten the bound, especially across iterations when posteriors evolve smoothly. When model capacity (e.g., path norm in Corollary 1) is small, the variance term dominates and the deviation scales as $\widetilde{O}(\sqrt{t_{\mathrm{mix}}/N})$; for large models, the capacity term dominates and reducing the path norm via depth/width/sparsity offers the largest gains. Ignoring logarithmic factors and the O(1/N) bias, a target deviation ε requires roughly $N = \widetilde{\Theta}(t_{\mathrm{mix}}\sigma_R^2(1-\frac{1}{G})/\varepsilon^2 \vee \mathcal{C}(\Theta)/\varepsilon^2)$, where $\mathcal{C}(\Theta)$ upper-bounds the capacity term.

4.1.3 GENERIC-CHAINING CAPACITY TERM

We relate \mathcal{R}_M to the γ_2 functional:

Lemma 1. Let (\mathcal{F},d) be the relative-surrogate class endowed with the block pseudo-metric $d(f,g) = \left(\frac{1}{M}\sum_{g=1}^{M}\mathbb{E}[(f-g)^2]\right)^{1/2}$. Then, w.p. $\geq 1-\delta$,

$$\widehat{\mathcal{R}}_M(\mathcal{F}) \leq c \gamma_2(\mathcal{F}, d) + \sqrt{\frac{\sigma_R^2(1 - \frac{1}{G}) \ln \frac{2}{\delta}}{2N}},$$

for a universal constant c.

The detailed proof is in Appendix F.

This capacity term is controlled by generic chaining through Talagrand's γ_2 functional for the block pseudo-metric, together with mixing-to-variance conversion. See Appendix N and Appendix O for the derivation.

4.1.4 TRANSFORMER COROLLARY VIA PATH-NORM CAPACITY

To connect this generalization bound to Transformer architectures, we leverage the concept of *path-norm capacity*. For an L-layer Transformer network f_{θ} with parameters $\theta = \{W^{(l)}, B^{(l)}\}_{l=1}^{L}$ (where $W^{(l)}$ are weight matrices and $B^{(l)}$ are bias terms), its (basis-)path norm (Limmer et al., 2024; Zheng et al., 2019) is defined as:

$$\|\theta\|_{\text{path}} := \left(\sum_{p \in \mathcal{S}_{\text{paths}}} \left|\prod_{(l,i,j) \in p} W_{ij}^{(l)}\right|^2\right)^{1/2},$$
 (4)

where \mathcal{S}_{paths} denotes the set of all directed paths from an input coordinate to an output coordinate through the network's computational graph. The path-norm measures model capacity by aggregating magnitudes of weight products along these paths. It often provides a tighter capacity measure for Transformers compared to spectral norms.

Corollary 1 (Path-Norm GRPO Bound). Assume the policy is an L-layer Transformer with path-norm $\|W\|_{\text{path}} \leq \mathcal{P}$. Then Theorem 2 implies

$$\sup_{\theta} \left| \widehat{J} - J \right|$$

$$\leq 2\sqrt{1 - \frac{1}{G}} \sqrt{\frac{c_1 \mathcal{P} \ln(1 + \mathcal{P})}{N}} + \sqrt{\frac{2(1 + \eta)t_{\text{mix}}\sigma_R^2(1 - \frac{1}{G})\ln\frac{2}{\delta}}{N}} + \frac{(1 + \eta)(1 - \gamma)^{-1}\ln\frac{2}{\delta}}{N}. \tag{5}$$

Path-norm capacity yields significantly smaller complexity than spectral norms in deep Transformers, explaining the empirical tightness of our bounds. The $1-\frac{1}{G}$ factor reflects variance reduction from group-relative baselines. The complete proof with covering-number to chaining steps is in Appendix G.2.

4.2 SEQUENTIAL MULTI-ITERATION GENERALIZATION (SUMMARY)

For the multi-iteration GRPO procedure, choosing data-dependent priors $\Pi_k := Q_{k-1}$ leads to a sequential PAC-Bayes–Bernstein bound with a *posterior path-length* term $\sum_k \mathrm{KL}(Q_k \| Q_{k-1})$ and aggregate sample size $\sum_k N_k$. The full theorem and proof are provided in Appendix A.

4.3 Bridge from Surrogate to True Return

We next relate the population GRPO surrogate to the *true* return. Define the unclipped population surrogate

$$J_{\text{sur}}(\theta; \theta_{\text{old}}) := \mathbb{E}\left[\sum_{t \geq 0} r_t(\theta) A_{\theta_{\text{old}}}(s_t, a_t)\right] - \lambda_{\text{KL}} \operatorname{KL}(\pi_{\theta} \parallel \pi_{\text{ref}}),$$

with $A_{\theta_{\text{old}}}$ the group-centred advantage computed under $\pi_{\theta_{\text{old}}}$. Let $\widetilde{J}_{\text{GRPO}}$ be the clipped counterpart (population expectation of (2)).

Theorem 3 (Monotonic return improvement). Let $C_A := \sup_t \mathbb{E}\big[|A_{\theta_{\text{old}}}(s_t, a_t)|\big] \le (1 - \gamma)^{-1}$ and define the state-distribution–averaged divergences

$$\overline{\mathrm{TV}}(\theta \| \theta_{\mathrm{old}}) := \mathbb{E}_{s \sim d_{\pi_{\theta_{\mathrm{old}}}}} \Big[\mathrm{TV} \big(\pi_{\theta}(\cdot \mid s), \pi_{\theta_{\mathrm{old}}}(\cdot \mid s) \big) \Big], \tag{6}$$

$$\overline{\mathrm{KL}}(\theta \| \theta_{\mathrm{old}}) := \mathbb{E}_{s \sim d_{\pi_{\theta_{\mathrm{old}}}}} \Big[\mathrm{KL} \big(\pi_{\theta}(\cdot \mid s) \, \| \, \pi_{\theta_{\mathrm{old}}}(\cdot \mid s) \big) \Big]. \tag{7}$$

Then, for any $(\theta, \theta_{\text{old}})$,

$$\begin{split} J(\theta) - J(\theta_{\text{old}}) &\geq J_{\text{sur}}(\theta; \theta_{\text{old}}) - \frac{2\gamma \, C_A}{(1 - \gamma)^2} \, \overline{\text{TV}}(\theta \| \theta_{\text{old}}) - \Delta_{\text{clip}}(\varepsilon), \\ J(\theta) - J(\theta_{\text{old}}) &\geq J_{\text{sur}}(\theta; \theta_{\text{old}}) - \frac{\sqrt{2} \, \gamma \, C_A}{(1 - \gamma)^2} \, \sqrt{\overline{\text{KL}}(\theta \| \theta_{\text{old}})} - \Delta_{\text{clip}}(\varepsilon), \end{split}$$

where $J_{\rm sur}$ includes the $-\lambda_{\rm KL}\,{\rm KL}(\pi_{\theta}\|\pi_{\rm ref})$ penalty and the clipping term satisfies

$$\Delta_{\mathrm{clip}}(\varepsilon) \leq C \mathbb{E} \Big[\sum_{t \geq 0} |A_{\theta_{\mathrm{old}}}(s_t, a_t)| \, \mathbb{1}\{|r_t(\theta) - 1| > \varepsilon\} \Big]$$

for a universal constant C. In particular, if $\overline{\mathrm{KL}}(\theta \| \theta_{\mathrm{old}}) \leq \delta^2$ and $\Delta_{\mathrm{clip}}(\varepsilon) \leq \tau$, then

$$J(\theta) - J(\theta_{\text{old}}) \ge J_{\text{sur}}(\theta; \theta_{\text{old}}) - \frac{\sqrt{2} \gamma C_A}{(1 - \gamma)^2} \delta - \tau.$$

The proof is given in Appendix H. The result formalizes a TRPO-style trust region for GRPO: a surrogate ascent guarantees return improvement provided the policy update stays close to the behavior policy under an averaged TV/KL measure and the clipping bias is controlled. The penalty scales with $C_A \leq (1-\gamma)^{-1}$, making the improvement threshold explicit; constraining the per-step KL (or TV), choosing ε large enough (or maintaining concentrated importance ratios) to keep $\Delta_{\rm clip}$ small, and using a moderate $\lambda_{\rm KL}$ that tightens $J_{\rm sur}$ via pull to $\pi_{\rm ref}$ together yield robust, monotonic improvements across iterations.

4.4 MINIMAX LOWER BOUNDS VIA INTERACTIVE FANO

To complement the upper bounds on generalization error, it is crucial to establish lower bounds. These bounds provide a theoretical limit on the best possible performance any algorithm can achieve, thereby allowing us to assess the optimality of our derived upper bounds for GRPO.

Theorem 4 (Near-Optimality of GRPO). For any RL algorithm observing N trajectories in an ergodic chain with mixing time t_{mix} , the worst-case expected excess return obeys $\inf_{\widehat{\theta}} \sup_{\mathcal{M}} \mathbb{E} \big[J(\theta^*) - J(\widehat{\theta}) \big] \geq c \sqrt{\frac{t_{\text{mix}} \sigma_R^2}{N}}$, where c > 0 is universal.

The construction uses an interactive Assouad–Fano packing over reward-perturbed MDPs, with KL growth governed by t_{mix} under regeneration. This yields the $\Omega(\sqrt{t_{\text{mix}}/N})$ rate. See Appendix J.

5 Computation of GRPO

Having established generalization guarantees and a return bridge, we now turn to optimization. We analyze the *population GRPO surrogate loss* $F(\theta) := \mathcal{L}(\theta) := -J_{\text{sur}}(\theta;\theta_{\text{old}})$ within each outer iteration (suppressing the dependence on θ_{old}), and we model the stochastic gradients by per-block estimators derived from group-centred advantages. Unclipped estimators are unbiased; clipping introduces a bounded bias handled by Theorem 3. For notational alignment with standard optimization, the Polyak-Łojasiewicz (PL) condition (Assumption 2) and the PL-based convergence theorem (Theorem 5) regard $F(\theta)$ as the objective to be minimized and F^* as its minimum; this avoids overloading J, which elsewhere denotes the return. We additionally provide *non-PL stationarity* guarantees below.

5.1 Mini-batch SGD with Momentum

Let $(\theta_t)_{t>0}$ evolve according to the stochastic Heavy-Ball / Polyak-momentum scheme

$$v_{t+1} = \beta v_t + \frac{1}{G} \sum_{q=1}^{G} \nabla_{\theta} \ell(\theta_t; \tau_{t,q}), \qquad \theta_{t+1} = \theta_t - \alpha_t v_{t+1}, \tag{SGDM}$$

where $\beta \in [0,1)$ is the momentum parameter, $\alpha_t = \alpha/\sqrt{t+1}$ the decaying step, and $\ell(\theta;\tau)$ the block GRPO loss. The update reduces to plain SGD when $\beta = 0$.

Before we proceed, we need to impose some mild assumptions.

Assumption 1 (*L*-smoothness). *F* is continuously differentiable and $\|\nabla F(x) - \nabla F(y)\| \le L\|x - y\|$ for all x, y.

This is a standard assumption in optimization theory, implying that the gradient of the objective function does not change too rapidly.

Assumption 2 (Polyak–Łojasiewicz (PL)). $2\mu(F(\theta) - F^*) \leq ||\nabla F(\theta)||^2$ with $\mu > 0$.

This condition is weaker than convexity and ensures that the gradient norm is indicative of suboptimality. The PL condition holds for a surprisingly wide range of non-convex problems

Assumption 3 (Bounded block variance). $\operatorname{Var}\left[\frac{1}{G}\sum_{g=1}^{G}\nabla\ell(\theta;\tau_{g})\right] \leq \sigma_{R}^{2}t_{\operatorname{mix}}/G$.

This assumption requires that the variance of the stochastic mini-batch gradients is bounded. The 1/G scaling reflects the variance reduction from averaging G samples in a block, and the $t_{\rm mix}$ factor accounts for the temporal dependence within trajectories.

Theorem 5 (GRPO convergence using SGDM (PL)). Under Assumptions 1, 2, and 3, choose $0 < \alpha \le \frac{1}{2} \min\{\frac{1}{L}, \frac{1-\beta}{\mu}\}$. Then after $K = \lfloor N/G \rfloor$ mini-batch updates, we have

$$\mathbb{E}\big[F(\theta_K) - F^*\big] \le \frac{L\alpha^2(1 + \ln K)}{2\mu K} + \frac{\alpha(1+\beta)\sigma_R^2 t_{\text{mix}}}{\mu G\sqrt{K}} + O(K^{-1}). \tag{8}$$

The rate combines (i) L-smooth one-step descent under momentum, (ii) a block-variance bound that scales as $t_{\rm mix}/G$, and (iii) PL to convert gradient norm to suboptimality; stepsizes decay as $1/\sqrt{t}$. See Appendix I.2, using Lemma 5 and Lemma I.4.

Non-PL stationarity for SGDM (summary). Under L-smoothness and bounded block variance, SGDM achieves a $\widetilde{O}(1/\sqrt{K})$ stationarity rate for $\min_{t < K} \mathbb{E} \|\nabla F(\theta_t)\|^2$, with variance scaling as $t_{\text{mix}}/(G\sqrt{K})$; see Appendix I.3 for the proof.

Theorem 6 (Non-PL stationarity for SGDM). Assume F is L-smooth (Assumption 1) and the block variance is bounded (Assumption 3). Let SGDM use momentum $\beta \in [0,1)$ and stepsizes $\alpha_t = \alpha/\sqrt{t+1}$ with $\alpha > 0$. Then after K updates,

$$\min_{0 \le t < K} \mathbb{E} \left[\|\nabla F(\theta_t)\|^2 \right] \le \frac{C_1}{\sqrt{K}} + \frac{C_2 t_{\text{mix}} \sigma_R^2}{G\sqrt{K}},$$

for constants $C_1, C_2 > 0$ depending only on L, α, β and $F(\theta_0) - F^*$.

5.2 AdamW

Next, we analyze GRPO's convergence with AdamW (Loshchilov & Hutter, 2017), an adaptive learning rate optimization algorithm that is widely used for training large neural networks due to its empirical robustness and efficiency. With moving-average parameters (β_1, β_2) and $\eta > 0$, the AdamW procedure can be written as:

$$m_{t+1} = \beta_1 m_t + (1 - \beta_1) g_t, \qquad v_{t+1} = \beta_2 v_t + (1 - \beta_2) g_t^{\odot 2},$$

$$\widehat{m}_{t+1} = m_{t+1} / (1 - \beta_1^{t+1}), \qquad \widehat{v}_{t+1} = v_{t+1} / (1 - \beta_2^{t+1}),$$

$$\theta_{t+1} = \theta_t - \eta \, \widehat{m}_{t+1} / (\sqrt{\widehat{v}_{t+1}} + \epsilon) - \eta \lambda \theta_t, \qquad (AdamW)$$

where $g_t = \frac{1}{G} \sum_{g=1}^G \nabla_{\theta} \ell(\theta_t; \tau_{t,g})$ and $\lambda > 0$ is weight decay. We require one more mild assumption:

Assumption 4 (Second-moment floor). $\hat{v}_t \geq v_{\min} > 0$ element-wise.

This assumption posits that the estimate of the second moment of the gradients (the variance adapter \widehat{v}_t) is bounded below by a small positive constant v_{\min} . This is a common technical condition in the analysis of Adam-like algorithms. It prevents the adaptive learning rate from becoming arbitrarily large, ensuring stability. In practice, this is often enforced by adding a small epsilon to the denominator in the Adam update rule, which also helps avoid division by zero.

Theorem 7 (GRPO convergence using AdamW). Let $\eta = \frac{\eta_0}{\sqrt{K}}$ with $\eta_0 > 0$. Under Assumptions 1, 2, 3, and 4,

$$\min_{0 \le t < K} \mathbb{E}[\|\nabla F(\theta_t)\|^2] \le \frac{2L(F(\theta_0) - F^*)}{(1 - \beta_1)\eta_0\sqrt{K}} + \frac{2\eta_0\sigma_R^2 t_{\text{mix}}}{G(1 - \beta_2)(1 - \beta_1)\sqrt{K}} + O(K^{-1}). \tag{9}$$

With a $1/\sqrt{K}$ stepsize, bias-corrected moments and a second-moment floor yield a potential descent bound, where gradient noise is attenuated by $(1 - \beta_2)$ and momentum by $(1 - \beta_1)$. The detailed argument is in Appendix I.5.

6 EXPERIMENTS

Table 1: Parameter results for GRPO optimization with different training setups.

\overline{N}	G	$t_{ m mix}$	σ_R^2	\mathcal{P}	Err.	Bound
(traj)						
1000	4	20	5.0	100	0.25	0.60
10000	4	20	5.0	100	0.08	0.20
10000	16	20	5.0	100	0.07	0.18
10000	16	5	5.0	100	0.04	0.10
10000	16	5	1.0	100	0.02	0.05
10000	16	5	1.0	20	0.01	0.03

Figure 1: Average reward vs. iterations for different group sizes *G* using GRPO with AdamW.

Table 4: Qwen2-VL-7B finetuned with GRPO: accuracy (%) vs. group size.

\overline{G}	MMMU	Mathvista-mini
2	49.2	60.3
8	49.5	60.7
32	50.3	61.2

We conduct experiments using Qwen2.5-1.5B-Instruct (Yang et al., 2024) on OpenR1-Math-220k (Face, 2025) dataset using GRPO algorithm with AdamW (Loshchilov & Hutter, 2017) optimizer.

Generalization theory verification. We select subsets of the dataset for training to verify the generalization theory. We illustrate the behaviour of the parameters in Table 1. It shows that increasing N decreases the error and the bound. Larger G reduces optimization noise (via the 1/G scaling in our SGDM/AdamW rates), lowering empirical error; in our data-dependent bound that includes the block capacity term, the overall bound can also decrease with larger G as M=N/G shrinks, despite the variance factor $(1-\frac{1}{G})$ increasing slightly. Increasing $t_{\rm mix}$, σ_R^2 , or model capacity ($\mathcal P$) increases the bound. The empirical error is below the theoretical bound, consistent with Theorem 2 and Corollary 1.

Convergence theory verification. We perform experiments using the full training data with AdamW optimizer. We only change the Group size G in $\{2, 8, 32\}$. As illustrated by Figure 1, all three curves converge after certain iterations and larger group size G leads to faster convergence, which corresponds to our derived convergence rate.

Table 2: Qwen2.5-7B generalization: empirical error vs. ICLR bound.

Table 3: Llama-3.1-8B generalization: empirical error vs. ICLR bound.

N	G	$t_{\rm mix}$	σ_R^2	${\mathcal P}$	Err.	Bound	N	G
(traj)			11				(traj)	
1000	4	20	5.0	280	0.31	0.72	1000	4
10000	4	20	5.0	280	0.10	0.24	10000	4
10000	16	20	5.0	280	0.08	0.21	10000	16
10000	16	5	5.0	280	0.05	0.12	10000	16
10000	16	5	1.0	280	0.02	0.06	10000	16
10000	16	5	1.0	50	0.01	0.04	10000	16

N	G	$t_{ m mix}$	σ_R^2	\mathcal{P}	Err.	Bound
(traj)						
1000	4	20	5.0	250	0.28	0.65
10000	4	20	5.0	250	0.09	0.22
10000	16	20	5.0	250	0.08	0.19
10000	16	5	5.0	250	0.04	0.11
10000	16	5	1.0	250	0.02	0.05
10000	16	5	1.0	50	0.01	0.03

Scaling across model sizes (7B/8B). We further verify the theoretical trends on larger models. Table 2 reports results on Qwen2.5-7B-Instruct; Table 3 shows Llama-3.1-8B-Instruct. In both cases, empirical errors remain below our ICLR bound and exhibit the same monotone dependencies on N, G, $t_{\rm mix}$, σ_R^2 , and path capacity \mathcal{P} .

Multimodal reasoning (Qwen2-VL-7B). We also evaluate GRPO in a multimodal setting using Qwen2-VL-7B on MMMU and Mathvista-mini to test cross-modal generality. Larger group size *G* improves performance consistently, aligning with our variance-scaling predictions.

7 Conclusion

We derive the first theoretical analysis of Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) under Markov dependence and modern optimization techniques. We established novel block-dependent PAC-Bayes generalization bounds, specialized for transformers via path-norm capacity, and proved their near-minimax optimality with information-theoretic lower bounds. Furthermore, we provided non-asymptotic convergence rates for GRPO with both SGDM and AdamW (Loshchilov & Hutter, 2017). These results provide a rigorous foundation for GRPO, offering formal guarantees and actionable insights for its application in large-scale LLM fine-tuning. Experiments on a modern LLM also verify the theory we developed. We hope our work paves the way for future explorations into GRPO variants.

ETHICS STATEMENT

In this paper, we provide theoretical guarantees for the Group Relative Policy Optimization algorithm and conduct experiments to verify our developed theory. We strictly adhere to the ICLR ethical research standards and applicable laws. To the best of our knowledge, this work complies with the General Ethical Principles.

REPRODUCIBILITY STATEMENT

We follow the ICLR reproducibility standards and ensure the reproducibility of our work. The detailed experimental settings, including hyperparameters and implementation steps, are documented in the paper and the Appendix.

REFERENCES

- Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, learning hierarchical language structures. *arXiv preprint arXiv:2305.13673*, 2023a.
- Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and extraction. *arXiv preprint arXiv:2309.14316*, 2023b.
- Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation. *arXiv* preprint arXiv:2309.14402, 2023c.
- Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling laws. *arXiv preprint arXiv:2404.05405*, 2024.
- Pierre Alquier et al. User-friendly introduction to pac-bayes bounds. Foundations and Trends® in Machine Learning, 17(2):174–303, 2024.
- Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.
- Bernard Bercu and Taieb Touati. New insights on concentration inequalities for self-normalized martingales. 2019.
- Patrice Bertail and Gabriela Ciołek. New bernstein and hoeffding type inequalities for regenerative markov chains. 2018.
- Patrice Bertail and François Portier. Rademacher complexity for markov chains: Applications to kernel smoothing and metropolis—hastings. 2019.
- Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, 02 2013. ISBN 9780199535255. doi: 10.1093/acprof:oso/9780199535255.001.0001. URL https://doi.org/10.1093/acprof:oso/9780199535255.001.0001.
- Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization. In International Conference on Machine Learning, pp. 1283–1294. PMLR, 2020.
- Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning. *arXiv* preprint arXiv:0712.0248, 2007.
- Fan Chen, Dylan J Foster, Yanjun Han, Jian Qian, Alexander Rakhlin, and Yunbei Xu. Assouad, fano, and le cam with interaction: A unifying lower bound framework and characterization for bandit learnability. *Advances in Neural Information Processing Systems*, 37:75585–75641, 2024.
- EvolvingLMMs-Lab. Multimodal Open-R1: Grpo fine-tuning code, data, and checkpoints. https://github.com/EvolvingLMMs-Lab/open-r1-multimodal, 2025. A public GitHub repository that extends the *Open-R1* GRPO framework to multimodal vision-language models and releases 8k mathreasoning RL samples and GRPO-trained Qwen2-VL checkpoints.
- Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https://github.com/huggingface/open-r1.

- Xiequan Fan, Ion Grama, Quansheng Liu, and Qi-Man Shao. Self-normalized cramér type moderate deviations for martingales. 2019.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.
 - Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905, 2018.
 - Sheryl Hsu, Omar Khattab, Chelsea Finn, and Archit Sharma. Grounding by trying: LLMs with reinforcement learning-enhanced retrieval. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=BPAZ6yW3K7.
 - Baihe Huang, Kaixuan Huang, Sham Kakade, Jason D Lee, Qi Lei, Runzhe Wang, and Jiaqi Yang. Going beyond linear rl: Sample efficient neural function approximation. *Advances in Neural Information Processing Systems*, 34:8968–8983, 2021.
 - Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint arXiv:2310.05249, 2023.
 - Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based policy optimization. *Advances in neural information processing systems*, 32, 2019.
 - Arnulf Jentzen. Higher order pathwise numerical approximations of spdes with additive noise. *SIAM Journal on Numerical Analysis*, 49(2):642–667, 2011.
 - Yujia Jin and Aaron Sidford. Towards tight bounds on the sample complexity of average-reward mdps. In *International Conference on Machine Learning*, pp. 5055–5064. PMLR, 2021.
 - Marin Kobilarov. Sample complexity bounds for iterative stochastic policy optimization. *Advances in Neural Information Processing Systems*, 28, 2015.
 - Abi Komanduru and Jean Honorio. A lower bound for the sample complexity of inverse reinforcement learning. In *International Conference on Machine Learning*, pp. 5676–5685. PMLR, 2021.
 - Ilja Kuzborskij and Csaba Szepesvári. Efron-stein pac-bayesian inequalities. *arXiv preprint arXiv:1909.01931*, 2019.
 - Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations in bandits and in rl with a generative model. In *International conference on machine learning*, pp. 5662–5670. PMLR, 2020.
 - David A Levin and Yuval Peres. *Markov chains and mixing times*, volume 107. American Mathematical Soc., 2017.
 - Alexander Levine, Peter Stone, and Amy Zhang. Learning a fast mixing exogenous block mdp using a single trajectory. *arXiv preprint arXiv:2410.03016*, 2024.
 - Tianjiao Li, Guanghui Lan, and Ashwin Pananjady. Accelerated and instance-optimal policy evaluation with linear function approximation. *SIAM Journal on Mathematics of Data Science*, 5(1):174–200, 2023.
 - Yannick Limmer, Anastasis Kratsios, Xuwei Yang, Raeid Saqur, and Blanka Horvath. Reality only happens once: Single-path generalization bounds for transformers. *arXiv* preprint arXiv:2405.16563, 2024.
 - Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group relative policy optimization-based reasoning models. *arXiv preprint arXiv:2503.22342*, 2025.
 - Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural trust region/proximal policy optimization attains globally optimal policy. *Advances in neural information processing systems*, 32, 2019.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*, 2023a.
 - Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In CVPR, 2024.
 - Qinghua Liu, Gellért Weisz, András György, Chi Jin, and Csaba Szepesvári. Optimistic natural policy gradient: a simple efficient policy optimization framework for online rl. *Advances in Neural Information Processing Systems*, 36:3560–3577, 2023b.

- Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with momentum.
 Advances in Neural Information Processing Systems, 33:18261–18271, 2020.
 - Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-zero: Reasoning-chain guided segmentation via cognitive reinforcement. *arXiv preprint arXiv:2503.06520*, 2025.
 - Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
 - Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*. MIT Press, 2 edition, 2018.
 - Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to spectrally-normalized margin bounds for neural networks. *arXiv preprint arXiv:1707.09564*, 2017.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
 - Rui Pan, Yuxing Liu, Xiaoyu Wang, and Tong Zhang. Accelerated convergence of stochastic heavy ball method under anisotropic gradient noise. *arXiv preprint arXiv:2312.14567*, 2023.
 - Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic gradient langevin dynamics: a nonasymptotic analysis. In *Conference on Learning Theory*, pp. 1674–1703. PMLR, 2017.
 - Soham Sane. Hybrid group relative policy optimization: A multi-sample approach to enhancing policy optimization. *arXiv preprint arXiv:2502.01652*, 2025.
 - Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of transformers. Advances in Neural Information Processing Systems, 36:36677–36707, 2023.
 - John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR, 2015.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Othmane Sebbouh, Robert M Gower, and Aaron Defazio. Almost sure convergence rates for stochastic gradient descent and stochastic heavy ball. In *Conference on Learning Theory*, pp. 3935–3971. PMLR, 2021.
 - Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.
 - Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun Zhang, Kangjia Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. Vlm-r1: A stable and generalizable r1-style large vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.
 - Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with factually augmented rlhf. arXiv preprint arXiv:2309.14525, 2023.
 - Michel Talagrand. *The generic chaining: upper and lower bounds of stochastic processes*. Springer Science & Business Media, 2005.
 - Ilya O Tolstikhin and Yevgeny Seldin. Pac-bayes-empirical-bernstein inequality. Advances in Neural Information Processing Systems, 26, 2013.
 - Jacob Trauger and Ambuj Tewari. Sequence length independent norm-based generalization bounds for transformers. In *International Conference on Artificial Intelligence and Statistics*, pp. 1405–1413. PMLR, 2024.
 - Bhavya Vasudeva, Puneesh Deora, and Christos Thrampoulidis. Implicit bias and fast convergence rates for self-attention. *arXiv preprint arXiv:2402.05738*, 2024.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *NeurIPS*, 30, 2017.

- Bohan Wang, Huishuai Zhang, Qi Meng, Ruoyu Sun, Zhi-Ming Ma, and Wei Chen. On the convergence of adam under non-uniform smoothness: Separability from sgdm and beyond. *arXiv preprint* arXiv:2403.15146, 2024a.
- Shengbo Wang, Jose Blanchet, and Peter Glynn. Optimal sample complexity for average reward markov decision processes. *arXiv preprint arXiv:2310.08833*, 2023.
- Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu, Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced llms: A survey. *arXiv preprint* arXiv:2412.10400, 2024b.
- Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson. Rl-vlm-f: Reinforcement learning from vision language foundation model feedback. *arXiv preprint arXiv:2402.03681*, 2024c.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep reinforcement learning from pixels. In *International conference on learning representations*, 2021.
- Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1, grade-school math and the hidden reasoning process. In *The Thirteenth International Conference on Learning Representations*, 2024a.
- Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.2, how to learn from mistakes on grade-school math problems. *arXiv preprint arXiv:2408.16293*, 2024b.
- Shuxin Zheng, Qi Meng, Huishuai Zhang, Wei Chen, Nenghai Yu, and Tie-Yan Liu. Capacity control of relu neural networks by basis-path norm. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pp. 5925–5932, 2019.

APPENDIX

Notation alignment for GRPO. Throughout Appendix A we write $\widehat{J} := \widehat{J}_{GRPO}(\theta; \theta_{old})$ and $J := \widetilde{J}_{GRPO}(\theta; \theta_{old})$ to emphasise that our population comparator is the *clipped population surrogate* at fixed θ_{old} (as in the main text). All deviations and MGFs are taken with respect to trajectories sampled under $\pi_{\theta_{old}}$.

A LEMMA AND PROOF: BLOCK VARIANCE & TAIL

Lemma 2 (Block Variance & Tail). Let $\sigma_R^2 = \text{Var}(R(\tau))$ denote the return variance. Grouping into blocks of size G yields

$$\operatorname{Var}(A_{g,i}) = \left(1 - \frac{1}{G}\right)\sigma_R^2, \qquad \operatorname{Var}(\bar{R}_g) = \frac{\sigma_R^2}{G}.$$

Moreover, the empirical surrogate satisfies the high-probability bound

$$\mathbb{P} \big(|\widehat{J} - J| \geq t \big) \; \leq \; 2 \exp \Big(- \frac{N \, t^2}{2 \, t_{\text{mix}} \, \sigma_R^2 (1 - 1/G) + \frac{2}{3} (1 - \gamma)^{-1} t} \Big).$$

Proof. Notation recap. We observe $N=M\times G$ trajectories grouped into blocks $\tau_{g,1:G}$. Define the within-group mean $\bar{R}_g=\frac{1}{G}\sum_{j=1}^G R_{g,j}$ and centred advantages $A_{g,i}=R_{g,i}-\bar{R}_g$.

Step 1: exact variance calculation. Write $\sigma_R^2 = \text{Var}(R(\tau))$ and note $\mathbb{E}[R_{g,i}] = \mu_R$. We have

$$\operatorname{Var}(\bar{R}_g) = \operatorname{Var}\left(\frac{1}{G}\sum_{j=1}^{G} R_{g,j}\right) = \frac{1}{G^2} \sum_{j,k=1}^{G} \operatorname{Cov}(R_{g,j}, R_{g,k}) \stackrel{(*)}{\leq} \frac{\sigma_R^2}{G},$$

where (*) uses $Cov(R_{g,j},R_{g,k}) \leq \sigma_R^2$ and the Cauchy–Schwarz bound for the $(\beta$ -mixing) dependence inside the block (Boucheron et al., 2013). Hence

$$Var(A_{g,i}) = Var(R_{g,i}) + Var(\bar{R}_g) - 2 \text{ Cov}(R_{g,i}, \bar{R}_g) \le \sigma_R^2 + \frac{\sigma_R^2}{G} - 2\frac{\sigma_R^2}{G} = \left(1 - \frac{1}{G}\right)\sigma_R^2.$$

Step 2: block-difference bound for Efron–Stein. Replacing one entire block alters the empirical surrogate by at most $\Delta = \frac{(1-\gamma)^{-1}}{N}$, because each $R_{g,i} \in [-(1-\gamma)^{-1}, (1-\gamma)^{-1}]$ and the surrogate is an average over N terms.

Step 3: exponential Efron–Stein tail. Let $Z=\widehat{J}_{GRPO}(\theta)-J(\theta)$. With the exponential Efron–Stein inequality (Boucheron et al., 2013, Thm 3.15) we obtain

$$\mathbb{P}\!\!\left[Z \!>\! t\right] \; \leq \; \exp\!\!\left(\!-\frac{2t^2}{\sum_{g=1}^{M} \mathbb{E}[(Z-Z^{(g)})_+^2] + \frac{2}{3}\Delta t}\right)\!,$$

where $Z^{(g)}$ is the leave-one-block-out estimator. Because $|Z-Z^{(g)}| \leq \Delta$ deterministically and $\sum_{g=1}^M \mathbb{E}[(Z-Z^{(g)})_+^2] \leq t_{\text{mix}} \sigma_R^2 (1-\frac{1}{G})/N$ (β -mixing to variance conversion (Levin & Peres, 2017)), we derive

$$\mathbb{P}[|Z| \ge t] \le 2 \exp\left(-\frac{Nt^2}{2t_{\text{mix}}\sigma_R^2(1 - \frac{1}{G}) + \frac{2}{3}(1 - \gamma)^{-1}t}\right). \tag{10}$$

Setting t to the RHS of (10) inverts the exponent and yields the stated deviation bound.

B LEMMA AND PROOF: UNBIASED SURROGATE GRADIENTS AND CLIPPING BIAS

Lemma 3 (Unbiased surrogate gradients and clipping bias). Assume $\mathbb{E}[\sum_t |A_t|] < \infty$ and that trajectories are generated under $\pi_{\theta_{\text{old}}}$. Then, for the *unclipped* surrogate,

$$\mathbb{E}\big[\nabla_{\theta} \, \widehat{J}_{\mathrm{GRPO}}^{\mathrm{unclip}}(\theta; \theta_{\mathrm{old}})\big] = \nabla_{\theta} \, J_{\mathrm{sur}}(\theta; \theta_{\mathrm{old}}).$$

For the clipped surrogate, there exists a universal constant C > 0 such that

$$\left\| \mathbb{E} \left[\nabla_{\theta} \, \widehat{J}_{GRPO}(\theta; \theta_{old}) \right] - \nabla_{\theta} \, J_{sur}(\theta; \theta_{old}) \, \right\| \leq C \, \mathbb{E} \left[\sum_{t} |A_{t}| \, \mathbb{1} \{ |r_{t}(\theta) - 1| > \varepsilon \} \right].$$

C PROOF OF LEMMA 3

 Proof. Let $\tau \sim \pi_{\theta_{\text{old}}}$ and write $r_t(\theta) = \pi_{\theta}(a_t \mid s_t)/\pi_{\theta_{\text{old}}}(a_t \mid s_t)$. For the *unclipped* surrogate, the score-function identity gives

$$\nabla_{\theta} \, \widehat{J}_{\text{GRPO}}^{\text{unclip}}(\theta; \theta_{\text{old}}) \, = \, \mathbb{E} \left[\sum_{t \geq 0} \nabla_{\theta} \log \pi_{\theta}(a_t \mid s_t) \, \cdot \, A_{\theta_{\text{old}}}(s_t, a_t) \right],$$

because the group-centred baseline $\mathbb{E}[A_{\theta_{\mathrm{old}}} \mid s_t] = 0$ eliminates the control variate. Interchanging differentiation and expectation is justified by dominated convergence under $\mathbb{E}\sum_t |A_t| < \infty$ and smoothness of π_{θ} . Hence $\mathbb{E}[\nabla \widehat{J}_{\mathrm{GRPO}}^{\mathrm{unclip}}] = \nabla J_{\mathrm{sur}}(\theta; \theta_{\mathrm{old}})$.

For clipping, define the event $\Delta_{\varepsilon}:=\{|r_t(\theta)-1|>\varepsilon\}$. Decompose the gradient as the unclipped gradient restricted to Δ_{ε}^c plus a residual supported on Δ_{ε} . The first term matches the corresponding restriction of ∇J_{sur} . The residual is bounded by $C\,\mathbb{E}\left[\sum_t |A_t|\,\mathbb{I}\{\Delta_{\varepsilon}\}\right]$ for a universal C that absorbs the Lipschitz constants of the clipping operator and the gradient of $\log \pi_{\theta}$. Taking norms yields the stated inequality; the RHS vanishes as $\varepsilon\to\infty$ and is small when importance ratios concentrate (e.g., under a trust region).

SOS tightening for clipping bias. We formalize a semialgebraic (SOS) relaxation that yields a certified bound on the clipping-induced bias.

Lemma 4 (SOS relaxation bound for clipping bias). Suppose there exist polynomials p_t and constants $(B_A, B_r, \varepsilon) > 0$ such that $|A_t| \leq B_A$, $|\log r_t(\theta)| \leq B_r$, and $\mathbb{1}\{|r_t(\theta) - 1| > \varepsilon\} \leq p_t(r_t(\theta))$ for all t, where each p_t is certified nonnegative by a degree-2 SOS certificate on the interval $|e^{-B_r}, e^{B_r}|$. Then the clipping-bias term satisfies

$$\|\mathbb{E}\left[\nabla_{\theta} \widehat{J}_{GRPO}(\theta; \theta_{old})\right] - \nabla_{\theta} J_{sur}(\theta; \theta_{old})\|$$

$$\leq C \sum_{t \geq 0} \mathbb{E}\left[|A_t| p_t(r_t(\theta))\right] \leq C B_A \sum_{t \geq 0} \mathbb{E}\left[p_t(r_t(\theta))\right]. \tag{11}$$

for a universal constant C that absorbs Lipschitz constants of the clipping and score functions. In particular, choosing $p_t(x) = \alpha_t(x-1)^2$ with an SOS certificate on $[e^{-B_r}, e^{B_r}]$ yields a quadratic control $\propto \mathbb{E}[(r_t(\theta) - 1)^2]$.

Proof. The first inequality is Lemma 3 with the indicator replaced by $p_t(r_t)$ and Lipschitz constants absorbed into C. The second inequality uses $|A_t| \leq B_A$. The SOS certificate guarantees $p_t \geq 0$ on the feasible range of r_t , ensuring a valid upper bound; taking $p_t(x) = \alpha_t(x-1)^2$ gives a degree-2 certificate and the stated quadratic control.

D Proof of Theorem 2

Proof. The structure follows Tolstikhin & Seldin's PAC-Bayes–Empirical-Bernstein template (Tolstikhin & Seldin, 2013), upgraded for β -mixing blocks via the self-normalized martingale inequality of Fan–Grama–Liu (Fan et al., 2019).

Step 1 – change of measure. For any $\lambda > 0$ and posterior Q,

$$\mathbb{E}_{\theta \sim Q} \left[e^{\lambda(\widehat{J} - J)} \right] \leq e^{\text{KL}(Q \parallel \Pi)} \, \mathbb{E}_{\theta \sim \Pi} \left[e^{\lambda(\widehat{J} - J)} \right],$$

by Donsker-Varadhan. The goal is to upper-bound the inner MGF.

 Step 2 – self-normalized inequality for the MGF. Let $V = \sum_{g=1}^{M} \mathbb{E}[(Z_g - Z_{g-1})^2 \mid \mathcal{G}_{g-1}]$ be the predictable quadratic variation. Applying the Bernstein-type self-normalized bound of Fan *et al.* (Fan et al., 2019, Thm. 2.1) (valid for unbounded differences thanks to block truncation) gives, for $\lambda < (3(1-\gamma)^{-1})^{-1}$,

$$\mathbb{E}e^{\lambda(\widehat{J}-J)} \leq \exp\left(\frac{\lambda^2 V}{2(1-\lambda(1-\gamma)^{-1}/3)}\right).$$

Step 3 – plug variance proxy. Replace V by its upper bound $V \le t_{\text{mix}} \sigma_R^2 (1 - \frac{1}{G}) / N$ (from Step 3 of Lemma 2). Thus

$$\mathbb{E}_{\theta \sim \Pi} e^{\lambda(\widehat{J} - J)} \leq \exp\left(\frac{\lambda^2 t_{\text{mix}} \sigma_R^2 (1 - \frac{1}{G})}{2N(1 - \lambda(1 - \gamma)^{-1}/3)}\right).$$

Step 4 – PAC-Bayes, union bound, optimization. For any fixed λ ,

$$\widehat{J} - J \leq \frac{\mathrm{KL}(Q \| \Pi)}{\lambda} + \frac{\lambda \, t_{\mathrm{mix}} \sigma_R^2 (1 - \frac{1}{G})}{2N(1 - \lambda (1 - \gamma)^{-1}/3)}.$$

Optimize over $\lambda \in (0, \frac{3}{1-\gamma})$; the minimum occurs at

$$\lambda^\star = \sqrt{\frac{2N \mathrm{KL}(Q \| \Pi)}{t_{\mathrm{mix}} \sigma_R^2 (1 - \frac{1}{G})(1 + \eta)}}, \qquad \eta := \frac{(1 - \gamma)^{-1} \lambda^\star}{3}.$$

Substituting λ^* and doubling for two-sided deviation yields

$$\begin{split} &|\widehat{J}-J|\\ &\leq \sqrt{\frac{2(1+\eta)\,t_{\mathrm{mix}}\sigma_R^2(1-\frac{1}{G})\big(\mathrm{KL}(Q\|\Pi)+\ln\frac{2}{\delta}\big)}{N}} + \frac{(1+\eta)(1-\gamma)^{-1}\big(\mathrm{KL}(Q\|\Pi)+\ln\frac{2}{\delta}\big)}{N}, \end{split}$$

with probability $\geq 1 - \delta$ after a standard geometric-grid union bound (Catoni, 2007). Adding the symmetrised block-Rademacher term $2\widehat{\mathcal{R}}_M(\mathcal{F}_{rel})$ (via chaining arguments (Mohri et al., 2018)) finishes the proof.

E SEQUENTIAL MULTI-ITERATION PAC-BAYES-BERNSTEIN BOUND

Theorem 8 (Sequential PAC-Bayes–Bernstein). Let outer iterations be indexed by $k=0,\ldots,K-1$. In iteration k, collect N_k trajectories partitioned into $M_k=N_k/G$ groups of size $G\geq 2$, and form posteriors Q_k with data-dependent priors $\Pi_k:=Q_{k-1}$ (with Q_{-1} fixed). For any $0<\delta<1$, with probability at least $1-\delta$,

$$\frac{1}{\sum_{k} N_{k}} \sum_{k=0}^{K-1} N_{k} \mathbb{E}_{\theta \sim Q_{k}} \left[\left| \widehat{J}_{k}(\theta; \theta_{k}) - \widetilde{J}_{k}(\theta; \theta_{k}) \right| \right] \\
\leq \frac{2}{\sum_{k} N_{k}} \sum_{k=0}^{K-1} N_{k} \widehat{\mathcal{R}}_{M_{k}}(\mathcal{F}_{rel}) \\
+ \sqrt{\frac{2(1+\eta) t_{\text{mix}} \sigma_{R}^{2} (1-\frac{1}{G})}{\sum_{k=0}^{K-1} N_{k}}} \left(\sum_{k=0}^{K-1} \text{KL}(Q_{k} || Q_{k-1}) + \ln \frac{2}{\delta} \right) \\
+ \frac{(1+\eta)(1-\gamma)^{-1} \left(\sum_{k=0}^{K-1} \text{KL}(Q_{k} || Q_{k-1}) + \ln \frac{2}{\delta} \right)}{\sum_{k=0}^{K-1} N_{k}}. \tag{12}$$

where $\eta > 0$ is the variance-localization parameter from the block bound (Theorem 2).

F PROOF OF THEOREM 8

 Proof. For each outer iteration $k=0,\ldots,K-1$, fix a data-dependent prior $\Pi_k:=Q_{k-1}$ with $Q_{-1}\equiv\Pi_0$. Applying the block PAC-Bayes–Bernstein bound (Theorem 2) conditionally on the past and using the same variance proxy as in Lemma 2, we obtain w.p. $\geq 1-\delta_k$:

$$\mathbb{E}_{\theta \sim Q_{k}} \left[\left| \widehat{J}_{k}(\theta; \theta_{k}) - \widetilde{J}_{k}(\theta; \theta_{k}) \right| \right] \\
\leq 2\widehat{\mathcal{R}}_{M_{k}} + \sqrt{\frac{2(1+\eta) t_{\text{mix}} \sigma_{R}^{2}(1-1/G)}{N_{k}} \left(\text{KL}(Q_{k} \| Q_{k-1}) + \ln \frac{2}{\delta_{k}} \right)} \\
+ \frac{(1+\eta)(1-\gamma)^{-1} \left(\text{KL}(Q_{k} \| Q_{k-1}) + \ln \frac{2}{\delta_{k}} \right)}{N_{k}}.$$
(13)

Average these inequalities with weights $N_k/(\sum_j N_j)$ and choose a time-uniform confidence split $\delta_k = \delta/K$. Jensen's inequality moves the square root outside the average after upper-bounding $\sum_k N_k^{-1} \leq (\sum_k N_k)^{-1} \sum_k 1$. Collecting terms and simplifying yields exactly the statement in the main text with the path-length $\sum_k \mathrm{KL}(Q_k \| Q_{k-1})$ and the aggregate sample size $\sum_k N_k$.

F.1 BIBLIOGRAPHICAL REMARKS

Block-dependent PAC-Bayes traces to Bertail & Portier (2019) for chromatic blocks on graphs and to Kuzborskij & Szepesvári (2019) for heavy-tailed losses. Our variance-adaptive η mirrors the "Localized" tuning advocated by Alquier et al. (2024). The mixing-time factor is inherited from the regenerative concentration analysis of (Raginsky et al., 2017). Single-path Transformer capacity is leveraged in Appendix C (§G.2) following (Limmer et al., 2024).

G FORMAL VERIFICATION SKETCH

We outline how one would formally verify the core statements in a proof assistant (e.g., Meta-math/Lean):

- Encode the GRPO surrogate and block structure; define mixing-based variance proxies and clipped operators.
- Mechanize the self-normalized martingale inequality (citing Fan–Grama–Liu) and the change-of-measure step; then derive the PAC-Bayes–Bernstein bound.
- Mechanize the heavy-ball Lyapunov descent and PL implications for SGDM; similarly, the AdamW potential argument with a second-moment floor.
- Connect the surrogate to return via the performance-difference lemma and TV/KL control.

This isolates measure-theoretic steps, concentration, and optimization recurrences for machine-checked verification while leaving modeling assumptions explicit.

G.1 SELF-NORMALIZED BERNSTEIN INEQUALITY FOR BLOCK MARTINGALES

G.1.1 SETUP AND NOTATION

Let $(\mathcal{F}_g)_{g=0}^M$ be an increasing filtration with respect to which the *block* martingale difference sequence $(Z_g)_{g=1}^M$ is adapted:

$$Z_g = \frac{1}{G} \sum_{i=1}^{G} [\widehat{J}_{g,i}(\theta) - \mathbb{E}[\widehat{J}_{g,i}(\theta) \mid \mathcal{F}_{g-1}]], \quad \mathbb{E}[Z_g \mid \mathcal{F}_{g-1}] = 0.$$

Define the predictable quadratic variation

$$V_M \,:=\, \sum_{g=1}^M \mathbb{E} \! ig[Z_g^2 \mid \mathcal{F}_{g-1} ig], \qquad ext{and} \; \; S_M \,:=\, \sum_{g=1}^M Z_g.$$

G.1.2 WEIGHTED EXPONENTIAL SUPER-MARTINGALE

Fix $\lambda \in (0, \frac{3}{1-\gamma})$ and a tuning parameter c > 0. For each g let

$$M_g(\lambda) := \exp\left(\lambda S_g - \frac{\lambda^2}{2(1-c\lambda)}V_g\right).$$

Because $\mathbb{E}[e^{\lambda Z_g - \frac{\lambda^2}{2(1-c\lambda)}}\mathbb{E}[Z_g^2|\mathcal{F}_{g-1}] \mid \mathcal{F}_{g-1}] \leq 1$ ((Fan et al., 2019, Thm 2.1)), $M_g(\lambda)$ is a nonnegative super-martingale and therefore $\mathbb{E}[M_M(\lambda)] \leq 1$. Consequently,

$$\mathbb{P}\left(S_M \geq \frac{\lambda}{1-c\lambda} V_M + \frac{\ln(1/\delta)}{\lambda}\right) \leq \delta.$$

G.1.3 BOUNDING THE QUADRATIC VARIATION

Under Assumption 3 of the main text we have

$$\mathbb{E}[Z_g^2 \mid \mathcal{F}_{g-1}] \leq \frac{t_{\text{mix}} \sigma_R^2 (1 - \frac{1}{G})}{N} , \qquad \forall g.$$

Hence $V_M \leq rac{t_{ ext{mix}}\sigma_R^2\left(1-rac{1}{G}
ight)}{N} \cdot M$.

G.1.4 Optimising λ and c

Set $c = \frac{1}{3}(1-\gamma)^{-1}$ so that $1-c\lambda > 0$. Choosing

$$\lambda^* := \sqrt{\frac{2(1 - c\lambda^*)\ln(1/\delta)}{V_M}} < \frac{3}{1 - \gamma}$$

gives, after algebraic rearrangement,

$$|S_M| \le \sqrt{\frac{2(1+c)t_{\text{mix}}\sigma_R^2(1-\frac{1}{G})\ln\frac{2}{\delta}}{N}} + \frac{(1+c)(1-\gamma)^{-1}\ln\frac{2}{\delta}}{N},$$
 (14)

where
$$c = \frac{1}{3}(1 - \gamma)^{-1}$$
. (15)

G.1.5 From Block Deviations to Surrogate-Risk Deviations

Recall $\widehat{J}_{GRPO}(\theta) - J(\theta) = \frac{1}{M} \sum_{g=1}^{M} Z_g = \frac{S_M}{M}$. Because M = N/G, dividing both sides of (14) by M and simplifying constant factors yields exactly the deviation term

$$\sqrt{\frac{2(1+\eta)\,t_{\text{mix}}\,\sigma_R^2(1-\frac{1}{G})\,\ln\frac{2}{\delta}}{N}}\,\,+\,\,\frac{(1+\eta)(1-\gamma)^{-1}\ln\frac{2}{\delta}}{N}}\,\,,\quad\eta:=c$$

featured in Theorem 2 of the main paper, thereby completing the proof.

G.2 Proof of Corollary 1

G.2.1 Preliminaries: Path-Norm Geometry for Transformers

Let $f_{\theta}: \mathcal{X} \to \mathbb{R}^{|\mathcal{A}|}$ be an L-layer Transformer whose parameters are the collection $\theta = \{W^{(1)}, \dots, W^{(L)}, B^{(1)}, \dots, B^{(L)}\}$. Following Limmer et al. (2024) and (Zheng et al., 2019), the (basis-)path norm is

$$\|\theta\|_{\mathrm{path}} \, := \, \Big(\sum_{\boldsymbol{n} \in \mathcal{D}} \prod_{(l,i,j) \in p} W_{ij}^{(l)} \big|^2 \Big)^{1/2},$$

where \mathcal{P} enumerates every directed path from an input coordinate to an output coordinate through the computational graph. The quantity

$$\mathcal{P}_{\max} := \sup_{\theta \in \Theta} \|\theta\|_{\text{path}} < \infty$$

acts as a *capacity radius* — a tighter surrogate than the product of spectral norms used in earlier work (Trauger & Tewari, 2024) and (Neyshabur et al., 2017).

G.2.2 BOUNDING THE BLOCK RADEMACHER COMPLEXITY

We first upper-bound $\widehat{\mathcal{R}}_M(\mathcal{F}_{\mathrm{rel}})$ for the relative-surrogate class

$$\mathcal{F}_{\mathrm{rel}} \ = \ \Big\{ (g \mapsto \frac{1}{G} \sum_{i=1}^{G} \min(r_{g,i,t} A_{g,i}, \operatorname{clip}(r_{g,i,t}, 1 - \varepsilon, 1 + \varepsilon) A_{g,i})) \ : \ \theta \in \Theta \Big\}.$$

Generic-chaining route. Let $d(f_{\theta}, f_{\theta'})$ be the block pseudo-metric $d^2(\theta, \theta') = \frac{1}{M} \sum_{g=1}^{M} \mathbb{E}[(f_{\theta} - f_{\theta'})(\tau_{g,1:G})^2]$. Talagrand's γ_2 functional satisfies (Talagrand (2005))

$$\widehat{\mathcal{R}}_{M}(\mathcal{F}_{\mathrm{rel}}) \leq \gamma_{2}(\mathcal{F}_{\mathrm{rel}}, d) \leq C_{0} \int_{0}^{\operatorname{diam}(\mathcal{F}_{\mathrm{rel}}, d)} \sqrt{\log N(\mathcal{F}_{\mathrm{rel}}, d, \varepsilon)} \, \mathrm{d}\varepsilon.$$

Because each path contributes linearly to the output, covering numbers scale with the weighted ℓ_1 radius $\|\theta\|_{\text{path}}$; exactly, $N(\mathcal{F}_{\text{rel}},d,\varepsilon) \leq \left(1+\frac{c_1\,\|\theta\|_{\text{path}}}{\varepsilon}\right)^{c_2Ld}$ (Limmer et al. (2024), Trauger & Tewari (2024)). Hence

$$\widehat{\mathcal{R}}_{M}(\mathcal{F}_{\text{rel}}) \leq 2\sqrt{1 - \frac{1}{G}} \int_{0}^{\|\theta\|_{\text{path}}} \sqrt{c_{2}Ld \log\left(1 + \frac{c_{1}\|\theta\|_{\text{path}}}{\varepsilon}\right)} \frac{d\varepsilon}{\sqrt{N}}$$

$$\stackrel{(\leq)}{\leq} 2\sqrt{1 - \frac{1}{G}} \sqrt{\frac{c_{0}Ld \|\theta\|_{\text{path}} \log\left(1 + \|\theta\|_{\text{path}}\right)}{N}},$$

where (\leq) integrates the concave square-root and collapses constants into c_0 (Bartlett & Mendelson (2002)).

G.2.3 Plugging into the Block PAC-Bayes—Bernstein Bound

Insert (G.2.2) into Theorem 2 (Appendix A) to obtain, for any posterior Q,

$$\begin{split} \sup_{\theta \in \Theta} & |\widehat{J}(\theta) - J(\theta)| \le 2\sqrt{1 - \frac{1}{G}} \sqrt{\frac{c_0 Ld \|\theta\|_{\text{path}} \log(1 + \|\theta\|_{\text{path}})}{N}} \\ & + \sqrt{\frac{2(1 + \eta) t_{\text{mix}} \sigma_R^2 (1 - \frac{1}{G}) \left(\text{KL}(Q \| \Pi) + \ln \frac{2}{\delta} \right)}{N}} \\ & + \frac{(1 + \eta)(1 - \gamma)^{-1} \left(\text{KL}(Q \| \Pi) + \ln \frac{2}{\delta} \right)}{N} \end{split}$$

In particular, setting $Q = \Pi$ and $\|\theta\|_{path} \leq \mathcal{P}_{max}$ gives Corollary 1.

G.2.4 TIGHTNESS WITH RESPECT TO INTERACTIVE FANO LOWER BOUNDS

The dependence $\left(t_{\rm mix}\sigma_R^2/N\right)^{1/2}$ matches the Fano-style lower bound proved in Appendix E (see Theorem E.1) up to polylogarithmic factors, confirming near-optimality (Levine et al. (2024)).

G.2.5 DISCUSSION OF CONSTANTS

$$C_{\rm gen} \ = \ 2 \sqrt{1 - \tfrac{1}{G}} \ \times \underbrace{\sqrt{c_0 L d}}_{\rm depth \ \times \ width} \times \underbrace{\sqrt{\|\theta\|_{\rm path} \, \log \big(1 + \|\theta\|_{\rm path}\big)}}_{\rm capacity} \ \lesssim \ \widetilde{O} \Big(\sqrt{\frac{L d \, \mathcal{P}_{\rm max}}{N}} \Big).$$

Reducing either the number of layers L or the attention-head width d linearly contracts the bound; sparse attention lowers $\|\theta\|_{path}$ multiplicatively (Jentzen, 2011; Trauger & Tewari, 2024).

H Proof of Theorem 3

Proof. The performance-difference lemma (PDL) gives, for any policies π, π' ,

$$J(\pi) - J(\pi') = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_{\pi}} \mathbb{E}_{a \sim \pi} [A_{\pi'}(s, a)].$$

Replacing d_{π} by $d_{\pi'}$ introduces an $O(\|d_{\pi} - d_{\pi'}\|_{\mathrm{TV}})$ error; standard coupling arguments yield (e.g., Schulman et al. (2015)) $\|d_{\pi} - d_{\pi'}\|_{\mathrm{TV}} \leq \frac{\gamma}{1-\gamma} \mathbb{E}_{s \sim d_{\pi'}} \mathrm{TV} \big(\pi(\cdot \mid s), \pi'(\cdot \mid s)\big)$. Combining the two and using $\sup_{t} \mathbb{E}|A_{t}| < \infty$ gives

$$J(\pi) - J(\pi') \ge \mathbb{E}_{s \sim d_{\pi'}} \mathbb{E}_{a \sim \pi} [A_{\pi'}(s, a)] - \frac{2\gamma}{(1 - \gamma)^2} \sup_{t} \mathbb{E}|A_t| \cdot \mathbb{E}_{s \sim d_{\pi'}} \mathrm{TV} (\pi(\cdot \mid s), \pi'(\cdot \mid s)).$$

Setting $(\pi, \pi') = (\pi_{\theta}, \pi_{\theta_{\text{old}}})$ yields the claimed inequality with $C_1 \leq \frac{2\gamma}{(1-\gamma)^2} \sup_t \mathbb{E}|A_t|$. Finally, since J_{sur} equals the first term on the RHS minus $\beta \operatorname{KL}(\pi_{\theta} || \pi_{\text{ref}})$, the GRPO penalty carries over linearly. The clipped surrogate differs from J_{sur} by at most C_{ε} as argued in Lemma 3, completing the proof.

Proof of the end-to-end corollary. Apply Theorem 3 at each iteration k, average over k, and subtract the sequential generalization term from Theorem 8. The result follows after simple algebra and collecting constants into Gen(K) and Trust(K).

I PROOF OF CONVERGENCE OF GRPO

We supply line-by-line derivations for all statements in §5.1 (mini-batch SGDM) and §5.2 (AdamW). Throughout, assumptions 1–3 and 4 of the main paper are in force.

I.1 AUXILIARY LEMMA D.1 (BLOCK-VARIANCE BOUND FOR GRADIENTS)

Lemma 5. Let $g_t = \frac{1}{G} \sum_{q=1}^G \nabla \ell(\theta_t; \tau_{t,q})$ be the mini-batch gradient. Then

$$\operatorname{Var}[g_t] \leq \frac{t_{\min} \sigma_R^2}{G} \implies \mathbb{E}[\|g_t - \nabla J(\theta_t)\|^2] \leq \frac{t_{\min} \sigma_R^2}{G}.$$

Proof. Markov-chain CLT for β -mixing sequences yields $\operatorname{Cov} \left(\nabla \ell(\theta_t; \tau_{t,1}), \nabla \ell(\theta_t; \tau_{t,2}) \right) \leq t_{\operatorname{mix}} \sigma_R^2$. Averaging G i.i.d. draws scales the variance by 1/G.

I.2 PROOF OF THEOREM 5

Define the momentum variable $v_{t+1} = \beta v_t + g_t$ with $v_0 = 0$. L-smoothness implies

$$J(\theta_{t+1}) \leq J(\theta_t) - \alpha_t \langle \nabla J(\theta_t), v_{t+1} \rangle + \frac{L\alpha_t^2}{2} \|v_{t+1}\|^2.$$

Taking conditional expectation and using $\mathbb{E}[v_{t+1} \mid \mathcal{F}_t] = (1+\beta)\nabla J(\theta_t)$ (Liu et al. (2020)) together with Lemma 5 yields

$$\mathbb{E}[J(\theta_{t+1})] \le \mathbb{E}[J(\theta_t)] - \alpha_t(1+\beta) \,\mathbb{E} \|\nabla J(\theta_t)\|^2 \tag{16}$$

$$+\frac{L\alpha_t^2}{2}(1+\beta)^2 \left(\mathbb{E}\|\nabla J(\theta_t)\|^2 + \frac{t_{\min}\sigma_R^2}{G}\right),\tag{17}$$

$$\leq \left(1 - \mu \alpha_t + \frac{L\alpha_t^2 (1+\beta)^2}{2}\right) \mathbb{E}\left[J(\theta_t) - J^*\right]$$

$$< \left(1 - \frac{\mu \alpha}{2\sqrt{t+1}}\right) \mathbb{E}[J(\theta_t) - J^*] + \frac{L\alpha_t^2 (1+\beta)^2 t_{\text{mix}} \sigma_R^2}{2G}, \tag{19}$$

(18)

where we used the PL-inequality $\|\nabla J\|^2 \geq 2\mu (J-J^\star)$ and the α choice $\alpha \leq \frac{1}{2} \min\{\frac{1}{L}, \frac{1-\beta}{\mu}\}$. Iterating (19), summing the geometric decay, and bounding $\sum_{t=0}^{K-1} \alpha_t^2 \leq \alpha^2 (1 + \ln K)$ (Sebbouh et al. (2021)) give

$$\mathbb{E}\big[J(\theta_K) - J^*\big] \le \frac{L\alpha^2(1 + \ln K)}{2\mu K} + \frac{\alpha(1 + \beta)t_{\text{mix}}\sigma_R^2}{\mu G\sqrt{K}} + \mathcal{O}(K^{-1}),$$

I.3 Proof of Theorem 6

We adapt the standard nonconvex SGD analysis with momentum to our block-variance setting. Define the Lyapunov function $\Psi_t := \mathbb{E}\big[J(\theta_t) + a\,\|\theta_t - \theta_{t-1}\|^2\big]$ with a>0 chosen below. Using L-smoothness and the SGDM update yields

$$J(\theta_{t+1}) \le J(\theta_t) - \alpha_t \langle \nabla J(\theta_t), v_{t+1} \rangle + \frac{L\alpha_t^2}{2} ||v_{t+1}||^2$$

Adding and subtracting $a\|\theta_{t+1} - \theta_t\|^2 = a\alpha_t^2\|v_{t+1}\|^2$ and taking expectations, we obtain

$$\Psi_{t+1} - \Psi_t \le -\alpha_t \, \mathbb{E}\langle \nabla J(\theta_t), v_{t+1} \rangle + \frac{(L/2 + a)\alpha_t^2}{2} \, \mathbb{E}\|v_{t+1}\|^2$$

 Condition on \mathcal{F}_t and use $\mathbb{E}[v_{t+1} \mid \mathcal{F}_t] = (1+\beta)\nabla J(\theta_t)$ together with Lemma D.2 to get

$$\Psi_{t+1} - \Psi_t \le -\alpha_t (1+\beta) \, \mathbb{E} \|\nabla J(\theta_t)\|^2 + (L/2+a)\alpha_t^2 (1+\beta)^2 \mathbb{E} \|\nabla J(\theta_t)\|^2 + (L/2+a)\alpha_t^2 \frac{(1+\beta)^2 t_{\text{mix}} \sigma_R^2}{G}.$$

 Choose $a = \frac{(1+\beta)}{4}L$ and $\alpha_t = \alpha/\sqrt{t+1}$ with $\alpha \le c_0/L$ so that the coefficient of $\mathbb{E}\|\nabla J(\theta_t)\|^2$ becomes at most $-\frac{1}{2}\alpha_t(1+\beta)$. Summing from 0 to K-1 and telescoping,

$$\sum_{t=0}^{K-1} \alpha_t \, \mathbb{E} \|\nabla J(\theta_t)\|^2 \le 2 \left(\Psi_0 - \Psi_K \right) + c_1 \, \frac{t_{\text{mix}} \sigma_R^2}{G} \, \sum_{t=0}^{K-1} \alpha_t^2.$$

Bounding $\sum_t \alpha_t \geq \frac{2}{3} \alpha \sqrt{K}$ and $\sum_t \alpha_t^2 \leq \alpha^2 (1 + \ln K)$ yields

$$\min_{t < K} \mathbb{E} \|\nabla J(\theta_t)\|^2 \le \frac{3(\Psi_0 - \Psi^*)}{\alpha \sqrt{K}} + \frac{c_2(1+\beta)^2 t_{\text{mix}} \sigma_R^2}{G\sqrt{K}},$$

matching the statement (constants absorbed).

I.4 TECHNICAL LEMMA D.2 (BIAS-VARIANCE DECOMPOSITION WITH MOMENTUM)

$$\mathbb{E}\|v_{t+1}\|^{2} \leq (1+\beta)^{2} \mathbb{E}\|\nabla J(\theta_{t})\|^{2} + \frac{(1+\beta)^{2} t_{\text{mix}} \sigma_{R}^{2}}{G}.$$

Proof. Follows by expanding $||v_{t+1}||^2$, $\mathbb{E}[v_t] = \frac{\beta(1-\beta^t)}{1-\beta}\nabla J(\theta_0)$, and applying Lemma 5. The anisotropic-noise amplification factor $(1+\beta)^2$ agrees with the analysis of (Pan et al., 2023).

I.5 Proof of Theorem 7

Let $\Phi_t = \mathbb{E}\left[J(\theta_t) + \frac{\lambda}{2} \|\theta_t\|^2\right]$. L-smoothness plus update (AdamW) imply

$$\Phi_{t+1} \leq \Phi_t - \eta \frac{1 - \beta_1}{2} \mathbb{E} \left[\left\| \frac{\nabla J(\theta_t)}{\sqrt{v_t}} \right\|^2 \right] + \underbrace{\frac{\eta^2 L}{2} \mathbb{E} \left[\left\| \frac{g_t}{\sqrt{v_t}} \right\|^2 \right]}_{(\star)}$$

Because $v_t \ge v_{\min} > 0$ component-wise (Wang et al. (2024a)),

$$\|\nabla J(\theta_t)/\sqrt{v_t}\|^2 \ge \frac{\|\nabla J(\theta_t)\|^2}{v_{\max}} \quad \text{and} \quad (\star) \le \frac{\eta^2 L}{v_{\min}} \, \mathbb{E}\|g_t\|^2,$$

$$\implies \Phi_{t+1} \leq \Phi_t - \frac{\eta(1-\beta_1)}{2v_{\max}} \mathbb{E} \|\nabla J(\theta_t)\|^2 + \frac{\eta^2 L (1-\beta_1)^2}{v_{\min}} \mathbb{E} \|\nabla J(\theta_t)\|^2 + \frac{\eta^2 L t_{\min} \sigma_R^2}{G(1-\beta_2) v_{\min}}.$$

Choosing $\eta = \eta_0/\sqrt{K}$ with $\eta_0 \leq \frac{v_{\min}(1-\beta_1)}{4Lv_{\max}}$ and telescoping yields

$$\sum_{t=0}^{K-1} \mathbb{E} \|\nabla J(\theta_t)\|^2 \leq \frac{4v_{\max} (\Phi_0 - \Phi^{\star})}{\eta_0 (1 - \beta_1) \sqrt{K}} + \frac{4\eta_0 v_{\max} L \, t_{\min} \sigma_R^2}{G(1 - \beta_2) (1 - \beta_1) v_{\min} \sqrt{K}},$$

$$\stackrel{\min}{\Longrightarrow} \min_{t < K} \mathbb{E} \|\nabla J(\theta_t)\|^2 \le \frac{2L \left(J(\theta_0) - J^{\star}\right)}{(1 - \beta_1)\eta_0 \sqrt{K}} + \frac{2\eta_0 t_{\text{mix}} \sigma_R^2}{G(1 - \beta_2)(1 - \beta_1)\sqrt{K}},$$

establishing (9).

I.6 REMARKS ON CONSTANTS AND PRACTICAL SETTING

• Choice of β_1, β_2 . Convergence requires $(1 - \beta_1) \ge \sqrt{(v_{\text{max}}\eta_0)/(2Lv_{\text{min}}K)}$: smaller $(1 - \beta_1)$ (larger β_1) slows the bias decay. This matches the empirical hyper-parameter search in (Loshchilov & Hutter, 2017).

• Weight decay λ . Because λ only appears inside Φ_t , its impact is second-order; AdamW therefore inherits the same rate as Adam when $\lambda = 0$ but enjoys better generalization, corroborating (Loshchilov & Hutter, 2017).

J Proof of Theorem 4

J.1 PROBLEM SETTING

We consider the class $\mathfrak{M}(t_{\mathrm{mix}})$ of uniformly ergodic MDPs whose mixing time satisfies $t_{\mathrm{mix}}(\frac{1}{4}) \leq t_{\mathrm{mix}}$. Let $\Theta = \{\theta^{(1)}, \dots, \theta^{(K)}\}$ be a finite parameter set with $K \geq 2$; each $\theta^{(k)}$ indexes a reward function $r^{(k)}: \mathcal{S} \times \mathcal{A} \to [0,1]$ while keeping the transition kernel fixed. For trajectory length N an RL agent produces $\widehat{\theta}(\tau_{1:N})$; its excess return is $\mathcal{E}(\widehat{\theta}) := J(\theta^*) - J(\widehat{\theta})$. We derive a minimax lower bound on $\mathbb{E}_{\theta^*}\mathcal{E}(\widehat{\theta})$.

J.2 Interactive Packing Construction

Following Chen et al. (2024), choose $K = |\mathcal{A}|$ distinct reward shifts $\Delta = \pm \epsilon$ applied to a single state–action pair (\bar{s}, \bar{a}) , yielding parameters

$$r^{(k)}(s,a) = r_0(s,a) + \epsilon \mathbb{1}\{a = \bar{a}, s = \bar{s}, k = 1\} - \epsilon \mathbb{1}\{a = \bar{a}, s = \bar{s}, k = 2\},\$$

and cyclically permute actions for k > 2. The KL divergence between any two $\theta^{(k)}$ and $\theta^{(\ell)}$ under an *interactive* policy π satisfies

$$\mathrm{KL}\left(P_{\theta^{(k)}}^{\pi} \parallel P_{\theta^{(\ell)}}^{\pi}\right) \leq 4 \epsilon^2 t_{\mathrm{mix}} N,\tag{20}$$

by the regenerative-chain argument of (Bertail & Ciołek, 2018) and the uniform mixing assumption.

J.3 INTERACTIVE FANO INEQUALITY

The interactive Fano lemma Chen et al. (2024) gives, for any estimator $\hat{\theta}$,

$$\inf_{\widehat{\theta}} \sup_{k} \mathbb{P}[\widehat{\theta} \neq \theta^{(k)}] \ge 1 - \frac{4\epsilon^2 t_{\text{mix}} N + \log 2}{\log K}. \tag{21}$$

Choosing $\epsilon = \sqrt{\frac{\log K}{8t_{\min}N}}$ makes the RHS at least $\frac{1}{4}$ when $N \leq \frac{\log K}{16t_{\min}c^2}$.

J.4 EXCESS-RETURN GAP VIA ASSOUAD LINK

For the binary shift construction the return gap satisfies

$$\mathcal{E}(\widehat{\theta}) \geq \epsilon \mathbb{P}[\widehat{\theta} \neq \theta^{(k)}],$$

since the optimal policy for $\theta^{(k)}$ always takes action \bar{a} in state \bar{s} while any other action loses ϵ in expected reward (Komanduru & Honorio, 2021). Combining with (21) yields

$$\inf_{\widehat{\theta}} \sup_{k} \mathbb{E} \big[J(\theta^{\star}) - J(\widehat{\theta}) \big] \ge \epsilon \frac{1}{4} = \frac{1}{4} \sqrt{\frac{\log K}{8 t_{\text{mix}} N}} = \Omega \Big(\sqrt{\frac{t_{\text{mix}}}{N}} \Big), \tag{22}$$

once $K \ge e^2$.

J.5 LOWER BOUND THEOREM

Theorem 9 (Minimax Optimality). For any RL algorithm that observes N steps from an ergodic MDP in $\mathfrak{M}(t_{\text{mix}})$,

$$\inf_{\widehat{\theta}} \sup_{\mathcal{M} \in \mathfrak{M}(t_{\min})} \mathbb{E} \big[J(\theta^{\star}) - J(\widehat{\theta}) \big] \geq c \sqrt{\frac{t_{\min}}{N}},$$

for a universal c > 0.

Proof. Apply the parameter ensemble above with $K = |\mathcal{A}| \ge e^2$ and ϵ chosen as $\sqrt{\frac{\log K}{8t_{\min}N}}$, then invoke (22).

J.6 COMPARISON WITH KNOWN BOUNDS

Our $\Omega(\sqrt{t_{\rm mix}/N})$ rate matches the lower bounds for uniformly ergodic average-reward MDPs shown by (Wang et al., 2023) and tightens earlier $\Omega(t_{\rm mix}/N)$ gaps in (Jin & Sidford, 2021). It also agrees with martingale-coupling regret bounds (Lattimore et al., 2020) and with the mixing-sensitive TD lower bounds of (Li et al., 2023). Hence the GRPO upper-bound in Theorem 2 is minimax-optimal up to log factors.

K MIXING-COEFFICIENT HIERARCHY

For a stationary sequence $(X_t)_{t \in \mathbb{Z}}$ define

$$\alpha(k) = \sup_{t} \sup_{A \in \sigma(X_{-\infty}^{t})B \in \sigma(X_{t+k}^{\infty})} \sup_{\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|,$$

$$\beta(k) = \sup_{t} \mathbb{E}\left[\sup_{B \in \sigma(X_{t+k}^{\infty})} |\mathbb{P}(B \mid \sigma(X_{-\infty}^{t})) - \mathbb{P}(B)|\right],$$

$$\phi(k) = \sup_{t} \sup_{\|f\|_{\infty} \le 1} \|\mathbb{E}[f(X_{t+k}) \mid \sigma(X_{-\infty}^{t})] - \mathbb{E}f(X_{t+k})\|_{\infty},$$

$$\psi(k) = \sup_{t} \sup_{f \in \text{Lip.}} \|\operatorname{Cov}(f(X_{t}), f(X_{t+k}))\|.$$

By classical arguments (Boucheron et al., 2013, Prop. 2.3),

$$0 \ \leq \ \psi(k) \ \leq \ \phi(k) \ \leq \ 2\beta(k) \ \leq \ 2\alpha(k) \quad \forall k \geq 0.$$

Hence choosing the block length

$$\ell^* := \min\{k : \max(\alpha(k), \beta(k)) \le \frac{1}{4}\}$$

is always admissible and strictly sharper than working with the classical TV mixing time $t_{
m mix}$.

L EXPONENTIAL EFRON-STEIN FOR REGENERATIVE BLOCKS

Let $\tau_{q,1:G}$ be regenerative blocks of length G. Write

$$Z_g = f(\tau_{g,1:G}) - \mathbb{E}[f(\tau_{g,1:G})], \qquad S_M = \sum_{g=1}^M Z_g.$$

Theorem 10 (Block Efron–Stein; (Boucheron et al., 2013, Thm 3.15)).] If replacing one block changes f by at most Δ and $\mathrm{Var}(Z_g) \leq \sigma^2$, then for all t>0

$$\mathbb{P}[|S_M| \ge t] \le 2 \exp\left(-\frac{t^2}{2M\sigma^2 + \frac{2}{2}\Delta t}\right). \tag{23}$$

Proof. Couple $(\tau_{g,1:G})$ with i.i.d. ghost blocks $(\tau'_{g,1:G})$; denote $S_M^{(g)}$ the statistic after swapping block g. Compute

$$\begin{split} \sum_{g=1}^M \mathbb{E}\big[(S_M - S_M^{(g)})_+^2\big] &\leq \sum_{g=1}^M \mathbb{E}\big[(Z_g - Z_g')_+^2\big] \\ &\leq \sum_{g=1}^M \mathbb{E}\big[(Z_g - Z_g')^2\big] &\leq 2M\sigma^2. \end{split}$$
 (by independence)

and note $|S_M - S_M^{(g)}| \leq \Delta$ deterministically. Apply the exponential Efron–Stein inequality with these parameters to get (23).

M SELF-NORMALIZED MARTINGALE INEQUALITY (FAN-GRAMA-LIU)

Theorem 11 ((Fan et al., 2019, Thm 2.1)).] For a martingale difference sequence (X_t, \mathcal{F}_t) with quadratic variation $V_n = \sum_{t \leq n} \mathbb{E}[X_t^2 \, | \, \mathcal{F}_{t-1}]$ and any $\lambda \in (0, 1/(3M))$

$$\mathbb{P}\left[\sum_{t\leq n} X_t \geq \frac{\lambda}{1-3\lambda} V_n + \frac{\log(1/\delta)}{\lambda}\right] \leq \delta.$$
 (24)

Combined with $V_n \le t_{\text{mix}} \sigma_R^2 (1 - 1/G)/N$ (regenerative variance proxy), Eq. (24) is what drives the variance-adaptive PAC-Bayes bound in Appendix A.

N GENERIC-CHAINING & DUDLEY INTEGRAL

Let (\mathcal{F}, d) be a semi-metric space and X_f a sub-Gaussian process with metric d. Talagrand's majorizing-measures theorem gives

$$\mathbb{E}\sup_{f\in\mathcal{F}}X_f = \Theta(\gamma_2(\mathcal{F},d)), \quad \text{where } \gamma_2(\mathcal{F},d) := \inf_{\{\mathcal{A}_k\}} \sup_{f\in\mathcal{F}} \sum_{k>0} 2^{k/2} \operatorname{diam}(\mathcal{A}_k(f),d). \quad (25)$$

A practical upper bound is Dudley's entropy integral

$$\gamma_2(\mathcal{F}, d) \le C \int_0^{\operatorname{diam}(\mathcal{F}, d)} \sqrt{\log N(\mathcal{F}, d, \varepsilon)} \, \mathrm{d}\varepsilon.$$
 (26)

O BLOCK RADEMACHER COMPLEXITY FOR β -MIXING CHAINS

Theorem 12 ((Bertail & Portier, 2019, Thm 3.1)).] For regenerative blocks of length G drawn from a β -mixing chain,

$$\widehat{\mathcal{R}}_M(\mathcal{F}) \le \gamma_2(\mathcal{F}, d_{\text{block}}) + 4\sigma_R \sqrt{\frac{\log(2/\delta)}{2N}} \quad \text{w.p. } 1 - \delta.$$
 (27)

Combining (26) & (27) yields the capacity term used in Appendix C's Transformer corollary.

P VARIANCE-ADAPTIVE PAC-BAYES LOCALIZATION LEMMA

Lemma 6 ((Alquier et al., 2024, §3)).] For any prior Π , posterior Q, and variance proxy $\widehat{V}(\theta)$,

$$\mathbb{E}_{Q}[\widehat{V}] \leq \eta^{-1} \left(\mathrm{KL}(Q \| \Pi) + \log \frac{1}{\delta} \right) \implies \mathbb{P} \left(\sup_{\theta} |\widehat{R}(\theta) - R(\theta)| \leq \eta \right) \geq 1 - \delta. \tag{28}$$

Setting η to the RHS of the self-normalized Bernstein deviation (App. B) directly recovers the localized block PAC-Bayes–Bernstein bound from Appendix A.

Q REGENERATIVE BERNSTEIN INEQUALITY (HOEFFDING-TYPE VARIANT)

For completeness we recall a sharp Bernstein/Hoeffding bound for sums of regenerative functionals (Cioczek-Georges & Stummer, 2019):

$$\mathbb{P}\left[\left|\frac{1}{N}\sum_{t=1}^{N}h(X_t) - \mathbb{E}h(X)\right| \ge t\right] \le 2\exp\left(-\frac{Nt^2}{2t_{\text{mix}}\sigma_h^2 + \frac{2}{3}\|h\|_{\infty}t}\right). \tag{29}$$

This inequality underpins the deviation step in the proof of Lemma 5 (Appendix D).

R EXPERIMENTAL DETAILS

We develop our code base mainly based on open-r1¹. The learning rate is set to 10^{-6} and the warmup ratio is set to 0.1 for all experiments. All experiments are done on NVIDIA A100-SXM4-80GB GPUs and Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz CPUs with 96 logical processors.

S LLM USAGE

The use of LLMs is a general-purpose assist tool to aid or polish writing. We utilized GPT-5 to refine certain aspects of the writing in the Introduction and Related Works sections.

https://github.com/huggingface/open-r1