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Abstract
Vision Transformers (ViT) are remarkable at 3D
pose estimation, yet they still encounter certain
challenges. One issue is that the popular ViT ar-
chitecture for pose estimation is limited to images
and lacks temporal information. Another chal-
lenge is that the prediction often fails to main-
tain pixel alignment with the original images.
To address these issues, we propose a system-
atic framework for 3D pose estimation, called

EXTPOSE. EXTPOSE extends image ViT
to the challenging scenario and video setting by
taking in additional 2D pose evidence and captur-
ing temporal information in a full attention-based
manner. We use 2D human skeleton images to
integrate structured 2D pose information. By shar-
ing parameters and attending across modalities
and frames, we enhance the consistency between
3D poses and 2D videos without introducing ad-
ditional parameters. We achieve state-of-the-art
(SOTA) performance on multiple human and hand
pose estimation benchmarks with substantial im-
provements to 34.0mm (-23%) on 3DPW and
4.9mm (-18%) on FreiHAND in PA-MPJPE over
the other ViT-based methods respectively.

“You can enjoy a grander sight,
By climbing to a greater height.”

Tang Poems

1. Introduction
Human and hand pose estimation is a foundation for higher-
level applications in robotics, action recognition, animation,
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Figure 1: EXTPOSE extends and aids SOTA ViT-based
works in generalization with auxiliary 2D detection (1st
column). Our method (3rd column) excels in robust and
pixel-aligned mesh reconstruction even in extremely compli-
cated parkour while ViT-based works (2nd column) predict
a completely flipped hand and body.

human-object interaction, AI generation, etc. With the ex-
tensive use of vision transformers (ViT) (Dosovitskiy et al.,
2021), there has been a growing trend towards leveraging
ViT architectures for 2D HPE1 (Xu et al., 2022) and 3D
HPE (Goel et al., 2023; Pavlakos et al., 2024). These meth-
ods boast remarkable results after training on large-scale
datasets, but still face some challenges with robust general-
ization and temporal coherence. Specifically, they struggle
to align with 2D image evidence; orthogonally, when en-
countering data in more common video formats, they cannot
incorporate temporal information, instead merely guessing
jittering poses frame by frame under depth and occlusion
ambiguity.

First, predictions are often inconsistent with input im-
ages, especially under challenging settings such as occlu-
sions (Chen et al., 2023), motion blur (Oh et al., 2023; Chen
et al., 2025b), poor lighting, and other imaging degrada-
tions (Dwivedi et al., 2024a). For instance, in the middle
column of Fig. 1, the body estimate is oriented wrongly in
the camera. In the case of hand pose estimation, the issue
becomes more severe, as the hand tends to occupy only a

1For simplicity, HPE and PE in this work are used interchange-
ably and denote Human and Hand Pose Estimation unless other-
wise specified.
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small region in the capture and is flexible to move in space.
Additionally, the palm and back of the hand have similar
textures, leading to incorrect wrist rotations that globally
flip the hand (Fig. 1). The challenging alignment issue of
3D pose estimation is not resolved by simply upgrading to
the ViT architecture but also related to the task itself. Our
method improvement is inspired by the observation that 2D
HPE models show better 2D alignment than those trained
on 3D HPE tasks with the same architecture.

Second, the majority of ViT-based works focus on single-
frame inference. With video inputs, however, temporal
information is highly beneficial for handling complex occlu-
sions and improving prediction stability. Adding the tem-
poral dimension into ViT architectures incurs substantial
computational overhead and demands 3D labeled video for
training, thus impeding the development of video ViT-based
methods in this domain. As a result, existing video-based
methods (Shen et al., 2023; Shin et al., 2024) rely on static
frame features and additional temporal modules, thereby
not fully maximizing the spatiotemporal feature interactions
at each layer. Our approach is to extend the well-developed
image-based ViT to the video version along with advance-
ments in large model training (OpenAI, 2024; Rasley et al.,
2020).

This work enhances the image alignment and temporal co-
herence of the ViT-based HPE features through modular
attention extension and a unified framework. We draw in-
spiration from the use of 2D skeletons as control signals
in conditional human image and video generation (Zhang
et al., 2023a; Hu et al., 2024). Moreover, the use specif-
ically of 2D skeleton images, which precisely depict the
human kinematic chain. Furthermore, the 2D skeleton im-
ages exhibit strong pixel-wise spatial consistency with the
original image. This enables joint processing with the input
image with a shared backbone and can facilitate the use
of pre-trained models. Extending this idea to the temporal
dimension, each frame of a video can also be processed by a
shared ViT backbone in parallel, with temporal relationships
captured by frame interactions at each layer.

To that end, we propose EXTPOSE, short for Extending
Poses, which extends a pre-trained ViT backbone with an
extended attention mechanism. EXTPOSE elegantly lever-
ages the power of ViT attention to model arbitrary and
long-range relationships and flexible pairwise computations,
inherently suitable for video tasks. It also allows for exten-
sions to attend across different image and 2D pose modal-
ities. Specifically, the attention mechanism is applied in a
unified and hierarchical manner, depending on the availabil-
ity of input information, and integrates auxiliary 2D pose
evidence and video context to promote features for HPE.
Finally, the framework does not introduce extra parameters
or modules, as existing works do (Shin et al., 2024), and

reuses pre-trained weights as much as possible.

Our unified EXTPOSE achieves remarkable improvement
over previous ViT-based methods. For instance, with the aid
of 2D hand pose estimates, the model has a better sense of
hand global orientation (Fig. 1). Using video frames as input
with temporal information alleviates prediction flickers and
consistently gains in PA-MPJPE. With the thought of unify-
ing representation and reusing pre-trained knowledge, the
model is enhanced at a rapid convergence. Additionally, we
evaluate thoroughly the effectiveness of key design compo-
nents, including 2D pose representations, fusion strategies,
and learning capabilities. The framework is effective on the
human body and hands for both image- and video-based set-
tings. It binds these relevant settings with the foundational
ViT-based methods; thus, they can benefit from advances
made in ViT-based methods.

We summarize our contributions as follows:

• we propose the innovative and systematic EXTPOSE
framework to extend and enhance attention and ViT-
based HPE backbones. The effectiveness is demon-
strated by addressing two concrete issues in image
alignment and temporal coherence in this work.

• for effective fusion and utilization of the auxiliary 2D
pose, its representation is unified and interacts with
the image via the proposed dual-stream cross-modal
attention of a shared ViT.

• a new method is introduced for video-based HPE,
where temporal context is seamlessly integrated
through an extension of 2D image attention to 3D video
attention, obviating the need for additional temporal
modules.

• EXTPOSE effectively remedies the current SOTA ViT-
base method and promisingly shows consistent state-of-
the-art results on several hand and human benchmarks
including both monocular image and video settings.

2. Related Work
2.1. Monocular Human & Hand Pose Estimation

Image-based HPE. 3D pose and shape estimation methods
commonly use parametric 3D mesh models such as SMPL
(Loper et al., 2015). SMPL-based HPE methods (Kanazawa
et al., 2018; Kolotouros et al., 2019; Lin et al., 2021; Li
et al., 2022; Wang et al., 2023) use a CNN backbone (e.g.,
ResNet, HRNet) to extract image features and then regress
pose and shape coefficients. More recent human (Goel
et al., 2023; Dwivedi et al., 2024b; Zhuo et al., 2023) and
hand (Pavlakos et al., 2024; Potamias et al., 2025) pose
estimation methods have adopted a ViT architecture (Doso-
vitskiy et al., 2021). MultiHPE (Baradel et al., 2024) and
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AiOS (Sun et al., 2024) build on ViT for multi-task learn-
ing in a bottom-up paradigm, including human detection
and pose estimation. Given ViT’s potential for simplicity,
scalability, and superior performance in HPE, it provides a
strong foundation for our work.

Video-based HPE extracts static features with CNN-
based models (Kolotouros et al., 2019) and then use
CNNs (Kanazawa et al., 2019), RNNs (Kocabas et al., 2020;
Choi et al., 2021; Tekin et al., 2019), or transformersWan
et al. (2021); Shen et al. (2023); Fu et al. (2023) to model
temporal relationships. For example, TCMR (Choi et al.,
2021) segments sequences into past, future, and whole seg-
ments to ensure motion consistency. Wei et al. (2022) incor-
porate non-local attention and hierarchical feature fusion,
while Wan et al. (2021); Shen et al. (2023); Fu et al. (2023)
move to standard transformers (Vaswani et al., 2017). De-
spite temporal integration, recent works find video-based
methods often “surprisingly” underperform image-based
methods due to an over-smoothing problem (Shin et al.,
2024; Shen et al., 2023). Recently, Shin et al. (2024) inte-
grates motion cues like 2D ViTPose (Xu et al., 2022) and
SLAM camera data to improve video-based HPE. In con-
trast, our work enhances image-based ViT HPE with 3D
attention. It better interacts and fuses spatial-temporal in-
formation in a unified space and scalable manner (OpenAI,
2023; 2024), thereby eliminating the need for separate tem-
poral modules and prerequisites, and achieving improved
temporal coherence.

2.2. HPE with Auxillary 2D Information

Different from fitting and adaptation with additional 2D
(Kolotouros et al., 2019; Lin et al., 2025), efforts to im-
prove pixel alignment in HPE regression during generaliza-
tion have focused on incorporating 2D inference alongside
the image. Boukhayma et al. (2019) concatenate a hand
keypoint heatmap with the RGB image along the chan-
nel. More recently, Shin et al. (2024) follow the lifting
paradigm (App. B) to integrate motion context from 2D
joint coordinates via an MLP. Another approach learns spa-
tially aligned intermediate representations. For example,
Iqbal et al. (2018) use a 2.5D representation, combining 2D
heatmaps and depth maps to predict 3D coordinates. Zhang
et al. (2021); Kocabas et al. (2021); Potamias et al. (2025)
employ multi-task learning, supervising 2D auxiliary tasks
(e.g., segmentation) to guide intermediate representations.
These aligned representations often serve as spatial attention
weights (Kocabas et al., 2021) or location features (Zhang
et al., 2021; Potamias et al., 2025) during aggregation. As
intermediate constraints tighten, they are incorporated into a
cascading two-stage paradigm (2D task followed by lifting)
(Sengupta et al., 2021), where various 2D representations act
as proxies (Pavlakos et al., 2018). This work incorporates
auxiliary 2D information as model input, thoroughly inte-

grating it with the image through structured representation
and extended attention.

3. Preliminaries
3.1. Hand & Human Parametric Models

The parametric human body model SMPL (Loper et al.,
2015) and hand model MANO (Romero et al., 2017) is
parameterized by the pose θ ∈ R|θ|×3 (|θ| = 72, 48 for
human and hand respectively) and shape β ∈ R10. It uses
Linear Blend Skinning function M to estimate the 3D mesh
with vertices V ∈ R|V |×3:

V, J = M(θ, β). (1)

The pose θ consists of the global rotation of the root joint
and the |J | − 1 local rotations of other joints relative to
their parents along the kinematic tree. The 3D joints J3D

are based on a linear combination of the vertices V ; with
camera projection parameters c ∈ R3, the 3D joints can be
projected onto the 2D plane with projection Π:

J2D = Π(J3D, c). (2)

3.2. Self-Attention & Vision Transformer

Image feature extractors have evolved from ResNet (He
et al., 2016), HRNet (Sun et al., 2019) to ViT (Dosovit-
skiy et al., 2021). The ViT is scalable and stacks several
of the same blocks to process information. It treats im-
ages as a series of M non-overlapping d × d patch units
Xi ∈ Rd×d×3, i = 1, 2, . . . ,M,M = H

d × W
d (d = 16 as

default). The patches are first linearly projected into em-
beddings by Fi = PatchEmb(Xi) ∈ RD, where D is the
embedding dimension. To encode the patch’s position in the
original image, H

d × W
d learnable positional embeddings

PosEmb(i) ∈ RD, with equal dimensions, are then added
to the tokens Fi, i.e., Fi = Fi + PosEmb(i). In each sub-
sequent block of the encoder, each token fully exchanges
information with others with a core Self-Attention (SA)
mechanism2:

Fi = Fi + Attn(Fi, {Fi}M ). (3)

Formally, token Fi computes attention weights Ai with
all tokens including itself by first obtaining the query, key,
and value with respective projections Qi = WQFi,Ki =
WKFi, Vi = WV Fi ∈ RD. The weight Ai ∈ RM is
calculated by a normalized scaled dot-product operation
based on pairwise similarity:

Ai = Softmax
(
[K1,K2, . . . ,KM ]TQi√

D

)
. (4)

2The index i in {Fi}Mi=1 is omitted for simplicity.
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Figure 2: The overview of EXTPOSE, an extension of SOTA self-attention and ViT-based backbone. The skeleton image
is used to represent 2D poses estimated by off-the-shelf ViTPose (Sec. 4.3). All ViT blocks are trainable and parameters
are shared across the sequence of the image and 2D pose modality (Sec. 4.6). The image and 2D pose interact thoroughly
with each other through cross-modal attention (Sec. 4.4). Besides, cross-frame attention facilitates different frames to
communicate and propagate video temporal context (Sec. 4.5). The enhanced feature is decoded into the mesh supervised
by the HPE losses in Eqs. (12) to (15).

The feature residual for token i is then derived from aggre-
gating values {Vi}M of all tokens with the attention weight
Ai, i.e., Ai ⊙ [V1, V2, . . . , VM ].

The above computation shows a core advantage of attention.
Each token can collect information from tokens in any other
position across the image; this facilitates capturing relation-
ships between keypoints which are otherwise far away, e.g.
between two wrists. Additionally, a FeedForward Net (FFN)
usually follows to transform feature space at the end of the
block. After stacked blocks, the feature of all patch tokens
{Fi}M is extracted and could be applied to downstream
tasks.

4. EXTPOSE

4.1. Problem Formulation

Consider a sequence of T images of size H ×W {It}T ∈
RT×H×W×3. Additionally, consider a sequence of corre-
sponding 2D poses {P t}T , and it becomes an image-based
task when T = 1. The dimension of 2D poses P t which is
annotated by an off-the-shelf 2D keypoint detector or hu-
man, varies from representations discussed in Sec. 4.3. We
aim to learn an HPE model that predicts the pose parameters
{θ̂t}T ∈ RT×|θ̂| for each frame and a video-shared shape
parameter β̂ ∈ R10. The 3D mesh {V̂ t}T ∈ RT×|V̂ |×3 and
joint coordinate {Ĵ t}T ∈ RT×|Ĵ|×3 could be obtained by
Eq. (1). Camera projection parameters {ct}T ∈ RT×3 are
also predicted to re-project the 3D mesh back onto the 2D
plane (Eq. (2)), expected to align with human and hand in
the image.

4.2. Framework Overview

EXTPOSE refines ViT-based HPE by improving image align-
ment and temporal coherence through a streamlined yet
effective design. It first represents images, 2D poses, and
video as unified visual token sequences {{F t

i }M}T within
ViT (Sec. 4.3). This allows ViT to extract 2D pose features
that encapsulate both spatial location and skeleton struc-
ture. To enhance localization, we introduce a cross-modal
extension of self-attention, enabling thorough image-2D
integration within a dual-stream design (Sec. 4.4). Orthogo-
nally, Sec. 4.5 extends ViT’s temporal scope by arranging
tokens to attend across frames. Leveraging a pre-trained
3D ViT pose estimator, EXTPOSE ensures efficient learning
with rapid convergence (Sec. 4.6).

4.3. Unified 2D Pose Feature Extraction

Various representations exist for 2D poses beyond tradi-
tional joint coordinates used in the HPE work (Zhang et al.,
2022), including heatmaps (Sun et al., 2019) and rendered
skeleton images (Zhang et al., 2023a) (Fig. 2). Heatmap
representations H ∈ RH×W×|J| place Gaussians at joint
locations spatially but are inconsistent in channels within
diverse datasets and lack explicit structural relationships.
While the skeleton images Ip ∈ RH×W×3 depict stick-
figure poses on a blank background, naturally aligning with
human perception like RGB images. Joints are rendered as
distinctively colored circles, connected by gradient-colored
bones reflecting kinematic structure, with confidence (Gu
et al., 2024) levels encoded via alpha blending. Confidence
helps threshold unreliable 2D pose detection.
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To integrate 2D poses into ViT’s visual domain, inspired
by (Zhang et al., 2023b), we employ skeleton images as an
alternative 2D pose representation. These images undergo
the same patch embedding, positional encoding, and SA
encoder processing as described in Sec. 3.2.

Training with skeleton images achieves rapid convergence
and strong results without modifying architecture or train-
ing settings (Sec. 5.4). This underscores ViT’s generaliz-
ability and scalability while demonstrating that 2D pose
features extracted this way align well with image features.
By employing a unified token-based framework, EXTPOSE
maintains flexibility for future HPE model advancements.

4.4. Dual-stream Image-2D Pose Fusion

Figure 2 illustrates the dual-stream EXTPOSE-dual architec-
ture, where a shared ViT backbone processes parallel fea-
ture streams: image features {F I

i }M and 2D pose features
{F p

i }M . Both Image and 2D pose modality attend to both
intra- and cross-modal features, ensuring comprehensive
fusion. For an image feature F I

i , the attention weights for
self and cross-modal information collection are computed
as:

AI
i = Softmax

(
[SI-I

i ;SI-p
i ]√

D

)
, (5)

where SI-I
i = KIQI

i , SI-p
i = KpQI

i ∈ RM . (6)

K,Q, V are computed following Sec. 3.2.

Similarly, the 2D pose feature also attends to both image
and pose streams:

Ap
i = Softmax

(
[KI ;Kp]Qp

i√
D

)
. (7)

The final features enhanced by the other new branch infor-
mation are:

∆F I
i = AI

i ⊙ V Ip, ∆F p
i = Ap

i ⊙ V Ip, (8)

where V Ip = [V I ;V p]. The whole operation is denoted as:

[F I
i , F

p
i ] = [F I

i , F
p
i ] + Attn([F I

i , F
p
i ], {F

I
i , F

p
i }M ), (9)

and can be implemented by concatenating the two streams
before self-attention.

Note that the bimodal SA in a shared space benefits from our
unified image-2D pose feature representation. Dot product-
based attention assembles information anywhere in space
without requiring perfectly aligned 2D poses. It maximizes
the interaction between image and 2D pose features, allow-
ing the network to refine features of both modalities dynam-
ically and adaptively. As EXTPOSE-lift justifies easy model
adaptation to 2D pose, learning more robust predictions is
expected to converge fast.

4.5. Attention from Images to Videos

Without requiring additional temporal modules, we extend
EXTPOSE with its inherent attention mechanism to han-
dle the temporal dimension. Unlike current video-based
HPE methods, which use static frame features from image-
based backbones (Kolotouros et al., 2019) and learn mo-
tion on top, we directly leverage unified ViT’s patchi-
fied tokens, enabling access to richer information, i.e.,
F t
i , i = 1, 2, . . . ,M, t = 1, 2, . . . , T , where T denotes the

number of frames. Furthermore, while CNNs and RNNs
struggle to capture long-term spatiotemporal dependencies,
self-attention (SA) excels by allowing computation across
frames, not just within them. This enables batch processing
of frames, allowing information to propagate across distant
frames, thereby enhancing temporal coherence and reducing
monocular ambiguity in features and predictions.

Specifically, beyond inter-frame attention (Eq. (3)) between
F t1
i and {F t1

i }M , a token F t1
i containing a joint could at-

tend to the same spatial location F t2
i in a different frame

t2 and new location j at the different time F t2
j , j ̸= i to

capture motion. Note that the same location at t2 may cover
the background.

The 3D spatiotemporal attention on inflated features
{{F t

i }M}T is formulated as:

F t
i = F t

i + Attn(F t
i , {{F t

i }M}T ). (10)

Above, F t
i without superscript “I” and “p” implies the

3D attention is only performed within respective modal-
ity streams, i.e., orthogonal to the cross-modal attention in
Sec. 4.4, as it aims to focus on the time dimension, which
can be implemented by simply collapsing the modality axis
into the batch axis or versatile attention mask (Vaswani
et al., 2017). At each attention block, for two stream fea-
ture {{F t

i
I}M}T , {{F t

i
p}M}T ∈ RT×M×D concatenated

along the modality axis, the attention mask matrix has the
following structure:

M =

[
0T×M −∞T×M

−∞T×M 0T×M

]
, (11)

where M ∈ R2TM×2TM is added into correlation within
the Softmax operation Eq. (4) so that −∞ masks out inactive
interaction across modalities after the Softmax operation.

This zero-shot “free lunch” for enhancing temporal coher-
ence even comes with directly performing 3D attention on
a pre-trained image-based model. Fusion in the face of
disagreement benefits from further training to advance per-
formance, with additional temporal positional embeddings
that encode frame location and motion ordering.
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4.6. Training Losses & Implementation Details

We follow Kolotouros et al. (2019); Goel et al. (2023) and
train on both 3D and 2D data jointly. The total loss L is a
weighted sum of the losses in Eqs. (12) to (15). These in-
clude a 3D joint loss Ljoint, parameter loss Lparam when
SMPL parameters are available, a 2D reprojection loss
Lreproj, and an adversarial loss with a discriminator net D to
impose pose and shape feasibility (Kanazawa et al., 2018):

Ljoint = ∥Ĵ3D − J3D∥1, (12)

Lparam = ∥θ̂ − θ∥22 + ∥β̂ − β∥22, (13)

Lreproj = ∥Ĵ2D − J2D∥1, (14)

Ladv = ∥D(θ, β)− 1∥22. (15)

During the training of all backbone parameters, besides
standard affine and color data augmentation (Goel et al.,
2023), each modality is masked out as a whole with a prob-
ability of 50% to cultivate EXTPOSE’s ability to extract
features in each input modality individually. We use the
PyTorch implementation of scaled dot product attention
with the mask and accelerated flash attention to speed com-
putation and save GPU memory. An AdamW optimizer
(Loshchilov & Hutter, 2019) is deployed with a learning
rate 1e-5, β1 = 0.9, β2 = 0.999, and a weight decay of 1e-
3. Training lasts for 50K iterations with a batch size of 32
on 8 A100 GPUs. For other details of datasets and settings,
please refer to the human and hand experiment Secs. 5.2
and 5.3.

5. Experiments
5.1. Evaluation Metrics

For 3D accuracy evaluation, the reconstruction performance
is usually measured in terms of Mean Per Joint and Vertex
Error (MPJPE, MPVPE, in mm) and the ones after Pro-
crustes Alignment (PA-MPJPE, PA-MPVPE). Addition-
ally, the F-score of correct poses with errors less than 5mm
and 15mm (F@5, F@15) is evaluated for hand benchmarks
(Hampali et al., 2020). For 2D pose alignment evaluation,
the commonly used Percentage of Correct Keypoint (PCK)
metric is computed at different error tolerance thresholds
including 0.05, 0.1, and 0.15.

5.2. Human Pose Estimation

Settings. Following standard practice (Shin et al., 2024;
Goel et al., 2023), EXTPOSE initialized from HMR2.0 is
trained on mixed 3D datasets including 3DPW (Von Mar-
card et al., 2018), Human3.6M (Ionescu et al., 2013), MPI-
INF-3DHP (Mehta et al., 2017), and COCO (Lin et al.,
2014).

Image benchmark. We first evaluate our method in image-

Table 1: Comparison with SOTA HPE methods on the
3DPW dataset. Our method is trained based on HMR2.0
(Goel et al., 2023). PJ is short for PA-MPJPE. † indicates
the upper bound of using GT 2D poses. The best and
second best scores are highlighted, respectively. The num-

bers in brackets are improvements w.r.t. SOTA. Note that
WHAM (Shin et al., 2024) also uses 2D poses, and ours
outperforms it by 1.9mm PA-MPJPE.

METHOD MPVPE↓ MPJPE↓ PJ↓

IM
A

G
E

SPIN (ICCV’19) 112.8 96.9 59.2
I2L-MESHNET (ECCV’20) - 100.0 60.0
HYBRIK (CVPR’21) 82.3 71.6 41.8
PYMAF (ICCV’21) 110.1 92.8 58.9
PARE (ICCV’21) 88.6 74.5 46.5
CLIFF (ECCV’22) 81.2 69.0 43.0
BEDLAM-CLIFF (CVPR’23) 85.0 72.0 46.6
REFIT(ICCV’23) 75.1 65.3 40.5
TOKENHMR (CVPR’24) 84.6 71.0 44.3
HMR2.0 (ICCV’23) 82.2 69.8 44.4

EXTPOSE (T = 1) 68.9 55.6 35.5
(-8.3%) (-14.9%) (-12.3%)

EXTPOSE† (T = 1) - 36.7 25.4

V
ID

E
O

VIBE (CVPR’20) 98.4 82.9 51.9
TCMR (CVPR’21) 101.4 86.5 52.7
MAED (ICCV’21) 92.6 79.1 45.7
MPS-NET (CVPR’22) 99.0 84.3 52.1
GLAMR (CVPR’22) - - 51.1
D&D (ECCV’22) - 73.7 42.7
SLAHMR (CVPR’23) - - 55.9
TRACE (CVPR’23) 95.4 79.1 50.9
GLOT (ICCV’23) 96.3 80.7 50.6
WHAM (CVPR’24) 68.7 57.8 35.9

EXTPOSE (T = 16) 67.5 54.2 34.0
(-1.7%) (-6.2%) (-5.3%)

based settings (T = 1). Given complicated light condition-
ing, occlusion, and truncation in 3DPW (Von Marcard et al.,
2018), state-of-the-art (SOTA) HPE methods (Goel et al.,
2023; Dwivedi et al., 2024b) struggle to predict accurate
meshes based on the image’s global context. In contrast, 2D
pose estimators still provide more valuable localized cues,
though SOTA is trained from ViTPose. Combining both
modalities improves PA-MPJPE from 44.4mm to 35.5mm,
as shown in Tab. 1. With GT 2D poses, EXTPOSE matches
the annotation errors of the dataset.

Video benchmark results for video-based HPE are also
presented in Tab. 1. Existing methods typically rely on
static image features, whereas our approach directly trains
on image-based ViT methods, without additional modules.
Contrary to prior trends where video-based methods (Shen
et al., 2023) underperform image-based methods in frame-
wise accuracy, our model achieves a 1.5mm improvement
in PA-MPJPE by utilizing available video temporal context.
EXTPOSE also outperforms WHAM by 5.3%, reflecting that
our extended cross-modality and -frame attention derives a
unified and superior framework.

5.3. Hand Pose Estimation

As our framework is widely applicable for both hand and
human tasks, experiments are also conducted on the standard
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Table 2: SOTA 3D accuracy results on the FreiHAND
dataset. HaMeR (Pavlakos et al., 2024) is the ViT baseline.
PJ and PV are short for PA-MPJPE and PA-MPVPE. The
best and second best scores are highlighted respectively.

The numbers in brackets are improvements w.r.t. SOTA.

METHOD PJ↓ PV↓ F@5↑ F@15↑
POSE2MESH (ECCV’20) 7.7 7.8 0.674 0.969
I2L-MESHNET (ECCV’20) 7.4 7.6 0.681 0.973
METRO (CVPR’21) 6.5 6.3 0.731 0.984
I2UV-HANDNET (ICCV’21) 6.7 6.9 0.707 0.977
HANDAR (ICCV’21) 6.7 6.7 0.724 0.981
MESHGRAPHORMER (ICCV’21) 5.9 6.0 0.764 0.986
MOBRECON (CVPR’22) 5.7 5.8 0.784 0.986
AMVUR (CVPR’23) 6.2 6.1 0.767 0.987
HAMER (CVPR’24) 6.0 5.7 0.785 0.990

EXTPOSE 4.9 5.1 0.823 0.993
(-14.0%) (-10.5%) (+4.8%) (+0.3%)

Motion
blur

HOI
& ego3D

ViTPose
Front Side Front Side

HaMeR Ours

Figure 3: Qualitative comparison. The reconstructions
are consistently enhanced, particularly on more challenging
scenarios, e.g., motion blur and (object and self-) occlusion.

hand benchmark to validate the method as follows.

Settings. For evaluation on hand video and image bench-
marks below, we follow and also train HaMeR (Pavlakos
et al., 2024) on multiple 3D datasets, FreiHAND (Zimmer-
mann et al., 2019), HO3D (Hampali et al., 2020), MTC
(Xiang et al., 2019), RHD (Zimmermann & Brox, 2017),
InterHand2.6M (Moon et al., 2020), H2O3D (Hampali et al.,
2020), DexYCB (Chao et al., 2021), and 2D datasets, COCO
WholeBody (Jin et al., 2020), Halpe (Fang et al., 2022) and
MPII NZSL (Simon et al., 2017).

Image benchmark. We evaluate our method with T = 1
on standard hand image datasets. FreiHAND (Zimmer-
mann et al., 2019) includes diverse postures and severe
self-occlusion. Despite the significant misalignment issues
typical in generalization, few studies have explored 2D evi-
dence for improving hand pose estimation (Figs. 1 and 3).
Our results on EXTPOSE in Tab. 2 demonstrate the bene-
fit of utilizing 2D grounding to enhance fair 3D accuracy
benchmarks.

Table 3: SOTA 3D metric results on the HO3D(v2)
dataset. HaMeR (Pavlakos et al., 2024) is the ViT base-
line. PJ and PV are short for PA-MPJPE and PA-MPVPE.
The best and second best scores are highlighted respec-
tively. The numbers in brackets are improvements w.r.t.
SOTA.

METHOD AUCJ↑ PJ↓ AUCV↑ PV↓ F@5↑ F@15↑

IM
A

G
E

POSE2MESH (ECCV’20) 0.754 12.5 0.749 12.7 0.441 0.909
I2L-MESHNET (ECCV’20) 0.775 11.2 0.722 13.9 0.409 0.932
METRO (CVPR’21) 0.792 10.4 0.779 11.1 0.484 0.946
LIU et al. (CVPR’21) 0.803 9.9 0.810 9.5 0.528 0.956
I2UV-HANDNET (ICCV’21) 0.804 9.9 0.799 10.1 0.500 0.943
ARTIBOOST (CVPR’22) 0.773 11.4 0.782 10.9 0.488 0.944
KEYPOINTTRANS (CVPR’22) 0.786 10.8 - - - -
MOBRECON (CVPR’22) - 9.2 - 9.4 0.538 0.957
HANDOCCNET (CVPR’22) 0.819 9.1 0.819 8.8 0.564 0.963
AMVUR (CVPR’23) 0.835 8.3 0.836 8.2 0.608 0.965
HAMER (CVPR’24) 0.846 7.7 0.841 7.9 0.635 0.980

EXTPOSE (T = 1) 0.858 7.0 0.850 7.5 0.660 0.985
(+1.4%) (-9.1%) (+1.1%) (-5.1%) (+3.9%) (+0.5%)

V
ID

E
O

VIBE∗ (CVPR’20) - 9.9 - 9.5 0.526 0.955
TCMR∗ (CVPR’21) - 11.4 - 10.9 0.463 0.933
TEMPCLR∗ (3DV’22) - 10.6 - 10.6 0.481 0.937
DEFORMER (ICCV’23) - 9.4 - 9.1 0.546 0.963

EXTPOSE (T = 16) 0.863 6.9 0.856 7.3 0.667 0.991
(-26.6%) (-19.8%) (+22.2%) (+2.9%)

Table 4: SOTA 2D PCK results at different thresholds
on the HInt dataset. HaMeR is the ViT baseline. †
indicates using the upper bound of GT 2D poses. The best
and second best scores are highlighted respectively. The
numbers in brackets are improvements w.r.t. SOTA.

@0.05↑ @0.1↑ @0.15↑ @0.05↑ @0.1↑ @0.15↑
METRO (CVPR’21) 14.7 38.8 57.3 16.8 45.4 65.7
FRANKMOCAP (ICCVW’21) 16.1 41.4 60.2 16.8 45.6 66.2
MESHGRAPHORMER (ICCV’21) 16.8 42.0 59.7 19.1 48.5 67.4
HANDOCCNET (CVPR’22) 13.7 39.1 59.3 12.4 38.7 61.8
HAMER (CVPR’24) 48.0 78.0 88.8 43.0 76.9 89.3

VITPOSE (NEURIPS’22) 66.5 86.5 93.1 70.8 90.6 96.2

EXTPOSE 59.6 84.8 92.7 61.1 88.5 95.6
(+24.2%) (+8.7%) (+4.4%) (+42.1%) (+15.1%) (+7.1%)

EXTPOSE† 84.6 97.9 99.4 83.3 98.2 99.6

Video benchmark. HO3D is a hand-object interaction
video dataset with occasional occlusions, where the space
of poses is narrower than FreiHAND (Zimmermann et al.,
2019). In addition to PA-MPJPE, HO3D benchmarks (Ham-
pali et al., 2020) evaluate the Area Under the Curve for
correct 3D joints and vertices (AUCJ, AUCV). As shown in
Tab. 3, our method improves PA-MPJPE by 9.1% through
better keypoint localization during object grasping, while
further gains are achieved by leveraging information from
other visual frames. Previous video-based HPE remains
much less accurate than image-based methods, aligning
with trends observed in human benchmarks.

2D pose accuracy. To assess real-world generalization,
Pavlakos et al. (2024) introduced the challenging HInt
dataset, capturing hands in complex daily activities from
both exocentric and egocentric perspectives. While state-of-
the-art HPE methods struggle, 2D pose estimation performs
reasonably well (Tab. 4 and Fig. 3). This supports the idea
that structured 2D pose localization can indeed improve
HPE generalization in challenging scenarios. The accuracy
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Table 5: Ablations of branches and 2D pose representa-
tions on the FreiHAND dataset. “Skel.” is short for the
skeleton.

IMG 2D POSE PA-MPJPE↓ PA-MPVPE↓ F@5↑ F@15↑
1D 6.5 6.6 0.724 0.983

HEATMAP 6.3 6.3 0.747 0.984
SKEL. IMAGE 6.2 6.3 0.742 0.985

✓ 6.0 5.7 0.783 0.991
✓ SKEL. IMAGE 4.9 5.1 0.823 0.993

drop from 2D projection, compared to ViTPose, is likely
due to the generalization gap (similar to the GT 2D case),
with model-based HPE as the primary focus, a trend also
observed in (Chen et al., 2025a).

5.4. Ablations & Analysis

The ablation study is conducted for each component design
one by one, on the in-distribution generalization of the Frei-
HAND dataset (Zimmermann et al., 2019) and more chal-
lenging generalization on the HInt dataset (Pavlakos et al.,
2024) and the 3DPW dataset (Von Marcard et al., 2018).
Results across several hand and human benchmarks demon-
strate the effectiveness and generality of our EXTPOSE
framework.

Optional 2D pose & quality. We first assess the impact
of 2D poses by training a variant with only the image and
setting the 2D pose input to zero. As the ViT backbone
is well-trained, this variant shows minimal performance
improvement (4th row in Tab. 5), highlighting the value
of precise 2D pose localization. Next, using ground-truth
2D poses instead of those estimated by Xu et al. (2022)
further improves performance to an impressive 3.7mm on
the FreiHAND dataset.

We also evaluate a lifting counterpart with only 2D pose
input (3rd row in Tab. 5). In this case, 2D-to-3D lifting
fails to leverage RGB image texture in situations of depth
ambiguity or missing keypoint detection, underperforming
image-based HPE. This reinforces the need for combining
both modalities in HPE.

2D pose representations. Our key innovation is adopting
an image-based representation of 2D poses, aligning more
closely with RGB image features, and leveraging knowl-
edge from pre-trained HPE models. For comparison with
conventional 1D arrays, we employ a transformer encoder
to extract features from joint coordinates, which are then
fused with image features using cross-attention. Our image
representation not only converges faster (see convergence
study in App. C), but also achieves 4.6% lower PA-MPJPE
(first three rows in Tab. 5). Spatial heatmaps outperform 1D
arrays but are less preferred than skeleton images.

Image-2D pose fusions. Apart from SOTA comparison with

Table 6: Ablations of different fusion and training strate-
gies on the HInt dataset. ∗ denotes adding extra parameters.
“Only Q, K” indicates only training Q and K projectors of
attention while “1st half” means only the first half of ViT
blocks are trained. EXTPOSE features full attention and
shares and trains full parameters.

METHOD
NEW DAYS VISOR

@0.05 @0.1 @0.15 @0.05 @0.1 @0.15

HAMER 48.0 78.0 88.8 43.0 76.9 89.3

FUSION
LATE FUSION 50.5 82.4 92.5 52.5 87.1 95.6
CHANNEL CONCAT∗ 56.3 83.6 92.2 55.9 87.3 95.3
CONTROLNET∗ 55.6 83.5 92.3 57.7 87.5 95.5

TRAINING
FROM VITPOSE 49.9 82.2 92.2 46.4 85.3 95.2
ONLY Q, K 50.0 81.9 92.3 49.1 85.3 95.1
1st HALF 50.8 82.2 92.3 50.2 85.8 95.2

EXTPOSE 59.6 84.8 92.7 61.1 88.5 95.6

Im
ag

e 
I

2D
 p

os
e 

p

2D pose pImage I

Image I w/ 2D pose p Attn maps Attention weights

Figure 4: Visualization of cross-modal attention (Hertz
et al., 2022). The attention weight is not solely concentrated
along the diagonal, and the attention maps depict that each
branch attends to distinct areas of the other branch, not just
the center. Reference highlights on the corner and boundary
indicate spatial awareness for 3D pose estimation.

different fusion in Tab. 1, classic channel concatenation, late-
layer fusion, and ControlNet fusion (Zhang et al., 2023a) are
implemented under the same framework for a comprehen-
sive comparison. Our attention mechanism enables more
effective information exchange between the two streams
at each layer, faster converging to improved performance
(2nd block in Tab. 6). As shown in Fig. 4, cross-modal at-
tention allows the branches to mutually enrich each other’s
representations. The image stream enhances alignment by
querying clear keypoint location and structure information
provided by the 2D hand skeleton image (red box) while
the 2D pose stream extensively attends to missing RGB in-
formation across the hand and background (e.g., wrist in the
green box), aiding depth estimation.

Inter-frame attention. EXTPOSE with T = 1 improves
pixel alignment with 2D pose assistance but causes jittering
in video due to the lack of temporal frame relationships.
Instead of retraining a video-based HPE model, video-based
EXTPOSE leverages well-trained image-based models and
extends attention across frames to reconstruct a smoother
4D mesh at minimal cost. For a better assessment, we
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Table 7: Ablations of the sequence length on the 3DPW
dataset (Von Marcard et al., 2018).

L MVE↓ MPJPE↓ PA-MPJPE↓
1 68.9 55.6 35.5
8 68.2 55.1 34.7
16 67.5 54.2 34.0
32 67.9 54.8 34.3

provide rendered videos in the Sup. Mat. The sequence
length hyperparameter is studied in Tab. 7, with 16 yielding
reasonable results for the 3DPW dataset.

Training strategies. A key advantage of EXTPOSE is that
it eliminates the need to train a model from scratch on large
datasets. Table 6 ablates network initialization and learnable
layers (Sec. 4.6), showing that initialization from ViT-based
HPE methods and training the whole backbone is crucial
for enhancing the model.

6. Conclusion & Limitations
ViT has been witnessed to be prevalent and dominant in
HPE; yet, it is still not satisfactory with 2D image alignment
and temporal coherence in real-world applications. In this
work, a flexible framework EXTPOSE is proposed to extend
the attention of SOTA image-based ViT HPE to encompass
information of multiple additional dimensions. It benefits
from elaborate representation unification, parameter reusing
and sharing, and full hierarchical attention fusion. Extensive
experiments demonstrate its wide effectiveness in rectifying
visual alignment and capturing temporal relationships. In
the future, reconstruction could be extended to cover the
whole body. Additionally, it is also valuable to see the
framework to take advantage of more visual modalities, such
as SAM 2 prior (Ravi et al., 2025) and multiple views (Gao
et al., 2024), as well as incorporating the latest Transformer
efficiency studies.
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In addition to the self-contained manuscript, the appendix
contains framework concept (App. A), more background
(App. B), and experimental results (App. C).

A. Extension Framework of Image-based Pose
Estimation

As existing ViT-based methods typically require costly train-
ing, to make model upgrade more efficient and easier, a new
paradigm EXTPOSE is proposed: extension of pre-trained
image-based ViT HPE. Specifically, no additional parameter
or retraining must be performed, and new 2D and tempo-
ral information are processed by a backbone shared with
the image. It leverages flexible attention computation of
ViT, which is not constrained to be identical to that in the
pre-training. Therefore, the model easily extends to refer to
newly provided information and adaptively captures mutual
relationships. The new paradigm of our problem formula-
tion also bridges relevant lifting and video-based HPE with
image-based HPE and unifies them within a single cohesive
framework. Notably, the extension paradigm is naturally
driven by improvements in image-based HPE. This idea of
clarity and practicality is inspired by other fields such as
generation extending from the image (Esser et al., 2024) to
current video (OpenAI, 2024) and 3D domain (Gao et al.,
2024).

B. 2D-to-3D Lifting
As mentioned in the related work, some works focus on the
second stage of HPE, relying on 2D inference and totally ig-
noring the image. Among them, simple 2D joint coordinates
are the most prevalent representation to work with, from
which the 3D skeleton is lifted holistically. Martinez et al.
(2017) establish a preliminary benchmark with a residual
MLP in indoor human environments (Ionescu et al., 2013;
Mehta et al., 2017). Followup works (Shan et al., 2022;
Zhang et al., 2022; Zhu et al., 2023; Shan et al., 2023; Li
et al., 2024) extend to explore the video setting and Trans-
former solution. Instead of outputting 3D joint coordinates,
Choi et al. (2020) directly regresses the vertex coordinates
of the mesh, eliminating an additional Inverse Kinematics
task (Li et al., 2021).

Comparison with our paradigm. Conventional lifting
and our work share similarities in supplementing models
with 2D poses; both are evaluated with JPE-type errors.
However, some critical protocol differences make the two
lines of work difficult to compare directly. Firstly, pose
representation, the target outputs in lifting are only skele-
ton joint coordinates, which favors the MPJPE metric (Yu
et al., 2023). Secondly, lifting-based methods significantly
benefit from using a larger window size (number of frames),
typically 243, due to their operation in a lower-dimensional
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Table 8: SOTA 3D accuracy results on the Human3.6M
dataset (Ionescu et al., 2013). Our method improves
HMR2.0 (Goel et al., 2023) with 16 frames and achieves

comparable results to those using 243 frames. † denotes
using GT 3D keypoints for final aggregation of multiple
predictions. The best and second best scores are high-
lighted for lifting and model-based methods respectively.
Note that methods are usually compared within their respec-
tive paradigms on this benchmark.

METHOD T MPJPE↓ PA-MPJPE↓

L
IF

T
IN

G

TCN (CVPR’19) 243 46.8 36.5
POSEFORMER (ICCV’21) 81 44.3 -
ANATOMY (CSVT’21) 243 44.1 35.0
STRIDED (TMM’22) 351 43.7 -
MHFORMER (CVPR’22) 351 43.0 34.4
MIXSTE (CVPR’22) 243 39.8 30.6
P-STMO (ECCV’22) 243 42.8 34.4
POSEFORMERV2 (CVPR’23) 243 45.2 35.6
DIFFPOSE (CVPR’23) 243 36.9 28.7
MOTIONBERT (ICCV’23) 243 37.5 -
GLA-GCN (ICCV’23) 243 44.4 34.8
D3DP† (ICCV’23) 243 35.4 28.7
HOT (CVPR’24) 243 39.0 -
FINEPOSE (CVPR’24) 243 40.2 32.8
FINEPOSE† (CVPR’24) 243 31.9 25.0

M
O

D
E

L
-B

A
S

E
D

VIBE (CVPR’20) 16 65.6 41.4
MEVA (ACCV’20) 90 76.0 53.2
TCMR (CVPR’21) 16 73.6 52.0
MPS-NET (CVPR’22) 16 69.4 47.4
D&D (ECCV’22) 16 52.5 35.5
GLOT (ICCV’23) 16 67.0 46.3
HMR2.0 (ICCV’23) 1 44.8 33.6

EXTPOSE 16 43.5 27.2
(-2.9%) (-19.0%)

space. Despite its simplicity, we qualitatively tested it and
found that the lifting-based method falls short in the mesh
reconstruction application and robustness on in-the-wild
data. For respective quantitative results, please see App. C.

C. More Experimental Results
We present additional experiments with detailed captions,
including quantitative results: SOTA comparison on the
Human3.6M dataset (Ionescu et al., 2013) (App. C), con-
vergence plot for hand experiments (Fig. 5), inference
latency with extended attention (Fig. 6), and qualitative
results: with imperfect 2D poses (Fig. 7) and challenging
failures for future work (Fig. 8).

Accuracy-efficiency tradeoff. It is worth mentioning in
Fig. 6 that the introduction of the 2D pose branch will
roughly double the amount of data that needs to be pro-
cessed; as keeping the total number of frames (batch size ×
sequence length) unchanged, the latency load brought by is
not as obvious as it seems. Despite increasing computation,
the overall efficiency is still acceptable to real-time.
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Figure 5: Faster and more stable convergence compared
to different 2D pose representations and fusion of hand
experiments (Sec. 5.3). Solid lines and filled regions repre-
sent the mean and standard deviation respectively. Control-
Net plug-in (Zhang et al., 2023b) is zero-initialized, result-
ing in a lower starting point.
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Figure 6: The Efficiency-Accuracy tradeoff curve on
the 3DPW dataset, i.e. Latency (ms)-PA-MPJPE (mm).
The per-frame computation time (running time) of core
modules is measured with batch frames of 1024 on one
A100 GPU. For the VIMO (Wang et al., 2024) result, time-
consuming camera estimation is excluded. Please kindly
note that the horizontal “Latency” axis itself does not scale
proportionally.
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Figure 7: Extended cross-modal attention can correct errors in ViTPose input.
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Figure 8: Failures on include missing 2D keypoint detection, ambiguous occlusion, and blurred image. These issues
may be mitigated by leveraging more 2D prior knowledge, e.g. SAM 2 segmentation (Ravi et al., 2025).
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