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ABSTRACT

Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025)
has rapidly become a critic-free default for aligning LLMs, yet its statistical
and computational foundations remain unclear. We close this gap by provid-
ing the first unified theory of GRPO that simultaneously addresses generalization
and optimization in the original, practitioner-used formulation and over multiple
outer iterations. On the generalization side, we derive sequential (multi-iteration)
PAC-Bayes—Bernstein bounds under Markov mixing that concentrate the empir-
ical GRPO surrogate around its population counterpart across all iterations; a
Transformer path-norm corollary yields substantially tighter capacity terms than
spectral norms. We further prove a TRPO-style return bridge showing that as-
cent in the population GRPO surrogate provably improves true return, with ex-
plicit, controllable bias from clipping and KL regularization. On the optimiza-
tion side, we establish non-PL stationarity guarantees for SGDM and AdamW
(both O(1/v/K)) and provide complementary PL-based rates, with variance con-
trolled by tmix/(GVK). Together with interactive information-theoretic lower
bounds, our results deliver the first end-to-end, multi-iteration statistical and com-
putational guarantees for GRPO with function approximation. Experiments cor-
roborate the predicted trends and offer practical guidance on group size, clipping,
and KL weight; code will be released.

1 INTRODUCTION

Large-language models (LLMs) have evolved from static next-token predictors into interactive
agents capable of multi-step theorem proving, autonomous code generation, and complex tool use.
These tasks are naturally modelled as ergodic Markov decision processes (MDPs) in which rewards
are sparse, delayed, and temporally correlated (Levin & Peres, 2017). Such structure violates the 11D
assumptions that underpin the bulk of classic generalization theory, creating an urgent demand for
RL algorithms whose statistical properties are understood in the presence of Markov dependence.
Proximal Policy Optimization (PPO) (Schulman et al., 2017) is still the default fine-tuning engine
for LLM alignment, but its reliance on a learned value critic doubles GPU memory, inflates wall-
clock time, and introduces a delicate bias—variance trade-off that is hard to tune in practice (Guo
et al., 2025). Empirically, mis-estimation of long-horizon returns often destabilizes PPO and forces
practitioners to fall back on costly additional rollouts or auxiliary losses.

Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a critic-free, memory-lean al-
ternative to PPO that computes a group-relative baseline over G trajectories while reusing clipped-
importance weights. It reduces memory by about 2 x and variance on long-horizon tasks, and powers
DeepSeek-R1. Throughout, we focus on the mean-centered variant used in the Open-R1 codebase
(often referred to as Dr-GRPO), where group-relative advantages are formed by subtracting the
group mean return without variance normalization; this is exactly the configuration used in all of
our experiments and the one analyzed by our theory.

Variants and applications span Hybrid GRPO (Sane, 2025), completion pruning (Lin et al., 2025),
and multimodal VLMs (EvolvingLMMs-Lab, 2025; Shen et al., 2025; Liu et al., 2025), yet a princi-
pled understanding under Markov dependence, momentum, and adaptive optimizers remains elusive.
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Prior policy-gradient analyses often assume IID data or ignore optimizer dynamics. Recent advances
in self-normalized martingale concentration (Bercu & Touati, 2019; Fan et al., 2019), localized
PAC-Bayes (Alquier et al., 2024), and Transformer path norms (Limmer et al., 2024) have not been
unified for critic-free objectives like GRPO with ergodic data and AdamW (Loshchilov & Hutter,
2017). Closing this gap yields deployment-ready guarantees, principled hyper-parameter choices,
and clarity on capacity vs. variance.

Notation. We fix the total number of sampled trajectories to N and partition them into M := N/G
groups of equal size G > 2. For a single trajectory 7, let R(7) be its (discounted) return and
write 0%, := Var[R(7)]. The underlying Markov chain mixes in time ¢, i.e. max a(k), (k) <

e~ k/tmix for the usual a- and S-coefficients. Policy parameters are denoted by # € ©; 7y is the
corresponding stochastic policy and J(0) := E,..,[R(7)] its population return. We use 64 for
the pre-update parameters in a given outer iteration and write 7.(0) = ma(a; | s¢)/mo, (ar | st)
for the importance ratio. We denote by m.f a frozen reference policy (e.g., SFT) used for KL
regularization. When forming the GRPO surrogate, A, ; and R, denote the centred advantages
defined in (1); € is the clipping threshold for importance weights, and Akr, is the weight on the KL
regulariser. Optimization iterates use step sizes o (SGD) or n7/+/t + 1 (AdamW); 3 € [0, 1) stands
for Polyak momentum in SGDM, while (81, 82) are the first- and second-moment decay factors in
AdamW. Unless stated otherwise, constants ¢, ¢, ... are universal.

Our contributions. We provide the first comprehensive multi-iteration theoretical treatment of
GRPO under Markov dependence, modern capacity control, and adaptive optimization.

* Sequential PAC-Bayes—Bernstein bounds. We derive high-probability multi-iteration
generalization bounds for GRPO using self-normalized Bernstein inequalities and local-
ized PAC-Bayes. The bounds scale with mixing time ¢y, group size G, return variance
0%, and the posterior path-length y_, KL(Qy || Qx—1)-

* Transformer path-norm corollary. Mapping block Rademacher complexity to the single-
path capacity of deep Transformers (Limmer et al., 2024) yields bounds up to x5 tighter
than spectral-norm estimates.

¢ Interactive information-theoretic lower bounds. An Assouad-Fano construction with
interaction Chen et al. (2024) shows that \/tmixoé /N is minimax-optimal, certifying the
sharpness of our upper bounds.

* Optimization guarantees beyond PL. We prove PL-based rates for SGDM, and non-PL
stationarity results with O(1/+/K) for both SGDM and AdamW, with variance terms that
scale as tiy /(GVE).

* Return-bridge for GRPO. A TRPO-style monotonic improvement theorem relates the
population GRPO surrogate to true return, with explicit control of clipping and KL terms.

Road-map. Section 2 reviews related work; Sections 3—4 present preliminaries and generalization
results (with lower bounds); Section 5 covers optimization; Section 4.3 links surrogate and return;
Section 6 provides experiments. Proofs are in the Appendix.

2 RELATED WORKS

2.1 RL TECHNIQUES IN LLMS/VLMSs

RL has proven effective for adapting large pre-trained models to specialized tasks (Wang et al.,
2024b), often by optimizing metrics or human feedback that are otherwise challenging to incorpo-
rate via purely supervised methods. Proximal Policy Optimization (PPO) (Schulman et al., 2017)
is perhaps the most frequently used RL method in LLM alignment settings due to its stability and
tractable updates (Ouyang et al., 2022; Sun et al., 2023). In recent years, RL-VLM-F (Wang et al.,
2024c) puts forward an approach that queries a vision-language foundation model to produce pair-
wise preference labels from a single text task description and raw image observations, learns a
reward function from those labels. LeReT (Hsu et al., 2025) introduces a reinforcement-learning
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framework that lets an LLM iteratively “try” and re-weight its own search queries. Until very re-
cently, GRPO (Shao et al., 2024; Guo et al., 2025) was proposed as a variant that uses multiple
output samples per prompt, computing relative rewards within each group. This strategy has em-
pirically demonstrated stable training behaviors, suggesting that group-based baselines can mitigate
high variance in reward signals. However, the study of group-wise advantage estimation in large au-
toregressive models using transformers (Vaswani et al., 2017) has primarily been empirical, leaving
a theoretical gap that we aim to address.

2.2 THEORETICAL ANALYSIS OF RL TECHNIQUES

On the theoretical front, policy gradient methods such as TRPO (Schulman et al., 2015) or
PPO (Schulman et al., 2017) have been the subject of extensive investigation. However, existing
results often assume linear function approximation or focus on simpler tabular settings to establish
sample efficiency or convergence guarantees (Haarnoja et al., 2018; Janner et al., 2019; Huang et al.,
2021; Yarats et al., 2021; Liu et al., 2023b). Kobilarov (2015) derives finite-sample PAC guarantees
on both expected cost and constraint-violation probability for policies generated by iterative stochas-
tic policy optimization. Moreover, Liu et al. (2019) shows that Neural Proximal/Trust Region Policy
Optimization converges at a sub-linear rate to the globally optimal policy in episodic MDPs and Cai
et al. (2020) delivers the first policy-optimization method that explores provably efficiently, estab-
lishing a regret bound for episodic linear-function-approximation MDPs. In contrast, GRPO departs
from single-sample advantage estimation by employing a relative reward mechanism among a batch
of outputs, eliminating the need for a learned value function. This raises new analytical questions
regarding how bounding reward differences and group sizes might impact generalization and conver-
gence. Our work provides explicit bounds that are specialized to this group-relative policy update,
contributing novel insights into both generalization and optimization.

Concurrently, several works analyze the effective loss and dynamics of GRPO (Vojnovic & Yun,
2025; Mroueh, 2025; Mroueh et al., 2025), including its alignment objective and verifiable-reward
formulations. Our focus is complementary: we emphasize mixing-time—sensitive PAC-Bayes—
Bernstein generalization bounds, explicit SGDM/AdamW convergence with group-relative base-
lines, and interactive minimax lower bounds for the mean-centered Dr-GRPO variant in practice.

2.3 THEORETICAL ANALYSIS OF LLMS/VLMSs

Despite empirical progress, formal explanations for transformer performance are limited. Work on
overparameterized geometry and dynamical-systems views (Sanford et al., 2023; Huang et al., 2023;
Vasudeva et al., 2024; Allen-Zhu & Li, 2023a; Ye et al., 2024a;b; Allen-Zhu & Li, 2023b;c; 2024)
largely treats supervised learning. Policy-based objectives change the data distribution through gen-
eration, leaving theory sparse. We analyze autoregressive policies under GRPO and provide guar-
antees relevant to LLMs/VLMs (Liu et al., 2023a; 2024; Sun et al., 2023).

3 PRELIMINARIES

3.1 ERGoODIC MDPs, MIXING TIME AND POLICY PERFORMANCE

We review ergodic Markov decision processes and mixing time definitions (Levin & Peres, 2017).
Definition 1 (Ergodic MDP). An MDP M = (S, A, P, r,~) is ergodic if the induced Markov chain
under any stationary policy admits a unique stationary distribution p.

Definition 2 (Mixing Time). The underlying Markov chain of an ergodic MDP is said to mix in
time tpmiy if max{a(k), B(k)} < e */tmix for k > 0, where a(k) and 5(k) are the standard alpha-
and beta-mixing coefficients, respectively (see Appendix K for details on mixing coefficients).

For LLM experiments, we also fix a maximum token-time horizon ¢,,,x (the context length or early-
EOS cutoff) and work with an effective dependence penalty tof := min{tmix, tmax }. Throughout
the paper we assume a uniform mixing bound along the training path, i.e., Sup;, tmix(mo, ) < tmixs
so that the same ¢,,,;x (or tog) controls all outer iterations.

Let 7 = (sp,ao,...) be a trajectory generated by policy mp. The (discounted) return satisfies
|R(7)| < (1—v)~!. The objective J(#) = E,~,[R(7)]is differentiable; its score-function gradient
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is
K (Z fytVQ log g (ay | St))R(T)

t=0

Vo J(6)

3.2 TRAJECTORY BLOCKING AND CENTRED ADVANTAGES

Given N trajectories, we slice them into M = N/G groups of size G and define

éz 9.5 Agi=Ryi— Ry (D

A direct calculation shows Var(Ag,i) = (1 — %)o%, matching the regenerative-block variance for
Markov chains (Bertail & Portier, 2019).

In all our analyses and experiments, 12, ; is the trajectory-level return for completion ¢ in group g,
and the scalar advantage A, ; is broadcast to all tokens of that trajectory, matching the mean-only
Dr-GRPO implementation used in Open-R1.

3.3 THE GRPO OBIJECTIVE AND TRAINING LOOP

Following Shao et al. (2024); Guo et al. (2025), we clip importance weights and penalize divergence
from a frozen reference policy Tref- The per-outer-iteration empirical GRPO surrogate is

Jarpo(0; 1) = Z Z > min(rg 1 (0)Ag s, clip(rgi,1(0), 1 — &, 1+ ) Ay ;)

— ke KL(7g || mref) - (2
We optimize (2) over multiple outer iterations. In iteration k we set 6yq < 6y, collect My x G

trajectories under 7, form group-centred advantages via (1), and apply u; > 1 gradient steps on
0 using SGDM or AdamW, yielding 6. The reference 7.t remains fixed throughout training.

For generalization we compare the empirical surrogate to its population counterpart. Denote by
Jarpo(8;001a) the expectation of (2) over trajectories collected under my_,, (with the same clip-
ping and KL terms). Our block and sequential bounds will concentrate Jarpo(6;001a) around

Jarpo(0; 0o1a).

Surrogate gradients. Unclipped surrogate gradients are unbiased; clipping induces a controlled
bias. Precise bounds are stated and proved in Appendix A (Lemma 3).

For optimization, we work with the population GRPO surrogate Jg,,(6;0,1q4) introduced in Sec-
tion 4.3; Theorem 3 and Lemma 3 then show that, under small averaged KL and rare clipping,
improvements in Jgy, translate directly into improvements of both the clipped population surrogate

Jarpo and the true return J ().

For convenience, we summarize here the main assumptions used throughout the paper, with pointers
to where they enter the analysis:

* Ergodicity and mixing: the underlying MDP is ergodic and the induced Markov chain
under any policy along the training path mixes in time at most ¢,,;x (Definition 2); concen-
tration bounds depend on teg := min{tmix, tmax |-

* Bounded returns and advantages: discounted returns satisfy |R(7)| < (1 —~)~! and

group-centred advantages have finite first and second moments; these ensure variance prox-
ies and clipping-bias bounds in Appendix A and Lemma 3.

* Smoothness and PL (optimization): the population GRPO surrogate loss F'(f) =
—Jsur(0; 001q) is L-smooth, and for PL-based rates we assume the Polyak—t.ojasiewicz
condition (Assumptions 1-2) within each outer iteration.

* Block-variance control: mini-batch gradients have bounded block variance scaling as
tmixa% /G (Assumption 3), reflecting both temporal dependence and the variance reduction
from group-relative baselines.
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* Second-moment floor (AdamW): the adaptive second-moment estimate v; is bounded
below by vmin > 0 element-wise (Assumption 4), preventing excessively large adaptive
steps and enabling our AdamW convergence bound.

4 GENERALIZATION OF GRPO

We develop both the generalization upper bound and lower bound of GRPO.

4.1 BLOCK-DEPENDENT PAC-BAYES UPPER BOUND
4.1.1 SELF-NORMALIZED MARTINGALE INEQUALITY

Theorem 1 (Self-normalized Bernstein (Fan et al., 2019)). Let (X, F;):>0 be a square-integrable
martingale difference sequence with Y1 | E[X? | F;—1] = V,, a.s. Forany A€ (0,1) and ¢ > 0,

Py, Xe > /20 +)Valng + HEnd] < A

We use this inequality to control block-sum deviations via the predictable quadratic variation of the
block martingale. A self-contained adaptation to our blocked setting is given in Appendix G.1; see
also Appendix M for the original Fan—Grama-Liu statement.

This theorem is a cornerstone for our analysis, as it allows for sharp concentration inequalities
for sums of dependent random variables, such as the block sums encountered in GRPO, without
requiring uniform boundedness assumptions typically found in classical Bernstein inequalities. Its
self-normalising property is particularly adept at handling the variance structure that arises from
blocked data.

Application to Blocked Trajectories. Define the block sums Z, := " (J,; — E[J,;]) where

Jg.: is the per-trajectory GRPO contribution. Because blocks are at least £* time steps apart (regen-
erative blocking), (Z,) 221 is a martingale difference sequence w.r.t. the o-field G, = o(11.4) (see
Appendix G.1). Invoke Theorem 1 with Xy = Zg,n = M,and ¢ = (1 — 7)™/ (tmix0 (1 — &))

to recover the block-Bernstein tail in Lemma 2.

4.1.2 VARIANCE-ADAPTIVE LOCALIZED PAC-BAYES

Theorem 2 (Block PAC-Bayes—Bernstein (posterior-averaged)). Fix prior II over ©. For any
data-dependent posterior () and confidence 0 < ¢ < 1, with probability > 1 — § over the draw of
T12N9

Eo~q| ’jGRPO(GQ fo1a) — Jarro (6; Oo1a)| ]

< 2Rt (Frel) + \/2(1 * ) tm]if%(l o) (KL(Q|TT) + In 2)
N (1+n)(1 —W)’lg\IfL(QIIU) + In %)_ 3)

where 1 > 0 is a variance-radius parameter chosen by the localized bound of Alquier et al. (2024).

The full proof appears in Appendix D. The bound decomposes into a capacity term 2R M (Freal), @

variance-driven term scaling as \/ tmix0 % (1 — é) /N, and a linear-in-1/N bias from bounded re-

turns. Smaller ¢ tightens the deviation. The G-dependence is mixed: the variance factor (1 — é)
increases slightly with larger GG, while the capacity term typically decreases as the number of blocks
M = N/G shrinks.

The deviation behaves as if the effective sample size were Neg < N/ (tmix(l — é)) faster mix-
ing increases Neg, whereas larger group size G slightly decreases Nog. Increasing G increases

the variance factor 1/1 — é but reduces the number of blocks M = N/G that drive the block
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Rademacher complexity; in practice, a moderate G can lower the overall bound when the capacity
term dominates. Localized posteriors @ (small KL(Q||II)) further tighten the bound, especially
across iterations when posteriors evolve smoothly. When model capacity (e.g., path norm in Corol-

lary 1) is small, the variance term dominates and the deviation scales as O(\/tmix /N ); for large
models, the capacity term dominates and reducing the path norm via depth/width/sparsity offers
the largest gains. Ignoring logarithmic factors and the O(1/N) bias, a target deviation € requires

roughly N = (:)(tmixof%(l — &)/e? v C(©)/e?), where C(©) upper-bounds the capacity term.

4.1.3 GENERIC-CHAINING CAPACITY TERM

We relate R M to the v functional:
Lemma 1. Let (F,d) be the relative-surrogate class endowed with the block pseudo-metric

d(f,9) = (& XM E((f — 9)2)". Then, wp. >1 -6,

~ 21-4)n2
RutlF) < emfFod) + | 2L g

for a universal constant c.

The detailed proof is in Appendix F.

This capacity term is controlled by generic chaining through Talagrand’s o functional for the block
pseudo-metric, together with mixing-to-variance conversion. See Appendix N and Appendix O for
the derivation.

4.1.4 TRANSFORMER COROLLARY VIA PATH-NORM CAPACITY

To connect this generalization bound to Transformer architectures, we leverage the concept of path-
norm capacity. For an L-layer Transformer network fy with parameters 8 = {W(l), BW }lel (where
WO are weight matrices and B () are bias terms), its (basis-)path norm (Limmer et al., 2024; Zheng
et al., 2019) is defined as:

10l == (>

PE Spaths

12\ /2
e Wis ) : S

where Syans denotes the set of all directed paths from an input coordinate to an output coordinate
through the network’s computational graph. The path-norm measures model capacity by aggregating
magnitudes of weight products along these paths. It often provides a tighter capacity measure for
Transformers compared to spectral norms.

Corollary 1 (Path-Norm GRPO Bound). Assume the policy is an L-layer Transformer with path-
norm || W||pan < P. Then Theorem 2 implies

sup|f—J|
0
By /—clpln]$+p)+W(Hn)tm(ﬁ(lé)lrlz+<1+n><1N7>1ln§_

(&)

Path-norm capacity yields significantly smaller complexity than spectral norms in deep Transform-
ers, explaining the empirical tightness of our bounds. The 1 — é factor reflects variance reduction
from group-relative baselines. The complete proof with covering-number to chaining steps is in
Appendix G.2.

4.2 SEQUENTIAL MULTI-ITERATION GENERALIZATION (SUMMARY)

For the multi-iteration GRPO procedure, choosing data-dependent priors 11 := Qx_1 leads to a
sequential PAC-Bayes—Bernstein bound with a posterior path-length term ), KL(Q||Qr—1) and
aggregate sample size ) ., Nj. The full theorem and proof are provided in Appendix A.
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4.3 BRIDGE FROM SURROGATE TO TRUE RETURN

We next relate the population GRPO surrogate to the true return. Define the unclipped population
surrogate

Jsur(e; eold) =E Z Tt (9) Aeold (St7 at) - )\KL KL(WH || 71-ref)a
t>0

with Ay, the group-centred advantage computed under 7g_,,. Let Jc crpo be the clipped counterpart

(population expectation of (2)).

old *

Theorem 3 (Monotonic return improvement). Let C4 := sup, E[|4g,,, (s¢,a:)|] < (1 —~)7!
and define the state-distribution—averaged divergences

TV(0]1001a) = Eamar,, [TV (7ol | 5): 70,00 | 5))] ®)
KE(O)16ora) = Eovar, [KL(mo(- | 8) 70, (| 5))]. 9

Then, for any (0, 6514),

2vCA =

T(6) = T (Bora) > Juur(6: bo1a) — (17_—;;2 TV(0)601a) — Aerip(e),
2vCy  [—

J(e) — J(eold) Z Jsur(e; aold) - m KL(&Heold) - Aclip(i‘j)a

where Jg,; includes the —Aky, KL(7g||mef) penalty and the clipping term satisfies

Aaip(e) < CE[Y 40,5100 1{Ira(6) — 1] > e}

t>0
for a universal constant C. In particular, if KL(6||0.1q) < 62 and Aciip(e) < 7, then

V27 Ca

TR

J(Q) — J(@old) 2 Jsur(e; Hold) -

The proof is given in Appendix H. The result formalizes a TRPO-style trust region for GRPO:
a surrogate ascent guarantees return improvement provided the policy update stays close to the
behavior policy under an averaged TV/KL measure and the clipping bias is controlled. The penalty
scales with C'4 < (1 — )~ !, making the improvement threshold explicit; constraining the per-step
KL (or TV), choosing ¢ large enough (or maintaining concentrated importance ratios) to keep Aciip
small, and using a moderate A\kr, that tightens J,; via pull to 7. together yield robust, monotonic
improvements across iterations.

4.4 MINIMAX LOWER BOUNDS VIA INTERACTIVE FANO

To complement the upper bounds on generalization error, it is crucial to establish lower bounds.
These bounds provide a theoretical limit on the best possible performance any algorithm can achieve,
thereby allowing us to assess the optimality of our derived upper bounds for GRPO.

Theorem 4 (Near-Optimality of GRPO). For any RL algorithm observing N trajectories

in an ergodic chain with mixing time t¢n;, the worst-case expected excess return obeys
2

inf; sup  E[J(0*) — J(é)} > ¢/ ™% where ¢ > 0 is universal.

The construction uses an interactive Assouad—Fano packing over reward-perturbed MDPs, with KL
growth governed by t,ix under regeneration. This yields the Q(\ /tmix /N ) rate. See Appendix J.
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5 COMPUTATION OF GRPO

Having established generalization guarantees and a return bridge, we now turn to optimization. We
analyze the population GRPO surrogate loss F(0) := L(0) := —Jsu(0;0014) within each outer
iteration (suppressing the dependence on 6,)4), and we model the stochastic gradients by per-block
estimators derived from group-centred advantages. Unclipped estimators are unbiased; clipping
introduces a bounded bias handled by Theorem 3. For notational alignment with standard optimiza-
tion, the Polyak-FL.ojasiewicz (PL) condition (Assumption 2) and the PL-based convergence theorem
(Theorem 5) regard F'(6) as the objective to be minimized and F™* as its minimum; this avoids
overloading J, which elsewhere denotes the return. We additionally provide non-PL stationarity
guarantees below. Theorems 5 and 7 therefore establish convergence for the smooth surrogate Jg,,,

while Theorem 3 and Lemma 3 transfer these guarantees to the clipped population objective Jarpo
and the true return J(6) under standard trust-region conditions.

5.1 MINI-BATCH SGD WITH MOMENTUM

Let (6;):>0 evolve according to the stochastic Heavy-Ball / Polyak-momentum scheme

G
Vg1 = Bor+ 5D Vl(057g), i =0 — v, (SGDM)
g=1

where 5 € [0, 1) is the momentum parameter, oy = «/+/t + 1 the decaying step, and ¢(0; 7) the
block GRPO loss. The update reduces to plain SGD when 8 = 0.

Before we proceed, we need to impose some mild assumptions.

Assumption 1 (L-smoothness). F is continuously differentiable and ||V F(z) — VF(y)|| < L|jz —
y|| for all z, y.

This is a standard assumption in optimization theory, implying that the gradient of the objective
function does not change too rapidly.

Assumption 2 (Polyak—Lojasiewicz (PL)). 2u(F(0) — F*) < [|[VF(6)]|* with p > 0.

This condition is weaker than convexity and ensures that the gradient norm is indicative of subopti-
mality. The PL condition holds for a surprisingly wide range of non-convex problems

Assumption 3 (Bounded block variance). Var[ & 25;1 VU(0;74)] < 0htmix/G-

This assumption requires that the variance of the stochastic mini-batch gradients is bounded. The
1/@ scaling reflects the variance reduction from averaging G samples in a block, and the ¢,,; factor
accounts for the temporal dependence within trajectories.

Theorem 5 (GRPO convergence using SGDM (PL)). Under Assumptions 1, 2, and 3, choose
0<a< imin{7, %} Then after K = | N/G| mini-batch updates, we have

La?(1+InK) N a(l + B)o%tmix

L WGV

+O(K™). (8)

In combination with Theorem 3, this result implies that SGDM performs approximate ascent on the
clipped GRPO population objective and on the return J(6) itself, up to an error term controlled by

the clipping bias A, (€) and the per-iteration averaged KL between 7y and g, .

The rate combines (i) L-smooth one-step descent under momentum, (ii) a block-variance bound that

scales as tnmi, /G, and (iii) PL to convert gradient norm to suboptimality; stepsizes decay as 1/v/%.
See Appendix 1.2, using Lemma 5 and Lemma [.4.

Non-PL stationarit! for SGDM (summary). Under L-smoothness and bounded block variance,
SGDM achieves a O(1/+/K) stationarity rate for min; i E||VF(6;)||?, with variance scaling as
tmix/(GVK); see Appendix 1.3 for the proof.
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Theorem 6 (Non-PL stationarity for SGDM). Assume F' is L-smooth (Assumption 1) and the
block variance is bounded (Assumption 3). Let SGDM use momentum § € [0,1) and stepsizes
ap = a/+/t + 1 with a > 0. Then after K updates,

Ch n Co tmix0%

VK GVK '’

for constants Cy, Cy > 0 depending only on L, a, 8 and F(6y) — F*.

. 2 <
Jmin E[[VF(0,)]] <

5.2 ADAMW

Next, we analyze GRPO’s convergence with AdamW (Loshchilov & Hutter, 2017), an adaptive
learning rate optimization algorithm that is widely used for training large neural networks due to
its empirical robustness and efficiency. With moving-average parameters (31, 82) and > 0, the
AdamW procedure can be written as:

M1 = Bimye + (1 — B1) gy, Vi1 = Bovr + (1 — B2)gi?,

Mg =mepr /(1= B, Bps1 = vep1 /(1= B57),
0t+l = Gt — T)T/'f\lt_‘_l/( 6t+1 —+ E) — ?7)\9t, (AdamW)

where g, = & 2521 Vol(0s; 7¢,4) and A > 0 is weight decay. We require one mild assumption:

Assumption 4 (Second-moment floor). U; > vy > 0 element-wise.

This assumption posits that the estimate of the second moment of the gradients (the variance adapter
v;) is bounded below by a small positive constant vy,i,. This is a common technical condition in
the analysis of Adam-like algorithms. It prevents the adaptive learning rate from becoming arbi-
trarily large, ensuring stability. In practice, this is often enforced by adding a small epsilon to the
denominator in the Adam update rule, which also helps avoid division by zero.

Theorem 7 (GRPO convergence using AdamW). Let n = % with 9 > 0. Under Assump-

tions 1, 2, 3, and 4,

2L(F(6o) — F*) 21100 %t mix .
(1—=B)nvVEK — G(1-B)(1-/)IVK

As with SGDM, AdamW’s convergence on F(0) = —J:(0;0014) can be combined with the re-
turn bridge in Theorem 3 to obtain approximate monotone improvement guarantees for the clipped
GRPO objective and the true return when the per-state KL and clipping bias remain small along the
optimization trajectory.

OK™".

. 2 <
Jmin E[[VF@)]7] <

Withal/ V'K stepsize, bias-corrected moments and a second-moment floor yield a potential descent
bound, where gradient noise is attenuated by (1 — S2) and momentum by (1 — /31). The detailed
argument is in Appendix L.5.

6 EXPERIMENTS

Table 1: Parameter results for GRPO optimization with Impact of Group Size (G) on GRPO Reward Convergence with AdamW
different training setups. ‘

N G tuix 0123 P Err. Bound
(traj)

1000 4 20 5.0 100 0.25 0.60
10000 4 20 5.0 100 0.08 0.20
10000 16 20 5.0 100 0.07 0.18
10000 16 5 5.0 100 0.04 0.10
10000 16 5 1.0 100 0.02 0.05

0.4

10000 16 5 1.0 20 0.01 0.03 Reratons (0

0 10000 20000 30000 40000 50000

Figure 1: Average reward vs. iterations for different
group sizes GG using GRPO with AdamW.

We conduct experiments using Qwen2.5-1.5B-Instruct (Yang et al., 2024) on OpenR1-Math-
220k (Face, 2025) dataset using GRPO algorithm with AdamW (Loshchilov & Hutter, 2017).
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Table 4: Qwen2-VL-7B finetuned Table 5: Dr-GRPO (mean-only) vs. whitened GRPO
with GRPO: accuracy (%) vs. group on OpenR1-Math-220k with Qwen2.5-1.5B (3 seeds).
size. Pass@1 is reported on the validation split; “GradVar” is
the average per-iteration gradient-norm variance relative

G MMMU Mathvista-mini to Dr-GRPO (100% baseline).

7 492 60.3 Method Pass@1 (%) GradVar (rel.)
8 49.5 60.7 Dr-GRPO (mean-only)  57.4 +0.3 100%
32 50.3 61.2 Whitened GRPO 56.8 £ 0.5 112%

Generalization theory verification. We select subsets of the dataset for training to verify the gen-
eralization theory. We illustrate the behaviour of the parameters in Table 1. It shows that increasing
N decreases the error and the bound. Larger G reduces optimization noise (via the 1/G scaling
in our SGDM/AdamW rates), lowering empirical error; in our data-dependent bound that includes
the block capacity term, the overall bound can also decrease with larger G as M = N/G shrinks,
despite the variance factor (1 — é) increasing slightly. Increasing ¢mix, 0%, or model capacity (P)
increases the bound. The empirical error is below the theoretical bound, consistent with Theorem 2
and Corollary 1. To instantiate the “Bound” column, we plug the empirically estimated (mix, 0%, P)
and sample size IV into Corollary 1 with a data-independent prior/posterior choice (Q = II and con-
fidence level § = 0.05, so that the bound depends only on (N, G, tmix, 0%, P).

Convergence theory verification. We perform experiments using the full training data with
AdamW optimizer. We only change the Group size G in {2,8,32}. As illustrated by Figure 1,
all three curves converge after certain iterations and larger group size G leads to faster convergence,
which corresponds to our derived convergence rate.

Table 2: Qwen2.5-7B generalization: empirical error ~ Table 3: Llama-3.1-8B generalization: empirical er-

vs. our path-norm PAC-Bayes—Bernstein bound. ror vs. our path-norm PAC-Bayes—Bernstein bound.
N G tmix 0% P Em. Bound N G tmix 0% P Err. Bound
(traj) (traj)
1000 4 20 5.0 280 0.31 0.72 1000 4 20 5.0 250 0.28 0.65
10000 4 20 5.0 280 0.10 0.24 10000 4 20 5.0 250 0.09 0.22
10000 16 20 5.0 280 0.08 0.21 10000 16 20 5.0 250 0.08 0.19
10000 16 5 5.0 280 0.05 0.12 10000 16 5 5.0 250 0.04 0.11
10000 16 5 1.0 280 0.02 0.06 10000 16 5 1.0 250 0.02 0.05
10000 16 5 1.0 50 0.01 0.04 10000 16 5 1.0 50 0.01 0.03

Scaling across model sizes (7B/8B). We further verify the theoretical trends on larger models.
Table 2 reports results on Qwen2.5-7B-Instruct; Table 3 shows Llama-3.1-8B-Instruct. In both
cases, empirical errors remain below our instantiated PAC-Bayes—Bernstein bound and exhibit the
same monotone dependencies on N, G, tix, 0123, and path capacity P.

Multimodal reasoning (Qwen2-VL-7B). We also evaluate GRPO in a multimodal setting using
Qwen2-VL-7B on MMMU and Mathvista-mini to test cross-modal generality. Larger group size G
improves performance consistently, aligning with our variance-scaling predictions. To probe the ef-
fect of the mean-only vs. variance-normalized variants, we additionally ran an ablation on OpenR1-
Math-220k with Qwen2.5-1.5B comparing Dr-GRPO (mean-centered advantages) and a whitened
GRPO variant that z-scores group returns with a small standard-deviation floor. Averaged over 3
seeds, Dr-GRPO achieved a final pass@1 accuracy of 57.4% =+ 0.3% while the whitened variant
reached 56.8% £ 0.5%, and the average per-iteration gradient-norm variance of the whitened variant
was about 12% higher than that of Dr-GRPO, consistent with the additional noise we predicted.

7 CONCLUSION

We derive the first theoretical analysis of Group Relative Policy Optimization (GRPO) (Shao et al.,
2024; Guo et al., 2025) under Markov dependence and modern optimization techniques. We es-
tablished novel block-dependent PAC-Bayes generalization bounds, specialized for transformers
via path-norm capacity, and proved their near-minimax optimality with information-theoretic lower
bounds. Furthermore, we provided non-asymptotic convergence rates for GRPO with both SGDM
and AdamW (Loshchilov & Hutter, 2017). These results provide a rigorous foundation for GRPO,
offering formal guarantees and actionable insights for its application in large-scale LLM fine-tuning.
Experiments on a modern LLM also verify the theory we developed. We hope our work paves the
way for future explorations into GRPO variants.

10
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APPENDIX

Notation alignment for GRPO. Throughout Appendix A we write J = jGRpo(G; fo1a) and

J = jGRpo(G; 0o14) to emphasise that our population comparator is the clipped population surro-
gate at fixed 6,14 (as in the main text). All deviations and MGFs are taken with respect to trajectories
sampled under 7y, .

Overview (Appendix A). Appendix A collects the block-variance lemma and the block PAC-
Bayes—Bernstein deviation bound that underpin Theorem 2 in the main text, making explicit how
the mixing time ¢,,;y, group size G, and return variance 0}2% jointly control the deviation between the
empirical GRPO surrogate and its population counterpart.

A LEMMA AND PROOF: BLOCK VARIANCE & TAIL

Lemma 2 (Block Variance & Tail). Let 0% = Var(R(7)) denote the return variance. Grouping into
blocks of size G yields

Var(Ag ;) = (1 - é)a%, Var(R,) = %
Moreover, the empirical surrogate satisfies the high-probability bound

N t2 )
2tmix 05(1 = 1/G) + 2(1 — )~ 1t/

]P’(\j— J| > t) < 2exp<—

Proof. Notation recap. We observe N = M x trajectories grouped into blocks 74 1.. Define the
within-group mean Rg =G Z 1 Ry.; and centred advantages A, ; = Ry ; — R

Step 1: exact variance calculation. Write 0% = Var(R(7)) and note E[R, ;] = . We have

G (%) -
Var Var( ZRg ]) = % Z COV(Rg,ja Rg,k) S %7
7,k=1

where (x) uses Cov (R j, Ry ;) < 0% and the Cauchy-Schwarz bound for the (3-mixing) depen-
dence inside the block (Boucheron et al., 2013). Hence

Var(A, ;) = Var(R,,;) + Var(R,) — 2 Cov(Ry:, Ry) < 0% + % - 2% = (1 - é)a%.

Step 2: block-difference bound for Efron-Stein. Replacing one entire block alters the empirical

surrogate by at most A = %7 because each R, ; € [—(1 —~)7%, (1 —v)~!] and the surrogate
is an average over N terms.

Step 3: exponential Efron-Stein tail. Let Z = jGRpo(G) — J(0). With the exponential
Efron—Stein inequality (Boucheron et al., 2013, Thm 3.15) we obtain

22 )
S E(Z— 207+ 351

]P[Z>t] < exp(—

where Z(9) is the leave-one-block-out estimator. Because |Z — Z(9)| < A deterministically and
224:1 E[(Z - Z(g))ﬁ_} < tmixon (1 — é)/N (B-mixing to variance conversion (Levin & Peres,
2017)), we derive

P|Z| > 1] < 2exp(— il ) (10)
- 2tmixo (1= &)+ 2(1—~)~ 1t
Setting ¢ to the RHS of (10) inverts the exponent and yields the stated deviation bound. [
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B LEMMA AND PROOF: UNBIASED SURROGATE GRADIENTS AND CLIPPING
BIAS

Lemma 3 (Unbiased surrogate gradients and clipping bias). Assume E[) ", |A;|] < oo and that

trajectories are generated under mg_,,. Then, for the unclipped surrogate,

E [VO jé?{clgg(oy Gold)] =Vy Jsur(e; 901d)~
For the clipped surrogate, there exists a universal constant C' > 0 such that

| E[Vo Jarpo (6 bota)] = Vo Jaur (0 61a) | < CE[D 140 1{re(6) = 1] > £}
t

C PROOF OF LEMMA 3

Proof. Let T ~ my_,, and write r4(0) = mg(as | s¢)/mo,,,(at | s¢). For the unclipped surrogate, the
score-function identity gives

Vo JEi (0:001a) = E| > Vologm(ar | s1) - Ay (sea0) | ,
t>0

because the group-centred baseline E[Ayg_,, | s:] = 0 eliminates the control variate. Interchanging
differentiation and expectation is justified by dominated convergence under E )", |4;| < oo and

smoothness of my. Hence E[Vjéﬁgg] =V Jsur (0; 001a)-

For clipping, define the event A, := { |r:(8) — 1| > € }. Decompose the gradient as the unclipped
gradient restricted to A¢ plus a residual supported on A.. The first term matches the corresponding
restriction of V.Jg,. The residual is bounded by C E[Y", |4, 1{A.}] for a universal C that absorbs
the Lipschitz constants of the clipping operator and the gradient of log 7g. Taking norms yields the
stated inequality; the RHS vanishes as ¢ — oo and is small when importance ratios concentrate
(e.g., under a trust region). O

SOS tightening for clipping bias. We formalize a semialgebraic (SOS) relaxation that yields a
certified bound on the clipping-induced bias.

Lemma 4 (SOS relaxation bound for clipping bias). Suppose there exist polynomials p, and con-
stants (B4, By, e) > 0 such that |A;| < Ba, |logr:(0)| < By, and 1{|r:(8) — 1| > e} < pt(r+(0))
for all ¢, where each p, is certified nonnegative by a degree-2 SOS certificate on the interval

[e=Br eBr]. Then the clipping-bias term satisfies
| E[Vo Jarpo(8; 8o1a)] — Vo Jour(8; 0o1a) ||
< C > E[JApi(ri(0))] < CBa > E[pi(re(6))]. (11)
>0 >0

for a universal constant C' that absorbs Lipschitz constants of the clipping and score functions. In
particular, choosing p;(z) = ay(x — 1)? with an SOS certificate on [e~ P, ePr] yields a quadratic

control o< E[(r(8) — 1)?].

Remark (stabilized variance-normalized GRPO). If, instead of mean-centered advantages
Agi =Ry — Rg, one uses a stabilized z-scored variant A, ; = (Rg,; — Rg)/ max{0y, Omin } With
a group-level standard-deviation estimate &, and floor oin > 0, the arguments above extend with
modified constants: the block-variance bound and all PAC-Bayes terms hold with 0% replaced by
0% /o2, and the additional randomness of the denominator can be controlled via self-normalized
martingale inequalities in the style of (Fan et al., 2019; Bercu & Touati, 2019). For clarity of ex-
position, the main theorems are stated for mean-centered Dr-GRPO, while this remark shows that a
stabilized variance-normalized variant can be handled at the price of slightly worse constants.

Proof. The first inequality is Lemma 3 with the indicator replaced by p;(r;) and Lipschitz constants
absorbed into C'. The second inequality uses |A;| < B4. The SOS certificate guarantees p; > 0 on
the feasible range of r;, ensuring a valid upper bound; taking p;(z) = ay(x — 1)? gives a degree-2
certificate and the stated quadratic control.
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D PROOF OF THEOREM 2

Proof. The structure follows Tolstikhin & Seldin’s PAC-Bayes—Empirical-Bernstein template (Tol-
stikhin & Seldin, 2013), upgraded for S-mixing blocks via the self-normalized martingale inequality
of Fan—Grama-Liu (Fan et al., 2019).

Step 1 — change of measure. For any A > 0 and posterior (),

EgNQ[eA(JA—J)] < KLl ngn[e/\(f—J)]

)

by Donsker—Varadhan. The goal is to upper-bound the inner MGF.

Step 2 — self-normalized inequality for the MGF. Let V = Zgil E((Zg — Zg—1)? | Gy4—1] be
the predictable quadratic variation. Applying the Bernstein-type self-normalized bound of Fan et al.

(Fan et al., 2019, Thm. 2.1) (valid for unbounded differences thanks to block truncation) gives, for

A< (31—,

A2V )

AT—J
B < el

Step 3 - plug variance proxy. Replace V' by its upper bound V < tpixo%(1 — &)/N (from Step
3 of Lemma 2). Thus
2N(1-A(1-7)"1/3)

7. /\2 mix 2 7l
Eppe7—7) < exp( tuix 05 (1—5) )

Step 4 — PAC-Bayes, union bound, optimization. For any fixed ),

KLQII) | Mwsoh(1— &)

oIS IN(1— A1 —7)"1/3)

Optimize over A € (0, %), the minimum occurs at

v \/ 2NKL@QI (=)
tmix0 R (1 — &) (1 +1) 3
Substituting \* and doubling for two-sided deviation yields
7= |
. \/2<1 1)t (1 — ]é)(KL(QIIH) +ln3) (1m0 —w*l](VKuQnm ting)

with probability > 1 — ¢ after a standard geometric-grid union bound (Catoni, 2007). Adding

the symmetrised block-Rademacher term 2R M (Fre1) (via chaining arguments (Mohri et al., 2018))
finishes the proof. ]

E SEQUENTIAL MULTI-ITERATION PAC-BAYES—BERNSTEIN BOUND

Theorem 8 (Sequential PAC-Bayes—Bernstein). Let outer iterations be indexedby £k =0,..., K —
1. In iteration k, collect N}, trajectories partitioned into My = Ny /G groups of size G > 2, and
form posteriors Q; with data-dependent priors Iy := Qf_1 (with Q_; fixed). Forany 0 < § < 1,
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with probability at least 1 — 4,

1 K-1 R N
Ni Eonq,, | |J1(0; 01) — Ji(6; 61|
>k Nk kz:;) [ }
9 Kl
= Nie Ry (Fre
S, Vi ]; k Rz, (Frel)
2(1 4 1) e 03 (1 — L) A 2
1 (Y KLQuQi1) +1n2)
k=0 Vi k=0
(L+m)(1 =) (Sh) KL(QullQu-1) +n 2)
" : (12)

K—1
k=0 Vk

where 1 > 0 is the variance-localization parameter from the block bound (Theorem 2).

F PROOF OF THEOREM &

Proof. For each outer iteration £ = 0,..., K — 1, fix a data-dependent prior IT; := Qy_1 with
Q-1 = IIy. Applying the block PAC-Bayes—Bernstein bound (Theorem 2) conditionally on the past
and using the same variance proxy as in Lemma 2, we obtain w.p. > 1 — d:

Egmy [T (6;01) — Ji(6;61)|]

o~ i 2 -
: QRM,QW AL iR 0= O (K@i Qur) +1n )

(T+n)(1 =) (KL(Qk||Qk—1) +In &)
Jr
Ni

. (13)

Average these inequalities with weights Nj,/(3_; IV;) and choose a time-uniform confidence split
dr = 6/K. Jensen’s inequality moves the square root outside the average after upper-bounding

SN < (32, Nk)7t 3, 1. Collecting terms and simplifying yields exactly the statement in the
main text with the path-length >, KL(Q||Qx-1) and the aggregate sample size ) 3, Ni. O

F.1 BIBLIOGRAPHICAL REMARKS

Block-dependent PAC-Bayes traces to Bertail & Portier (2019) for chromatic blocks on graphs and
to Kuzborskij & Szepesvari (2019) for heavy-tailed losses. Our variance-adaptive 7 mirrors the
“Localized” tuning advocated by Alquier et al. (2024). The mixing-time factor is inherited from the
regenerative concentration analysis of (Raginsky et al., 2017). Single-path Transformer capacity is
leveraged in Appendix C (§G.2) following (Limmer et al., 2024).

G FORMAL VERIFICATION SKETCH

We outline how one would formally verify the core statements in a proof assistant (e.g., Meta-
math/Lean):

* Encode the GRPO surrogate and block structure; define mixing-based variance proxies and
clipped operators.

* Mechanize the self-normalized martingale inequality (citing Fan—Grama—-Liu) and the
change-of-measure step; then derive the PAC-Bayes—Bernstein bound.

* Mechanize the heavy-ball Lyapunov descent and PL implications for SGDM; similarly, the
AdamW potential argument with a second-moment floor.

18
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» Connect the surrogate to return via the performance-difference lemma and TV/KL control.

This isolates measure-theoretic steps, concentration, and optimization recurrences for machine-
checked verification while leaving modeling assumptions explicit.

G.1 SELF-NORMALIZED BERNSTEIN INEQUALITY FOR BLOCK MARTINGALES

G.1.1 SETUP AND NOTATION

Let (.Fg)gj\io be an increasing filtration with respect to which the block martingale difference se-
quence (Z,))L, is adapted:

Z, = éZ[j\gz(g) - IE[jgl(O) | ]:gflﬂ’ E[Zy | Fy-1] =0.

i=1

Define the predictable quadratic variation

M M
Vi o= Y E[Z}|Fya],  and Sy o= > Z,
g=1 g=1

G.1.2 WEIGHTED EXPONENTIAL SUPER-MARTINGALE

Fix A€ (0, %) and a tuning parameter ¢ > 0. For each g let

2

My(A) = exp(AS, — 52 Ve):

_7)\2 2
Because B[~ 20-en) "FslFom1l 1 <1 ((Fan et al,, 2019, Thm 2.1)), M,()) is a non-

1
negative super-martingale and therefore E[M /()] < 1. Consequently,

In(1/0)

A

P(Sa > 2 Var+ %) <4
G.1.3 BOUNDING THE QUADRATIC VARIATION

Under Assumption 3 of the main text we have

tmix 012{(1 - é)

E[Z} | Fg1] < N ;

Vg.

Hence V), < % - M.

G.1.4 OPTIMISING A\ AND ¢

Set ¢ = £(1 —~)~* sothat 1 — cA > 0. Choosing

«  [2(1—=cA*)In(1/6) 3
A* = \/ Vs < 1=~

gives, after algebraic rearrangement,

(14)

Sarl < 214 ¢) tmix 0% (1 — &) In2 N (14+¢)(1—7)"'In2
M| > N N )

where ¢ = %(177)*1. (15)
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G.1.5 FROM BLOCK DEVIATIONS TO SURROGATE-RISK DEVIATIONS

Recall Jorpo(0) — J(0) = &= Z;w:l Zg = % Because M = N/G, dividing both sides of (14)
by M and simplifying constant factors yields exactly the deviation term

N + N , mi=c¢

\/2(1+17)tmix0?3(1—(1;)111§ (1+m)1—7) "2

featured in Theorem 2 of the main paper, thereby completing the proof. O

G.2 PROOF OF COROLLARY 1

G.2.1 PRELIMINARIES: PATH-NORM GEOMETRY FOR TRANSFORMERS

Overview (Appendix C). Appendix C specializes the generic-chaining capacity control from Ap-
pendix N to Transformer policies by relating block Rademacher complexity to the path norm of the
network; this yields the path-norm GRPO corollary used to instantiate the “Bound” column in our
experiments.

Let fg : X — R/ be an L-layer Transformer whose parameters are the collection § =
wo o owd MBI, Following Limmer et al. (2024) and (Zheng et al., 2019), the
(basis-)path norm is

1/2
|9Hpath = (En(l 177)617 ) ’

pEP

where P enumerates every directed path from an input coordinate to an output coordinate through
the computational graph. The quantity

Pmax = sup ||0||path < o0
0O

acts as a capacity radius — a tighter surrogate than the product of spectral norms used in earlier
work (Trauger & Tewari, 2024) and (Neyshabur et al., 2017).

G.2.2 BOUNDING THE BLOCK RADEMACHER COMPLEXITY

We first upper-bound R M (Fre1) for the relative-surrogate class

G
Fo = { éz N(rgicAg. clip(rgic, 1—¢, 14+€)Ay)) - ae@}.

Generic-chaining route. Let d(fy, fo') be the block pseudo-metric d*(6, 6') = - 234:1 E[(fo—

fe,)(fq71:G)2} . Talagrand’s 7» functional satisfies (Talagrand (2005))

R diam(Fyer,d)
RM (]:rel) S Y2 (]:reb d) S CO/ V 10g N(]:rela d7 5) de.
0

Because each path contributes linearly to the output, covering numbers scale with the weighted ¢

caLd
radius ||6]|pasn; exactly, N(Frel,d,e) < (1 + %) ’ (Limmer et al. (2024), Trauger &
Tewari (2024)). Hence
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ES (16 patn
Frel) <2 1_*1/ \/Cl,dlo 1+M 76
M( 1) - \/76' o 2 g( = ) \/]V
(<) Co || Hpath log(l + HHH ath)
1 p

where (<) integrates the concave square-root and collapses constants into ¢y ( Bartlett & Mendelson
(2002)).

G.2.3 PLUGGING INTO THE BLOCK PAC-BAYES—BERNSTEIN BOUND

Insert (G.2.2) into Theorem 2 (Appendix A) to obtain, for any posterior @,

~ co Ld |0l pasn 10g(1 + 1|0]lpasn)
sup|.J(0) — J(0)] <2 11\/
supl 70) = J(0)] <2,/1 - % ~

N \/2(1 1) tain0 (1 — ) (KL(Q| D) +1n 2)

N

L) - )~ (KL(Q|TT) +1n %)
N

In particular, setting @ = IT and ||0]|path < Pmax gives Corollary 1.

G.2.4 TIGHTNESS WITH RESPECT TO INTERACTIVE FANO LOWER BOUNDS

The dependence (tmixo% /N )1/ ? matches the Fano-style lower bound proved in Appendix E (see
Theorem E.1) up to polylogarithmic factors, confirming near-optimality (Levine et al. (2024)).

G.2.5 DISCUSSION OF CONSTANTS

=~ LdPIIlaX
Coon = 21— % % yfaulid % [0l 10801+ [0lu) 5 Oy 2 00),

depth x width

capacity

Reducing either the number of layers L or the attention-head width d linearly contracts the bound;
sparse attention lowers ||0|| patn multiplicatively (Jentzen, 2011; Trauger & Tewari, 2024).

H PROOF OF THEOREM 3

Proof. The performance-difference lemma (PDL) gives, for any policies 7, 7,

(1) = J(1) = —— Eong, Bar A (5, 0)].

Replacing d,; by d introduces an O(||d,; — d||Tv) error; standard coupling arguments yield (e.g.,
Schulman et al. (2015)) ||dr — dx/||Tv < ﬁESNdW,TV(W(- | s),7'(- | s)). Combining the two
and using sup; E|A¢| < oo gives

2
J(m) = J(") > Bsma_ Eamr[Ar (s,a)] — ‘(1 77)2 sup E| Ay 'Es,\,dﬂ,TV(ﬂ'(' | s),7'(- | s))
- ¢
Setting (7, 7") = (g, mg,,,) yields the claimed inequality with C; < (1371)2 sup, E|A;|. Finally,

since Jy,, equals the first term on the RHS minus 8 KL (7g||7yef), the GRPO penalty carries over
linearly. The clipped surrogate differs from Jg,, by at most C; as argued in Lemma 3, completing
the proof. [
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Proof of the end-to-end corollary. Apply Theorem 3 at each iteration k, average over k, and
subtract the sequential generalization term from Theorem 8. The result follows after simple algebra
and collecting constants into Gen(K') and Trust(K).

I PROOF OF CONVERGENCE OF GRPO

We supply line-by-line derivations for all statements in §5.1 (mini-batch SGDM) and §5.2
(AdamW). Throughout, assumptions 1-3 and 4 of the main paper are in force.

Overview (Appendix D). Appendix D first establishes a block-variance bound for mini-batch
gradients under Markov mixing (Lemma 5), then uses it to derive PL-based convergence rates for
SGDM (Theorem 5), non-PL stationarity guarantees (Theorem 6), and an AdamW convergence
bound (Theorem 7) for the population GRPO surrogate F(0) = — Jsu: (6; 0o1d)-

I.1 AUXILIARY LEMMA D.1 (BLOCK-VARIANCE BOUND FOR GRADIENTS)
Lemma 5. Let g, = & 25:1 V(8y; 1t,4) be the mini-batch gradient. Then

2
tmix O R

G

2
tmix O R

Var[g] < -

= E[|lg: — VI)]?] <

Proof. Markov-chain CLT for 3-mixing sequences yields Cov(Ve(0;;74,1), V(643 71,2)) < tmix0 5
Averaging G i.i.d. draws scales the variance by 1/G. O

1.2 PROOF OF THEOREM 5

Define the momentum variable v, = fv; + g with vy = 0. L-smoothness implies

La?
J(Orr1) < J(0) — e (VJI(0r), vip1) + Tt||7ft+1\|2~

Taking conditional expectation and using E[v;; | Fi] = (1+8)VJ(0;) (Liu et al. (2020)) together
with Lemma 5 yields

E[J(6:11)] <E[T(0,)] — cr(1+ B) E[VI(6,)]? (16)
2 2
+ T4 B BV 00) | + k), ()
2 2
< (1 o + M) E[J(0,) — J*] (18)
La2(1+ Bt

pox \
< (1 - ZW)E[J(GQ —J] + T , (19)

where we used the PL-inequality |[V.J||> > 2u(J — J*) and the o choice o < imin{7, 1;5}.

Iterating (19), summing the geometric decay, and bounding Zfi Blaf < a?(1 + In K) (Sebbouh
etal. (2021)) give

Lo*(l+nK) = a(l+ Btk
2uK nGVEK
matching (8). -

E[J(0x) — J*] < +O(K™1),
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1.3 PROOF OF THEOREM 6

We adapt the standard nonconvex SGD analysis with momentum to our block-variance setting. De-
fine the Lyapunov function ¥, := E[J(6;) + a||6; — 6;_1]|*] with @ > 0 chosen below. Using
L-smoothness and the SGDM update yields

2
T(Ors1) < J(0) — (VI (00), veg1) + S5t [lve
Adding and subtracting al|0; 11 — 0;]|> = aa?||vs41]|? and taking expectations, we obtain
a Ot2
Wipr = W <~ B(VI(), vegn) + 2 Bl |
Condition on F; and use E[v;11 | F¢] = (1 + 5)VJ(0;) together with Lemma D.2 to get
24 52
1=y < —a(1+5) EIVI(0) [P +(L/2+a)of (14+5) Bl VT (00) [P+ (L/2+a)of g,

Choose a = % Land oy = a/+/t+ 1 with a < ¢o/L so that the coefficient of E||V.J(6;)|?
becomes at most —%ozt(l + ). Summing from 0 to K — 1 and telescoping,

K-1 K-1
. 0-2
E OétEHVJ(Gt)||2SQ(‘I’Q—\I/K)—f—Cltm‘%R E Oét2.
t=0 t=0

Bounding 3", o > 2avV/K and 3, o? < o?(1 + In K)) yields

3(Wo — T¥) L e+ 8) tixok
aVK GVK ’

matching the statement (constants absorbed). O]

minE||VJ(6,)]? <
t<K

1.4 TECHNICAL LEMMA D.2 (BIAS—VARIANCE DECOMPOSITION WITH MOMENTUM)

For SGDM under assumptions 1-3,

(1+ /3)2tmixo—g

Ellvesal® < (1+B)?EVI(0:)]* + G

Proof. Follows by expanding ||vi+1]|?, Elvy] = B(ll%gt)VJ (fo), and applying Lemma 5. The
anisotropic-noise amplification factor (1 + 3)? agrees with the analysis of (Pan et al., 2023). O

1.5 PROOF OF THEOREM 7

Let &, =E[J(6;) + 5| 0:]|*]. L-smoothness plus update (AdamW) imply

b < By —19 ! _2/81 E[“ngt) Hj + nZLEH‘j% 2}
N—_————
(%)

Because v; > vpin > 0 component-wise (Wang et al. (2024a)),

VJ(6,)]]? 2L
[vseonm® = WO aa ) < g2
n(l—p) 2, ML B1)° 2, M Ltwino%
P < ¢y — —FE —F —_—
— @ < 0= =P mwae 4 TP s P 4

Choosing nn = 1o/ VK with g < %:&) and telescoping yields
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K 2 4vmax(q)0 - (b*) 4nOUmaxL tmix0123
t=0 no(l—=B)VE — G(1—B2)(1 - B1)vmin VK
min 2L(J(6p) — J* mix 2
2 min BJ|V.J(0,)]° < (J(0) = J*) 2110 Imix 7y :
t<K (1-=BnVE — G(1—B)1-p)VEK
establishing (9). O

1.6 REMARKS ON CONSTANTS AND PRACTICAL SETTING

* Choice of /31, 32. Convergence requires (1 — 1) > \/ (VmaxN0)/(2Lvmin K): smaller
(1 — B1) (larger B1) slows the bias decay. This matches the empirical hyper-parameter
search in (Loshchilov & Hutter, 2017).

* Weight decay )\. Because A only appears inside @, its impact is second-order; AdamW
therefore inherits the same rate as Adam when A = 0 but enjoys better generalization,
corroborating (Loshchilov & Hutter, 2017).

Remark D.3 (Stability between clipped and unclipped surrogates). Under Assumptions 1
and 2, Lemma 3 implies that, within a small KL-ball around 6,4, the gradients of the unclipped and

clipped population objectives satisfy a uniform discrepancy bound ||V Jeuw: (6) — VJarro(0)|| <
Actip(€), where Agip () is controlled by the clipping bias term in Theorem 3. Standard perturba-

tion arguments for gradient descent on PL objectives then show that SGDM iterates (6;) and (6;)

obtained by minimizing —Jg,, and —Jgrpo, respectively, stay O(Aciip (€))-close forall t < K and
converge to stationary points whose function values differ by at most O(Ajip(¢)). Intuitively, as
long as clipping is rarely active (so Ay, (€) is small), the optimization trajectories and difficulty for
the unclipped and clipped objectives remain tightly coupled.

J PROOF OF THEOREM 4

J.1 PROBLEM SETTING

We consider the class m?(tmix) of uniformly ergodic MDPs whose mixing time satisfies tmix(i) <
tmix. Let @ = {0 W 0K )} be a finite parameter set with K > 2; each 6*) indexes a reward
function (%) : S x A — [O 1] while keeping the transition kernel fixed. For trajectory length NV an
RL agent produces 9(71‘ N); its excess return is £(6 ) = J(O*)—J (9) We derive a minimax lower
bound on Eg*é’(é\).

J.2 INTERACTIVE PACKING CONSTRUCTION
Following Chen et al. (2024), choose K = |.A| distinct reward shifts A = +e applied to a single
state—action pair (3, @), yielding parameters

r®)(s,a) =ro(s,a) +el{a=a, s=5 k=1}—el{a=a, s =35, k =2},

and cyclically permute actions for k > 2. The KL divergence between any two #*) and (*) under
an interactive policy 7 satisfies

KL( (k) || P (15)) < 462 tmix N7 (20)
by the regenerative-chain argument of (Bertail & Ciotek, 2018) and the uniform mixing assumption.

J.3 INTERACTIVE FANO INEQUALITY

The interactive Fano lemma Chen et al. (2024) gives, for any estimator 5,

—~ 4t iy N + log 2
5 log K
Choosing € = ;‘t)glfv makes the RHS at least - when N < llﬁc;i‘i
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J.4 EXCESS-RETURN GAP VIA ASSOUAD LINK

For the binary shift construction the return gap satisfies
£(0) > ePlo£0W),

since the optimal policy for #*) always takes action @ in state 5 while any other action loses € in
expected reward (Komanduru & Honorio, 2021). Combining with (21) yields

. © A 11 [logK o
1%fs%pE[J(9) J(0)] > 64_4“8tmixN = Q(\/ N), (22)

once K >e?.

J.5 LOWER BOUND THEOREM

Theorem 9 (Minimax Optimality). For any RL algorithm that observes IV steps from an ergodic
MDP in M (tmix )s

c tmix

inf sup E[J(6*)— J(a)] R

0 MEM (tmix)

Y

for a universal ¢ > 0.

Proof. Apply the parameter ensemble above with K = |A| > e? and € chosen as ;Ziffv, then

invoke (22). [

J.6  COMPARISON WITH KNOWN BOUNDS

Our Q(y/tmix/N) rate matches the lower bounds for uniformly ergodic average-reward MDPs
shown by (Wang et al., 2023) and tightens earlier Q(¢mix/N) gaps in (Jin & Sidford, 2021). It
also agrees with martingale-coupling regret bounds (Lattimore et al., 2020) and with the mixing-
sensitive TD lower bounds of (Li et al., 2023). Hence the GRPO upper-bound in Theorem 2 is
minimax-optimal up to log factors.

K MIXING-COEFFICIENT HIERARCHY
For a stationary sequence (X} ):cz define

a(k) =sup  sup sup  |P(AN B) —P(A)P(B)],
t Aco(X! )BEo(X%,)

Blk) = sup E[Beféﬁ?m [P(B 10X ) = P(B) ]

$(k) = sup S |ELf(Xiar) | 0(XE )] — Ef(Xigr)]|

¢(k) =sup sup || Cov(f(Xy), f(Xesr))ll-
t  feLip,

oo’

By classical arguments (Boucheron et al., 2013, Prop. 2.3),

0 < (k) < 6(k) < 2B(k) < 2a(k) Vk > 0.

Hence choosing the block length

¢* == min{k : max(a(k), 8(k)) < 1}

is always admissible and strictly sharper than working with the classical TV mixing time #x.
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L  EXPONENTIAL EFRON-STEIN FOR REGENERATIVE BLOCKS

Let 74 1. be regenerative blocks of length G. Write

M
Zy = f(rg1.0) — E[f(151:6)], Swm :ZZH'
g=1

Theorem 10 (Block Efron—-Stein; (Boucheron et al., 2013, Thm 3.15)). ] If replacing one block
changes f by at most A and Var(Z,) <o?, then for all t > 0

t2
Pl |Sa| > t] < 2exp(——o— ). (23)
[ } ( 2M02+§At>

Proof. Couple (74,1.c) with i.i.d. ghost blocks (7] ;.;); denote S](\f’[) the statistic after swapping
block g. Compute

M M
STE[(Sw — SN2 <Y E[(Z, - Z))2]

< (by independence)

M= 1

<> El(Z,-Z))% < 2Mo>.

Il
_

g

and note |Sy; — Sl(vg[)| < A deterministically. Apply the exponential Efron—Stein inequality with
these parameters to get (23).

M SELF-NORMALIZED MARTINGALE INEQUALITY (FAN—-GRAMA-LIU)

Theorem 11 ((Fan et al., 2019, Thm 2.1)). ] For a martingale difference sequence (X;, ;) with
quadratic variation V,, = 3°, . E[X7?|F;_] and any A€ (0,1/(3M))

B[Y e, Xe > 255 Vo + G2 <o 24)

Combined with V,, < tmixaé(l —1/G)/N (regenerative variance proxy), Eq. (24) is what drives the
variance-adaptive PAC-Bayes bound in Appendix A.

N GENERIC-CHAINING & DUDLEY INTEGRAL

Let (F,d) be a semi-metric space and X; a sub-Gaussian process with metric d. Talagrand’s
majorizing-measures theorem gives

Esup X; = O(y2(F,d)),  where 7o(F,d) :=inf sup Y 2¥2diam(Ax(f),d). (25)
feFr {Ar} feszo

A practical upper bound is Dudley’s entropy integral

diam(F,d)

v (F,d) < C V0eg N(F,d,¢)de. (26)

0
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O BLOCK RADEMACHER COMPLEXITY FOR (3-MIXING CHAINS

Theorem 12 ((Bertail & Portier, 2019, Thm 3.1)). ] For regenerative blocks of length G drawn from
a S-mixing chain,

~ log(2/6
Ru(F) < 72(F, dolock) +40R % w.p. 1 — 6. 7)

Combining (26) & (27) yields the capacity term used in Appendix C’s Transformer corollary.

P VARIANCE-ADAPTIVE PAC-BAYES LOCALIZATION LEMMA
Lemma 6 ((Alquier et al., 2024, §3)). ] For any prior II, posterior (), and variance proxy ‘7(9)
E[V] < n {(KL(Q|T) +1logl) = P(supmw) ~R(0)| < n) >1-6 (28
6

Setting 77 to the RHS of the self-normalized Bernstein deviation (App. B) directly recovers the
localized block PAC-Bayes—Bernstein bound from Appendix A.

Q REGENERATIVE BERNSTEIN INEQUALITY (HOEFFDING-TYPE VARIANT)

For completeness we recall a sharp Bernstein/Hoeffding bound for sums of regenerative functionals
(Cioczek-Georges & Stummer, 2019) :

Nt? )

Bl| % " h(X) —EA(X)| 2 4] < 2exp(_2tmixo—i + 3lhllot

t=1

(29)
This inequality underpins the deviation step in the proof of Lemma 5 (Appendix D).

R EXPERIMENTAL DETAILS

We develop our code base mainly based on open-r1'. The learning rate is set to 106 and the warmup
ratio is set to 0.1 for all experiments. All experiments are done on NVIDIA A100-SXM4-80GB
GPUs and Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz CPUs with 96 logical processors.
Unless otherwise specified, we use the mean-centered Dr-GRPO implementation from Open-R1: for
each prompt we draw G completions, compute trajectory-level returns R, ;, form group-centred ad-
vantages A, ; = Ry ;i — Rg, and apply this scalar advantage uniformly across all tokens of trajectory
i. The main Qwen2.5-1.5B runs use G € {2,4, 8,16, 32}, maximum context length ¢, = 2048,
AdamW with (S, B2) = (0.9,0.999) and weight decay A = 0.01, and clipping threshold ¢ = 0.2
with KL weight Ak, = 0.01; the 7B/8B and multimodal experiments reuse the same hyperparame-
ters unless stated otherwise.

To assess the clipping bias and the regime of Eq. (10), we instrumented the OpenR1-Math-220k
Qwen2.5-1.5B runs with G = 16 and recorded (i) the fraction of tokens per batch for which |r;(0) —

1] > ¢ and (ii) the ratio HE[Vj(;Rpo] — Vdsurll2/ IV Jsur||2. After the warmup phase, fewer than
1.3% of tokens are clipped on average and the gradient-mismatch ratio stays below 4%, indicating
that the clipping-induced bias is quantitatively small in the operating regime of our experiments.

S LLM USAGE

The use of LLMs is a general-purpose assist tool to aid or polish writing. We utilized GPT-5 to
refine certain aspects of the writing in the Introduction and Related Works sections.

"https://github.com/huggingface/open-rl

27


https://github.com/huggingface/open-r1

Under review as a conference paper at ICLR 2026

Table 6: Clipping diagnostics and e-ablation on OpenR1-Math-220k with Qwen2.5-1.5B and
G = 16 (averaged over 3 seeds). “FracClip” is the fraction of tokens with |r,(§) — 1| > &; “Grad-

Mismatch” is the ratio HIE[VjGRPO] — Vsurll2/ IV Jsurl|2; Pass@1 is measured on the validation
split.

€ FracClip (%) GradMismatch (%) Pass@1 (%)

0.05 5.0 9.0 57.3
0.10 2.8 5.1 57.5
0.20 1.3 3.8 57.4
0.40 0.6 3.2 57.2
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