

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 ON COMPUTATION AND GENERALIZATION OF GROUP RELATIVE POLICY OPTIMIZATION

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

012 Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025)
 013 has rapidly become a critic-free default for aligning LLMs, yet its statistical
 014 and computational foundations remain unclear. We close this gap by providing
 015 the first unified theory of GRPO that simultaneously addresses generalization
 016 and optimization in the original, practitioner-used formulation and over multiple
 017 outer iterations. On the generalization side, we derive sequential (multi-iteration)
 018 PAC-Bayes–Bernstein bounds under Markov mixing that concentrate the *empirical*
 019 *GRPO surrogate* around its population counterpart across all iterations; a
 020 Transformer path-norm corollary yields substantially tighter capacity terms than
 021 spectral norms. We further prove a TRPO-style return bridge showing that ascent
 022 in the population GRPO surrogate provably improves true return, with explicit,
 023 controllable bias from clipping and KL regularization. On the optimization side,
 024 we establish non-PL *stationarity* guarantees for SGDM and AdamW
 025 (both $\tilde{O}(1/\sqrt{K})$) and provide complementary PL-based rates, with variance
 026 controlled by $t_{\text{mix}}/(G\sqrt{K})$. Together with interactive information-theoretic lower
 027 bounds, our results deliver the first end-to-end, multi-iteration statistical and
 028 computational guarantees for GRPO with function approximation. Experiments
 029 corroborate the predicted trends and offer practical guidance on group size, clipping,
 030 and KL weight; code will be released.

032 1 INTRODUCTION

034 Large-language models (LLMs) have evolved from static next-token predictors into interactive
 035 agents capable of multi-step theorem proving, autonomous code generation, and complex tool use.
 036 These tasks are naturally modelled as ergodic Markov decision processes (MDPs) in which rewards
 037 are sparse, delayed, and temporally correlated (Levin & Peres, 2017). Such structure violates the IID
 038 assumptions that underpin the bulk of classic generalization theory, creating an urgent demand for
 039 RL algorithms whose statistical properties are understood in the presence of Markov dependence.
 040 Proximal Policy Optimization (PPO) (Schulman et al., 2017) is still the default fine-tuning engine
 041 for LLM alignment, but its reliance on a learned value critic doubles GPU memory, inflates wall-
 042 clock time, and introduces a delicate bias–variance trade-off that is hard to tune in practice (Guo
 043 et al., 2025). Empirically, mis-estimation of long-horizon returns often destabilizes PPO and forces
 044 practitioners to fall back on costly additional rollouts or auxiliary losses.

045 Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a critic-free, memory-lean alter-
 046 native to PPO that computes a group-relative baseline over G trajectories while reusing clipped-
 047 importance weights. It reduces memory by about $2\times$ and variance on long-horizon tasks, and powers
 048 DeepSeek-R1. Throughout, we focus on the mean-centered variant used in the Open-R1 codebase
 049 (often referred to as Dr-GRPO), where group-relative advantages are formed by subtracting the
 050 group mean return without variance normalization; this is exactly the configuration used in all of
 051 our experiments and the one analyzed by our theory.

052 Variants and applications span Hybrid GRPO (Sane, 2025), completion pruning (Lin et al., 2025),
 053 and multimodal VLMs (EvolvingLMMs-Lab, 2025; Shen et al., 2025; Liu et al., 2025), yet a prin-
 054 cipled understanding under Markov dependence, momentum, and adaptive optimizers remains elusive.

Prior policy-gradient analyses often assume IID data or ignore optimizer dynamics. Recent advances in self-normalized martingale concentration (Bercu & Touati, 2019; Fan et al., 2019), localized PAC-Bayes (Alquier et al., 2024), and Transformer path norms (Limmer et al., 2024) have not been unified for critic-free objectives like GRPO with ergodic data and AdamW (Loshchilov & Hutter, 2017). Closing this gap yields deployment-ready guarantees, principled hyper-parameter choices, and clarity on capacity vs. variance.

Notation. We fix the total number of sampled trajectories to N and partition them into $M := N/G$ groups of equal size $G \geq 2$. For a single trajectory τ , let $R(\tau)$ be its (discounted) return and write $\sigma_R^2 := \text{Var}[R(\tau)]$. The underlying Markov chain mixes in time t_{mix} , i.e. $\max \alpha(k), \beta(k) \leq e^{-k/t_{\text{mix}}}$ for the usual α - and β -coefficients. Policy parameters are denoted by $\theta \in \Theta$; π_θ is the corresponding stochastic policy and $J(\theta) := \mathbb{E}_{\tau \sim \pi_\theta}[R(\tau)]$ its population return. We use θ_{old} for the pre-update parameters in a given outer iteration and write $r_t(\theta) = \pi_\theta(a_t | s_t)/\pi_{\theta_{\text{old}}}(a_t | s_t)$ for the importance ratio. We denote by π_{ref} a *frozen* reference policy (e.g., SFT) used for KL regularization. When forming the GRPO surrogate, $A_{g,i}$ and \bar{R}_g denote the centred advantages defined in (1); ε is the clipping threshold for importance weights, and λ_{KL} is the weight on the KL regulariser. Optimization iterates use step sizes α_t (SGD) or $\eta/\sqrt{t+1}$ (AdamW); $\beta \in [0, 1]$ stands for Polyak momentum in SGDM, while (β_1, β_2) are the first- and second-moment decay factors in AdamW. Unless stated otherwise, constants c, c_1, \dots are universal.

Our contributions. We provide the first comprehensive multi-iteration theoretical treatment of GRPO under Markov dependence, modern capacity control, and adaptive optimization.

- **Sequential PAC-Bayes–Bernstein bounds.** We derive high-probability *multi-iteration* generalization bounds for GRPO using self-normalized Bernstein inequalities and localized PAC-Bayes. The bounds scale with mixing time t_{mix} , group size G , return variance σ_R^2 , and the *posterior path-length* $\sum_k \text{KL}(Q_k \| Q_{k-1})$.
- **Transformer path-norm corollary.** Mapping block Rademacher complexity to the single-path capacity of deep Transformers (Limmer et al., 2024) yields bounds up to $\times 5$ tighter than spectral-norm estimates.
- **Interactive information-theoretic lower bounds.** An Assouad–Fano construction with interaction Chen et al. (2024) shows that $\sqrt{t_{\text{mix}}\sigma_R^2/N}$ is minimax-optimal, certifying the sharpness of our upper bounds.
- **Optimization guarantees beyond PL.** We prove PL-based rates for SGDM, and *non-PL* stationarity results with $\tilde{O}(1/\sqrt{K})$ for both SGDM and AdamW, with variance terms that scale as $t_{\text{mix}}/(G\sqrt{K})$.
- **Return-bridge for GRPO.** A TRPO-style monotonic improvement theorem relates the population GRPO surrogate to true return, with explicit control of clipping and KL terms.

Road-map. Section 2 reviews related work; Sections 3–4 present preliminaries and generalization results (with lower bounds); Section 5 covers optimization; Section 4.3 links surrogate and return; Section 6 provides experiments. Proofs are in the Appendix.

2 RELATED WORKS

2.1 RL TECHNIQUES IN LLMs/VLMs

RL has proven effective for adapting large pre-trained models to specialized tasks (Wang et al., 2024b), often by optimizing metrics or human feedback that are otherwise challenging to incorporate via purely supervised methods. Proximal Policy Optimization (PPO) (Schulman et al., 2017) is perhaps the most frequently used RL method in LLM alignment settings due to its stability and tractable updates (Ouyang et al., 2022; Sun et al., 2023). In recent years, RL-VLM-F (Wang et al., 2024c) puts forward an approach that queries a vision-language foundation model to produce pairwise preference labels from a single text task description and raw image observations, learns a reward function from those labels. LeReT (Hsu et al., 2025) introduces a reinforcement-learning

framework that lets an LLM iteratively “try” and re-weight its own search queries. Until very recently, GRPO (Shao et al., 2024; Guo et al., 2025) was proposed as a variant that uses multiple output samples per prompt, computing relative rewards within each group. This strategy has empirically demonstrated stable training behaviors, suggesting that group-based baselines can mitigate high variance in reward signals. However, the study of group-wise advantage estimation in large autoregressive models using transformers (Vaswani et al., 2017) has primarily been empirical, leaving a theoretical gap that we aim to address.

2.2 THEORETICAL ANALYSIS OF RL TECHNIQUES

On the theoretical front, policy gradient methods such as TRPO (Schulman et al., 2015) or PPO (Schulman et al., 2017) have been the subject of extensive investigation. However, existing results often assume linear function approximation or focus on simpler tabular settings to establish sample efficiency or convergence guarantees (Haarnoja et al., 2018; Janner et al., 2019; Huang et al., 2021; Yarats et al., 2021; Liu et al., 2023b). Kobilarov (2015) derives finite-sample PAC guarantees on both expected cost and constraint-violation probability for policies generated by iterative stochastic policy optimization. Moreover, Liu et al. (2019) shows that Neural Proximal/Trust Region Policy Optimization converges at a sub-linear rate to the globally optimal policy in episodic MDPs and Cai et al. (2020) delivers the first policy-optimization method that explores provably efficiently, establishing a regret bound for episodic linear-function-approximation MDPs. In contrast, GRPO departs from single-sample advantage estimation by employing a relative reward mechanism among a batch of outputs, eliminating the need for a learned value function. This raises new analytical questions regarding how bounding reward differences and group sizes might impact generalization and convergence. Our work provides explicit bounds that are specialized to this group-relative policy update, contributing novel insights into both generalization and optimization.

Concurrently, several works analyze the effective loss and dynamics of GRPO (Vojnovic & Yun, 2025; Mroueh, 2025; Mroueh et al., 2025), including its alignment objective and verifiable-reward formulations. Our focus is complementary: we emphasize mixing-time-sensitive PAC-Bayes-Bernstein generalization bounds, explicit SGDM/AdamW convergence with group-relative baselines, and interactive minimax lower bounds for the mean-centered Dr-GRPO variant in practice.

2.3 THEORETICAL ANALYSIS OF LLMs/VLMs

Despite empirical progress, formal explanations for transformer performance are limited. Work on overparameterized geometry and dynamical-systems views (Sanford et al., 2023; Huang et al., 2023; Vasudeva et al., 2024; Allen-Zhu & Li, 2023a; Ye et al., 2024a;b; Allen-Zhu & Li, 2023b;c; 2024) largely treats supervised learning. Policy-based objectives change the data distribution through generation, leaving theory sparse. We analyze autoregressive policies under GRPO and provide guarantees relevant to LLMs/VLMs (Liu et al., 2023a; 2024; Sun et al., 2023).

3 PRELIMINARIES

3.1 ERGODIC MDPs, MIXING TIME AND POLICY PERFORMANCE

We review ergodic Markov decision processes and mixing time definitions (Levin & Peres, 2017).

Definition 1 (Ergodic MDP). An MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r, \gamma)$ is *ergodic* if the induced Markov chain under *any* stationary policy admits a unique stationary distribution ρ_∞ .

Definition 2 (Mixing Time). The underlying Markov chain of an ergodic MDP is said to mix in time t_{mix} if $\max\{\alpha(k), \beta(k)\} \leq e^{-k/t_{\text{mix}}}$ for $k \geq 0$, where $\alpha(k)$ and $\beta(k)$ are the standard alpha- and beta-mixing coefficients, respectively (see Appendix K for details on mixing coefficients).

For LLM experiments, we also fix a maximum token-time horizon t_{max} (the context length or early-EOS cutoff) and work with an *effective* dependence penalty $t_{\text{eff}} := \min\{t_{\text{mix}}, t_{\text{max}}\}$. Throughout the paper we assume a uniform mixing bound along the training path, i.e., $\sup_k t_{\text{mix}}(\pi_{\theta_k}) \leq t_{\text{mix}}$, so that the same t_{mix} (or t_{eff}) controls all outer iterations.

Let $\tau = (s_0, a_0, \dots)$ be a trajectory generated by policy π_θ . The (discounted) return satisfies $|R(\tau)| \leq (1-\gamma)^{-1}$. The objective $J(\theta) = \mathbb{E}_{\tau \sim \pi_\theta}[R(\tau)]$ is differentiable; its score-function gradient

162 is

$$\nabla_{\theta} J(\theta) = \mathbb{E} \left[\left(\sum_{t=0}^{\infty} \gamma^t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \right) R(\tau) \right].$$

166 3.2 TRAJECTORY BLOCKING AND CENTRED ADVANTAGES

168 Given N trajectories, we slice them into $M = N/G$ groups of size G and define

$$\bar{R}_g = \frac{1}{G} \sum_{j=1}^G R_{g,j}, \quad A_{g,i} = R_{g,i} - \bar{R}_g. \quad (1)$$

173 A direct calculation shows $\text{Var}(A_{g,i}) = (1 - \frac{1}{G})\sigma_R^2$, matching the regenerative-block variance for
174 Markov chains (Bertail & Portier, 2019).175 In all our analyses and experiments, $R_{g,i}$ is the *trajectory-level* return for completion i in group g ,
176 and the scalar advantage $A_{g,i}$ is broadcast to all tokens of that trajectory, matching the mean-only
177 Dr-GRPO implementation used in Open-R1.

179 3.3 THE GRPO OBJECTIVE AND TRAINING LOOP

181 Following Shao et al. (2024); Guo et al. (2025), we clip importance weights and penalize divergence
182 from a *frozen* reference policy π_{ref} . The per-outer-iteration empirical GRPO surrogate is

$$\begin{aligned} \hat{J}_{\text{GRPO}}(\theta; \theta_{\text{old}}) = & \frac{1}{N} \sum_{g=1}^M \sum_{i=1}^G \sum_{t \geq 0} \min(r_{g,i,t}(\theta) A_{g,i}, \text{clip}(r_{g,i,t}(\theta), 1 - \varepsilon, 1 + \varepsilon) A_{g,i}) \\ & - \lambda_{\text{KL}} \text{KL}(\pi_{\theta} \| \pi_{\text{ref}}). \end{aligned} \quad (2)$$

187 We optimize (2) over *multiple outer iterations*. In iteration k we set $\theta_{\text{old}} \leftarrow \theta_k$, collect $M_k \times G$
188 trajectories under $\pi_{\theta_{\text{old}}}$, form group-centred advantages via (1), and apply $u_k \geq 1$ gradient steps on
189 θ using SGDM or AdamW, yielding θ_{k+1} . The reference π_{ref} remains fixed throughout training.190 For generalization we compare the empirical surrogate to its *population* counterpart. Denote by
191 $\tilde{J}_{\text{GRPO}}(\theta; \theta_{\text{old}})$ the expectation of (2) over trajectories collected under $\pi_{\theta_{\text{old}}}$ (with the same clip-
192 ping and KL terms). Our block and sequential bounds will concentrate $\hat{J}_{\text{GRPO}}(\theta; \theta_{\text{old}})$ around
193 $\tilde{J}_{\text{GRPO}}(\theta; \theta_{\text{old}})$.
194195 **Surrogate gradients.** Unclipped surrogate gradients are unbiased; clipping induces a controlled
196 bias. Precise bounds are stated and proved in Appendix A (Lemma 3).
197198 For optimization, we work with the population GRPO surrogate $J_{\text{sur}}(\theta; \theta_{\text{old}})$ introduced in Sec-
199 tion 4.3; Theorem 3 and Lemma 3 then show that, under small averaged KL and rare clipping,
200 improvements in J_{sur} translate directly into improvements of both the clipped population surrogate
201 \tilde{J}_{GRPO} and the true return $J(\theta)$.202 For convenience, we summarize here the main assumptions used throughout the paper, with pointers
203 to where they enter the analysis:

- **Ergodicity and mixing:** the underlying MDP is ergodic and the induced Markov chain under any policy along the training path mixes in time at most t_{mix} (Definition 2); concentration bounds depend on $t_{\text{eff}} := \min\{t_{\text{mix}}, t_{\text{max}}\}$.
- **Bounded returns and advantages:** discounted returns satisfy $|R(\tau)| \leq (1 - \gamma)^{-1}$ and group-centred advantages have finite first and second moments; these ensure variance proxies and clipping-bias bounds in Appendix A and Lemma 3.
- **Smoothness and PL (optimization):** the population GRPO surrogate loss $F(\theta) = -J_{\text{sur}}(\theta; \theta_{\text{old}})$ is L -smooth, and for PL-based rates we assume the Polyak–Łojasiewicz condition (Assumptions 1–2) within each outer iteration.
- **Block-variance control:** mini-batch gradients have bounded block variance scaling as $t_{\text{mix}}\sigma_R^2/G$ (Assumption 3), reflecting both temporal dependence and the variance reduction from group-relative baselines.

216 • **Second-moment floor (AdamW):** the adaptive second-moment estimate \hat{v}_t is bounded
 217 below by $v_{\min} > 0$ element-wise (Assumption 4), preventing excessively large adaptive
 218 steps and enabling our AdamW convergence bound.
 219

220 4 GENERALIZATION OF GRPO
 221

222 We develop both the generalization upper bound and lower bound of GRPO.
 223

224 4.1 BLOCK-DEPENDENT PAC-BAYES UPPER BOUND
 225

226 4.1.1 SELF-NORMALIZED MARTINGALE INEQUALITY
 227

228 **Theorem 1 (Self-normalized Bernstein (Fan et al., 2019)).** Let $(X_t, \mathcal{F}_t)_{t \geq 0}$ be a square-integrable
 229 martingale difference sequence with $\sum_{t=1}^n \mathbb{E}[X_t^2 | \mathcal{F}_{t-1}] = V_n$ a.s. For any $\lambda \in (0, 1)$ and $c > 0$,

$$230 \quad \mathbb{P}[\sum_{t=1}^n X_t \geq \sqrt{2(1+c)V_n \ln \frac{1}{\lambda}} + \frac{1+c}{3} \ln \frac{1}{\lambda}] \leq \lambda. \\ 231$$

232 We use this inequality to control block-sum deviations via the predictable quadratic variation of the
 233 block martingale. A self-contained adaptation to our blocked setting is given in Appendix G.1; see
 234 also Appendix M for the original Fan–Grama–Liu statement.
 235

236 This theorem is a cornerstone for our analysis, as it allows for sharp concentration inequalities
 237 for sums of dependent random variables, such as the block sums encountered in GRPO, without
 238 requiring uniform boundedness assumptions typically found in classical Bernstein inequalities. Its
 239 self-normalising property is particularly adept at handling the variance structure that arises from
 240 blocked data.
 241

242 **Application to Blocked Trajectories.** Define the block sums $Z_g := \sum_{i=1}^G (\hat{J}_{g,i} - \mathbb{E}[\hat{J}_{g,i}])$ where
 243 $\hat{J}_{g,i}$ is the per-trajectory GRPO contribution. Because blocks are at least ℓ^* time steps apart (regen-
 244 erative blocking), $(Z_g)_{g=1}^M$ is a martingale difference sequence w.r.t. the σ -field $\mathcal{G}_g = \sigma(\tau_{1:g})$ (see
 245 Appendix G.1). Invoke Theorem 1 with $X_g = Z_g$, $n = M$, and $c = \frac{2}{3}(1-\gamma)^{-1}/(t_{\text{mix}}\sigma_R^2(1-\frac{1}{G}))$
 246 to recover the block-Bernstein tail in Lemma 2.
 247

248 4.1.2 VARIANCE-ADAPTIVE LOCALIZED PAC-BAYES
 249

250 **Theorem 2 (Block PAC-Bayes–Bernstein (posterior-averaged)).** Fix prior Π over Θ . For any
 251 data-dependent posterior Q and confidence $0 < \delta < 1$, with probability $\geq 1 - \delta$ over the draw of
 252 $\tau_{1:N}$,

$$253 \quad \mathbb{E}_{\theta \sim Q} [\left| \hat{J}_{\text{GRPO}}(\theta; \theta_{\text{old}}) - \tilde{J}_{\text{GRPO}}(\theta; \theta_{\text{old}}) \right|] \\ 254 \quad \leq 2\hat{\mathcal{R}}_M(\mathcal{F}_{\text{rel}}) + \sqrt{\frac{2(1+\eta)t_{\text{mix}}\sigma_R^2(1-\frac{1}{G})}{N} (\text{KL}(Q \parallel \Pi) + \ln \frac{2}{\delta})} \\ 255 \quad + \frac{(1+\eta)(1-\gamma)^{-1}(\text{KL}(Q \parallel \Pi) + \ln \frac{2}{\delta})}{N}. \quad (3) \\ 256$$

257 where $\eta > 0$ is a variance-radius parameter chosen by the localized bound of Alquier et al. (2024).
 258

259 The full proof appears in Appendix D. The bound decomposes into a capacity term $2\hat{\mathcal{R}}_M(\mathcal{F}_{\text{rel}})$, a
 260 variance-driven term scaling as $\sqrt{t_{\text{mix}}\sigma_R^2(1-\frac{1}{G})/N}$, and a linear-in-1/ N bias from bounded re-
 261 turns. Smaller t_{mix} tightens the deviation. The G -dependence is mixed: the variance factor $(1-\frac{1}{G})$
 262 increases slightly with larger G , while the capacity term typically decreases as the number of blocks
 263 $M = N/G$ shrinks.
 264

265 The deviation behaves as if the effective sample size were $N_{\text{eff}} \asymp N/(t_{\text{mix}}(1-\frac{1}{G}))$: faster mix-
 266 ing increases N_{eff} , whereas larger group size G slightly decreases N_{eff} . Increasing G increases
 267 the variance factor $\sqrt{1-\frac{1}{G}}$ but reduces the number of blocks $M = N/G$ that drive the block
 268

270 Rademacher complexity; in practice, a moderate G can lower the overall bound when the capacity
 271 term dominates. Localized posteriors Q (small $\text{KL}(Q\|\Pi)$) further tighten the bound, especially
 272 across iterations when posteriors evolve smoothly. When model capacity (e.g., path norm in Corol-
 273 lary 1) is small, the variance term dominates and the deviation scales as $\tilde{O}(\sqrt{t_{\text{mix}}/N})$; for large
 274 models, the capacity term dominates and reducing the path norm via depth/width/sparsity offers
 275 the largest gains. Ignoring logarithmic factors and the $O(1/N)$ bias, a target deviation ε requires
 276 roughly $N = \tilde{\Theta}(t_{\text{mix}}\sigma_R^2(1 - \frac{1}{G})/\varepsilon^2 \vee \mathcal{C}(\Theta)/\varepsilon^2)$, where $\mathcal{C}(\Theta)$ upper-bounds the capacity term.
 277

278 4.1.3 GENERIC-CHAINING CAPACITY TERM

279 We relate $\hat{\mathcal{R}}_M$ to the γ_2 functional:

280 **Lemma 1.** Let (\mathcal{F}, d) be the relative-surrogate class endowed with the block pseudo-metric
 281 $d(f, g) = (\frac{1}{M} \sum_{g=1}^M \mathbb{E}[(f - g)^2])^{1/2}$. Then, w.p. $\geq 1 - \delta$,

$$284 \hat{\mathcal{R}}_M(\mathcal{F}) \leq c \gamma_2(\mathcal{F}, d) + \sqrt{\frac{\sigma_R^2(1 - \frac{1}{G}) \ln \frac{2}{\delta}}{2N}},$$

286 for a universal constant c .
 287

288 The detailed proof is in Appendix F.

289 This capacity term is controlled by generic chaining through Talagrand's γ_2 functional for the block
 290 pseudo-metric, together with mixing-to-variance conversion. See Appendix N and Appendix O for
 291 the derivation.
 292

293 4.1.4 TRANSFORMER COROLLARY VIA PATH-NORM CAPACITY

294 To connect this generalization bound to Transformer architectures, we leverage the concept of *path-
 295 norm capacity*. For an L -layer Transformer network f_θ with parameters $\theta = \{W^{(l)}, B^{(l)}\}_{l=1}^L$ (where
 296 $W^{(l)}$ are weight matrices and $B^{(l)}$ are bias terms), its (basis-)path norm (Limmer et al., 2024; Zheng
 297 et al., 2019) is defined as:

$$299 \|\theta\|_{\text{path}} := \left(\sum_{p \in \mathcal{S}_{\text{paths}}} \left| \prod_{(l, i, j) \in p} W_{ij}^{(l)} \right|^2 \right)^{1/2}, \quad (4)$$

300 where $\mathcal{S}_{\text{paths}}$ denotes the set of all directed paths from an input coordinate to an output coordinate
 301 through the network's computational graph. The path-norm measures model capacity by aggregating
 302 magnitudes of weight products along these paths. It often provides a tighter capacity measure for
 303 Transformers compared to spectral norms.
 304

305 **Corollary 1 (Path-Norm GRPO Bound).** Assume the policy is an L -layer Transformer with path-
 306 norm $\|W\|_{\text{path}} \leq \mathcal{P}$. Then Theorem 2 implies

$$308 \sup_{\theta} |\hat{J} - J| \\ 309 \leq 2\sqrt{1 - \frac{1}{G}} \sqrt{\frac{c_1 \mathcal{P} \ln(1 + \mathcal{P})}{N}} + \sqrt{\frac{2(1 + \eta)t_{\text{mix}}\sigma_R^2(1 - \frac{1}{G}) \ln \frac{2}{\delta}}{N}} + \frac{(1 + \eta)(1 - \gamma)^{-1} \ln \frac{2}{\delta}}{N}. \quad (5)$$

310 Path-norm capacity yields significantly smaller complexity than spectral norms in deep Transfor-
 311 mers, explaining the empirical tightness of our bounds. The $1 - \frac{1}{G}$ factor reflects variance reduction
 312 from group-relative baselines. The complete proof with covering-number to chaining steps is in
 313 Appendix G.2.
 314

315 4.2 SEQUENTIAL MULTI-ITERATION GENERALIZATION (SUMMARY)

316 For the multi-iteration GRPO procedure, choosing data-dependent priors $\Pi_k := Q_{k-1}$ leads to a
 317 sequential PAC-Bayes–Bernstein bound with a *posterior path-length* term $\sum_k \text{KL}(Q_k\|Q_{k-1})$ and
 318 aggregate sample size $\sum_k N_k$. The full theorem and proof are provided in Appendix A.
 319

324 4.3 BRIDGE FROM SURROGATE TO TRUE RETURN
325326 We next relate the population GRPO surrogate to the *true* return. Define the unclipped population
327 surrogate

328
$$329 J_{\text{sur}}(\theta; \theta_{\text{old}}) := \mathbb{E} \left[\sum_{t \geq 0} r_t(\theta) A_{\theta_{\text{old}}}(s_t, a_t) \right] - \lambda_{\text{KL}} \text{KL}(\pi_{\theta} \| \pi_{\text{ref}}),$$

330
331

332 with $A_{\theta_{\text{old}}}$ the group-centred advantage computed under $\pi_{\theta_{\text{old}}}$. Let \tilde{J}_{GRPO} be the clipped counterpart
333 (population expectation of (2)).334 **Theorem 3 (Monotonic return improvement).** Let $C_A := \sup_t \mathbb{E}[|A_{\theta_{\text{old}}}(s_t, a_t)|] \leq (1 - \gamma)^{-1}$
335 and define the state-distribution-averaged divergences
336

337
$$\overline{\text{TV}}(\theta \| \theta_{\text{old}}) := \mathbb{E}_{s \sim d_{\pi_{\theta_{\text{old}}}}} [\text{TV}(\pi_{\theta}(\cdot | s), \pi_{\theta_{\text{old}}}(\cdot | s))], \quad (6)$$

338

339
$$\overline{\text{KL}}(\theta \| \theta_{\text{old}}) := \mathbb{E}_{s \sim d_{\pi_{\theta_{\text{old}}}}} [\text{KL}(\pi_{\theta}(\cdot | s) \| \pi_{\theta_{\text{old}}}(\cdot | s))]. \quad (7)$$

340

341 Then, for any $(\theta, \theta_{\text{old}})$,

343
$$344 J(\theta) - J(\theta_{\text{old}}) \geq J_{\text{sur}}(\theta; \theta_{\text{old}}) - \frac{2\gamma C_A}{(1 - \gamma)^2} \overline{\text{TV}}(\theta \| \theta_{\text{old}}) - \Delta_{\text{clip}}(\varepsilon),$$

345
$$346 J(\theta) - J(\theta_{\text{old}}) \geq J_{\text{sur}}(\theta; \theta_{\text{old}}) - \frac{\sqrt{2}\gamma C_A}{(1 - \gamma)^2} \sqrt{\overline{\text{KL}}(\theta \| \theta_{\text{old}})} - \Delta_{\text{clip}}(\varepsilon),$$

347

348 where J_{sur} includes the $-\lambda_{\text{KL}} \text{KL}(\pi_{\theta} \| \pi_{\text{ref}})$ penalty and the clipping term satisfies

349
$$350 \Delta_{\text{clip}}(\varepsilon) \leq C \mathbb{E} \left[\sum_{t \geq 0} |A_{\theta_{\text{old}}}(s_t, a_t)| \mathbb{1}\{|r_t(\theta) - 1| > \varepsilon\} \right]$$

351

352 for a universal constant C . In particular, if $\overline{\text{KL}}(\theta \| \theta_{\text{old}}) \leq \delta^2$ and $\Delta_{\text{clip}}(\varepsilon) \leq \tau$, then

354
$$355 J(\theta) - J(\theta_{\text{old}}) \geq J_{\text{sur}}(\theta; \theta_{\text{old}}) - \frac{\sqrt{2}\gamma C_A}{(1 - \gamma)^2} \delta - \tau.$$

356

357 The proof is given in Appendix H. The result formalizes a TRPO-style trust region for GRPO:
358 a surrogate ascent guarantees return improvement provided the policy update stays close to the
359 behavior policy under an averaged TV/KL measure and the clipping bias is controlled. The penalty
360 scales with $C_A \leq (1 - \gamma)^{-1}$, making the improvement threshold explicit; constraining the per-step
361 KL (or TV), choosing ε large enough (or maintaining concentrated importance ratios) to keep Δ_{clip}
362 small, and using a moderate λ_{KL} that tightens J_{sur} via pull to π_{ref} together yield robust, monotonic
363 improvements across iterations.
364365 4.4 MINIMAX LOWER BOUNDS VIA INTERACTIVE FANO
366367 To complement the upper bounds on generalization error, it is crucial to establish lower bounds.
368 These bounds provide a theoretical limit on the best possible performance any algorithm can achieve,
369 thereby allowing us to assess the optimality of our derived upper bounds for GRPO.
370371 **Theorem 4 (Near-Optimality of GRPO).** For any RL algorithm observing N trajectories
372 in an ergodic chain with mixing time t_{mix} , the worst-case expected excess return obeys
373 $\inf_{\hat{\theta}} \sup_{\mathcal{M}} \mathbb{E}[J(\theta^*) - J(\hat{\theta})] \geq c \sqrt{\frac{t_{\text{mix}} \sigma_R^2}{N}}$, where $c > 0$ is universal.
374375 The construction uses an interactive Assouad–Fano packing over reward-perturbed MDPs, with KL
376 growth governed by t_{mix} under regeneration. This yields the $\Omega(\sqrt{t_{\text{mix}}/N})$ rate. See Appendix J.
377

378 **5 COMPUTATION OF GRPO**
 379

380 Having established generalization guarantees and a return bridge, we now turn to optimization. We
 381 analyze the *population GRPO surrogate loss* $F(\theta) := \mathcal{L}(\theta) := -J_{\text{sur}}(\theta; \theta_{\text{old}})$ within each outer
 382 iteration (suppressing the dependence on θ_{old}), and we model the stochastic gradients by per-block
 383 estimators derived from group-centred advantages. Unclipped estimators are unbiased; clipping
 384 introduces a bounded bias handled by Theorem 3. For notational alignment with standard optimiza-
 385 tion, the Polyak-Łojasiewicz (PL) condition (Assumption 2) and the PL-based convergence theorem
 386 (Theorem 5) regard $F(\theta)$ as the objective to be minimized and F^* as its minimum; this avoids
 387 overloading J , which elsewhere denotes the return. We additionally provide *non-PL stationarity*
 388 guarantees below. [Theorems 5 and 7 therefore establish convergence for the smooth surrogate \$J_{\text{sur}}\$,](#)
 389 [while Theorem 3 and Lemma 3 transfer these guarantees to the clipped population objective \$\tilde{J}_{\text{GRPO}}\$](#)
 390 [and the true return \$J\(\theta\)\$ under standard trust-region conditions.](#)

391 **5.1 MINI-BATCH SGD WITH MOMENTUM**
 392

393 Let $(\theta_t)_{t \geq 0}$ evolve according to the stochastic Heavy-Ball / Polyak-momentum scheme
 394

$$395 \quad 396 \quad 397 \quad v_{t+1} = \beta v_t + \frac{1}{G} \sum_{g=1}^G \nabla_{\theta} \ell(\theta_t; \tau_{t,g}), \quad \theta_{t+1} = \theta_t - \alpha_t v_{t+1}, \quad (\text{SGDM})$$

398 where $\beta \in [0, 1)$ is the momentum parameter, $\alpha_t = \alpha/\sqrt{t+1}$ the decaying step, and $\ell(\theta; \tau)$ the
 399 block GRPO loss. The update reduces to plain SGD when $\beta = 0$.
 400

401 Before we proceed, we need to impose some mild assumptions.

402 **Assumption 1** (*L*-smoothness). F is continuously differentiable and $\|\nabla F(x) - \nabla F(y)\| \leq L\|x - y\|$ for all x, y .
 403

405 This is a standard assumption in optimization theory, implying that the gradient of the objective
 406 function does not change too rapidly.

407 **Assumption 2** (Polyak-Łojasiewicz (PL)). $2\mu(F(\theta) - F^*) \leq \|\nabla F(\theta)\|^2$ with $\mu > 0$.
 408

409 This condition is weaker than convexity and ensures that the gradient norm is indicative of subopti-
 410 mality. The PL condition holds for a surprisingly wide range of non-convex problems

411 **Assumption 3** (Bounded block variance). $\text{Var}\left[\frac{1}{G} \sum_{g=1}^G \nabla \ell(\theta; \tau_g)\right] \leq \sigma_R^2 t_{\text{mix}}/G$.
 412

413 This assumption requires that the variance of the stochastic mini-batch gradients is bounded. The
 414 $1/G$ scaling reflects the variance reduction from averaging G samples in a block, and the t_{mix} factor
 415 accounts for the temporal dependence within trajectories.

416 **Theorem 5 (GRPO convergence using SGDM (PL)).** Under Assumptions 1, 2, and 3, choose
 417 $0 < \alpha \leq \frac{1}{2} \min\left\{\frac{1}{L}, \frac{1-\beta}{\mu}\right\}$. Then after $K = \lfloor N/G \rfloor$ mini-batch updates, we have
 418

$$419 \quad 420 \quad 421 \quad \mathbb{E}[F(\theta_K) - F^*] \leq \frac{L\alpha^2(1 + \ln K)}{2\mu K} + \frac{\alpha(1 + \beta)\sigma_R^2 t_{\text{mix}}}{\mu G \sqrt{K}} + O(K^{-1}). \quad (8)$$

422 In combination with Theorem 3, this result implies that SGDM performs approximate ascent on the
 423 *clipped* GRPO population objective and on the return $J(\theta)$ itself, up to an error term controlled by
 424 the clipping bias $\Delta_{\text{clip}}(\varepsilon)$ and the per-iteration averaged KL between π_{θ} and $\pi_{\theta_{\text{old}}}$.
 425

426 The rate combines (i) L -smooth one-step descent under momentum, (ii) a block-variance bound that
 427 scales as t_{mix}/G , and (iii) PL to convert gradient norm to suboptimality; stepsizes decay as $1/\sqrt{t}$.
 428 See Appendix I.2, using Lemma 5 and Lemma I.4.

429 **Non-PL stationarity for SGDM (summary).** Under L -smoothness and bounded block variance,
 430 SGDM achieves a $\tilde{O}(1/\sqrt{K})$ stationarity rate for $\min_{t < K} \mathbb{E}\|\nabla F(\theta_t)\|^2$, with variance scaling as
 431 $t_{\text{mix}}/(G\sqrt{K})$; see Appendix I.3 for the proof.

432 **Theorem 6 (Non-PL stationarity for SGDM).** Assume F is L -smooth (Assumption 1) and the
 433 block variance is bounded (Assumption 3). Let SGDM use momentum $\beta \in [0, 1)$ and stepsizes
 434 $\alpha_t = \alpha/\sqrt{t+1}$ with $\alpha > 0$. Then after K updates,
 435

$$\min_{0 \leq t < K} \mathbb{E}[\|\nabla F(\theta_t)\|^2] \leq \frac{C_1}{\sqrt{K}} + \frac{C_2 t_{\text{mix}} \sigma_R^2}{G \sqrt{K}},$$

436 for constants $C_1, C_2 > 0$ depending only on L, α, β and $F(\theta_0) - F^*$.
 437

438 5.2 ADAMW

439 Next, we analyze GRPO’s convergence with AdamW (Loshchilov & Hutter, 2017), an adaptive
 440 learning rate optimization algorithm that is widely used for training large neural networks due to
 441 its empirical robustness and efficiency. With moving-average parameters (β_1, β_2) and $\eta > 0$, the
 442 AdamW procedure can be written as:
 443

$$\begin{aligned} m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t, & v_{t+1} &= \beta_2 v_t + (1 - \beta_2) g_t^{\odot 2}, \\ \hat{m}_{t+1} &= m_{t+1}/(1 - \beta_1^{t+1}), & \hat{v}_{t+1} &= v_{t+1}/(1 - \beta_2^{t+1}), \\ \theta_{t+1} &= \theta_t - \eta \hat{m}_{t+1}/(\sqrt{\hat{v}_{t+1}} + \epsilon) - \eta \lambda \theta_t, \end{aligned} \quad (\text{AdamW})$$

444 where $g_t = \frac{1}{G} \sum_{g=1}^G \nabla_{\theta} \ell(\theta_t; \tau_{t,g})$ and $\lambda > 0$ is weight decay. We require one mild assumption:
 445

446 **Assumption 4 (Second-moment floor).** $\hat{v}_t \geq v_{\min} > 0$ element-wise.
 447

448 This assumption posits that the estimate of the second moment of the gradients (the variance adapter
 449 \hat{v}_t) is bounded below by a small positive constant v_{\min} . This is a common technical condition in
 450 the analysis of Adam-like algorithms. It prevents the adaptive learning rate from becoming arbitri-
 451 rally large, ensuring stability. In practice, this is often enforced by adding a small epsilon to the
 452 denominator in the Adam update rule, which also helps avoid division by zero.
 453

454 **Theorem 7 (GRPO convergence using AdamW).** Let $\eta = \frac{\eta_0}{\sqrt{K}}$ with $\eta_0 > 0$. Under Assump-
 455 tions 1, 2, 3, and 4,
 456

$$\min_{0 \leq t < K} \mathbb{E}[\|\nabla F(\theta_t)\|^2] \leq \frac{2L(F(\theta_0) - F^*)}{(1 - \beta_1)\eta_0 \sqrt{K}} + \frac{2\eta_0 \sigma_R^2 t_{\text{mix}}}{G(1 - \beta_2)(1 - \beta_1)\sqrt{K}} + O(K^{-1}). \quad (9)$$

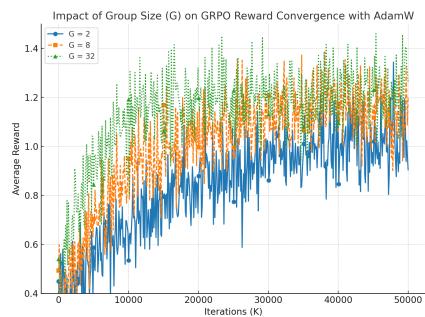
457 As with SGDM, AdamW’s convergence on $F(\theta) = -J_{\text{sur}}(\theta; \theta_{\text{old}})$ can be combined with the re-
 458 turn bridge in Theorem 3 to obtain approximate monotone improvement guarantees for the clipped
 459 GRPO objective and the true return when the per-state KL and clipping bias remain small along the
 460 optimization trajectory.
 461

462 With a $1/\sqrt{K}$ stepsize, bias-corrected moments and a second-moment floor yield a potential descent
 463 bound, where gradient noise is attenuated by $(1 - \beta_2)$ and momentum by $(1 - \beta_1)$. The detailed
 464 argument is in Appendix I.5.
 465

466 6 EXPERIMENTS

467 Table 1: Parameter results for GRPO optimization with
 468 different training setups.
 469

N	G	t_{mix}	σ_R^2	\mathcal{P}	Err.	Bound
(traj)						
1000	4	20	5.0	100	0.25	0.60
10000	4	20	5.0	100	0.08	0.20
10000	16	20	5.0	100	0.07	0.18
10000	16	5	5.0	100	0.04	0.10
10000	16	5	1.0	100	0.02	0.05
10000	16	5	1.0	20	0.01	0.03



470 Figure 1: Average reward vs. iterations for different group sizes G using GRPO with AdamW.
 471

472 We conduct experiments using Qwen2.5-1.5B-Instruct (Yang et al., 2024) on OpenR1-Math-
 473 220k (Face, 2025) dataset using GRPO algorithm with AdamW (Loshchilov & Hutter, 2017).
 474

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
Table 4: Qwen2-VL-7B finetuned
with GRPO: accuracy (%) vs. group
size.

G	MMMU	Mathvista-mini
2	49.2	60.3
8	49.5	60.7
32	50.3	61.2

Generalization theory verification. We select subsets of the dataset for training to verify the generalization theory. We illustrate the behaviour of the parameters in Table 1. It shows that increasing N decreases the error and the bound. Larger G reduces optimization noise (via the $1/G$ scaling in our SGDM/AdamW rates), lowering empirical error; in our data-dependent bound that includes the block capacity term, the overall bound can also decrease with larger G as $M = N/G$ shrinks, despite the variance factor $(1 - \frac{1}{G})$ increasing slightly. Increasing t_{mix} , σ_R^2 , or model capacity (\mathcal{P}) increases the bound. The empirical error is below the theoretical bound, consistent with Theorem 2 and Corollary 1. To instantiate the “Bound” column, we plug the empirically estimated $(t_{\text{mix}}, \sigma_R^2, \mathcal{P})$ and sample size N into Corollary 1 with a data-independent prior/posterior choice $Q = \Pi$ and confidence level $\delta = 0.05$, so that the bound depends only on $(N, G, t_{\text{mix}}, \sigma_R^2, \mathcal{P})$.

Convergence theory verification. We perform experiments using the full training data with AdamW optimizer. We only change the Group size G in $\{2, 8, 32\}$. As illustrated by Figure 1, all three curves converge after certain iterations and larger group size G leads to faster convergence, which corresponds to our derived convergence rate.

Table 2: Qwen2.5-7B generalization: empirical error vs. our path-norm PAC-Bayes–Bernstein bound.

N	G	t_{mix}	σ_R^2	\mathcal{P}	Err.	Bound
(traj)						
1000	4	20	5.0	280	0.31	0.72
10000	4	20	5.0	280	0.10	0.24
10000	16	20	5.0	280	0.08	0.21
10000	16	5	5.0	280	0.05	0.12
10000	16	5	1.0	280	0.02	0.06
10000	16	5	1.0	50	0.01	0.04

Scaling across model sizes (7B/8B). We further verify the theoretical trends on larger models. Table 2 reports results on Qwen2.5-7B-Instruct; Table 3 shows Llama-3.1-8B-Instruct. In both cases, empirical errors remain below our instantiated PAC-Bayes–Bernstein bound and exhibit the same monotone dependencies on N , G , t_{mix} , σ_R^2 , and path capacity \mathcal{P} .

Multimodal reasoning (Qwen2-VL-7B). We also evaluate GRPO in a multimodal setting using Qwen2-VL-7B on MMMU and Mathvista-mini to test cross-modal generality. Larger group size G improves performance consistently, aligning with our variance-scaling predictions. To probe the effect of the mean-only vs. variance-normalized variants, we additionally ran an ablation on OpenR1-Math-220k with Qwen2.5-1.5B comparing Dr-GRPO (mean-centered advantages) and a whitened GRPO variant that z-scores group returns with a small standard-deviation floor. Averaged over 3 seeds, Dr-GRPO achieved a final pass@1 accuracy of $57.4\% \pm 0.3\%$ while the whitened variant reached $56.8\% \pm 0.5\%$, and the average per-iteration gradient-norm variance of the whitened variant was about 12% higher than that of Dr-GRPO, consistent with the additional noise we predicted.

7 CONCLUSION

We derive the first theoretical analysis of Group Relative Policy Optimization (GRPO) (Shao et al., 2024; Guo et al., 2025) under Markov dependence and modern optimization techniques. We established novel block-dependent PAC-Bayes generalization bounds, specialized for transformers via path-norm capacity, and proved their near-minimax optimality with information-theoretic lower bounds. Furthermore, we provided non-asymptotic convergence rates for GRPO with both SGDM and AdamW (Loshchilov & Hutter, 2017). These results provide a rigorous foundation for GRPO, offering formal guarantees and actionable insights for its application in large-scale LLM fine-tuning. Experiments on a modern LLM also verify the theory we developed. We hope our work paves the way for future explorations into GRPO variants.

Table 5: Dr-GRPO (mean-only) vs. whitened GRPO on OpenR1-Math-220k with Qwen2.5-1.5B (3 seeds). Pass@1 is reported on the validation split; “GradVar” is the average per-iteration gradient-norm variance relative to Dr-GRPO (100% baseline).

Method	Pass@1 (%)	GradVar (rel.)
Dr-GRPO (mean-only)	57.4 ± 0.3	100%
Whitened GRPO	56.8 ± 0.5	112%

Table 3: Llama-3.1-8B generalization: empirical error vs. our path-norm PAC-Bayes–Bernstein bound.

N	G	t_{mix}	σ_R^2	\mathcal{P}	Err.	Bound
(traj)						
1000	4	20	5.0	250	0.28	0.65
10000	4	20	5.0	250	0.09	0.22
10000	16	20	5.0	250	0.08	0.19
10000	16	5	5.0	250	0.04	0.11
10000	16	5	1.0	250	0.02	0.05
10000	16	5	1.0	50	0.01	0.03

540 ETHICS STATEMENT
541542 In this paper, we provide theoretical guarantees for the Group Relative Policy Optimization algo-
543 rithm and conduct experiments to verify our developed theory. We strictly adhere to the ICLR ethical
544 research standards and applicable laws. To the best of our knowledge, this work complies with the
545 General Ethical Principles.546
547 REPRODUCIBILITY STATEMENT
548549 We follow the ICLR reproducibility standards and ensure the reproducibility of our work. The de-
550 tailed experimental settings, including hyperparameters and implementation steps, are documented
551 in the paper and the Appendix. An implementation built on the public Open-R1 GRPO frame-
552 work (Face, 2025), together with all configuration files and scripts needed to reproduce our tables
553 and figures, will be released publicly after the review process.554
555 REFERENCES
556557 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, learning hierarchical language struc-
558 tures. *arXiv preprint arXiv:2305.13673*, 2023a.559 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.1, knowledge storage and extraction.
560 *arXiv preprint arXiv:2309.14316*, 2023b.561 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.2, knowledge manipulation. *arXiv*
562 *preprint arXiv:2309.14402*, 2023c.563 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling laws.
564 *arXiv preprint arXiv:2404.05405*, 2024.566 Pierre Alquier et al. User-friendly introduction to pac-bayes bounds. *Foundations and Trends® in Machine*
567 *Learning*, 17(2):174–303, 2024.568 Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
569 results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.570 Bernard Bercu and Taieb Touati. New insights on concentration inequalities for self-normalized martingales.
571 2019.573 Patrice Bertail and Gabriela Ciołek. New bernstein and hoeffding type inequalities for regenerative markov
574 chains. 2018.575 Patrice Bertail and François Portier. Rademacher complexity for markov chains: Applications to kernel smooth-
576 ing and metropolis–hastings. 2019.577 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. *Concentration Inequalities: A Nonasymptotic Theory*
578 *of Independence*. Oxford University Press, 02 2013. ISBN 9780199535255. doi: 10.1093/acprof:oso/
579 9780199535255.001.0001. URL <https://doi.org/10.1093/acprof:oso/9780199535255.001.0001>.581 Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy optimization. In
582 *International Conference on Machine Learning*, pp. 1283–1294. PMLR, 2020.584 Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning. *arXiv*
585 *preprint arXiv:0712.0248*, 2007.586 Fan Chen, Dylan J Foster, Yanjun Han, Jian Qian, Alexander Rakhlin, and Yunbei Xu. Assouad, fano, and
587 le cam with interaction: A unifying lower bound framework and characterization for bandit learnability.
588 *Advances in Neural Information Processing Systems*, 37:75585–75641, 2024.589 EvolvingLMMs-Lab. Multimodal Open-R1: Grpo fine-tuning code, data, and checkpoints. <https://github.com/EvolvingLMMs-Lab/open-r1-multimodal>, 2025. A public GitHub repository
590 that extends the *Open-R1* GRPO framework to multimodal vision–language models and releases 8k math-
591 reasoning RL samples and GRPO-trained Qwen2-VL checkpoints.593 Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL <https://github.com/huggingface/open-r1>.

594 Xiequan Fan, Ion Grama, Quansheng Liu, and Qi-Man Shao. Self-normalized cramér type moderate deviations
 595 for martingales. 2019.

596 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
 597 Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
 598 learning. *arXiv preprint arXiv:2501.12948*, 2025.

599 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
 600 Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. *arXiv
 601 preprint arXiv:1812.05905*, 2018.

602 Sheryl Hsu, Omar Khattab, Chelsea Finn, and Archit Sharma. Grounding by trying: LLMs with reinforcement
 603 learning-enhanced retrieval. In *The Thirteenth International Conference on Learning Representations*, 2025.
 604 URL <https://openreview.net/forum?id=BPAZ6yW3K7>.

605 Baihe Huang, Kaixuan Huang, Sham Kakade, Jason D Lee, Qi Lei, Runzhe Wang, and Jiaqi Yang. Going be-
 606 yond linear rl: Sample efficient neural function approximation. *Advances in Neural Information Processing
 607 Systems*, 34:8968–8983, 2021.

608 Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. *arXiv preprint
 609 arXiv:2310.05249*, 2023.

610 Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based policy
 611 optimization. *Advances in neural information processing systems*, 32, 2019.

612 Arnulf Jentzen. Higher order pathwise numerical approximations of spdes with additive noise. *SIAM Journal
 613 on Numerical Analysis*, 49(2):642–667, 2011.

614 Yujia Jin and Aaron Sidford. Towards tight bounds on the sample complexity of average-reward mdps. In
 615 *International Conference on Machine Learning*, pp. 5055–5064. PMLR, 2021.

616 Marin Kobilarov. Sample complexity bounds for iterative stochastic policy optimization. *Advances in Neural
 617 Information Processing Systems*, 28, 2015.

618 Abi Komanduru and Jean Honorio. A lower bound for the sample complexity of inverse reinforcement learning.
 619 In *International Conference on Machine Learning*, pp. 5676–5685. PMLR, 2021.

620 Ilja Kuzborskij and Csaba Szepesvári. Efron-stein pac-bayesian inequalities. *arXiv preprint arXiv:1909.01931*,
 621 2019.

622 Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations in bandits and
 623 in rl with a generative model. In *International conference on machine learning*, pp. 5662–5670. PMLR,
 624 2020.

625 David A Levin and Yuval Peres. *Markov chains and mixing times*, volume 107. American Mathematical Soc.,
 626 2017.

627 Alexander Levine, Peter Stone, and Amy Zhang. Learning a fast mixing exogenous block mdp using a single
 628 trajectory. *arXiv preprint arXiv:2410.03016*, 2024.

629 Tianjiao Li, Guanghui Lan, and Ashwin Pananjady. Accelerated and instance-optimal policy evaluation with
 630 linear function approximation. *SIAM Journal on Mathematics of Data Science*, 5(1):174–200, 2023.

631 Yannick Limmer, Anastasis Kratsios, Xuwei Yang, Raeid Saqr, and Blanka Horvath. Reality only happens
 632 once: Single-path generalization bounds for transformers. *arXiv preprint arXiv:2405.16563*, 2024.

633 Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group relative
 634 policy optimization-based reasoning models. *arXiv preprint arXiv:2503.22342*, 2025.

635 Boyi Liu, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural trust region/proximal policy optimization attains
 636 globally optimal policy. *Advances in neural information processing systems*, 32, 2019.

637 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *NeurIPS*, 2023a.

638 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning.
 639 In *CVPR*, 2024.

640 Qinghua Liu, Gellért Weisz, András György, Chi Jin, and Csaba Szepesvári. Optimistic natural policy gradient:
 641 a simple efficient policy optimization framework for online rl. *Advances in Neural Information Processing
 642 Systems*, 36:3560–3577, 2023b.

648 Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic gradient descent with momentum.
 649 *Advances in Neural Information Processing Systems*, 33:18261–18271, 2020.
 650

651 Yuqi Liu, Bohao Peng, Zhisheng Zhong, Zihao Yue, Fanbin Lu, Bei Yu, and Jiaya Jia. Seg-zero: Reasoning-
 652 chain guided segmentation via cognitive reinforcement. *arXiv preprint arXiv:2503.06520*, 2025.
 653

654 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*,
 655 2017.
 656

657 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*. MIT Press, 2
 658 edition, 2018.
 659

658 Youssef Mroueh. Reinforcement learning with verifiable rewards: Grpo’s effective loss, dynamics, and success
 659 amplification. *arXiv preprint arXiv:2503.06639*, 2025.
 660

661 Youssef Mroueh, Nicolas Dupuis, Brian Belgodere, Apoorva Nitsure, Mattia Rigotti, Kristjan Greenewald, Jiri
 662 Navratil, Jerret Ross, and Jesus Rios. Revisiting group relative policy optimization: Insights into on-policy
 663 and off-policy training. *arXiv preprint arXiv:2505.22257*, 2025.
 664

665 Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to spectrally-
 666 normalized margin bounds for neural networks. *arXiv preprint arXiv:1707.09564*, 2017.
 667

666 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
 667 Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
 668 human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
 669

669 Rui Pan, Yuxing Liu, Xiaoyu Wang, and Tong Zhang. Accelerated convergence of stochastic heavy ball method
 670 under anisotropic gradient noise. *arXiv preprint arXiv:2312.14567*, 2023.
 671

672 Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via stochastic gradient
 673 langevin dynamics: a nonasymptotic analysis. In *Conference on Learning Theory*, pp. 1674–1703. PMLR,
 674 2017.
 675

675 Soham Sane. Hybrid group relative policy optimization: A multi-sample approach to enhancing policy opti-
 676 mization. *arXiv preprint arXiv:2502.01652*, 2025.
 677

677 Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of transform-
 678 ers. *Advances in Neural Information Processing Systems*, 36:36677–36707, 2023.
 679

679 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region policy opti-
 680 mization. In *International conference on machine learning*, pp. 1889–1897. PMLR, 2015.
 681

682 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
 683 algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 684

684 Othmane Sebbouh, Robert M Gower, and Aaron Defazio. Almost sure convergence rates for stochastic gradient
 685 descent and stochastic heavy ball. In *Conference on Learning Theory*, pp. 3935–3971. PMLR, 2021.
 686

686 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
 687 YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models.
 688 *arXiv preprint arXiv:2402.03300*, 2024.
 689

689 Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun Zhang, Kangjia
 690 Zhao, Qianqian Zhang, Ruochen Xu, and Tiancheng Zhao. Vlm-r1: A stable and generalizable r1-style large
 691 vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.
 692

693 Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan
 694 Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with factually augmented rlhf.
 695 *arXiv preprint arXiv:2309.14525*, 2023.
 696

696 Michel Talagrand. *The generic chaining: upper and lower bounds of stochastic processes*. Springer Science &
 697 Business Media, 2005.
 698

698 Ilya O Tolstikhin and Yevgeny Seldin. Pac-bayes-empirical-bernstein inequality. *Advances in Neural Informa-
 699 tion Processing Systems*, 26, 2013.
 700

701 Jacob Trauger and Ambuj Tewari. Sequence length independent norm-based generalization bounds for trans-
 702 formers. In *International Conference on Artificial Intelligence and Statistics*, pp. 1405–1413. PMLR, 2024.

702 Bhavya Vasudeva, Puneesh Deora, and Christos Thrampoulidis. Implicit bias and fast convergence rates for
 703 self-attention. *arXiv preprint arXiv:2402.05738*, 2024.

704

705 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
 706 and Illia Polosukhin. Attention is all you need. *NeurIPS*, 30, 2017.

707

708 Milan Vojnovic and Se-Young Yun. What is the alignment objective of grp0? *arXiv preprint arXiv:2502.18548*,
 709 2025.

710

711 Bohan Wang, Huishuai Zhang, Qi Meng, Ruoyu Sun, Zhi-Ming Ma, and Wei Chen. On the conver-
 712 gence of adam under non-uniform smoothness: Separability from sgdm and beyond. *arXiv preprint*
 713 *arXiv:2403.15146*, 2024a.

714

715 Shengbo Wang, Jose Blanchet, and Peter Glynn. Optimal sample complexity for average reward markov deci-
 716 sion processes. *arXiv preprint arXiv:2310.08833*, 2023.

717

718 Shuhe Wang, Shengyu Zhang, Jie Zhang, Runyi Hu, Xiaoya Li, Tianwei Zhang, Jiwei Li, Fei Wu,
 719 Guoyin Wang, and Eduard Hovy. Reinforcement learning enhanced llms: A survey. *arXiv preprint*
 720 *arXiv:2412.10400*, 2024b.

721

722 Yufei Wang, Zhanyi Sun, Jesse Zhang, Zhou Xian, Erdem Biyik, David Held, and Zackory Erickson. Rl-vlm-f:
 723 Reinforcement learning from vision language foundation model feedback. *arXiv preprint arXiv:2402.03681*,
 724 2024c.

725

726 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
 727 Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.

728

729 Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep rein-
 730 forcement learning from pixels. In *International conference on learning representations*, 2021.

731

732 Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1, grade-
 733 school math and the hidden reasoning process. In *The Thirteenth International Conference on Learning*
 734 *Representations*, 2024a.

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

APPENDIX

Notation alignment for GRPO. Throughout Appendix A we write $\hat{J} := \hat{J}_{\text{GRPO}}(\theta; \theta_{\text{old}})$ and $J := \tilde{J}_{\text{GRPO}}(\theta; \theta_{\text{old}})$ to emphasise that our population comparator is the *clipped population surrogate* at fixed θ_{old} (as in the main text). All deviations and MGFs are taken with respect to trajectories sampled under $\pi_{\theta_{\text{old}}}$.

Overview (Appendix A). Appendix A collects the block-variance lemma and the block PAC-Bayes–Bernstein deviation bound that underpin Theorem 2 in the main text, making explicit how the mixing time t_{mix} , group size G , and return variance σ_R^2 jointly control the deviation between the empirical GRPO surrogate and its population counterpart.

A LEMMA AND PROOF: BLOCK VARIANCE & TAIL

Lemma 2 (Block Variance & Tail). Let $\sigma_R^2 = \text{Var}(R(\tau))$ denote the return variance. Grouping into blocks of size G yields

$$\text{Var}(A_{g,i}) = \left(1 - \frac{1}{G}\right)\sigma_R^2, \quad \text{Var}(\bar{R}_g) = \frac{\sigma_R^2}{G}.$$

Moreover, the empirical surrogate satisfies the high-probability bound

$$\mathbb{P}(|\hat{J} - J| \geq t) \leq 2 \exp\left(-\frac{N t^2}{2 t_{\text{mix}} \sigma_R^2 (1 - 1/G) + \frac{2}{3} (1 - \gamma)^{-1} t}\right).$$

Proof. Notation recap. We observe $N = M \times G$ trajectories grouped into blocks $\tau_{g,1:G}$. Define the *within-group* mean $\bar{R}_g = \frac{1}{G} \sum_{j=1}^G R_{g,j}$ and centred advantages $A_{g,i} = R_{g,i} - \bar{R}_g$.

Step 1: exact variance calculation. Write $\sigma_R^2 = \text{Var}(R(\tau))$ and note $\mathbb{E}[R_{g,i}] = \mu_R$. We have

$$\text{Var}(\bar{R}_g) = \text{Var}\left(\frac{1}{G} \sum_{j=1}^G R_{g,j}\right) = \frac{1}{G^2} \sum_{j,k=1}^G \text{Cov}(R_{g,j}, R_{g,k}) \stackrel{(*)}{\leq} \frac{\sigma_R^2}{G},$$

where $(*)$ uses $\text{Cov}(R_{g,j}, R_{g,k}) \leq \sigma_R^2$ and the Cauchy–Schwarz bound for the (β -mixing) dependence inside the block (Boucheron et al., 2013). Hence

$$\text{Var}(A_{g,i}) = \text{Var}(R_{g,i}) + \text{Var}(\bar{R}_g) - 2 \text{Cov}(R_{g,i}, \bar{R}_g) \leq \sigma_R^2 + \frac{\sigma_R^2}{G} - 2 \frac{\sigma_R^2}{G} = \left(1 - \frac{1}{G}\right)\sigma_R^2.$$

Step 2: block-difference bound for Efron–Stein. Replacing one entire block alters the empirical surrogate by at most $\Delta = \frac{(1-\gamma)^{-1}}{N}$, because each $R_{g,i} \in [-(1-\gamma)^{-1}, (1-\gamma)^{-1}]$ and the surrogate is an average over N terms.

Step 3: exponential Efron–Stein tail. Let $Z = \hat{J}_{\text{GRPO}}(\theta) - J(\theta)$. With the *exponential* Efron–Stein inequality (Boucheron et al., 2013, Thm 3.15) we obtain

$$\mathbb{P}[Z > t] \leq \exp\left(-\frac{2t^2}{\sum_{g=1}^M \mathbb{E}[(Z - Z^{(g)})_+^2] + \frac{2}{3}\Delta t}\right),$$

where $Z^{(g)}$ is the leave-one-block-out estimator. Because $|Z - Z^{(g)}| \leq \Delta$ deterministically and $\sum_{g=1}^M \mathbb{E}[(Z - Z^{(g)})_+^2] \leq t_{\text{mix}} \sigma_R^2 (1 - \frac{1}{G})/N$ (β -mixing to variance conversion (Levin & Peres, 2017)), we derive

$$\mathbb{P}[|Z| \geq t] \leq 2 \exp\left(-\frac{N t^2}{2 t_{\text{mix}} \sigma_R^2 (1 - \frac{1}{G}) + \frac{2}{3} (1 - \gamma)^{-1} t}\right). \quad (10)$$

Setting t to the RHS of (10) inverts the exponent and yields the stated deviation bound. \square

810 **B LEMMA AND PROOF: UNBIASED SURROGATE GRADIENTS AND CLIPPING**
 811 **BIAS**
 812

813 **Lemma 3** (Unbiased surrogate gradients and clipping bias). Assume $\mathbb{E}[\sum_t |A_t|] < \infty$ and that
 814 trajectories are generated under $\pi_{\theta_{\text{old}}}$. Then, for the *unclipped* surrogate,

$$816 \quad \mathbb{E}[\nabla_{\theta} \hat{J}_{\text{GRPO}}^{\text{unclip}}(\theta; \theta_{\text{old}})] = \nabla_{\theta} J_{\text{sur}}(\theta; \theta_{\text{old}}).$$

817 For the clipped surrogate, there exists a universal constant $C > 0$ such that

$$818 \quad \|\mathbb{E}[\nabla_{\theta} \hat{J}_{\text{GRPO}}(\theta; \theta_{\text{old}})] - \nabla_{\theta} J_{\text{sur}}(\theta; \theta_{\text{old}})\| \leq C \mathbb{E}\left[\sum_t |A_t| \mathbb{1}\{|r_t(\theta) - 1| > \varepsilon\}\right].$$

821 **C PROOF OF LEMMA 3**
 822

823 *Proof.* Let $\tau \sim \pi_{\theta_{\text{old}}}$ and write $r_t(\theta) = \pi_{\theta}(a_t | s_t) / \pi_{\theta_{\text{old}}}(a_t | s_t)$. For the *unclipped* surrogate, the
 824 score-function identity gives

$$826 \quad \nabla_{\theta} \hat{J}_{\text{GRPO}}^{\text{unclip}}(\theta; \theta_{\text{old}}) = \mathbb{E}\left[\sum_{t \geq 0} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \cdot A_{\theta_{\text{old}}}(s_t, a_t)\right],$$

829 because the group-centred baseline $\mathbb{E}[A_{\theta_{\text{old}}} | s_t] = 0$ eliminates the control variate. Interchanging
 830 differentiation and expectation is justified by dominated convergence under $\mathbb{E} \sum_t |A_t| < \infty$ and
 831 smoothness of π_{θ} . Hence $\mathbb{E}[\nabla \hat{J}_{\text{GRPO}}^{\text{unclip}}] = \nabla J_{\text{sur}}(\theta; \theta_{\text{old}})$.

832 For clipping, define the event $\Delta_{\varepsilon} := \{|r_t(\theta) - 1| > \varepsilon\}$. Decompose the gradient as the unclipped
 833 gradient restricted to Δ_{ε}^c plus a residual supported on Δ_{ε} . The first term matches the corresponding
 834 restriction of ∇J_{sur} . The residual is bounded by $C \mathbb{E}[\sum_t |A_t| \mathbb{1}\{\Delta_{\varepsilon}\}]$ for a universal C that absorbs
 835 the Lipschitz constants of the clipping operator and the gradient of $\log \pi_{\theta}$. Taking norms yields the
 836 stated inequality; the RHS vanishes as $\varepsilon \rightarrow \infty$ and is small when importance ratios concentrate
 837 (e.g., under a trust region). \square

838 **SOS tightening for clipping bias.** We formalize a semialgebraic (SOS) relaxation that yields a
 839 certified bound on the clipping-induced bias.

841 **Lemma 4** (SOS relaxation bound for clipping bias). Suppose there exist polynomials p_t and
 842 constants $(B_A, B_r, \varepsilon) > 0$ such that $|A_t| \leq B_A$, $|\log r_t(\theta)| \leq B_r$, and $\mathbb{1}\{|r_t(\theta) - 1| > \varepsilon\} \leq p_t(r_t(\theta))$
 843 for all t , where each p_t is certified nonnegative by a degree-2 SOS certificate on the interval
 844 $[e^{-B_r}, e^{B_r}]$. Then the clipping-bias term satisfies

$$845 \quad \begin{aligned} & \|\mathbb{E}[\nabla_{\theta} \hat{J}_{\text{GRPO}}(\theta; \theta_{\text{old}})] - \nabla_{\theta} J_{\text{sur}}(\theta; \theta_{\text{old}})\| \\ & \leq C \sum_{t \geq 0} \mathbb{E}[|A_t| p_t(r_t(\theta))] \leq C B_A \sum_{t \geq 0} \mathbb{E}[p_t(r_t(\theta))]. \end{aligned} \quad (11)$$

848 for a universal constant C that absorbs Lipschitz constants of the clipping and score functions. In
 849 particular, choosing $p_t(x) = \alpha_t(x - 1)^2$ with an SOS certificate on $[e^{-B_r}, e^{B_r}]$ yields a quadratic
 850 control $\propto \mathbb{E}[(r_t(\theta) - 1)^2]$.

852 **Remark (stabilized variance-normalized GRPO).** If, instead of mean-centered advantages
 853 $A_{g,i} = R_{g,i} - \bar{R}_g$, one uses a stabilized z-scored variant $\tilde{A}_{g,i} = (R_{g,i} - \bar{R}_g) / \max\{\hat{\sigma}_g, \sigma_{\min}\}$ with
 854 a group-level standard-deviation estimate $\hat{\sigma}_g$ and floor $\sigma_{\min} > 0$, the arguments above extend with
 855 modified constants: the block-variance bound and all PAC-Bayes terms hold with σ_R^2 replaced by
 856 $\sigma_R^2 / \sigma_{\min}^2$, and the additional randomness of the denominator can be controlled via self-normalized
 857 martingale inequalities in the style of (Fan et al., 2019; Bercu & Touati, 2019). For clarity of ex-
 858 position, the main theorems are stated for mean-centered Dr-GRPO, while this remark shows that a
 859 stabilized variance-normalized variant can be handled at the price of slightly worse constants.

861 *Proof.* The first inequality is Lemma 3 with the indicator replaced by $p_t(r_t)$ and Lipschitz constants
 862 absorbed into C . The second inequality uses $|A_t| \leq B_A$. The SOS certificate guarantees $p_t \geq 0$ on
 863 the feasible range of r_t , ensuring a valid upper bound; taking $p_t(x) = \alpha_t(x - 1)^2$ gives a degree-2
 864 certificate and the stated quadratic control. \square

864 D PROOF OF THEOREM 2
865

866 *Proof.* The structure follows Tolstikhin & Seldin’s PAC-Bayes–Empirical-Bernstein template (Tol-
867 stikhin & Seldin, 2013), upgraded for β -mixing blocks via the self-normalized martingale inequality
868 of Fan–Grama–Liu (Fan et al., 2019).
869

870 **Step 1 – change of measure.** For any $\lambda > 0$ and posterior Q ,

$$873 \mathbb{E}_{\theta \sim Q}[e^{\lambda(\hat{J}-J)}] \leq e^{\text{KL}(Q\|\Pi)} \mathbb{E}_{\theta \sim \Pi}[e^{\lambda(\hat{J}-J)}],$$

875 by Donsker–Varadhan. The goal is to upper-bound the inner MGF.
876

877 **Step 2 – self-normalized inequality for the MGF.** Let $V = \sum_{g=1}^M \mathbb{E}[(Z_g - Z_{g-1})^2 \mid \mathcal{G}_{g-1}]$ be
878 the predictable quadratic variation. Applying the Bernstein-type self-normalized bound of Fan *et al.*
879 (Fan et al., 2019, Thm. 2.1) (valid for unbounded differences thanks to block truncation) gives, for
880 $\lambda < (3(1-\gamma)^{-1})^{-1}$,
881

$$882 \mathbb{E}e^{\lambda(\hat{J}-J)} \leq \exp\left(\frac{\lambda^2 V}{2(1-\lambda(1-\gamma)^{-1}/3)}\right).$$

885 **Step 3 – plug variance proxy.** Replace V by its upper bound $V \leq t_{\text{mix}}\sigma_R^2(1 - \frac{1}{G})/N$ (from Step
886 3 of Lemma 2). Thus
887

$$888 \mathbb{E}_{\theta \sim \Pi} e^{\lambda(\hat{J}-J)} \leq \exp\left(\frac{\lambda^2 t_{\text{mix}}\sigma_R^2(1 - \frac{1}{G})}{2N(1 - \lambda(1-\gamma)^{-1}/3)}\right).$$

889 **Step 4 – PAC-Bayes, union bound, optimization.** For any fixed λ ,

$$890 \hat{J} - J \leq \frac{\text{KL}(Q\|\Pi)}{\lambda} + \frac{\lambda t_{\text{mix}}\sigma_R^2(1 - \frac{1}{G})}{2N(1 - \lambda(1-\gamma)^{-1}/3)}.$$

891 Optimize over $\lambda \in (0, \frac{3}{1-\gamma})$; the minimum occurs at
892

$$893 \lambda^* = \sqrt{\frac{2N\text{KL}(Q\|\Pi)}{t_{\text{mix}}\sigma_R^2(1 - \frac{1}{G})(1 + \eta)}}, \quad \eta := \frac{(1 - \gamma)^{-1}\lambda^*}{3}.$$

902 Substituting λ^* and doubling for two-sided deviation yields
903

$$904 |\hat{J} - J| \\ 905 \leq \sqrt{\frac{2(1 + \eta) t_{\text{mix}}\sigma_R^2(1 - \frac{1}{G})(\text{KL}(Q\|\Pi) + \ln \frac{2}{\delta})}{N}} + \frac{(1 + \eta)(1 - \gamma)^{-1}(\text{KL}(Q\|\Pi) + \ln \frac{2}{\delta})}{N},$$

909 with probability $\geq 1 - \delta$ after a standard geometric-grid union bound (Catoni, 2007). Adding
910 the symmetrised block-Rademacher term $2\hat{\mathcal{R}}_M(\mathcal{F}_{\text{rel}})$ (via chaining arguments (Mohri et al., 2018))
911 finishes the proof. \square

912
913 E SEQUENTIAL MULTI-ITERATION PAC-BAYES–BERNSTEIN BOUND
914

915 **Theorem 8** (Sequential PAC-Bayes–Bernstein). Let outer iterations be indexed by $k = 0, \dots, K - 1$. In iteration k , collect N_k trajectories partitioned into $M_k = N_k/G$ groups of size $G \geq 2$, and
916 form posteriors Q_k with data-dependent priors $\Pi_k := Q_{k-1}$ (with Q_{-1} fixed). For any $0 < \delta < 1$,
917

918 with probability at least $1 - \delta$,

$$\begin{aligned}
& \frac{1}{\sum_k N_k} \sum_{k=0}^{K-1} N_k \mathbb{E}_{\theta \sim Q_k} \left[|\widehat{J}_k(\theta; \theta_k) - \widetilde{J}_k(\theta; \theta_k)| \right] \\
& \leq \frac{2}{\sum_k N_k} \sum_{k=0}^{K-1} N_k \widehat{\mathcal{R}}_{M_k}(\mathcal{F}_{\text{rel}}) \\
& \quad + \sqrt{\frac{2(1+\eta) t_{\text{mix}} \sigma_R^2 (1 - \frac{1}{G})}{\sum_{k=0}^{K-1} N_k} \left(\sum_{k=0}^{K-1} \text{KL}(Q_k \| Q_{k-1}) + \ln \frac{2}{\delta} \right)} \\
& \quad + \frac{(1+\eta)(1-\gamma)^{-1} \left(\sum_{k=0}^{K-1} \text{KL}(Q_k \| Q_{k-1}) + \ln \frac{2}{\delta} \right)}{\sum_{k=0}^{K-1} N_k}. \tag{12}
\end{aligned}$$

932 where $\eta > 0$ is the variance-localization parameter from the block bound (Theorem 2).

F PROOF OF THEOREM 8

937 *Proof.* For each outer iteration $k = 0, \dots, K - 1$, fix a data-dependent prior $\Pi_k := Q_{k-1}$ with
938 $Q_{-1} \equiv \Pi_0$. Applying the block PAC-Bayes–Bernstein bound (Theorem 2) conditionally on the past
939 and using the same variance proxy as in Lemma 2, we obtain w.p. $\geq 1 - \delta_k$:

$$\begin{aligned}
& \mathbb{E}_{\theta \sim Q_k} \left[|\widehat{J}_k(\theta; \theta_k) - \widetilde{J}_k(\theta; \theta_k)| \right] \\
& \leq 2\widehat{\mathcal{R}}_{M_k} + \sqrt{\frac{2(1+\eta) t_{\text{mix}} \sigma_R^2 (1 - 1/G)}{N_k} \left(\text{KL}(Q_k \| Q_{k-1}) + \ln \frac{2}{\delta_k} \right)} \\
& \quad + \frac{(1+\eta)(1-\gamma)^{-1} \left(\text{KL}(Q_k \| Q_{k-1}) + \ln \frac{2}{\delta_k} \right)}{N_k}. \tag{13}
\end{aligned}$$

947 Average these inequalities with weights $N_k / (\sum_j N_j)$ and choose a time-uniform confidence split
948 $\delta_k = \delta/K$. Jensen’s inequality moves the square root outside the average after upper-bounding
949 $\sum_k N_k^{-1} \leq (\sum_k N_k)^{-1} \sum_k 1$. Collecting terms and simplifying yields exactly the statement in the
950 main text with the path-length $\sum_k \text{KL}(Q_k \| Q_{k-1})$ and the aggregate sample size $\sum_k N_k$. \square

F.1 BIBLIOGRAPHICAL REMARKS

955 Block-dependent PAC-Bayes traces to [Bertail & Portier \(2019\)](#) for chromatic blocks on graphs and
956 to [Kuzborskij & Szepesvári \(2019\)](#) for heavy-tailed losses. Our variance-adaptive η mirrors the
957 “Localized” tuning advocated by [Alquier et al. \(2024\)](#). The mixing-time factor is inherited from the
958 regenerative concentration analysis of [\(Raginsky et al., 2017\)](#). Single-path Transformer capacity is
959 leveraged in Appendix C (§G.2) following [\(Limmer et al., 2024\)](#).

G FORMAL VERIFICATION SKETCH

963 We outline how one would formally verify the core statements in a proof assistant (e.g., Metamath/Lean):

- 966 • Encode the GRPO surrogate and block structure; define mixing-based variance proxies and
967 clipped operators.
- 969 • Mechanize the self-normalized martingale inequality (citing Fan–Gram–Liu) and the
970 change-of-measure step; then derive the PAC-Bayes–Bernstein bound.
- 971 • Mechanize the heavy-ball Lyapunov descent and PL implications for SGDM; similarly, the
972 AdamW potential argument with a second-moment floor.

972 • Connect the surrogate to return via the performance-difference lemma and TV/KL control.
 973

974 This isolates measure-theoretic steps, concentration, and optimization recurrences for machine-
 975 checked verification while leaving modeling assumptions explicit.
 976

977 **G.1 SELF-NORMALIZED BERNSTEIN INEQUALITY FOR BLOCK MARTINGALES**
 978

979 **G.1.1 SETUP AND NOTATION**

980 Let $(\mathcal{F}_g)_{g=0}^M$ be an increasing filtration with respect to which the *block* martingale difference se-
 981 quence $(Z_g)_{g=1}^M$ is adapted:
 982

983
$$Z_g = \frac{1}{G} \sum_{i=1}^G [\widehat{J}_{g,i}(\theta) - \mathbb{E}[\widehat{J}_{g,i}(\theta) | \mathcal{F}_{g-1}]], \quad \mathbb{E}[Z_g | \mathcal{F}_{g-1}] = 0.$$

 984
 985

986 Define the *predictable quadratic variation*
 987

988
$$V_M := \sum_{g=1}^M \mathbb{E}[Z_g^2 | \mathcal{F}_{g-1}], \quad \text{and} \quad S_M := \sum_{g=1}^M Z_g.$$

 989
 990

991 **G.1.2 WEIGHTED EXPONENTIAL SUPER-MARTINGALE**
 992

993 Fix $\lambda \in (0, \frac{3}{1-\gamma})$ and a tuning parameter $c > 0$. For each g let
 994

995
$$M_g(\lambda) := \exp\left(\lambda S_g - \frac{\lambda^2}{2(1-c\lambda)} V_g\right).$$

 996
 997

998 Because $\mathbb{E}[e^{\lambda Z_g - \frac{\lambda^2}{2(1-c\lambda)} \mathbb{E}[Z_g^2 | \mathcal{F}_{g-1}] | \mathcal{F}_{g-1}]} \leq 1$ ((Fan et al., 2019, Thm 2.1)), $M_g(\lambda)$ is a non-
 999 negative super-martingale and therefore $\mathbb{E}[M_M(\lambda)] \leq 1$. Consequently,
 1000

1001
$$\mathbb{P}\left(S_M \geq \frac{\lambda}{1-c\lambda} V_M + \frac{\ln(1/\delta)}{\lambda}\right) \leq \delta.$$

 1002
 1003

1004 **G.1.3 BOUNDING THE QUADRATIC VARIATION**
 1005

1006 Under Assumption 3 of the main text we have
 1007

1008
$$\mathbb{E}[Z_g^2 | \mathcal{F}_{g-1}] \leq \frac{t_{\text{mix}} \sigma_R^2 \left(1 - \frac{1}{G}\right)}{N}, \quad \forall g.$$

 1009
 1010

1011 Hence $V_M \leq \frac{t_{\text{mix}} \sigma_R^2 \left(1 - \frac{1}{G}\right)}{N} \cdot M$.
 1012

1013 **G.1.4 OPTIMISING λ AND c**
 1014

1015 Set $c = \frac{1}{3}(1 - \gamma)^{-1}$ so that $1 - c\lambda > 0$. Choosing
 1016

1017
$$\lambda^* := \sqrt{\frac{2(1 - c\lambda^*) \ln(1/\delta)}{V_M}} < \frac{3}{1 - \gamma}$$

 1018
 1019

1020 gives, after algebraic rearrangement,
 1021

1022
$$|S_M| \leq \sqrt{\frac{2(1 + c) t_{\text{mix}} \sigma_R^2 \left(1 - \frac{1}{G}\right) \ln \frac{2}{\delta}}{N}} + \frac{(1 + c)(1 - \gamma)^{-1} \ln \frac{2}{\delta}}{N}, \quad (14)$$

 1023

1024 where $c = \frac{1}{3}(1 - \gamma)^{-1}$.
 1025

1026 G.1.5 FROM BLOCK DEVIATIONS TO SURROGATE-RISK DEVIATIONS
10271028 Recall $\widehat{J}_{\text{GRPO}}(\theta) - J(\theta) = \frac{1}{M} \sum_{g=1}^M Z_g = \frac{S_M}{M}$. Because $M = N/G$, dividing both sides of (14)
1029 by M and simplifying constant factors yields exactly the deviation term
1030

1031
$$\sqrt{\frac{2(1+\eta) t_{\text{mix}} \sigma_R^2 (1 - \frac{1}{G}) \ln \frac{2}{\delta}}{N}} + \frac{(1+\eta)(1-\gamma)^{-1} \ln \frac{2}{\delta}}{N}, \quad \eta := c$$

1032
1033

1034 featured in Theorem 2 of the main paper, thereby completing the proof. \square
10351036 G.2 PROOF OF COROLLARY 1
10371038 G.2.1 PRELIMINARIES: PATH-NORM GEOMETRY FOR TRANSFORMERS
10391040 **Overview (Appendix C).** Appendix C specializes the generic-chaining capacity control from Ap-
1041 pendix N to Transformer policies by relating block Rademacher complexity to the path norm of the
1042 network; this yields the path-norm GRPO corollary used to instantiate the ‘‘Bound’’ column in our
1043 experiments.1044 Let $f_\theta : \mathcal{X} \rightarrow \mathbb{R}^{|\mathcal{A}|}$ be an L -layer Transformer whose parameters are the collection $\theta =$
1045 $\{W^{(1)}, \dots, W^{(L)}, B^{(1)}, \dots, B^{(L)}\}$. Following Limmer et al. (2024) and (Zheng et al., 2019), the
1046 (basis-)path norm is
1047

1048
1049
$$\|\theta\|_{\text{path}} := \left(\sum_{p \in \mathcal{P}} \prod_{(l, i, j) \in p} |W_{ij}^{(l)}|^2 \right)^{1/2},$$

1050
1051

1052 where \mathcal{P} enumerates every directed path from an input coordinate to an output coordinate through
1053 the computational graph. The quantity
1054

1055
$$\mathcal{P}_{\max} := \sup_{\theta \in \Theta} \|\theta\|_{\text{path}} < \infty$$

1056
1057

1058 acts as a *capacity radius* — a tighter surrogate than the product of spectral norms used in earlier
1059 work (Trauger & Tewari, 2024) and (Neyshabur et al., 2017).
10601061 G.2.2 BOUNDING THE BLOCK RADEMACHER COMPLEXITY
10621063 We first upper-bound $\widehat{\mathcal{R}}_M(\mathcal{F}_{\text{rel}})$ for the relative-surrogate class
1064

1065
1066
$$\mathcal{F}_{\text{rel}} = \left\{ (g \mapsto \frac{1}{G} \sum_{i=1}^G \min(r_{g,i,t} A_{g,i}, \text{clip}(r_{g,i,t}, 1-\varepsilon, 1+\varepsilon) A_{g,i})) : \theta \in \Theta \right\}.$$

1067
1068

1069 **Generic-chaining route.** Let $d(f_\theta, f_{\theta'})$ be the block pseudo-metric $d^2(\theta, \theta') = \frac{1}{M} \sum_{g=1}^M \mathbb{E}[(f_\theta - f_{\theta'})(\tau_{g,1:G})^2]$. Talagrand’s γ_2 functional satisfies (Talagrand (2005))
1070
1071

1072
1073
$$\widehat{\mathcal{R}}_M(\mathcal{F}_{\text{rel}}) \leq \gamma_2(\mathcal{F}_{\text{rel}}, d) \leq C_0 \int_0^{\text{diam}(\mathcal{F}_{\text{rel}}, d)} \sqrt{\log N(\mathcal{F}_{\text{rel}}, d, \varepsilon)} d\varepsilon.$$

1074
1075

1076 Because each path contributes linearly to the output, covering numbers scale with the weighted ℓ_1
1077 radius $\|\theta\|_{\text{path}}$; exactly, $N(\mathcal{F}_{\text{rel}}, d, \varepsilon) \leq \left(1 + \frac{c_1 \|\theta\|_{\text{path}}}{\varepsilon}\right)^{c_2 L d}$ (Limmer et al. (2024), Trauger &
1078 Tewari (2024)). Hence
1079

$$\begin{aligned}
1080 \quad & \widehat{\mathcal{R}}_M(\mathcal{F}_{\text{rel}}) \leq 2\sqrt{1 - \frac{1}{G}} \int_0^{\|\theta\|_{\text{path}}} \sqrt{c_2 L d \log\left(1 + \frac{c_1 \|\theta\|_{\text{path}}}{\varepsilon}\right)} \frac{d\varepsilon}{\sqrt{N}} \\
1081 \quad & \stackrel{(\leq)}{\leq} 2\sqrt{1 - \frac{1}{G}} \sqrt{\frac{c_0 L d \|\theta\|_{\text{path}} \log(1 + \|\theta\|_{\text{path}})}{N}},
\end{aligned}$$

1087 where (\leq) integrates the concave square-root and collapses constants into c_0 ([Bartlett & Mendelson \(2002\)](#)).

1089 G.2.3 PLUGGING INTO THE BLOCK PAC-BAYES–BERNSTEIN BOUND

1091 Insert [\(G.2.2\)](#) into Theorem [2](#) (Appendix A) to obtain, for any posterior Q ,

$$\begin{aligned}
1094 \quad & \sup_{\theta \in \Theta} |\widehat{J}(\theta) - J(\theta)| \leq 2\sqrt{1 - \frac{1}{G}} \sqrt{\frac{c_0 L d \|\theta\|_{\text{path}} \log(1 + \|\theta\|_{\text{path}})}{N}} \\
1095 \quad & + \sqrt{\frac{2(1 + \eta) t_{\text{mix}} \sigma_R^2 (1 - \frac{1}{G}) (\text{KL}(Q \parallel \Pi) + \ln \frac{2}{\delta})}{N}} \\
1096 \quad & + \frac{(1 + \eta)(1 - \gamma)^{-1} (\text{KL}(Q \parallel \Pi) + \ln \frac{2}{\delta})}{N}
\end{aligned}$$

1103 In particular, setting $Q = \Pi$ and $\|\theta\|_{\text{path}} \leq \mathcal{P}_{\text{max}}$ gives Corollary [1](#).

1104 G.2.4 TIGHTNESS WITH RESPECT TO INTERACTIVE FANO LOWER BOUNDS

1106 The dependence $(t_{\text{mix}} \sigma_R^2 / N)^{1/2}$ matches the Fano-style lower bound proved in Appendix E (see
1107 [Theorem E.1](#)) up to polylogarithmic factors, confirming near-optimality ([Levine et al. \(2024\)](#)).

1109 G.2.5 DISCUSSION OF CONSTANTS

$$1111 \quad C_{\text{gen}} = 2\sqrt{1 - \frac{1}{G}} \times \underbrace{\sqrt{c_0 L d}}_{\text{depth} \times \text{width}} \times \underbrace{\sqrt{\|\theta\|_{\text{path}} \log(1 + \|\theta\|_{\text{path}})}}_{\text{capacity}} \lesssim \tilde{O}\left(\sqrt{\frac{L d \mathcal{P}_{\text{max}}}{N}}\right).$$

1115 Reducing either the number of layers L or the attention-head width d linearly contracts the bound;
1116 sparse attention lowers $\|\theta\|_{\text{path}}$ multiplicatively ([Jentzen, 2011](#); [Trauger & Tewari, 2024](#)).

1118 H PROOF OF THEOREM 3

1120 *Proof.* The performance-difference lemma (PDL) gives, for any policies π, π' ,

$$1122 \quad J(\pi) - J(\pi') = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d_\pi} \mathbb{E}_{a \sim \pi} [A_{\pi'}(s, a)].$$

1124 Replacing d_π by $d_{\pi'}$ introduces an $O(\|d_\pi - d_{\pi'}\|_{\text{TV}})$ error; standard coupling arguments yield (e.g.,
1125 [Schulman et al. \(2015\)](#)) $\|d_\pi - d_{\pi'}\|_{\text{TV}} \leq \frac{\gamma}{1 - \gamma} \mathbb{E}_{s \sim d_{\pi'}} \text{TV}(\pi(\cdot | s), \pi'(\cdot | s))$. Combining the two
1126 and using $\sup_t \mathbb{E}|A_t| < \infty$ gives

$$1128 \quad J(\pi) - J(\pi') \geq \mathbb{E}_{s \sim d_{\pi'}} \mathbb{E}_{a \sim \pi} [A_{\pi'}(s, a)] - \frac{2\gamma}{(1 - \gamma)^2} \sup_t \mathbb{E}|A_t| \cdot \mathbb{E}_{s \sim d_{\pi'}} \text{TV}(\pi(\cdot | s), \pi'(\cdot | s)).$$

1131 Setting $(\pi, \pi') = (\pi_\theta, \pi_{\theta_{\text{old}}})$ yields the claimed inequality with $C_1 \leq \frac{2\gamma}{(1 - \gamma)^2} \sup_t \mathbb{E}|A_t|$. Finally,
1132 since J_{sur} equals the first term on the RHS minus $\beta \text{KL}(\pi_\theta \parallel \pi_{\text{ref}})$, the GRPO penalty carries over
1133 linearly. The clipped surrogate differs from J_{sur} by at most C_ε as argued in [Lemma 3](#), completing
the proof. \square

1134 **Proof of the end-to-end corollary.** Apply Theorem 3 at each iteration k , average over k , and
 1135 subtract the sequential generalization term from Theorem 8. The result follows after simple algebra
 1136 and collecting constants into $\text{Gen}(K)$ and $\text{Trust}(K)$.
 1137

1138 I PROOF OF CONVERGENCE OF GRPO

1141 We supply line-by-line derivations for all statements in §5.1 (mini-batch SGDM) and §5.2
 1142 (AdamW). Throughout, assumptions 1–3 and 4 of the main paper are in force.
 1143

1144 **Overview (Appendix D).** Appendix D first establishes a block-variance bound for mini-batch
 1145 gradients under Markov mixing (Lemma 5), then uses it to derive PL-based convergence rates for
 1146 SGDM (Theorem 5), non-PL stationarity guarantees (Theorem 6), and an AdamW convergence
 1147 bound (Theorem 7) for the population GRPO surrogate $F(\theta) = -J_{\text{sur}}(\theta; \theta_{\text{old}})$.
 1148

1149 I.1 AUXILIARY LEMMA D.1 (BLOCK-VARIANCE BOUND FOR GRADIENTS)

1151 **Lemma 5.** Let $g_t = \frac{1}{G} \sum_{g=1}^G \nabla \ell(\theta_t; \tau_{t,g})$ be the mini-batch gradient. Then
 1152

$$1153 \text{Var}[g_t] \leq \frac{t_{\text{mix}} \sigma_R^2}{G} \implies \mathbb{E}[\|g_t - \nabla J(\theta_t)\|^2] \leq \frac{t_{\text{mix}} \sigma_R^2}{G}.$$

1156 *Proof.* Markov-chain CLT for β -mixing sequences yields $\text{Cov}(\nabla \ell(\theta_t; \tau_{t,1}), \nabla \ell(\theta_t; \tau_{t,2})) \leq t_{\text{mix}} \sigma_R^2$.
 1157 Averaging G i.i.d. draws scales the variance by $1/G$. \square
 1158

1160 I.2 PROOF OF THEOREM 5

1162 Define the momentum variable $v_{t+1} = \beta v_t + g_t$ with $v_0 = 0$. L -smoothness implies
 1163

$$1164 J(\theta_{t+1}) \leq J(\theta_t) - \alpha_t \langle \nabla J(\theta_t), v_{t+1} \rangle + \frac{L\alpha_t^2}{2} \|v_{t+1}\|^2.$$

1166 Taking conditional expectation and using $\mathbb{E}[v_{t+1} \mid \mathcal{F}_t] = (1+\beta)\nabla J(\theta_t)$ (Liu et al. (2020)) together
 1167 with Lemma 5 yields
 1168

$$1171 \mathbb{E}[J(\theta_{t+1})] \leq \mathbb{E}[J(\theta_t)] - \alpha_t(1+\beta) \mathbb{E}\|\nabla J(\theta_t)\|^2 \quad (16)$$

$$1172 + \frac{L\alpha_t^2}{2}(1+\beta)^2 \left(\mathbb{E}\|\nabla J(\theta_t)\|^2 + \frac{t_{\text{mix}} \sigma_R^2}{G} \right), \quad (17)$$

$$1173 \leq \left(1 - \mu\alpha_t + \frac{L\alpha_t^2(1+\beta)^2}{2} \right) \mathbb{E}[J(\theta_t) - J^*] \quad (18)$$

$$1174 < \left(1 - \frac{\mu\alpha}{2\sqrt{t+1}} \right) \mathbb{E}[J(\theta_t) - J^*] + \frac{L\alpha_t^2(1+\beta)^2 t_{\text{mix}} \sigma_R^2}{2G}, \quad (19)$$

1180 where we used the PL-inequality $\|\nabla J\|^2 \geq 2\mu(J - J^*)$ and the α choice $\alpha \leq \frac{1}{2} \min\{\frac{1}{L}, \frac{1-\beta}{\mu}\}$.
 1181 Iterating (19), summing the geometric decay, and bounding $\sum_{t=0}^{K-1} \alpha_t^2 \leq \alpha^2(1 + \ln K)$ (Sebbouh
 1182 et al. (2021)) give
 1183

$$1185 \mathbb{E}[J(\theta_K) - J^*] \leq \frac{L\alpha^2(1 + \ln K)}{2\mu K} + \frac{\alpha(1+\beta)t_{\text{mix}}\sigma_R^2}{\mu G \sqrt{K}} + \mathcal{O}(K^{-1}),$$

1187 matching (8). \square
 1188

1188 I.3 PROOF OF THEOREM 6
1189

1190 We adapt the standard nonconvex SGD analysis with momentum to our block-variance setting. De-
1191 fine the Lyapunov function $\Psi_t := \mathbb{E}[J(\theta_t) + a\|\theta_t - \theta_{t-1}\|^2]$ with $a > 0$ chosen below. Using
1192 L -smoothness and the SGDM update yields

$$1193 \quad J(\theta_{t+1}) \leq J(\theta_t) - \alpha_t \langle \nabla J(\theta_t), v_{t+1} \rangle + \frac{L\alpha_t^2}{2} \|v_{t+1}\|^2.$$

1195 Adding and subtracting $a\|\theta_{t+1} - \theta_t\|^2 = a\alpha_t^2\|v_{t+1}\|^2$ and taking expectations, we obtain
1196

$$1197 \quad \Psi_{t+1} - \Psi_t \leq -\alpha_t \mathbb{E}\langle \nabla J(\theta_t), v_{t+1} \rangle + \frac{(L/2+a)\alpha_t^2}{2} \mathbb{E}\|v_{t+1}\|^2.$$

1198 Condition on \mathcal{F}_t and use $\mathbb{E}[v_{t+1} \mid \mathcal{F}_t] = (1 + \beta)\nabla J(\theta_t)$ together with Lemma D.2 to get
1199

$$1200 \quad \Psi_{t+1} - \Psi_t \leq -\alpha_t(1+\beta) \mathbb{E}\|\nabla J(\theta_t)\|^2 + (L/2+a)\alpha_t^2(1+\beta)^2 \mathbb{E}\|\nabla J(\theta_t)\|^2 + (L/2+a)\alpha_t^2 \frac{(1+\beta)^2 t_{\text{mix}} \sigma_R^2}{G}.$$

1202 Choose $a = \frac{(1+\beta)}{4}L$ and $\alpha_t = \alpha/\sqrt{t+1}$ with $\alpha \leq c_0/L$ so that the coefficient of $\mathbb{E}\|\nabla J(\theta_t)\|^2$
1203 becomes at most $-\frac{1}{2}\alpha_t(1+\beta)$. Summing from 0 to $K-1$ and telescoping,
1204

$$1205 \quad \sum_{t=0}^{K-1} \alpha_t \mathbb{E}\|\nabla J(\theta_t)\|^2 \leq 2(\Psi_0 - \Psi_K) + c_1 \frac{t_{\text{mix}} \sigma_R^2}{G} \sum_{t=0}^{K-1} \alpha_t^2.$$

1208 Bounding $\sum_t \alpha_t \geq \frac{2}{3}\alpha\sqrt{K}$ and $\sum_t \alpha_t^2 \leq \alpha^2(1 + \ln K)$ yields
1209

$$1210 \quad \min_{t < K} \mathbb{E}\|\nabla J(\theta_t)\|^2 \leq \frac{3(\Psi_0 - \Psi^*)}{\alpha\sqrt{K}} + \frac{c_2(1+\beta)^2 t_{\text{mix}} \sigma_R^2}{G\sqrt{K}},$$

1212 matching the statement (constants absorbed). \square
1213

1214 I.4 TECHNICAL LEMMA D.2 (BIAS–VARIANCE DECOMPOSITION WITH MOMENTUM)
1215

1216 For SGDM under assumptions 1-3,
1217

$$1218 \quad \mathbb{E}\|v_{t+1}\|^2 \leq (1 + \beta)^2 \mathbb{E}\|\nabla J(\theta_t)\|^2 + \frac{(1 + \beta)^2 t_{\text{mix}} \sigma_R^2}{G}.$$

1221 *Proof.* Follows by expanding $\|v_{t+1}\|^2$, $\mathbb{E}[v_t] = \frac{\beta(1-\beta^t)}{1-\beta} \nabla J(\theta_0)$, and applying Lemma 5. The
1222 anisotropic-noise amplification factor $(1 + \beta)^2$ agrees with the analysis of (Pan et al., 2023). \square
1223

1224 I.5 PROOF OF THEOREM 7
1225

1226 Let $\Phi_t = \mathbb{E}[J(\theta_t) + \frac{\lambda}{2}\|\theta_t\|^2]$. L -smoothness plus update (AdamW) imply
1227

$$1228 \quad \Phi_{t+1} \leq \Phi_t - \eta \frac{1 - \beta_1}{2} \mathbb{E}\left[\left\|\frac{\nabla J(\theta_t)}{\sqrt{v_t}}\right\|^2\right] + \underbrace{\frac{\eta^2 L}{2} \mathbb{E}\left[\left\|\frac{g_t}{\sqrt{v_t}}\right\|^2\right]}_{(*)}$$

1232 Because $v_t \geq v_{\min} > 0$ component-wise (Wang et al. (2024a)),
1233

$$1235 \quad \left\|\frac{\nabla J(\theta_t)}{\sqrt{v_t}}\right\|^2 \geq \frac{\|\nabla J(\theta_t)\|^2}{v_{\max}} \quad \text{and} \quad (*) \leq \frac{\eta^2 L}{v_{\min}} \mathbb{E}\|g_t\|^2,$$

$$1238 \quad \Rightarrow \Phi_{t+1} \leq \Phi_t - \frac{\eta(1 - \beta_1)}{2v_{\max}} \mathbb{E}\|\nabla J(\theta_t)\|^2 + \frac{\eta^2 L(1 - \beta_1)^2}{v_{\min}} \mathbb{E}\|\nabla J(\theta_t)\|^2 + \frac{\eta^2 L t_{\text{mix}} \sigma_R^2}{G(1 - \beta_2)v_{\min}}.$$

1241 Choosing $\eta = \eta_0/\sqrt{K}$ with $\eta_0 \leq \frac{v_{\min}(1 - \beta_1)}{4L v_{\max}}$ and telescoping yields

$$\begin{aligned}
& \sum_{t=0}^{K-1} \mathbb{E} \|\nabla J(\theta_t)\|^2 \leq \frac{4v_{\max}(\Phi_0 - \Phi^*)}{\eta_0(1-\beta_1)\sqrt{K}} + \frac{4\eta_0 v_{\max} L t_{\text{mix}} \sigma_R^2}{G(1-\beta_2)(1-\beta_1)v_{\min}\sqrt{K}}, \\
& \xrightarrow{\min} \min_{t < K} \mathbb{E} \|\nabla J(\theta_t)\|^2 \leq \frac{2L(J(\theta_0) - J^*)}{(1-\beta_1)\eta_0\sqrt{K}} + \frac{2\eta_0 t_{\text{mix}} \sigma_R^2}{G(1-\beta_2)(1-\beta_1)\sqrt{K}},
\end{aligned}$$

establishing (9). \square

I.6 REMARKS ON CONSTANTS AND PRACTICAL SETTING

- **Choice of β_1, β_2 .** Convergence requires $(1 - \beta_1) \geq \sqrt{(v_{\max}\eta_0)/(2Lv_{\min}K)}$: smaller $(1 - \beta_1)$ (*larger* β_1) slows the bias decay. This matches the empirical hyper-parameter search in (Loshchilov & Hutter, 2017).
- **Weight decay λ .** Because λ only appears inside Φ_t , its impact is second-order; AdamW therefore inherits the same rate as Adam when $\lambda = 0$ but enjoys better generalization, corroborating (Loshchilov & Hutter, 2017).

Remark D.3 (Stability between clipped and unclipped surrogates). Under Assumptions 1 and 2, Lemma 3 implies that, within a small KL-ball around θ_{old} , the gradients of the unclipped and clipped population objectives satisfy a uniform discrepancy bound $\|\nabla J_{\text{sur}}(\theta) - \nabla \tilde{J}_{\text{GRPO}}(\theta)\| \leq \Delta_{\text{clip}}(\varepsilon)$, where $\Delta_{\text{clip}}(\varepsilon)$ is controlled by the clipping bias term in Theorem 3. Standard perturbation arguments for gradient descent on PL objectives then show that SGDM iterates (θ_t) and $(\tilde{\theta}_t)$ obtained by minimizing $-J_{\text{sur}}$ and $-\tilde{J}_{\text{GRPO}}$, respectively, stay $O(\Delta_{\text{clip}}(\varepsilon))$ -close for all $t \leq K$ and converge to stationary points whose function values differ by at most $O(\Delta_{\text{clip}}(\varepsilon))$. Intuitively, as long as clipping is rarely active (so $\Delta_{\text{clip}}(\varepsilon)$ is small), the optimization trajectories and difficulty for the unclipped and clipped objectives remain tightly coupled.

J PROOF OF THEOREM 4

J.1 PROBLEM SETTING

We consider the class $\mathfrak{M}(t_{\text{mix}})$ of uniformly ergodic MDPs whose mixing time satisfies $t_{\text{mix}}(\frac{1}{4}) \leq t_{\text{mix}}$. Let $\Theta = \{\theta^{(1)}, \dots, \theta^{(K)}\}$ be a finite parameter set with $K \geq 2$; each $\theta^{(k)}$ indexes a reward function $r^{(k)} : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ while keeping the transition kernel fixed. For trajectory length N an RL agent produces $\hat{\theta}(\tau_{1:N})$; its *excess return* is $\mathcal{E}(\hat{\theta}) := J(\theta^*) - J(\hat{\theta})$. We derive a minimax lower bound on $\mathbb{E}_{\theta^*} \mathcal{E}(\hat{\theta})$.

J.2 INTERACTIVE PACKING CONSTRUCTION

Following Chen et al. (2024), choose $K = |\mathcal{A}|$ distinct *reward shifts* $\Delta = \pm \epsilon$ applied to a single state-action pair (\bar{s}, \bar{a}) , yielding parameters

$$r^{(k)}(s, a) = r_0(s, a) + \epsilon \mathbb{1}\{a = \bar{a}, s = \bar{s}, k = 1\} - \epsilon \mathbb{1}\{a = \bar{a}, s = \bar{s}, k = 2\},$$

and cyclically permute actions for $k > 2$. The KL divergence between any two $\theta^{(k)}$ and $\theta^{(\ell)}$ under an *interactive* policy π satisfies

$$\text{KL}(P_{\theta^{(k)}}^{\pi} \parallel P_{\theta^{(\ell)}}^{\pi}) \leq 4\epsilon^2 t_{\text{mix}} N, \quad (20)$$

by the regenerative-chain argument of (Bertail & Ciołek, 2018) and the uniform mixing assumption.

J.3 INTERACTIVE FANO INEQUALITY

The interactive Fano lemma Chen et al. (2024) gives, for any estimator $\hat{\theta}$,

$$\inf_{\hat{\theta}} \sup_k \mathbb{P}[\hat{\theta} \neq \theta^{(k)}] \geq 1 - \frac{4\epsilon^2 t_{\text{mix}} N + \log 2}{\log K}. \quad (21)$$

Choosing $\epsilon = \sqrt{\frac{\log K}{8t_{\text{mix}}N}}$ makes the RHS at least $\frac{1}{4}$ when $N \leq \frac{\log K}{16t_{\text{mix}}\epsilon^2}$.

1296 J.4 EXCESS-RETURN GAP VIA ASSOUD LINK
12971298 For the binary shift construction the return gap satisfies
1299

1300
$$\mathcal{E}(\hat{\theta}) \geq \epsilon \mathbb{P}[\hat{\theta} \neq \theta^{(k)}],$$

1301 since the optimal policy for $\theta^{(k)}$ always takes action \bar{a} in state \bar{s} while any other action loses ϵ in
1302 expected reward (Komanduru & Honorio, 2021). Combining with (21) yields
1303

1304
$$\inf_{\hat{\theta}} \sup_k \mathbb{E}[J(\theta^*) - J(\hat{\theta})] \geq \epsilon \frac{1}{4} = \frac{1}{4} \sqrt{\frac{\log K}{8t_{\text{mix}} N}} = \Omega\left(\sqrt{\frac{t_{\text{mix}}}{N}}\right), \quad (22)$$

1305

1306 once $K \geq e^2$.
13071308 J.5 LOWER BOUND THEOREM
13091310 **Theorem 9 (Minimax Optimality).** For any RL algorithm that observes N steps from an ergodic
1311 MDP in $\mathfrak{M}(t_{\text{mix}})$,
1312

1313
$$\inf_{\hat{\theta}} \sup_{\mathcal{M} \in \mathfrak{M}(t_{\text{mix}})} \mathbb{E}[J(\theta^*) - J(\hat{\theta})] \geq c \sqrt{\frac{t_{\text{mix}}}{N}},$$

1314

1315 for a universal $c > 0$.
13161317 *Proof.* Apply the parameter ensemble above with $K = |\mathcal{A}| \geq e^2$ and ϵ chosen as $\sqrt{\frac{\log K}{8t_{\text{mix}} N}}$, then
1318 invoke (22). \square
13191320 J.6 COMPARISON WITH KNOWN BOUNDS
13211322 Our $\Omega(\sqrt{t_{\text{mix}}/N})$ rate matches the lower bounds for uniformly ergodic average-reward MDPs
1323 shown by (Wang et al., 2023) and tightens earlier $\Omega(t_{\text{mix}}/N)$ gaps in (Jin & Sidford, 2021). It
1324 also agrees with martingale-coupling regret bounds (Lattimore et al., 2020) and with the mixing-
1325 sensitive TD lower bounds of (Li et al., 2023). Hence the GRPO upper-bound in Theorem 2 is
1326 *minimax-optimal up to log factors*.
13271328 K MIXING-COEFFICIENT HIERARCHY
13291330 For a stationary sequence $(X_t)_{t \in \mathbb{Z}}$ define
1331

1332
$$\alpha(k) = \sup_t \sup_{A \in \sigma(X_{-\infty}^t)} \sup_{B \in \sigma(X_{t+k}^\infty)} |\mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B)|,$$

1333

1334
$$\beta(k) = \sup_t \mathbb{E} \left[\sup_{B \in \sigma(X_{t+k}^\infty)} |\mathbb{P}(B | \sigma(X_{-\infty}^t)) - \mathbb{P}(B)| \right],$$

1335

1336
$$\phi(k) = \sup_t \sup_{\|f\|_\infty \leq 1} \|\mathbb{E}[f(X_{t+k}) | \sigma(X_{-\infty}^t)] - \mathbb{E}f(X_{t+k})\|_\infty,$$

1337

1338
$$\psi(k) = \sup_t \sup_{f \in \text{Lip}_1} \|\text{Cov}(f(X_t), f(X_{t+k}))\|.$$

1339

1340 By classical arguments (Boucheron et al., 2013, Prop. 2.3),
1341

1342
$$0 \leq \psi(k) \leq \phi(k) \leq 2\beta(k) \leq 2\alpha(k) \quad \forall k \geq 0.$$

1343

1344 Hence choosing the *block length*
1345

1346
$$\ell^* := \min\{k : \max(\alpha(k), \beta(k)) \leq \frac{1}{4}\}$$

1347

1348 is always admissible and strictly sharper than working with the classical TV mixing time t_{mix} .
1349

1350 L EXPONENTIAL EFRON-STEIN FOR REGENERATIVE BLOCKS
13511352 Let $\tau_{g,1:G}$ be regenerative blocks of length G . Write
1353

1354
1355
$$Z_g = f(\tau_{g,1:G}) - \mathbb{E}[f(\tau_{g,1:G})], \quad S_M = \sum_{g=1}^M Z_g.$$

1356

1357
1358 **Theorem 10** (Block Efron-Stein; (Boucheron et al., 2013, Thm 3.15)).] If replacing one block
1359 changes f by at most Δ and $\text{Var}(Z_g) \leq \sigma^2$, then for all $t > 0$
1360

1361
1362
$$\mathbb{P}[|S_M| \geq t] \leq 2 \exp\left(-\frac{t^2}{2M\sigma^2 + \frac{2}{3}\Delta t}\right). \quad (23)$$

1363

1364
1365 *Proof.* Couple $(\tau_{g,1:G})$ with i.i.d. ghost blocks $(\tau'_{g,1:G})$; denote $S_M^{(g)}$ the statistic after swapping
1366 block g . Compute
1367

1368
1369
$$\begin{aligned} \sum_{g=1}^M \mathbb{E}[(S_M - S_M^{(g)})_+^2] &\leq \sum_{g=1}^M \mathbb{E}[(Z_g - Z'_g)_+^2] \\ &\leq \sum_{g=1}^M \mathbb{E}[(Z_g - Z'_g)^2] \leq 2M\sigma^2. \end{aligned} \quad (\text{by independence})$$

1370
1371
1372
1373
1374

1375
1376 and note $|S_M - S_M^{(g)}| \leq \Delta$ deterministically. Apply the exponential Efron-Stein inequality with
1377 these parameters to get (23). \square
13781379 M SELF-NORMALIZED MARTINGALE INEQUALITY (FAN-GRAMA-LIU)
13801381
1382 **Theorem 11** ((Fan et al., 2019, Thm 2.1)).] For a martingale difference sequence (X_t, \mathcal{F}_t) with
1383 quadratic variation $V_n = \sum_{t \leq n} \mathbb{E}[X_t^2 | \mathcal{F}_{t-1}]$ and any $\lambda \in (0, 1/(3M))$
1384

1385
1386
$$\mathbb{P}\left[\sum_{t \leq n} X_t \geq \frac{\lambda}{1-3\lambda} V_n + \frac{\log(1/\delta)}{\lambda}\right] \leq \delta. \quad (24)$$

1387

1388 Combined with $V_n \leq t_{\text{mix}} \sigma_R^2 (1 - 1/G)/N$ (regenerative variance proxy), Eq. (24) is what drives the
1389 variance-adaptive PAC-Bayes bound in Appendix A.
13901391 N GENERIC-CHAINING & DUDLEY INTEGRAL
13921393 Let (\mathcal{F}, d) be a semi-metric space and X_f a sub-Gaussian process with metric d . Talagrand's
1394 majorizing-measures theorem gives
1395

1396
1397
$$\mathbb{E} \sup_{f \in \mathcal{F}} X_f = \Theta(\gamma_2(\mathcal{F}, d)), \quad \text{where } \gamma_2(\mathcal{F}, d) := \inf_{\{\mathcal{A}_k\}} \sup_{f \in \mathcal{F}} \sum_{k \geq 0} 2^{k/2} \text{diam}(\mathcal{A}_k(f), d). \quad (25)$$

1398

1399
1400 A practical upper bound is Dudley's entropy integral
1401

1402
1403
$$\gamma_2(\mathcal{F}, d) \leq C \int_0^{\text{diam}(\mathcal{F}, d)} \sqrt{\log N(\mathcal{F}, d, \varepsilon)} \, d\varepsilon. \quad (26)$$

1404 O BLOCK RADEMACHER COMPLEXITY FOR β -MIXING CHAINS

1406 **Theorem 12** ((Bertail & Portier, 2019, Thm 3.1)).] For regenerative blocks of length G drawn from
 1407 a β -mixing chain,

$$1409 \quad \widehat{\mathcal{R}}_M(\mathcal{F}) \leq \gamma_2(\mathcal{F}, d_{\text{block}}) + 4\sigma_R \sqrt{\frac{\log(2/\delta)}{2N}} \quad \text{w.p. } 1 - \delta. \quad (27)$$

1412 Combining (26) & (27) yields the capacity term used in Appendix C's Transformer corollary.

1414 P VARIANCE-ADAPTIVE PAC-BAYES LOCALIZATION LEMMA

1416 **Lemma 6** ((Alquier et al., 2024, §3)).] For any prior Π , posterior Q , and variance proxy $\widehat{V}(\theta)$,

$$1419 \quad \mathbb{E}_Q[\widehat{V}] \leq \eta^{-1}(\text{KL}(Q\|\Pi) + \log \frac{1}{\delta}) \implies \mathbb{P}\left(\sup_{\theta} |\widehat{R}(\theta) - R(\theta)| \leq \eta\right) \geq 1 - \delta. \quad (28)$$

1421 Setting η to the RHS of the self-normalized Bernstein deviation (App. B) directly recovers the
 1422 localized block PAC-Bayes–Bernstein bound from Appendix A.

1424 Q REGENERATIVE BERNSTEIN INEQUALITY (HOEFFDING-TYPE VARIANT)

1426 For completeness we recall a sharp Bernstein/Hoeffding bound for sums of regenerative functionals
 1427 (Cioczek-Georges & Stummer, 2019) :

$$1430 \quad \mathbb{P}\left[\left|\frac{1}{N} \sum_{t=1}^N h(X_t) - \mathbb{E}h(X)\right| \geq t\right] \leq 2 \exp\left(-\frac{Nt^2}{2t_{\text{mix}}\sigma_h^2 + \frac{2}{3}\|h\|_{\infty}t}\right). \quad (29)$$

1433 This inequality underpins the deviation step in the proof of Lemma 5 (Appendix D).

1435 R EXPERIMENTAL DETAILS

1437 We develop our code base mainly based on open-r1¹. The learning rate is set to 10^{-6} and the warmup
 1438 ratio is set to 0.1 for all experiments. All experiments are done on NVIDIA A100-SXM4-80GB
 1439 GPUs and Intel(R) Xeon(R) Platinum 8275CL CPU @ 3.00GHz CPUs with 96 logical processors.
 1440 Unless otherwise specified, we use the mean-centered Dr-GRPO implementation from Open-R1: for
 1441 each prompt we draw G completions, compute trajectory-level returns $R_{g,i}$, form group-centred ad-
 1442 vantages $A_{g,i} = R_{g,i} - \bar{R}_g$, and apply this scalar advantage uniformly across all tokens of trajectory
 1443 i . The main Qwen2.5-1.5B runs use $G \in \{2, 4, 8, 16, 32\}$, maximum context length $t_{\text{max}} = 2048$,
 1444 AdamW with $(\beta_1, \beta_2) = (0.9, 0.999)$ and weight decay $\lambda = 0.01$, and clipping threshold $\varepsilon = 0.2$
 1445 with KL weight $\lambda_{\text{KL}} = 0.01$; the 7B/8B and multimodal experiments reuse the same hyperparame-
 1446 ters unless stated otherwise.

1447 To assess the clipping bias and the regime of Eq. (10), we instrumented the OpenR1-Math-220k
 1448 Qwen2.5-1.5B runs with $G = 16$ and recorded (i) the fraction of tokens per batch for which $|r_t(\theta) -$
 1449 $1| > \varepsilon$ and (ii) the ratio $\|\mathbb{E}[\nabla \widehat{J}_{\text{GRPO}}] - \nabla J_{\text{sur}}\|_2 / \|\nabla J_{\text{sur}}\|_2$. After the warmup phase, fewer than
 1450 1.3% of tokens are clipped on average and the gradient-mismatch ratio stays below 4%, indicating
 1451 that the clipping-induced bias is quantitatively small in the operating regime of our experiments.

1453 S LLM USAGE

1455 The use of LLMs is a general-purpose assist tool to aid or polish writing. We utilized GPT-5 to
 1456 refine certain aspects of the writing in the Introduction and Related Works sections.

1457 ¹<https://github.com/huggingface/open-r1>

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479

1480 Table 6: Clipping diagnostics and ε -ablation on OpenR1-Math-220k with Qwen2.5-1.5B and
 1481 $G = 16$ (averaged over 3 seeds). “FracClip” is the fraction of tokens with $|r_t(\theta) - 1| > \varepsilon$; “Grad-
 1482 Mismatch” is the ratio $\|\mathbb{E}[\nabla \hat{J}_{\text{GRPO}}] - \nabla J_{\text{sur}}\|_2 / \|\nabla J_{\text{sur}}\|_2$; Pass@1 is measured on the validation
 1483 split.

1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

ε	FracClip (%)	GradMismatch (%)	Pass@1 (%)
0.05	5.0	9.0	57.3
0.10	2.8	5.1	57.5
0.20	1.3	3.8	57.4
0.40	0.6	3.2	57.2