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Abstract001

Large language models (LLMs) have shown002
remarkable performance in reasoning tasks but003
face limitations in mathematical and complex004
logical reasoning. Existing methods to improve005
LLMs’ logical capabilities either involve trace-006
able or verifiable logical sequences that gener-007
ate more reliable responses by constructing log-008
ical structures yet increase computational costs,009
or introduces rigid logic template rules, reduc-010
ing flexibility. In this paper, we propose Re-011
versal of Thought (RoT), a plug-and-play and012
cost-effective reasoning framework designed013
to enhance the logical reasoning abilities of014
LLMs during the warm-up phase prior to batch015
inference. RoT utilizes a Preference-Guided016
Reverse Reasoning warm-up strategy, which017
integrates logical symbols for pseudocode plan-018
ning through meta-cognitive mechanisms and019
pairwise preference self-evaluation to generate020
task-specific prompts solely through demon-021
strations, aligning with LLMs’ cognitive pref-022
erences shaped by RLHF. Through reverse rea-023
soning, we utilize a Cognitive Preference Man-024
ager to assess knowledge boundaries and fur-025
ther expand LLMs’ reasoning capabilities by026
aggregating solution logic for known tasks and027
stylistic templates for unknown tasks. Exper-028
iments across various tasks demonstrate that029
RoT surpasses existing baselines in both rea-030
soning accuracy and efficiency. Our code and031
datasets are available in supplementary materi-032
als.033

1 Introduction034

Large language models (LLMs) like Qwen (Bai035

et al., 2023), Llama (Dubey et al., 2024), and GPT-036

4 (Achiam et al., 2023) have demonstrated remark-037

able performance in various reasoning tasks via038

single-step prompting with few shots upon scal-039

ing model size (Plaat et al., 2024) but remain re-040

stricted in mathematical and intricate logical rea-041

soning domains (Arkoudas, 2023; Stechly et al.),042

Figure 1: Comparison between CoT (Yao et al., 2024;
Besta et al., 2024; Yang et al., 2024a) and Reversal of
Thought (RoT)

which has spurred more effective multi-step Chain- 043

of-Thought (CoT) prompting (Wei et al., 2022) 044

approaches for activating step-by-step logical ca- 045

pabilities. However, LLMs are prone to unfaith- 046

fulness, resulting in cascaded intermediate errors 047

(Bao et al., 2024; Yang et al., 2024b). 048

Recent studies have advanced CoT to guide 049

LLMs, mainly through either multi-step prompt- 050

ing such as introducing planning-and-solve (Plaat 051

et al., 2024; Yang et al., 2024a), self-consistency 052

(Narang et al.; Wang et al., 2024) and recursive rea- 053

soning process (Lee and Kim, 2023; Yu et al., 2024) 054

through Tree-of-Thought (ToT) (Yao et al., 2024), 055

Graph-of-Thought (GoT) (Besta et al., 2024), or 056

multi-role (Zhang et al.; Suzgun and Kalai, 2024) to 057

enhance logical capabilities and mitigate hallucina- 058

tion, yet this has stealthily increased inference cost 059

due to the multi-step inference. Buffer-of-Thought 060

(BoT) (Yang et al., 2024a) attempts to reduce think- 061

ing steps by leveraging Retrieval-Augmented Gen- 062
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eration (RAG) to retrieve gold thought templates063

from the buffer. However, it sacrifices flexibility064

due to the initialization of pre-set manual thought065

templates. Therefore, achieving accurate reasoning066

in LLMs while minimizing resource consumption067

remains a significant challenge.068

In summary, existing methods primarily rely on069

multi-query CoT which injects knowledge (Suzgun070

and Kalai, 2024; Plaat et al., 2024) or data struc-071

ture (Yao et al., 2024; Besta et al., 2024) to optimize072

decisions making, and encounter three significant073

limitations: (1) limitation in logical reasoning:074

Despite attempting different logic data structures075

(Yao et al., 2024; Besta et al., 2024; Yang et al.,076

2024a), an effective initiative Chain-of-Thought077

paradigm that suits and improves logical reasoning078

remains elusive (Bao et al., 2024); (2) unfaithful-079

ness and cascaded errors: Single-step or multi-080

step methods are liable to cause LLMs to output hal-081

lucinations, leading to cascading logic errors (Bao082

et al., 2024); (3) Trade-off between enhanced083

logic capabilities and resource consumption: Re-084

cent CoT advancements via multi-step or multi-role085

prompting increase costs and achieving a balance086

between logical flexibility, accuracy, and cost is of087

great significance for practical application.088

To address above limitations, inspired by meta-089

cognition (Fleur et al., 2021) and and cognitive pref-090

erence (Uddin, 2021; Zhou et al., 2023; Margatina091

et al., 2023), we propose Reversal of Thought092

(RoT), a plug-and-play and cost-effective frame-093

work that enables LLMs to explore cognitive pref-094

erence on logical pseudocode solely using reverse095

prompting with given demos without additional096

task-related affirmations, as depicted in Figure 1.097

Our key contributions are as follows:098

• To the best of our knowledge, we are the first099

to introduce a reversal reasoning for cognitive100

preference that enhances logical reasoning in101

LLMs by combining meta-cognitive with cog-102

nitive preference, resulting in a more modu-103

lar and cost-efficient framework for complex104

tasks.105

• We propose a Preference-Guided Reverse Rea-106

soning framework that enhances LLMs’ task107

cognition by employing a reverse reasoning108

warm-up strategy and preference-based self-109

evaluation to improve logical reasoning based110

on LLMs’ cognitive preferences.111

• We introduce a Cognitive Preference Manager112

to evaluate knowledge boundaries, enabling 113

the automatic adaptation of cognitive prefer- 114

ence styles for unknown logic tasks and effi- 115

cient aggregation of solution logic for known 116

tasks. 117

2 Related Work 118

2.1 Chain-of-Thought (CoT) Prompting 119

Chain-of-Thought (CoT) prompting (Wei et al., 120

2022) has been proven to be a promising approach 121

that incorporates an intermediate logic chain to 122

enhance LLMs’ logic. Recent studies primarily 123

aimed at improving logical accuracy by external 124

validation mechanisms like symbolic reasoning 125

(Cai et al., 2023; Pan et al.), stepwise verification 126

including self-consistency (Narang et al.; Yu et al., 127

2024; Wang et al., 2024), self-refine (Madaan et al., 128

2024), self-reflection (Renze and Guven, 2024) 129

and more hierarchical information such as Least-to- 130

Most (Zhou et al.), Cumulative-Reasoning (Zhang 131

et al.) and Multi-experts (Suzgun and Kalai, 2024) 132

strategies, but faced challenges related to cumu- 133

lative errors (Bao et al., 2024) or poor flexibility 134

(Yang et al., 2024a). Additionally, numerous stud- 135

ies also proposed more standardized recursive or 136

backtracking branch forms from the logical data 137

structure, including Tree-of-Thought (ToT) (Yao 138

et al., 2024), Graph-of-Thought (GoT) (Besta et al., 139

2024) and Buffer-of-Thought (BoT) (Yang et al., 140

2024a). However, an efficient logical reasoning 141

method that strikes a balance among reasoning ac- 142

curacy, flexibility, and cost has yet to be discovered. 143

Our method is activated through meta cognition 144

(Fleur et al., 2021) by introducing reverse reason- 145

ing to form effective LLMs-taste prompts within 146

cognitive preference (Uddin, 2021) for plan-and- 147

solve with logical pseudocode at least. 148

2.2 Knowledge Boundary for Enhancing 149

Large Language Models 150

Integrating knowledge boundary within LLMs has 151

emerged as a prospective strategy for enhancing 152

their ability to avoid reasoning hallucinations of 153

unknown knowledge through knowledge bound- 154

ary constraints which requires additional algorith- 155

mic efforts (Yin et al., 2024; Chen et al.), external 156

graph knowledge (Tian et al., 2024), and training 157

consumption (Sun et al., 2024). Additionally, they 158

focus on avoiding responses to unknown or incor- 159

rect prompts rather than proposing bold and proac- 160

tive solutions to expand knowledge boundary in a 161
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heuristics without training. We proposed a prompt-162

based method utilizing LLMs pretrained knowl-163

edge boundary, inspired by meta cognition (Fleur164

et al., 2021) and cognitive preference for unknown165

knowledge (Uddin, 2021). Our method conducts166

reverse prompting on probing knowledge through167

demonstrations to obtain LLMs-taste problem cog-168

nitions, aggregates and distills original prompt into169

cognitive preference version.170

3 Reversal of Thought171

3.1 Overview172

Tell me and I forget. Teach me and I remember.
Involve me and I learn.

Franklin (2005)

As the aforementioned wisdom related to human173

cognitive learning implies, merely telling or teach-174

ing is inadequate (Bao et al., 2024). Moreover,175

most LLMs have undergone extensive pre-training176

(Achiam et al., 2023; Bai et al., 2023; Dubey et al.,177

2024) and reinforcement learning from human178

feedback (RLHF) (Ouyang et al., 2022), instilling179

in LLMs a propensity for specific cognitive pat-180

terns, which manifests in two progressive layers of181

LLMs-taste description: (1) Stylistic template: en-182

compassing grammatical and syntactic structures183

in descriptions for thinking problems. (2) Solu-184

tion logic: comprising problem-solving reasoning185

and methodological cues. Therefore, Reversal of186

Thought (RoT) involves answering the following187

two research questions (RQs):188

• RQ1: How to make LLMs output preference189

cognitive templates and logic for specific tasks190

and activate known cognitive boundaries?191

• RQ2: How to autonomously use cognitive tem-192

plates with incorrect response to expand the193

possible knowledge boundaries?194

To activate and enhance LLMs logical flexibility,195

accuracy, and the ability to autonomously construct196

meta-cognition without training for logical reason-197

ing, inspired by meta-cognition (Fleur et al., 2021)198

and cognitive preference (Uddin, 2021; Zhou et al.,199

2023; Margatina et al., 2023), we introduce Rever-200

sal of Thought (RoT), a cost-effective paradigm201

that enables LLMs to first explore cognitive pref-202

erence on logical pseudocode solely through given203

examples without additional task-oriented affirma-204

tion, activates the pre-trained known logic under205

Reverse Reasoning Warm-up (detailed in section206

Algorithm 1 Preference-Guided Reverse Reason-
ing (PGRR)
Require: P : Initial prompt, D: Input-output demonstrations,

warm: Number of warm iterations
1: (1) Reverse Reasoning Warm-up:
2: for i = 1 to warm do
3: R(i) ← MLLM(Pr, D, i) {Generate candidate re-

sponses}
4: P i

res ← 1

|R(i)|

∑
Ri,j∈R(i) exp(P (Ri,j |Pr, D))

5: end for
6: R←

⋃warm
i=1 R(i) {Collect all responses}

(2) Pairwise Preference Evaluation:
7: for i = 0 to warm− 1 do
8: Ppre(Ri+1 ≻ Ri)← exp(MLLM(Peval, Ri+1, Ri))
9: end for

10: for i = 0 to warm− 1 do
11: for j = 0 to i− 1 do
12: Ppre(Ri ≻ Rj)← Ppre(Ri ≻ Rj) {Utilize pref-

erence transitivity}
13: end for
14: end for

(3) Preference-Guided Ranking:
15: for i = 1 to warm do
16: P̄pre(Ri)← 1

warm−1

∑warm
j=1
j ̸=i

Ppre(Ri ≻ Rj)

17: end for
18: Popt ← argmaxRi

(
P i
res+P̄pre(Ri)

2

)
19: return Popt {Optimal LLMs-taste prompt}

3.2), and then optimizes the original prompt for 207

LLMs-taste prompt via Cognitive Preference Man- 208

ager (detailed in section 3.3) to determine the trans- 209

fer of cognitive preference style for unknown logic 210

template and aggregation of known solution logic, 211

as depicted in Figure 2. 212

3.2 Reverse Reasoning with Meta-cognition 213

Preference-Guided Reverse Reasoning. In- 214

spired by RLHF (Ouyang et al., 2022) utilizing 215

preference data, and to derive high-cognitive pref- 216

erence prompt P ∗ that enhance logical reasoning 217

in LLMs, we propose a Preference-Guided Re- 218

verse Reasoning (PGRR) framework (detailed in 219

alogrithm 1) mapping input-output demonstrations 220

D from an initial prompt P to an optimal LLM- 221

taste prompt Popt from prompt candidates. 222

(1) Reverse Reasoning Warm-up. We query 223

the LLM MLLM with a reversal prompt and demon- 224

strations {Pr, D} (detailed in figure 4) for warm 225

iterations, generating a set of prompt candidates 226

for solution R = {R1, R2, . . . , Rwarm} and their 227

corresponding average probabilities P i
res: 228

R =
warm⋃
i=1

R(i) =
warm⋃
i=1

MLLM(Pr, D, i), (1) 229

3



Figure 2: Architecture of Reversal-of-Thought (RoT). RoT comprises two primary components: Preference Guided
Reverse Reasoning, which enhances logical reasoning by activating LLMs’ cognitive preferences, and Cognitive
Preference Manager, which assesses knowledge boundaries and adapts cognitive styles for various tasks.

P i
res =

1

|Ri|
∑

Ri,j∈R
exp(P (Rij |Pr, D)). (2)230

where R(i) represents the i-th generated re-231

sponse. MLLM(Pr, D, i) is the model output based232

on the reversal prompt Pr and demonstrations D233

for the i-th iteration. P (Rij |Pr, D) denotes log234

probability for each token Rij ∈ Ri from LLMs.235

(2) Pairwise Preference Evaluation. To ac-236

quire the most LLMs-taste prompt, we pair candi-237

date responses R as data pairs {Ri, Ri+1} where238

i = 0, 1, · · · , warm − 1 to calculate the relative239

preference P (Ri+1 ≻ Ri) through LLM’s self-240

evaluation of its preference for Ri+1 over Ri, for-241

mally define as:242

Ppre(Ri+1 ≻ Ri) = exp(MLLM(Peval, Ri+1, Ri))
(3)243

where MLLM(Peval, Ri+1, Ri) represents that re-244

quire LLM to select more preferred data through245

Peval with a structure as "Please choose your more246

preferred instruction (A/B): (A).Ri+1; (B).Ri".247

Following the principle of preference transitiv- 248

ity (Liu et al., 2024b), we extend P (Ri+1 ≻ Ri) 249

to P (Ri ≻ Rj) to reduce computational cost 250

from, thereby forming a preference matrix Ppre ∈ 251

Rwarm×warm, formally: 252

Ppre(Ri ≻ Rj) =


1 i = j∏i−1

k=j Ppre(Rk+1 ≻ Rk) i > j

1− Ppre(Rj ≻ Ri) i < j

(4) 253

(3) Preference-Guided Ranking. To iden- 254
tify the most LLMs-preferred and high-quality re- 255
sponse, we compute each response Ri’s overall 256
preference score P̄pre(Ri), and averaging both av- 257

erage probabilities P i
res in matrix Ppre and prefer- 258

ence score P̄pre(Ri) to obtain the best LLM-taste 259
prompt Popt: 260

P̄pre(Ri) =
1

warm− 1

warm∑
j=1
j ̸=i

Ppre(Ri ≻ Rj), (5) 261

Popt = argmax
Ri

(
P i
res + P̄pre(Ri)

2

)
. (6) 262

Reverse Logic for Meta-cognition. Within re- 263

verse reasoning, we further follow meta-cognitive 264

(Suzgun and Kalai, 2024) using plan-and-solve by 265
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Algorithm 2 Cognitive Preference Manager (CPM)
Require: P : Original prompt, P ∗: Reverse-reasoned prompt,
Memb: Offline LLM embedding model, δ: Similarity
threshold

1: Ptask ← P, P ∗
task ← P ∗

2: s←Memb(Ptask, P
∗
task) Calculate embedding similar-

ity between Ptask and P ∗
task.

3: if s ≥ δ then
4: Known detected: Enhance and refine P to optimized

instructions Pfinal.
5: Aggregate relevant task-specific knowledge.
6: return Pfinal.
7: else
8: UnKnown detected: Adapt and expand Ptask.
9: Leverage cognitive preference templates T and P to

generate optimized instructions Pfinal.
10: return Pfinal.
11: end if

integrating logical algorithm pseudo-code to im-266

prove reasoning comprehension. And we incor-267

porate fundamental mathematical logic symbols,268

including logical operators, quantifiers, inequali-269

ties and conditional statements, to facilitate model270

reasoning detailed in Appendix A.2.271

3.3 Cognitive Preference Manager272

Cognitive Preference Manager. After reverse273

reasoning for LLMs-cognitive description P ∗, We274

introduce an offline-deployed LLM embedding275

model Memb to assist Cognitive Preference Man-276

ager (CPM) in determining whether reverse reason-277

ing under reverse prompt Pr and demonstrations278

D reaches the knowledge boundary or cognitive279

error by calculating the similarity and setting a280

threshold δ (0.6∼0.8 is recommended for optimal281

performance in distinguishing knowledge bound-282

aries) between orginal task defination Ptask from P283

and LLMs-cognitive task defination P ∗
task from P ∗,284

and finally get a cognitive signal Scog, formally:285

Scog =

{
unknown , sim (Memb(Ptask),Memb(P

∗
task)) < δ

known , sim (Memb(Ptask),Memb(P
∗
task)) ≥ δ

(7)286

where sim(∗) is a cosine similarity function that287

computes the similarity between two embedding288

vectors.289

By efficiently evaluating cognitive results, CPM290

integrates alternative aggregation strategies for291

MLLM based on Scog
1, as detailed in ap-292

pendix A.3: (1) Solution logic aggregation293

for known tasks: MLLM merges beneficial as-294

pects from the original prompt P with the LLM-295

1we use Scog to conduct reverse evaluation of GPT-4 in
our experiments.

taste prompt P ∗ to create the final prompt Pfinal. 296

(2) Stylistic template aggregation for unknown 297

tasks:MLLM extracts a cognitive preference tem- 298

plate for thinking T from the incorrect context 299

in the LLM-taste prompt, and integrates meta- 300

cognitive elements from the original prompt P into 301

T to construct the final prompt Pfinal. 302

Consequently, we utilize the final LLM- 303

preferred prompt to query the LLM MLLM with 304

a specific problem input, problem, to obtain the 305

final logical answer, answer: 306

answer = MLLM(Pfinal, problem) (8) 307

4 Experiments 308

4.1 Datasets and Tasks 309

Following Yao et al. (2024); Suzgun and Kalai 310

(2024); Yang et al. (2024a), we evaluate RoT across 311

eight tasks (detailed in Appendix A.1): (1) Mathe- 312

matical Reasoning:Game of 24 (Yao et al., 2024; 313

Xiang et al., 2025), Multilingual Grade School 314

Math (Shi et al., 2022); (2) Domain Knowledge: 315

Python Puzzles (Schuster et al., 2021), Geometric 316

Shapes, Multi-Step Arithmetic Two, Word Sorting, 317

and Checkmate-in-One (Srivastava et al., 2023); (3) 318

Creativity: Shakespearean Sonnet Writing (Suz- 319

gun and Kalai, 2024). 320

4.2 Baselines 321

In our experiments, we compare RoT with five clas- 322

sic and latest state-of-the-art prompting baselines: 323

• CoT Prompting: Following Suzgun and 324

Kalai (2024); Yang et al. (2024a), we employ 325

GPT-4 to decompose instruction into logic in- 326

termediate reasoning steps activated by "Let’s 327

think step by step". 328

• Meta-Prompting: Suzgun and Kalai (2024) 329

introduced general, task-agnostic prompts as 330

a scaffold to guide LLMs effectively perform 331

logic tasks. 332

• Graph-of-Thought (GoT): Besta et al. 333

(2024) modeled reasoning as a graph, where 334

nodes are thoughts and edges define their rela- 335

tionships to solve complex problems. 336

• Tree-of-Thought (ToT): Yao et al. (2024) or- 337

ganized reasoning in a tree structure, allowing 338

LLMs to explore multiple thought paths and 339

select the most promising ones for problem- 340

solving, enhancing their complexity manage- 341

ment in logical reasoning tasks. 342
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• Buffer of Thought (BoT): Yang et al. (2024a)343

introduced a meta-buffer that stores high-level344

thought templates, allowing for the adaptive345

retrieval and instantiation of relevant tem-346

plates to enhance reasoning efficiency.347

4.3 Experiment Setup348

To ensure fair comparisons with previous meth-349

ods, following Liu et al. (2024a); Yao et al. (2024);350

Zhang et al.; Suzgun and Kalai (2024), we uti-351

lize two LLMs: GPT-3.5-turbo and GPT-4, as352

the foundational model via OpenAI API for our353

RoT experiments including both main experiments354

and ablation study. For the warmup hyperparam-355

eter, we experimented with values of {1, 3, 5, 10},356

accessed in batches for reverse reasoning warm-357

up through OpenAI API. Our findings suggest358

that a value of 5 optimally balances between359

logical accuracy and cost-efficiency. For em-360

bedding model Memb, we utilize a huggingface361

model stella_en_1.5B_v5 2, a high-performance362

model with the smallest parameter countamong the363

top three on the MTEB leaderboard (Muennighoff364

et al., 2023), offline deployed on a single NVIDIA365

GeForce RTX 4090 GPU.366

4.4 Evaluation Metrics367

Knowledge Boundary and Cognitive Preference368

Consistency. As described in Section 3.3, we369

trigger knowledge boundary using Scog by compar-370

ing sim(Ptask,MLLM(D,Pr)task) with a thresh-371

old δ = 0.7. We first evaluate GPT-3.5-turbo372

& GPT-4 on experimental tasks to distinguish be-373

tween known and unknown domains in both 1-shot374

and 2-shot settings3 and subsequently conduct hu-375

man evaluations of average cognitive preference376

consistency Concog based on stylistic and gram-377

matical norms on P ∗ across various tasks, with378

three professional annotators validating cognitive379

preferences on a 1–5 scale.380

Reasoning Accuracy. Following Suzgun and381

Kalai (2024); Yao et al. (2024), we introduce a382

LLM4 to validate the final logical reasoning against383

gold results (Correct/Wrong). We then compute384

logical accuracy Acclogic for each logical task by385

tallying the number of correct responses.386

2https://huggingface.co/dunzhang/stella_en_1.
5B_v5, License:mit

3To achieve better cost savings and fairness, we set the
few-shot for all methods to 1-shot and 2-shot.

4we select the latest openai-o1 as judger, https://openai.
com/index/introducing-openai-o1-preview/

Reasoning Efficiency. Following Yang et al. 387

(2024a), we evaluate reasoning efficiency in terms 388

of complexity by calculating T , calculated as the 389

average time spent per task across all samples in 390

the test dataset: 391

T =
1

N

M∑
i=1

N∑
j=1

Tij (9) 392

where N is the total number of tasks, M is the total 393

number of samples, and Tij represents the time 394

taken for the i-th task on the j-th sample. 395

5 Results and Discussion 396

5.1 Knowledge Boundary and Cognitive 397

Preference Consistency 398

Knowledge Boundary. As shown in Table 2, our 399

findings provide preliminary support for our hy- 400

pothesis concerning cognitive knowledge bound- 401

aries of LLMs in reverse reasoning across cur- 402

rent task benchmarks in one-shot and two-shot 403

settings (Yao et al., 2024; Suzgun et al., 2023; 404

Srivastava et al., 2023; Schuster et al., 2021; 405

Shi et al., 2022; Suzgun and Kalai, 2024). No- 406

tably, GPT-3.5-turbo & GPT-4 excel in struc- 407

tured reasoning tasks such as Game of 24, 408

Geometric Shapes, and Checkmate-in-One, con- 409

sistently achieving strong results in both one-shot 410

and two-shot settings. In contrast, tasks such as 411

MGSM (avg) and Python Puzzles fall into an un- 412

known category in the one-shot scenario, stemming 413

from multi-source problems that are challenging to 414

make reverse reasoning without sufficient context, 415

indirectly supporting the rationale for our CPM 416

approach. 417

Cognitive Preference Consistency. Our human 418

evaluation of Concog yielded high scores of 4.32 419

in the 2-shot setting and 4.01 in the 1-shot setting, 420

further validating that LLMs exhibit cognitive pref- 421

erences shaped by RLHF (Ouyang et al., 2022). 422

5.2 Reasoning Accuracy and Efficiency 423

(1) RoT can activate LLMs’ reasoning accuracy. 424

As shown in Table 1, RoT consistently outper- 425

forms all baselines across various reasoning tasks, 426

with particularly notable improvements observed 427

in GPT-4. Specifically, compared with the best 428

BoT, RoT achieves significant gains in tasks such 429

as Game of 24 (+17.15% in 1-shot and +17.08% 430

in 2-shot), Geometric Shapes (+4.87% in 1-shot 431

and +4.96% in 2-shot), and Checkmate-in-One 432
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Baselines Game of 24
Geometric

Shapes
Multi-Step
Arithmetic

Word
Sorting

Checkmate-
in-One

Python
Puzzles

MGSM
Sonnet
Writing

GPT-3.5-turbo

CoT (NeurIPS)
Wei et al. (2022)

1-shot 26.3 50.2 73.9 71.9 25.7 30.1 75.0 58.6

2-shot 29.6 53.2 76.2 74.6 25.4 30.6 77.4 61.3

Meta-prompting
Suzgun and Kalai

(2024)

1-shot 59.6 69.5 83.1 90.0 47.4 40.2 80.3 69.5

2-shot 60.2 71.0 85.1 91.5 48.0 41.1 81.5 71.4

ToT (NeurIPS) Yao
et al. (2024)

1-shot 66.7 56.2 81.9 89.2 44.2 38.2 78.3 63.5

2-shot 67.3 58.5 82.3 90.3 45.2 39.5 79.4 65.3

GoT (AAAI)
Besta et al. (2024)

1-shot 69.7 58.6 79.1 88.8 45.4 35.3 80.3 62.2

2-shot 70.4 58.9 79.0 89.5 46.0 36.7 81.0 63.7

BoT (NeurIPS) Yang
et al. (2024a)

1-shot 74.7 83.1 87.6 93.2 67.9 48.2 81.1 71.1

2-shot 75.5 84.3 88.3 94.4 68.5 48.0 82.3 73.0

RoT (Ours)
1-shot 82.8 88.4 89.2 95.2 71.5 50.2 82.3 75.5
2-shot 87.8 88.7 89.5 95.6 72.6 50.4 84.7 75.8

GPT-4

CoT (NeurIPS)
Wei et al. (2022)

1-shot 31.3 57.4 83.1 80.7 35.8 35.3 83.9 66.3

2-shot 32.7 60.9 85.5 82.7 36.7 35.9 84.3 70.2

Meta-prompting
Suzgun and Kalai

(2024)

1-shot 64.6 76.7 89.6 97.6 58.2 45.0 85.1 78.7

2-shot 66.3 78.2 90.7 98.4 58.9 45.6 85.5 79.8

ToT (NeurIPS) Yao
et al. (2024)

1-shot 73.7 58.6 88.8 95.2 49.8 43.8 84.7 68.7

2-shot 74.5 60.1 90.3 96.0 48.8 45.2 86.3 69.8

GoT (AAAI)
Besta et al. (2024)

1-shot 74.7 56.2 87.6 95.6 49.0 42.6 85.9 68.3

2-shot 73.5 57.7 88.7 96.8 51.2 43.5 86.7 62.5

BoT (NeurIPS) Yang
et al. (2024a)

1-shot 82.8 90.4 94.8 99.2 87.1 51.8 87.9 79.1

2-shot 83.7 90.7 96.8 99.6 88.3 52.8 87.5 79.8

RoT (Ours)
1-shot 97.0 94.8 98.4 99.6 91.2 54.6 88.7 89.2
2-shot 98.0 95.2 99.2 100.0 92.0 57.3 90.0 92.0

Table 1: Comparison of RoT with baselines across 1-shot and 2-shot settings for reasoning accuracy.

Task 1-shot 2-shot

Kno. Unkno. Kno. Unkno.

Game of 24 ✓ ✓
MGSM (avg) ✓ ✓
Multi-Step Arithmetic ✓ ✓
WordSorting ✓ ✓
Python Puzzles ✓ ✓
Geometric Shapes ✓ ✓
Checkmate-in-One ✓ ✓
Sonnet Writing ✓ ✓

Table 2: Knowledge Boundary under Reversal Reason-
ing for GPT-3.5-turbo and GPT-4 with identical results.
Kno. for Known, Unkno. for Unknown.

(+4.71% in 1-shot and +4.19% in 2-shot), demon-433

strating our flexibility of leveraging cognitive434

preference in LLM to activate logic capabilities435

through reverse reasoning (case study detailed436

in appendix B). For GPT-3.5-turbo, RoT also437

demonstrates substantial improvements, such as438

Game of 24 (+10.84% in 1-shot and +16.29%439

in 2-shot) and Geometric Shapes (+6.38% in 1-440

shot and +5.22% in 2-shot), further emphasizing441

its versatility in activating logic through cognitive442

preference management. 443

Figure 3: Inference time comparison

(2) RoT demonstrates better tradeoff between 444

reasoning accuracy and efficiency across base- 445

lines. As shown in Figure 3, RoT achieves com- 446

petitive performance in reasoning efficiency, out- 447

performing baselines and being second only to BoT, 448

while BoT’s dependence on numerous pre-defined 449

golden thought templates limits its flexibility. In 450

contrast, our RoT, as a plugin strategy, emphasizes 451
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Ablation study Game of
24✓

Geometric
Shapes✓

Multi-Step
Arithmetic✓

Word
Sorting✓

Checkmate-
in-One✓

Python
Puzzles× MGSM× Sonnet

Writing✓
GPT-3.5-turbo

RoT
1-shot 82.8 88.4 89.2 95.2 71.5 50.2 82.3 75.5
2-shot 87.8 88.7 89.5 95.6 72.6 50.4 84.7 75.8

w/o PGRR
1-shot 74.7 72.3 74.3 74.7 65.5 44.2 78.7 69.6
2-shot 75.5 72.6 75.4 76.2 66.9 44.4 79.0 69.8

w/o Logic 1-shot 76.7 80.7 81.5 84.3 66.3 45.8 77.5 72.9
2-shot 76.5 80.2 81.9 85.1 66.5 46.0 78.2 73.0

w/o CPM
1-shot 80.8 86.0 88.4 93.2 70.3 39.8 72.7 74.2
2-shot 81.6 86.7 88.3 93.5 71.0 47.2 80.2 75.0

GPT-4

RoT
1-shot 97.0 94.8 98.4 99.6 91.2 54.6 88.7 89.2
2-shot 98.0 95.2 99.2 100.0 92.0 57.3 90.0 92.0

w/o PGRR
1-shot 77.8 74.7 78.7 79.5 80.7 45.0 85.9 72.7
2-shot 78.6 75.0 79.0 81.0 82.3 46.8 86.0 73.0

w/o Logic 1-shot 85.9 83.1 87.1 89.2 81.5 49.8 85.5 86.1
2-shot 86.7 83.5 87.9 89.5 83.5 50.0 86.7 77.0

w/o CPM
1-shot 92.0 90.0 94.8 97.6 89.2 40.6 84.7 88.8
2-shot 93.9 90.3 95.2 98.4 89.1 51.6 86.3 91.5

Table 2: Ablation study of RoT across various tasks in 1-shot and 2-shot settings. ✓ indicates known tasks in both
1-shot and 2-shot; × indicates unknown tasks in 1-shot.

exploring optimal prompt for solution and task data452

instantiation after reverse reasoning warm-up.453

5.3 Ablation Study454

As shown in Table 2, we conducted three abla-455

tion studies to evaluate key components: (1) w/o456

PGRR: Removing Preference-Guided Reverse Rea-457

soning(PGRR) for exploring LLMs-taste prompts;458

(2) w/o Logic: Excluding mathematical logic for459

pseudo-code plan-and-solve; and (3) w/o CPM:460

Eliminating Cognitive Preference Manage(CPM)461

for both known and unknown tasks.462

Impact of PGRR. Excluding Preference-Guided463

Reverse Reasoning (PGRR) results in a significant464

reduction in overall task performance, as seen in465

tasks like the Game of 24 (98.0% to 78.6% for466

GPT-4, 87.8% to 75.5% for GPT-3.5-turbo) and467

WordSorting (100% to 81% for GPT-4, 95.6% to468

76.2% for GPT-3.5-turbo), indicating w/o PGRR469

weaken model’s cognition to task-specific require-470

ments.471

Impact of Logic. Removing mathematical logic472

from RoT leads to notable declines in tasks re-473

quiring structured problem-solving, such as Multi-474

Step Arithmetic (99.2% to 87.9% for GPT-4, 89.5%475

to 81.9% for GPT-3.5-turbo) and Checkmate-in-476

One (92.0% to 83.5% for GPT-4, 72.6% to 66.5%477

for GPT-3.5-turbo), underscoring w/o Logic neg-478

atively affects structured problem-solving for com-479

plex reasoning.480
Impact of CPM. Lacking Cognitive Preference481

Manager (CPM) has a particularly pronounced ef-482

fect on unknown tasks, with Python Puzzles drop- 483

ping from 54.6% to 45.0% for GPT-4 and 50.2% 484

to 39.8% for GPT-3.5-turbo, while MGSM de- 485

creased from 84.7% to 80.2% for GPT-3.5-turbo 486

and from 90.0% to 86.3% for GPT-4, indicating 487

w/o CPM weaken RoT’s flexibility for tackling 488

known tasks and unknown tasks 5. 489

6 Conclusion 490

In this paper, we propose Reversal of Thought 491

(RoT), a novel and plug-and-play framework 492

to enhance the logical reasoning capabilities of 493

LLMs. By integrating reverse reasoning with 494

meta-cognitive mechanisms and cognitive prefer- 495

ence management, RoT improves reasoning ac- 496

curacy and efficiency while minimizing compu- 497

tational costs, which leverages Preference-Guided 498

Reverse Reasoning and Cognitive Preference Man- 499

ager, which optimally aligns LLM reasoning pro- 500

cesses with their cognitive preferences shaped by 501

their pretraining and RLHF. Comprehensive exper- 502

iments across diverse reasoning tasks demonstrate 503

that RoT consistently outperforms state-of-the-art 504

baselines in both known and unknown task scenar- 505

ios, demonstrating the potential to expand knowl- 506

edge boundaries through cognitive preference tem- 507

plate. Our research provides valuable insights into 508

future studies focused on further enhancing LLMs’ 509

reasoning capacities by dynamically exploring cog- 510

nitive preferences for complex reasoning tasks. 511

5Please refer to Appendix B.1.1 for case study on known
task and Appendix B.2.1 for case study on unknwon task.
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Limitations512

Reversal of Thought (RoT) introduce a reverse rea-513

soning warm-up to activate cognitive preference for514

LLMs to enhance logic capabilities and introduce a515

cognitive preference manager to determine knowl-516

edge boundary and utilize cognitive preference for517

known and unknown tasks.518

While RoT has performed exceptionally in logic519

accuracy and efficiency, We discuss major chal-520

lenge in its reliance on two-shot demonstration521

inputs involving two distinct problem cases. We522

observed that RoT may struggles with one-shot523

learning in multi-source tasks. we partially and524

effectively mitigates this issue through the integra-525

tion of Cognitive Preference Manager (CPM) and526

two-shot learning.527

In future work, we aim to extend RoT’s capabil-528

ities by incorporating In-Context Learning (ICL),529

which will allow for greater flexibility in adapt-530

ing to varied contexts and improve its performance531

on more complex reasoning tasks. Furthermore,532

we believe that utilizing Reversal of Thought in533

teacher-student model distillation, which could fur-534

ther amplify the practical value of our approach.535

Ethical Considerations536

Since the datasets used in our experiments focus537

on pure mathematical and algorithmic reasoning,538

domain-specific knowledge, and literary creativ-539

ity, which are all sourced from publicly available540

datasets (Yao et al., 2024; Suzgun et al., 2023; Sri-541

vastava et al., 2023; Schuster et al., 2021; Shi et al.,542

2022; Suzgun and Kalai, 2024; Xiang et al., 2025)543

and devoid of any personal privacy or sensitive544

ethical information. Therefore, we do not identify545

any immediate ethical concerns regarding our cur-546

rent work. Additionally, we conduct human eval-547

uations of cognitive preference consistency with548

three anonymous professional annotators following549

our instructions (detailed in appendix C).550
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A Experimental Details759

A.1 Datasets and Tasks760

To comprehensively validate our Reverse of761

Thought (RoT), following ToT (Yao et al., 2024),762

meta-prompting (Suzgun and Kalai, 2024) and763

BoT (Yang et al., 2024a), we assess it with base-764

lines across a broad range of eight tasks across five765

logical benchmarks that encompass mathematical766

and algorithmic reasoning, domain-specific knowl-767

edge, and literary creativity:(1) Game of 24 (Yao768

et al., 2024; Xiang et al., 2025) challenges LLMs769

to create a mathematical expression utilizing each770

of four given numbers exactly once to achieve 246771

. (2) BIG-Bench (Suzgun et al., 2023; Srivastava772

6https://www.4nums.com/game/

et al., 2023) involves Geometric Shapes, Multi- 773

Step Arithmetic Two and Word Sorting and 774

Checkmate-in-One from BIG-Bench suite 7 (Sri- 775

vastava et al., 2023); (3) Python Puzzles (Schus- 776

ter et al., 2021) comprises a collection of challeng- 777

ing programming puzzles crafted in Python, cov- 778

ering various difficulty levels8;(4) Multilingual 779

Grade School Math (MGSM) (Shi et al., 2022) 780

is a multilingual adaptation of the GSM8K dataset 781

(Cobbe et al., 2021), featuring translations of a 782

subset of examples into ten diverse languages9 783

.(5) Shakespearean Sonnet Writing (Suzgun 784

and Kalai, 2024) require LLMs to compose with 785

the rhyme scheme "ABAB CDCD EFEF GG" while 786

incorporating three 10 or five 11 specified words 787

verbatim. 788

7https://huggingface.co/datasets/google/
bigbench

8https://github.com/microsoft/
PythonProgrammingPuzzles

9https://github.com/google-research/url-nlp/
tree/main/mgsm

10https://huggingface.co/datasets/
turingmachine/meta-prompting

11https://github.com/iljones00/
Shakespearean-Sonnets-GPT
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A.2 Prompt for Reverse Reasoning789

790

Prompt for Reverse Reasoning

Instruction
You are a highly distinguished expert in mathematics and information reasoning. Based on the given
example, define the specific task, including the task definition, pseudocode, logical pseudocode,
case examples, and input-output format.
1. Understand Task Description:
Meticulously study demonstrations to deeply understand generic task description.
2. Plan Generic Pseudocode:
Provide pseudocode in text form and plan an efficient algorithm to complete the task with your
experiences.
3. Formulate Logical Pseudocode:
Convert the pseudocode into generic logical algorithm pseudocode using ONLY logical symbols:
Logical Operators:
Conjunction: A ∧B ; Disjunction: A ∨B
equivalence: A ≡ B , Negation: ¬A
Quantifiers:
Universal quantifier: ∀x; Existential quantifier: ∃x
Inequalities:
Less than: x < y; Greater than: x > y
Less than or equal to: x ≤ y
Greater than or equal to: x ≥ y
Equals: x = y; Not equals: x ̸= y
Conditional Statements:
If A then B: A ⊃ B
If A ∧B then C: (A ∧B) ⊃ C
If A ∨B then C: (A ∨B) ⊃ C
If ∀x(P (x)) then Q: ∀x(P (x)) ⊃ Q
If ∃x(P (x)) then Q: ∃x(P (x)) ⊃ Q etc.
Input: [Demonstration] Output: [Output]

791

Figure 4: Prompt for Reverse Reasoning
792
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A.3 Prompt for CPM (Known/Unknown)793

794

Prompt for CPM (Known/Unknown)

Instruction
You are an expert in information synthesis, proficient in combining complementary insights and
extracting essential details from the viewpoints of the distilled task definition, detailed generic
logical pseudocode, case example, and input-output format.
1. For Known:
The Reversal Prompt and Benchmark Prompt should complement each other. Analyze the content
and structure of both prompts to identify their accuracy, similarities and differences. Synthesize
the key points and integrate them into a unified and coherent output.
2. For Unknown:
Extract a cognitive preference template T from any inaccuracies in the LLM-taste prompt. Integrate
meta-cognitive elements from the original prompt P into this template to enhance T .
Input:
LLM-Taste Prompt:[LLM-Taste Prompt]
Benchmark Prompt:[Benchmark Prompt]
Output: [Output]

795

Figure 5: Prompt for CPM (Known/Unknown)796

13



B Case Study797

B.1 Case Study for Known Task (Game of 24)798

B.1.1 Pfinal Case study for Game of 24799

Pfinal Case study for known task after CPM

Task Defination
The task is to find a feasible mathematical expression using the four input numbers (a, b, c, d) in
the order they are given, such that the result equals 24. The feasible solution should involve basic
arithmetic operations (+, -, ×, /) and parentheses if necessary.
Logical Pseudocode
For each permutation P (A,B,C,D) in permutations of [A, B, C, D]:

For each operation opn ∈ (+,−,×,÷), where n ∈ {0, 1, 2, 3}:

• For each permute ∃(Expression == 24) ∨ (Expression = permute[0] op1 permute[1]
op2 permute[2] op3 permute[3]):

• If ∃(Expression == 24), then:
– Print(Expression)
– Terminate the process.

• Else, continue checking the next permutation.

If no solution is found, print "No feasible solution exists.".
Case Examples:
Example 1: Input: 4 6 7 1 Output: One feasible solution (e.g., 6/(1− (4/7)) = 24).
Example 2: Input: 4 2 2 1 Output: "No feasible solution exists."
Input-Output Format:
Input: Four integers separated by space (e.g., "3 3 8 8").
Output: If a feasible solution exists, output a string indicating one possible solution (e.g., "One
feasible solution (e.g., 8÷ (3−8÷3) = 24)."). If no solution exists, output the string "No feasible
solution exists."

800
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B.1.2 Instantiation Case Study for Game of801

24 Using Pfinal802

Instantiation Case Study for Game of 24 Using Pfinal

Input: 4 9 10 13

Steps: Let me compute possible expressions for this input that result in 24 using provided logic
pseudocode.
1. Generate all permutations of the numbers (4,9,10,13): This gives 24 possible arrangements.
2. Apply operations: For each permutation, test all combinations of the operations (+, -, *, /)
between the numbers.
3. Check if the result equals 24: Evaluate the expression and check if it equals 24.
4. Output the result: If a valid expression is found, print it. If not, output that no feasible solution
exists.
import itertools
inputs = [4,9,10,13]
operations = ['+', '-', '*', '/']
def evaluate_expression(expr):

try:
return eval(expr)

except ZeroDivisionError:
return None

permutations = itertools.permutations(inputs)
op_combinations = itertools.product(operations, repeat=3)
solutions = []
for perm in permutations:

for ops in op_combinations:
exprs = [
f"({perm[0]} {ops[0]} {perm[1]}) {ops[1]} ({perm[2]} {ops[2]} {perm[3]})",
f"({perm[0]} {ops[0]} ({perm[1]} {ops[1]} {perm[2]})) {ops[2]} {perm[3]}",
f"{perm[0]} {ops[0]} ({perm[1]} {ops[1]} ({perm[2]} {ops[2]} {perm[3]}))",
f"({perm[0]} {ops[0]} {perm[1]}) {ops[1]} ({perm[2]} {ops[2]} {perm[3]})",

...
]
for expr in exprs:

if evaluate_expression(expr) == 24:
solutions.append(expr)

print(solutions)

Output: 4 * (9 + (10 - 13))=24
803
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B.2 Case Study for Unknown Task (MGSM)804

B.2.1 Pfinal Case study for MGSM805

Pfinal Case study for unknown task after CPM

Task Defination
The task is to solve a math problem text with a description of a situation. Your task is to calculate
the answer and provide it in the format specified.
Logical Pseudocode

Input u from the user in natural language.

Parse u for numbers and contextual information.

Extract numbers α, β, γ, etc.
Identify contextual clues and operations, such as addition (+), subtraction (-), multiplication (*),
division (/), and other implicit operations (e.g., percentages, halves, totals).

For each identified operation:

If operation is related to percentages, interpret × or division as needed.
If operation is additive (+), perform Add(α, β).
If operation is subtractive (-), perform Subtract(α, β).
If operation is multiplicative (*), perform Multiply(α, β).
If operation is divisive (/), perform Divide(α, β).
If implicit operations (e.g., "half that much"), interpret accordingly.

Handle complex structures, such as total amounts or remainders:

Use context to evaluate remaining quantities (e.g., after consumption, sales).
Apply operations in sequential order based on context.

Calculate the final result based on all interpreted operations and numbers.

Return the final result as a natural number or in currency (if applicable).
Case Examples:
Example 1:
Input: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total
does it take?
Output: 3
Input-Output Format:
Input: A natural language string describing a scenario that involves certain arithmetic operations.
Output: A single integer or float number that is the result of the operations described in the
scenario.

806
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Pfinal808

809

Instantiation Case Study for MGSM Using Pfinal

Input: Paul is at a train station and is waiting for his train. He isn’t sure how long he needs to
wait, but he knows that the fourth train scheduled to arrive at the station is the one he needs to
get on. The first train is scheduled to arrive in 10 minutes, and this train will stay in the station
for 20 minutes. The second train is to arrive half an hour after the first train leaves the station,
and this second train will stay in the station for a quarter of the amount of time that the first train
stayed in the station. The third train is to arrive an hour after the second train leaves the station,
and this third train is to leave the station immediately after it arrives. The fourth train will arrive 20
minutes after the third train leaves, and this is the train Paul will board. In total, how long, in
minutes, will Paul wait for his train?

Steps:
Step 1: Symbol Information
1. α (first train arrival) = 10 minutes
2. β (first train stay) = 20 minutes
3. γ (second train stay as a quarter of the first train’s stay) = β

4
4. δ (time between second train departure and third train arrival) = 60 minutes
5. ε (fourth train arrival after third train leaves) = 20 minutes
Step 2: Identify Contextual Clues and Operations
1. First train departure time = α+ β
2. Second train arrival time = First train departure time + 30 minutes
3. Second train stay time = γ
4. Third train arrival time = Second train departure time + δ
5. Fourth train arrival time = Third train departure time + ε
Step 3: Perform Calculations Based on Identified Operations
1. First train departure time = Add(α, β) = 10 + 20 = 30 minutes
2. Second train arrival time = Add(First train departure time,30) = 30 + 30 = 60 minutes
3. Second train stay time = Divide(β, 4) = 20

4 = 5 minutes
4. Second train departure time = Add(Second train arrival time ,Second train stay time) = 60+5 =
65 minutes
5. Third train arrival time = Add(Second train departure time,δ) = 65 + 60 = 125 minutes
6. Third train departure time = Third train arrival time (since it leaves immediately) = 125 minutes
7. Fourth train arrival time = Add(Third train departure time, ε) = 125 + 20 = 145 minutes
Step 4: Calculate the Final Result
Final Result: Fourth train arrival time = 145 minutes

Output: 145 minutes
810
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C Instructions for Human Evaluation.811

To evaluate the cognitive preference consistency812

Concog between LLMs-taste prompt for task cog-813

nitions across different tasks, annotators adhere to814

the following guidelines:815

Criteria. (1) Style Consistency: How well re-816

sponses maintain a consistent stylistic tone for817

thinking across different tasks. (2) Coherence:818

Internal logic and smooth flow of the response.819

Scoring. Responses are evaluated on a scale from820

0 to 5. A score of 4-5 signifies exemplary style821

consistency, while 3-4 indicates strong consistency822

with minor variations. Scores of 2-3 represent ade-823

quate style but with noticeable inconsistencies, and824

1-2 denote inconsistent style across tasks. A score825

of 0-1 reflects complete inconsistency.826
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