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Abstract

Large language models (LLMs) provide excellent
text-generation capabilities, but standard prompt-
ing and generation methods generally do not lead
to intentional or goal-directed agents and might
necessitate considerable prompt tuning. Even the
best current LLMs rarely ask clarifying questions,
engage in explicit information gathering, or take
actions that lead to better decisions after multi-
ple turns. Reinforcement learning has the poten-
tial to leverage the powerful modeling capabili-
ties of LLMs, as well as their internal represen-
tation of textual interactions, to create capable
goal-directed language agents. This can enable
intentional and temporally extended interactions,
such as with humans, the emergence of complex
skills such as persuasion, and long-horizon strate-
gic behavior, such as in the context of games. En-
abling this requires the community to develop re-
liable reinforcement learning algorithms for train-
ing LLMs. Developing such algorithms requires
tasks that can gauge progress on algorithm design,
provide accessible and reproducible evaluations
for multi-turn interactions, and cover a range of
task properties and challenges in improving rein-
forcement learning algorithms. Our paper intro-
duces the LMRL-Gym benchmark for evaluating
multi-turn RL for LLMs, together with an open-
source research framework for getting started on
multi-turn RL with offline value-based and online
policy-based RL methods. Our benchmark con-
sists of 3 Interactive Dialogue tasks and 5 RL Ca-
pability tests for a total of 8 tasks, which require
multiple rounds of language interaction and cover
tasks in open-ended dialogue and text games.
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1. Introduction
Large language models (LLMs) have demonstrated remark-
able abilities when naturally conversing with humans (Ope-
nAI, 2023; 2022; Touvron et al., 2023; Google, 2023), an-
swering questions and responding to requests (Shuster et al.,
2022b;a; Qin et al., 2023), and even performing coding
tasks (Chen et al., 2021b; Wang et al., 2023b). Many of
these capabilities are enabled by learning to emulate hu-
mans from large datasets of text from the web (Völske et al.,
2017; Shuster et al., 2022a; Yao et al., 2023), learning from
examples “in context” (Brown et al., 2020), as well as learn-
ing from other sources of supervision such as instruction
datasets (Mishra et al., 2022; Wei et al., 2022; Wang et al.,
2022b) and preference fine-tuning with RLHF (Ziegler et al.,
2020; Ouyang et al., 2022). However, directly applying
LLMs in settings that require planning or multi-turn inter-
actions presents new challenges. LLMs are not explicitly
goal-directed, as they are not optimized to directly solve
particular tasks, but rather to produce text that resembles
the distribution of human-provided examples or accords
with human preferences (Ziegler et al., 2020; Stiennon et al.,
2020; Wu et al., 2021; Bai et al., 2022a). This challenge
is apparent in solving temporally extended tasks, such as
multi-turn dialogue (Irvine et al., 2023; , FAIR), complex
tool use (Wang et al., 2022a), multi-step games (Hendrycks
et al., 2021b), and other interactive applications. In prin-
ciple, LLMs should contain the knowledge necessary to
succeed in such settings: if the multi-turn interactions center
around problem domains that are well represented in the
model’s training data (such as dialogue), well-trained LLMs
should already serve as powerful predictive models in such
settings. However, leveraging this predictive knowledge
to derive effective actions and strategies requires not just
emulating humans, but also planning and optimization.

Multi-turn reinforcement learning (RL) (Sutton & Barto,
2018) in principle offers a path to enable LLMs to do just
that. RL could enable goal-directed reasoning and plan-
ning in interactive multi-turn settings, including complex
dialogue, games, and tool use. We hypothesize that RL
could serve as a powerful tool for LLM training, not only
for training models to accord with human preferences, but
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My favorite traditional dish from my 
hometown is nasi goreng, a delicious fried 
rice dish that is often served with chicken, 

shrimp, and various spices.

Yes, my city is located on the coast and is 
surrounded by water. 

Yes, the city I am from is Jakarta. 

Is the city you are from Jakarta? 

Is your hometown located near a 
coastline or body of water?

What is your favorite traditional dish 
from your hometown? 

There are walls to your left, below you

There are walls above you, below you

There are walls to your left, below you

There are walls to your right, to your left

move right

move left

move up

move left

LLM

Guess My City Maze

Figure 1. Overview of LMRL-Gym: We show sample trajectories
from two tasks in our benchmark. In the Guess My City task, the
agent learns to ask questions to guess the city the oracle is from,
while in the Maze task, the agent learns to make the correct moves
based on cues from the oracle.

more generally to accomplish tasks in an intentional and
goal-directed manner. Text generation can be viewed as a
sequential decision-making process, treating a sequence of
tokens as a trajectory. Many tasks, such as successfully an-
swering questions or eliciting a desired reaction from a user,
can then be framed as optimizing some reward function
over these trajectories. However, despite extensive interest
in RL for LLMs in recent years, much (though not all) of the
recent research in this area has focused on “single-step” RL
problems, where a single response is optimized for some
quality metric, typically derived from human preference
signals (Stiennon et al., 2020; Ziegler et al., 2020; Ouyang
et al., 2022; Bai et al., 2022a; Anthropic, 2023; Ramamurthy
et al., 2023; Christiano et al., 2023; Casper et al., 2023).

While some works have sought to apply RL for multi-
turn tasks (Singh et al., 1999; Li et al., 2016; Shah et al.,
2016; Kwan et al., 2022), particularly for goal-directed dia-
logue (Lewis et al., 2017; Verma et al., 2022), there has been
comparatively little research on improving the underlying
RL algorithms and very little head-to-head comparison on
same sets of tasks. This is perhaps unsurprising: it is easier
to evaluate improvements to algorithms for single-turn text
generation as compared to multi-turn generation. Multi-turn
dialogue requires an interactive evaluation procedure rather
than just a static dataset. There is no established protocol
for such evaluations, and the “gold standard” constitutes
costly and time-consuming studies with human participants.

In this work, we aim to address this challenge and make
it possible for RL algorithm researchers to iterate on de-
veloping better RL methods for multi-turn language-based
interaction tasks, such as dialogue and games. We posit
that benchmarking RL algorithms for LLMs presents a very
different set of challenges and merits a different set of so-

lutions compared to other benchmarks in NLP. While most
NLP benchmarks are based on standard supervised machine
learning paradigms, with a training set and a test set (Mar-
cus et al., 1993; Tjong Kim Sang & De Meulder, 2003;
Socher et al., 2013; Rajpurkar et al., 2016; Wang et al.,
2019; Williams et al., 2018), RL benchmarks require sim-
ulators that the trained agents can interact with to measure
their performance. In this paper, we use an LLM to simulate
a conversation partner in dialogue tasks. While the behavior
of the LLM may deviate from human behavior, we verify
in a human study in Appendix A that our LLM simulators
produce natural text reflecting human norms of conversa-
tion. However, our goal is not to utilize this approach to
benchmark whether LLMs are good at talking to humans,
but rather as a way to test RL algorithms with datasets that
are sufficiently difficult and complex to gauge how effective
they might be if they were then trained on data from real
humans. Specifically, our benchmark aims to rigorously
stress-test the ability of RL algorithms to enable complex
goal-directed behaviors in LLMs. To this end, LMRL-Gym
also includes a set of text-based strategy games, in addition
to the dialogue tasks, that are aimed at providing a more
controlled and focused diagnostic assessment of specific RL
capabilities.

Our proposed benchmark, LMRL-Gym, consists of 8 tasks.
Three tasks are Interactive Dialogue tasks designed to simu-
late real-world interactions with humans, requiring informa-
tion gathering (20 Questions, Guess My City) and negotia-
tion (Car Dealer). Five tasks are RL Capability Tests, which
are text games designed to isolate specific capabilities of RL
training. Each task comes with an offline dataset that can be
used for offline RL training, and a “simulator” that can be
used to evaluate the performance of the agents in multi-turn
interactive tasks. We provide a research framework and
toolkit for researchers and practitioners to get started with
multi-turn RL for LLMs. This framework includes imple-
mentations of PPO (Schulman et al., 2017), ILQL (Snell
et al., 2022a), and several baseline methods, implemented in
an extensible way designed for future development of tasks,
experimentation, and algorithm design.

2. Related Works
Datasets, benchmarks, and libraries. Benchmarks and
datasets have been an important factor for driving progress
in NLP in domains that include machine translation (Tiede-
mann, 2012; Bojar et al., 2016), natural language un-
derstanding (Rajpurkar et al., 2016; Wang et al., 2019;
Hendrycks et al., 2020; 2021a; Ramamurthy et al., 2023),
and solving math problems (Cobbe et al., 2021). How-
ever, these tasks generally do not involve multi-turn inter-
action and do not come with rewards, making them hard to
adapt to RL research. For example, the standard for eval-

2



LMRL Gym: Benchmarks for Multi-Turn RL with LMs

uating dialogue agents has been to run a human subjects
study, but this is time-consuming and costly. Some works
have proposed text games for evaluating language-based
agents (Chevalier-Boisvert et al., 2018; Hausknecht et al.,
2019; Yuan et al., 2019; Fan et al., 2020; Hausknecht et al.,
2020; Guo et al., 2020; Ammanabrolu et al., 2020; Yao et al.,
2020; Hendrycks et al., 2021b; Singh et al., 2021; Wang
et al., 2022a; Yao et al., 2022; Jansen & Côté, 2022; Yao
et al., 2023; Zhang et al., 2023; Gontier et al., 2023) and
interactive dialogue (De Bruyn et al., 2022b;a). Our aim is
to cover a variety of problem settings that reflect challenges
in open-vocabulary interaction in addition to text games,
that also specifically evaluate offline RL capabilities, which
is not done by prior works. Motivated by successes in using
LLMs to generate synthetic data (Hausknecht et al., 2019;
Park et al., 2023; Bai et al., 2022b), our proposed tasks
are based on synthetic data. While such data may differ
from natural text, the scope of our benchmark is specific
to evaluating RL algorithms, not the ability to interact with
humans.

RL for language models. RL for language models has
seen success in aligning LLMs with human preferences
(RLHF) (Ziegler et al., 2020; Stiennon et al., 2020; Bai
et al., 2022a;b; Ouyang et al., 2022; Christiano et al., 2023),
optimizing non-differentiable objectives for machine trans-
lation (Wu et al., 2016; Nguyen et al., 2017; Kiegeland &
Kreutzer, 2021), generation (Tambwekar et al., 2019; Pang
& He, 2021; Pyatkin et al., 2022), dialogue (Cuayáhuitl et al.,
2015; Georgila & Traum, 2011; Li et al., 2016), question
answering (Pyatkin et al., 2022), and summarization (Paulus
et al., 2017; Böhm et al., 2019; Wu & Hu, 2018). These
include RL methods that learn by directly interacting with
the environment (online RL) (Carta et al., 2023) and RL
methods that only use a static dataset (offline RL) (Jaques
et al., 2020; Snell et al., 2022a; Jang et al., 2022; Verma
et al., 2022; , FAIR). However, many of these works operate
in the singe-step bandit setting, and do not consider multi-
turn goal-directed tasks. Our benchmark, on the other hand,
focuses on tasks involving multiple turns of interaction with
clearly defined goal-based reward functions.

Capabilities of LLMs. There has been a surge in the capa-
bilities of LLMs for generation (Ghazvininejad et al., 2017;
Radford et al., 2019), dialogue (Lewis et al., 2017; Jaques
et al., 2017; Shuster et al., 2022b; Snell et al., 2022b), ques-
tion answering (Pyatkin et al., 2022), summarization (Paulus
et al., 2017; Böhm et al., 2019; Wu & Hu, 2018), text-based
games (Narasimhan et al., 2015; Hausknecht et al., 2019),
translation (Gu et al., 2017), and more. However, these are
often supervised learning tasks that do not test the LLMs’
abilities to achieve a specific long-term objective. Research
on dialogue generation (Jaques et al., 2017; He et al., 2018;
Shuster et al., 2022b;a) has often focused on generating

feasible-looking agent dialogue without explicit considera-
tion for some multi-turn objective. Our benchmarks allow
for the development of algorithms that enable LLMs to inter-
act with an environment to achieve long-term objectives, by
providing tasks with online simulators and offline datasets.

3. Multi-Turn Generation with RL and
Language Models

This section introduces the conceptual foundations of us-
ing reinforcement learning for multi-turn generation with
language models. We introduce a definition of the Markov
decision process for language and a framework for the meth-
ods we focus on in this paper.

Definitions. We formalize language generation tasks as
a partially observable Markov decision process. We define
the state to be the history of tokens and an action as the next
token generated by the model. An observation is a single
token oi in the history. The probability of generating the
next token is dependent on all of the previous observation
tokens oi. Therefore the Markovian state s is formed by
the concatenation of all the previous tokens [o0, . . . , oi]. A
policy π defines the agent’s behavior by taking in the current
state s and outputting a new action token a to get si+1. The
environment assigns a reward r(s, a) based on the entire
sequence of tokens so far. The tokens in the state are either
generated by the policy π or the environment. For example,
in the Car Dealer task, the policy generates the tokens for
the Seller’s utterance and the environment generates the
tokens for the Buyer. The full history of their conversation
would form the state. A complete sequence of tokens is
referred to as a trajectory τ = o0, . . . , oT . The goal of
RL is to produce a policy π∗ that maximizes the expected
discounted sum of rewards over trajectories (τ ) under the
policy π∗ = argmaxπ Eτ∼π

[∑T−1
t=0 γtrt(st, at)

]
, where

τ represents the trajectory.

RL Algorithms. Several possible RL algorithms could be
used to train language models for multi-turn tasks (Jaques
et al., 2020; Verma et al., 2022; Snell et al., 2022a; Schulman
et al., 2017; Stiennon et al., 2022; Bai et al., 2022a; Casper
et al., 2023). Policy gradient methods, such as PPO (Schul-
man et al., 2017), directly compute the gradient of the RL
objective with respect to the model parameters. Value-based
methods estimate a state-action (Q) and/or state-value (V )
function. The state-action or state-value function forms a
policy by either 1) acting greedily with respect to the Q-
function or 2) perturbing the base model’s logits with the
learned action-value functions (Snell et al., 2022a). RL
methods for training LLMs can be online or offline. Online
methods repeatedly interact with the environment, collect-
ing additional data during training. Offline RL instead learns
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to extract the best behaviors from an existing, potentially
suboptimal dataset. Due to the large amount of existing text
interactions on the internet, offline RL is an ideal setting for
training language models. Therefore, our work primarily
focuses on benchmarking offline RL algorithms. However,
our tasks also fully support online RL and we include an
online PPO baseline in our evaluation.

4. The LMRL-Gym: Synthetic Benchmarks
for RL with Language

Our benchmark consists of 8 tasks grouped into two cate-
gories: RL Capability tasks and Interactive Dialogue tasks.
The RL Capability tasks focus on desirable capabilities for
RL algorithms for LLMs such as strategic decision-making,
credit assignment, trajectory stitching, partial observability,
and use of complex language. For the interactive dialogue
tasks, we model them after real-world interactions with hu-
mans, such as persuading someone to buy a car or playing a
guessing game. Below, we define the Interactive Dialogue
tasks, describe the specific capabilities of RL algorithms
for LLMs that our benchmark aims to evaluate through RL
Capability tasks, and summarize the data generation and
simulation process. We have provided example trials for
each task are shown in Figure 4, and a concise summary
of the dataset and task statistics in Table 1. The number of
trajectories and the average length of the trajectories varies
based on the complexity of the tasks.

4.1. Interactive Dialogue Tasks

The Interactive Dialogue Tasks aim to simulate real-world
goal-oriented dialogues. We focus on tasks where the agent
must make inferences about persuasive strategies and ac-
tively gather information by asking questions. Instead of
generating these interactions with humans, we generate such
interactions through simulating LLMs inspired by successes
in using LLMs to generate synthetic data. While the LLM
might not be as realistic as a real human, we have found
that human raters evaluated the LLM-generated text as quite
realistic in most cases, as discussed in our user study in Ap-
pendix A. You can find examples from the trained models
in Appendix I.

20Qs (Twenty Questions). This task tests whether an
agent can gather information about an unknown subject
through twenty yes or no questions. The agent must use
semantic knowledge of the object to infer the correct answer.

Guess (Guess My City). The Guess My City task per-
forms more complex forms of information gathering, involv-
ing open-ended questions about a city. This task evaluates
semantic knowledge of a specific city and the agent’s ability
to parse information from a free-form answer.

Figure 2. We have designed our RL Capability tasks as text games
that include Chess, Endgames, Wordle, Maze, and Text-Nav. These
tasks isolate some subset of the RL Capabilities outlined in Ap-
pendix B.1.

Car Dealer. The Car Dealer task tests the ability of RL
algorithms to learn successful car sale strategies. This in-
volves decision-making and credit assignment as different
persuasion strategies must be adopted for different kinds of
buyers.

4.2. RL Capability Tasks

A central objective of our benchmark is to evaluate the core
capabilities that RL enables in large language models. The
RL Capability tasks are text-based games designed to isolate
specific RL capabilities and are language analogs of tasks
where RL is known to succeed. These tasks include Chess,
Endgames, Wordle, Maze, and Text-Nav. Below we explain
the tasks and the motivation for including them as tests
for RL capabilities. Further details on task design for RL
Capability tasks can be found in Appendix B.

Desirable RL capabilities. RL shines in goal-directed
tasks that require multi-step planning and strategic decision-
making. Strategic decision-making can range from asking
follow-up questions (e.g. 20 Questions), to complex strategy
in chess. In RL, it is necessary that algorithms can prop-
erly perform credit assignment as rewards are often delayed
relative to the action pivotal to the outcome. A challenge
with optimizing POMDPs is partial observability, where
the agent must make deductions based on incomplete infor-
mation. In the offline RL setting, the ability of algorithms
to perform trajectory stitching is often desirable for learn-
ing optimal policies from suboptimal trajectories. Lastly,
when working with language models, it’s important that
algorithms remain effective in the face of complex language
with open-ended generation. We design our RL-capability
tests with the goal of stress-testing each of these capabilities,
as shown in Figure 2.

Maze and Text-Nav. We consider a Maze task as well as
the Text-Nav featuring more complex language. Though
Text-Nav involves stochastic language, the maze task has
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Agent Model
Fine-tuned 

GPT2

gpt3.5
agent: Is it an animal?
environment: No.
agent: Is it an inanimate 
object? 
environment: Yes.

…. 
agent: Is it a river?

environment: Yes.

Use gpt3.5 to 
generate data

No

Distill to environment 
and agent model to 
generate a new dataset

Fine-tune with RL

...

Is it an 
animal?

Data RL

Env Model
Fine-tuned 

GPT2

Figure 3. To generate data for conversational tasks, we use LLMs
as “simulators” for the task. Our simulators can be used to generate
offline data, to provide a “simulation environment” for evaluation,
to perform online training, and to compute rewards.
longer dataset trajectories and a more complicated layout.
To test partial observability, we include both a partially
observed and fully observed version of each task. In the
partially observed version, we remove information from the
maze description such that the agent must infer its position
from its move history. To emphasize the comparison to
a non-text-based version, we evaluate the Maze task in a
symbolic or grid-based environment seen in Appendix H.

Strategy games. We include three strategy games; Wor-
dle, Chess, and Endgames. Wordle tests partial observ-
ability over the space of possible words while Chess and
Endgames test the ability of the agent to form longer-term
plans. Endgames provide a simpler and more goal-directed
variation of the Chess task. By focusing on the endgame,
we encourage algorithms to learn strategy rather than memo-
rizing the opening moves of a chess game. A classic theoret-
ical endgame position consists of a position where the only
pieces on the board are the two kings and the queen. All
RL Capability tasks evaluate trajectory stitching capability
through the inclusion of suboptimal trajectories. Further
details about our dataset generation strategies can be found
in Appendix D. The Chess, Endgames, Maze and Text-Nav
tasks test credit assignment, because the RL algorithm must
learn to assign credit to good actions rather than a lucky start-
ing position in the maze task, or a weak opponent moves in
the Chess or Endgames task.

4.3. An Overview of Data Collection for LMRL-Gym

To make tasks in LMRL-Gym practical for benchmarking
RL methods, we must balance accessibility and realism. As
RL algorithms need to be evaluated by running a learned
policy, real-world tasks are comparatively inaccessible for
rapid iteration (e.g., if they require talking to real humans).
We therefore use simulators for our tasks, derived either
from text-based games, or conversational agents powered
by language models. Although this fully synthetic setup
sacrifices the realistic nature of tasks, we believe significant
gain in accessibility is worthwhile and will enable rapid RL
algorithm progress.

RL Capability tests. For each task, we use a simulator
such as a chess engine or maze solver to generate near-
optimal data and then we dilute the policy with suboptimal
data by taking suboptimal actions or using inferior poli-
cies. We also convert our task from a symbolic version to
a text-based version in a programmatic way as discussed
in Appendix B.

Interactive Dialogue tasks. For conversational tasks, we
leverage existing LLMs to generate our data, either with two
instances of LLMs “talking” to one another or all at once
through few-shot prompting as shown in Figure 3. To train
these LLMs, we use OpenAI’s GPT-3.5 to generate an initial
dataset by asking reasonable questions and answers out-of-
the-box, collecting a dataset of differing sizes depending on
the task. In the case of 20Qs and Guess My City, we col-
lected 1K conversations by querying GPT-3.5 (text-davinci-
003) to generate both sides of the conversation based on
specific prompts (which can be found in Appendix D.6. To
generate the dataset for training our algorithms, we fine-
tuned a FLAN-T5-XL guesser model and a FLAN-T5-XL
oracle model on their respective sides of the conversation.
Using these distilled models, we generated a new dataset of
100K conversations by having the two models talk to each
other. We conducted a similar process for the Car Dealer
task but with a larger model for fine-tuning (GPT2-XL).
When generating our datasets, we also spent considerable
effort to ensure diversity in the responses to ensure the col-
lection of high-quality data. For the Car Dealer task as an
example, this included providing different desired brands,
features, classifications (i.e. car or truck), and budgets in our
prompting to generate the datasets. Further details on our
data generation process for the three Interactive Dialogue
tasks can be found in Appendix D.

5. LMRL-Gym Research Framework for
Algorithm Development

We evaluate the LMRL-Gym tasks on both online and
offline RL algorithms, including variations of behavior
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Task 20Qs Guess Car Maze Text-Nav Wordle Chess Endgames

Size 100k 100k 19k 1.24k 2.5k 1m 625k 97.756k
avg length 14.9 18.8 16.5 19.7 12.2 4.82 46.7 11.9
std length 4.38 4.57 3.61 24.5 8.77 1.27 18.16 12.0

success rate 0.31 0.53 0.53 0.11 0.26 0.70 0.60 0.59
avg return 17.3 18.8 0.562 -19.7 0.258 -4.12 0.210 0.586
std return 2.56 4.12 0.422 24.5 0.424 1.59 0.970 0.492

Table 1. Statistics for all tasks in LMRL-Gym. Size represents the number of trajectories, the average length is the average length of
trajectories in the dataset where the unit is a response from the agent. The success rate is the proportion of trajectories that reach the
objective. Finally, the reward functions for each task are defined in Appendix D.

cloning, value-based RL methods, and online PPO. We
have selected these algorithms have they are currently
the state-of-the-art methods RL methods for LLMs
(Chen et al., 2021a; Snell et al., 2022a; Ouyang et al.,
2022). With these experiments, we expect to observe
(1) a significant spread in performance between the
different algorithms, highlighting differences between RL
algorithms; (2) room to improve beyond, such that our
benchmark can enable future algorithmic development. Our
project page (https://lmrl-gym.github.io/)
contains links to our open-sourced datasets (https:
//rail.eecs.berkeley.edu/datasets/
rl-llm-bench-dataset/) and research framework
(https://github.com/abdulhaim/LMRL-Gym).

BC, Filtered BC, Online Filtered BC. In line with stan-
dard RL nomenclature, we denote supervised fine-tuning
as behavioral cloning (BC). This baseline tests whether
LMs can effectively represent the behaviors in the datasets.
Filtered BC is identical, except only the most successful
examples in the offline dataset are used for fine-tuning, a
technique which is also used in (Snell et al., 2022a). Online
filtered BC collects data online using the current policy and
selects the most successful trajectories for finetuning. See
Appendix E for our data filtering criteria for each task.

Offline Value-based RL: MC Returns and ILQL.
Monte-Carlo returns (Kakutani, 1945) and Implicit Lan-
guage Q-Learning (Snell et al., 2022a) train a value V and
Q function. In MC Returns, we train the Q function with
an MSE to predict the reward-to-go. In ILQL we train the
two action-value (Q) functions using the Bellman backup
operator (Kostrikov et al., 2021). For both algorithms, the
Q and V functions are then used to perturb the logits of the
original BC model (see Equation 5).

Online RL: PPO. PPO (Schulman et al., 2017) is an on-
line RL algorithm widely adopted for training language
models with Reinforcement Learning from Human Feed-
back (Christiano et al., 2023; Stiennon et al., 2022; Bai et al.,
2022a; Casper et al., 2023). Unlike previous value-function

RL methods, PPO learns a language model policy with no
policy extraction step.

GPT4. Few-shot prompting is a common technique for
creating interactive language agents (Wang et al., 2023a). To
compare this to RL fine-tuning we few-shot prompt GPT4
using dataset examples and a detailed explanation of the
game for each task. The prompts can be found in our code
repository.

Training and evaluation protocol for algorithms. For
the BC and filtered BC methods, we initialize our models
with the pre-trained GPT2 weights (Radford et al., 2019)
and perform standard fine-tuning. We choose GPT2 rather
than a larger model due to memory and time constraints,
though we admit larger models would lead to a performance
boost. For each of the RL methods, we initialize the weights
of the base model with the weights from the BC checkpoint
and then continue finetuning with the RL objective. When
fine-tuning PPO, we limit the number of samples to less
than 100k. We report the hyperparameters that we used
for each task in Appendix E. We evaluate each policy by
measuring the average reward in the simulated environment
for each task.

Evaluation of data generation. When using LLMs as a
simulator for human actions, it is important to verify that
(1) the text produced by the LLM is natural and (2) LLM
simulator is not exploitable e.g. policy achieves high reward
without actually accomplishing the goal. In addition to vali-
dating the data generation process through statistics reported
in Table 1, we verified the naturalness of the LLM-produced
text in a user study of 40 users. In this study, found no
significant difference in the naturalness of conversations
generated by ChatGPT3.5 and our trained simulators and
agents Appendix A. For example, natural conversations im-
ply that the strategies employed by the Seller to convince the
Buyer followed human patterns of conversation and indicate
the robustness of the Buyer model to hacking. 20 Questions
and Guess My City are particularly hard to hack as they
require the agent to successfully guess the word. We verify
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this through automatic checks as described in our prompting
strategy in Appendix D.6.

6. Benchmarking Baseline RL Methods
In Table 2 we present the results for each method on each of
our text-game and interactive dialogue tasks. We normalize
the scores such that a score of 50 corresponds to the average
reward in our offline dataset, 0 corresponds to the lowest
possible score, and 100 to the highest score. Across all tasks,
we see that our offline RL baseline methods consistently
outperform both the dataset and the filtered BC policies,
demonstrating the efficacy of offline RL in representing a
more optimal policy than the best behaviors in the data.
Similarly, we see that online PPO generally improves over
the BC policies, highlighting the utility of learning from
online environment interaction. However, between RL Ca-
pability tasks and Interactive Dialogue tasks, we observe
desperate trends in which specific method performs the best.
We discuss this in more detail below.

Which algorithm performs best on the RL Capability
tasks? On the RL Capability tasks in Table 2, we see
ILQL has the highest performance across all methods for
most tasks. ILQL’s performance on these tasks is likely due
to its unique ability to perform trajectory stitching, enabling
it to outperform any individual trajectory in the dataset by
learning to compose the best parts of many different trajec-
tories. However, on the PO text-nav, chess, and endgames
tasks, we see that PPO outperforms ILQL, suggesting that
there is likely still much room for improvement in terms of
developing better offline TD-based RL methods for LLMs.

Which offline RL algorithm performs best for Interac-
tive Dialouge tasks? In contrast to the text-based games,
on our Interactive Dialogue tasks, we see that across all
tasks ILQL under-performs the simpler MC returns method.
This discrepancy with dialogue, may be because on the
more complex text-based tasks it is harder to scale full
TD-learning. In fact, we find that on the car-dealer task,
even filtered BC outperforms ILQL. Overall, these find-
ings demonstrate that there is much progress to be made in
developing better offline RL methods that can effectively
optimize LLMs in complex and realistic dialogue settings.

How does performance of language-based text games
compare with their symbolic-based counterparts? We
created a non-text-based version of the Maze task (an RL
Capability task) to investigate what difficulties arise from de-
ploying RL algorithms on language-based tasks. We found
that simple online and offline Q-learning was able to get
an optimal score on the maze. Therefore, the performance
symbolic maze is comparable to the fully observed Maze
task. However, on the PO Maze task, the language-based

methods perform significantly worse. This highlights room
for improvement in dealing with partial observability in en-
vironments with complex language. Further details for this
ablation are found in Appendix H.

How does prompting GPT-4 compare with RL fine-
tuning? On the RL Capability tasks, we find that our
much smaller RL finetuned models significantly outperform
GPT4, demonstrating the efficacy of RL for enabling com-
plex goal-directed behaviors in language models. However,
on the Interactive Dialogue tasks, GPT-4 outperforms or
performs on par with our best RL-trained models. These
dialogue tasks are likely to be much more in distribution
for GPT4 than our text-game RL capability tasks, and thus
GPT4’s broad world-knowledge, reasoning, and conversa-
tional abilities become synchronized allowing it to compen-
sate for its lack of goal-directed RL fine-tuning in these
scenarios. Nonetheless, the mere fact that finetuning small
models with RL enables us to close much of the gap to GPT4
on these more realistic tasks underscores the efficacy of RL
finetuning. In summary, we can see that RL algorithms
consistently outperform baselines like filtered BC on many
of the tasks. However, these results highlight significant
areas for growth. For example, the instabilities observed
in training PPO require further investigation beyond hyper-
parameter tuning. Moreover, the performance discrepancy
between ILQL and the simpler MC Returns highlights that
scaling full TD-learning to Interactive Dialogue settings is
another area for improvement.

7. Discussion
We propose LMRL-Gym, consisting of 8 tasks including
three Interactive Dialogue tasks, and five RL Capability
tests. We provide a research toolkit for practitioners to
get started with multi-turn RL for LLMs. Our objective
is enable the iteration and development of more effective
methods for language-based, multi-turn interaction tasks.
This includes enabling core capabilities in LLMs through
RL to perform complex decision-making, complex con-
versational interactions, credit assignment, and trajectory
stitching. Our evaluation shows promise of RL in several
tasks, with further room for improvement with a push for
better methods. We acknowledge several limitations when
designing tasks in our benchmark, including primarily lever-
aging smaller GPT-based LLMs to generate datasets and
finetune our LLM-based simulators. While we have pri-
marily trained and evaluated models with a maximum 1.5B
parameters, we have maintained a lower parameter count
to ensure accessibility for researchers with limited compu-
tational resources. In addition to releasing our code and
datasets, we share all of the hyperparameters we used to
train our models in Appendix E and provide more in-depth
insight into our results, training procedure, and evaluation
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alg. BC % BC MC Return ILQL Online PPO Online % BC GPT-4

Interactive Dialogue
20Qs 57.1 77.1 87.1 82.9 72.9 55.2 95.7

Guess 30.0 48.0 88.0 75.0 49.9 31.6 92.3
Car 44.5 54.8 57.2 46.3 50.5 40.4 53.5

RL Capability tasks

FO Maze 58.2 68.9 75.0 99.9 79.7 57.4 78.2
PO Maze 53.1 50.1 52.4 76.3 42.4 53.1 60.4

FO Text-Nav 53.7 65.1 71.9 91.8 87.1 74.5 67.5
PO Text-Nav 49.7 60.5 71.6 83.7 85.5 68.4 40.2

Wordle 79.9 79.1 94.9 97.7 84.2 95.2 15.4
Chess 47.2 42.9 46.5 47.3 48.0 47.2 0

Endgames 35.1 17.7 50.2 45.8 77.5 36.2 0

Table 2. Normalized reward for all tasks. We present the interactive dialogue tasks on top and the RL capability tasks on the bottom.
Value-based methods (MC and ILQL) generally outperform filtered BC, as we might expect in stochastic settings, though the relative
performance of ILQL and the simpler MC method is, perhaps surprisingly, reversed on the tasks with more complex language, suggesting
that there is room for improvement with such methods. Online RL with PPO often, but not always, improves over offline methods that are
not permitted to collect additional online interaction. To make the results more comparable across tasks, we normalize the average return
for each policy such that 0 is the minimum possible return, 50 is the dataset average return, and 100 is the maximum return for each task.
We also report the raw score results and evaluation details in Appendix F.

in Appendix F.

We would like to acknowledge that this work is part of a
larger effort to improve the performance of LLMs in settings
that require planning or multi-turn interactions including
multi-turn dialogue, complex tool use, multi-step games,
and other interactive applications. Our goal is to propose
tasks to evaluate different capabilities expected from an
LLM, such as common sense reasoning, credit assignment,
reasoning under uncertainty, information-seeking behaviors,
and trajectory stitching. We hope this benchmark inspires
the creation of more synthetic datasets and simulators for
dialogue and is used to design better algorithms to train
goal-directed LLM-RL models.

Impact Statement
This work aims to develop a benchmark for the advance-
ment of research in reinforcement learning and LLMs. We
generate datasets for tasks in our benchmark with existing
LLMs for dialogue tasks and online engines for text games,
adhering to best practices in data handling and ensuring
there is no personally identifiable or sensitive information
present in the generated datasets. We recognize that there
may be biases present in the datasets we collect, and have
taken steps to ensure a diverse and varied collection of re-
sponses from LLMs for our conversational task as detailed
in our data generation process in Appendix D. In consider-
ing the ethical implications of interactive RL, we acknowl-
edge the dual use implication of this research, particularly
centered around developing LLM simulators that could per-
form persuasion, manipulation, and addictive engagement
of users at a large scale. The optimization processes em-
ployed by such algorithms, which aim to maximize certain
objectives, raise ethical considerations when the optimized

outcomes may prioritize system goals over user safety and
alignment to human values. We have designed our datasets
and reward functions such that prioritize fairness and human-
aligned outcomes. By incorporating these considerations
when designing our framework, we aim to encourage the
development of reinforcement learning models and LLMs
that not only excel in performance but also adhere to ethical
standards.
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Cuayáhuitl, H., Keizer, S., and Lemon, O. Strategic dialogue
management via deep reinforcement learning, 2015.

De Bruyn, M., Lotfi, E., Buhmann, J., and Daelemans, W.
20q: Overlap-free world knowledge benchmark for lan-
guage models. In Proceedings of the 2nd Workshop on

9

https://aclanthology.org/D19-1307
https://aclanthology.org/D19-1307
http://www.aclweb.org/anthology/W/W16/W16-2301
http://www.aclweb.org/anthology/W/W16/W16-2301
https://github.com/CarperAI/trlx
https://github.com/CarperAI/trlx


LMRL Gym: Benchmarks for Multi-Turn RL with LMs

Natural Language Generation, Evaluation, and Metrics
(GEM), pp. 494–508, 2022a.

De Bruyn, M., Lotfi, E., Buhmann, J., and Daelemans, W.
Is it smaller than a tennis ball? language models play the
game of twenty questions. In Proceedings of the Fifth
BlackboxNLP Workshop on Analyzing and Interpreting
Neural Networks for NLP, pp. 80–90, 2022b.

(FAIR)†, M. F. A. R. D. T., Bakhtin, A., Brown, N., Di-
nan, E., Farina, G., Flaherty, C., Fried, D., Goff, A.,
Gray, J., Hu, H., Jacob, A. P., Komeili, M., Konath, K.,
Kwon, M., Lerer, A., Lewis, M., Miller, A. H., Mitts,
S., Renduchintala, A., Roller, S., Rowe, D., Shi, W.,
Spisak, J., Wei, A., Wu, D., Zhang, H., and Zijlstra,
M. Human-level play in the game of ¡i¿diplomacy¡/i¿
by combining language models with strategic reasoning.
Science, 378(6624):1067–1074, 2022. doi: 10.1126/
science.ade9097. URL https://www.science.
org/doi/abs/10.1126/science.ade9097.

Fan, A., Urbanek, J., Ringshia, P., Dinan, E., Qian, E.,
Karamcheti, S., Prabhumoye, S., Kiela, D., Rocktaschel,
T., Szlam, A., et al. Generating interactive worlds with
text. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 1693–1700, 2020.

Georgila, K. and Traum, D. Reinforcement learning of
argumentation dialogue policies in negotiation. pp. 2073–
2076, 08 2011. doi: 10.21437/Interspeech.2011-544.

Ghazvininejad, M., Shi, X., Priyadarshi, J., and Knight,
K. Hafez: an interactive poetry generation system.
In Proceedings of ACL 2017, System Demonstrations,
pp. 43–48, Vancouver, Canada, July 2017. Associa-
tion for Computational Linguistics. URL https://
aclanthology.org/P17-4008.

Gontier, N., Rodriguez, P., Laradji, I., Vazquez, D., and
Pal, C. Language decision transformers with exponen-
tial tilt for interactive text environments. arXiv preprint
arXiv:2302.05507, 2023.

Google. Bard, 2023. URL https://bard.google.
com/.

Gu, J., Cho, K., and Li, V. O. Trainable greedy decod-
ing for neural machine translation. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pp. 1968–1978, Copenhagen,
Denmark, September 2017. Association for Computa-
tional Linguistics. doi: 10.18653/v1/D17-1210. URL
https://aclanthology.org/D17-1210.

Guo, X., Yu, M., Gao, Y., Gan, C., Campbell, M., and
Chang, S. Interactive fiction game playing as multi-
paragraph reading comprehension with reinforcement
learning. arXiv preprint arXiv:2010.02386, 2020.

Hausknecht, M., Ammanabrolu, P., Marc-Alexandre, C.,
and Xingdi, Y. Interactive fiction games: A colossal
adventure. CoRR, abs/1909.05398, 2019. URL http:
//arxiv.org/abs/1909.05398.

Hausknecht, M., Ammanabrolu, P., Côté, M.-A., and Yuan,
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Jansen, P. A. and Côté, M.-A. Textworldexpress: Simulating
text games at one million steps per second. arXiv preprint
arXiv:2208.01174, 2022.

Jaques, N., Gu, S., Bahdanau, D., Hernández-Lobato, J. M.,
Turner, R. E., and Eck, D. Sequence tutor: Conserva-
tive fine-tuning of sequence generation models with KL-
control. In Precup, D. and Teh, Y. W. (eds.), Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 1645–1654. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/
jaques17a.html.

10

https://www.science.org/doi/abs/10.1126/science.ade9097
https://www.science.org/doi/abs/10.1126/science.ade9097
https://aclanthology.org/P17-4008
https://aclanthology.org/P17-4008
https://bard.google.com/.
https://bard.google.com/.
https://aclanthology.org/D17-1210
http://arxiv.org/abs/1909.05398
http://arxiv.org/abs/1909.05398
https://openreview.net/forum?id=qaxhBG1UUaS
https://openreview.net/forum?id=qaxhBG1UUaS
https://proceedings.mlr.press/v70/jaques17a.html
https://proceedings.mlr.press/v70/jaques17a.html


LMRL Gym: Benchmarks for Multi-Turn RL with LMs

Jaques, N., Shen, J. H., Ghandeharioun, A., Ferguson, C.,
Lapedriza, A., Jones, N., Gu, S., and Picard, R. Human-
centric dialog training via offline reinforcement learn-
ing. Empirical Methods in Natural Language Processing
(EMNLP), 2020.

Kakutani, S. Markoff process and the dirichlet problem.
Proceedings of the Japan Academy, 21(3-10):227–233,
1945.

Kiegeland, S. and Kreutzer, J. Revisiting the weaknesses
of reinforcement learning for neural machine transla-
tion. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp.
1673–1681, Online, June 2021. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2021.naacl-main.
133. URL https://aclanthology.org/2021.
naacl-main.133.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021.

Kwan, W.-C., Wang, H., Wang, H., and Wong, K.-F. A
survey on recent advances and challenges in reinforce-
ment learning methods for task-oriented dialogue policy
learning, 2022.

Lewis, M., Yarats, D., Dauphin, Y. N., Parikh, D., and Batra,
D. Deal or no deal? end-to-end learning for negotiation
dialogues, 2017.

Li, J., Monroe, W., Ritter, A., Galley, M., Gao, J., and
Jurafsky, D. Deep reinforcement learning for dialogue
generation, 2016.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B.
Building a large annotated corpus of english: The penn
treebank. Computational Linguistics, 19(2):313–330,
1993.

Mishra, S., Khashabi, D., Baral, C., and Hajishirzi, H. Cross-
task generalization via natural language crowdsourcing
instructions. In ACL, 2022.

Narasimhan, K., Kulkarni, T., and Barzilay, R. Language
understanding for text-based games using deep reinforce-
ment learning. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp.
1–11, Lisbon, Portugal, September 2015. Association for
Computational Linguistics. doi: 10.18653/v1/D15-1001.
URL https://aclanthology.org/D15-1001.
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A. User Study on Naturalness of
Conversations

We conducted a user study where we provided 40 partic-
ipants with 18 examples to annotate on a scale from 1 to
5, where 1 represents the least natural and 5 represents the
most natural conversation. 9 examples were from Chat-
GPT3.5, and 9 examples were generated from one of our
models (MC Returns). We showed the users examples from
20 Questions, Guess My City, and Car Dealer tasks. We
found the following ratings below. Note that each element
shows the percentage for the particular label. We found that
participants felt conversations from ChatGPT3.5 and the
MC model where equally natural of 55.56% and 58.53%
respectively.

Label GPT MC Model
1 14.07% 14.07%
2 30.37% 27.41%
3 20.00% 15.56%
4 20.00% 28.89%
5 15.56% 14.07%

Sum (≥ 3) 55.56% 58.52%

Table 3. Average of percentage ratings for three tasks for GPT and
for our MC Model

B. Further Details on Task Design
In this appendix, we provide definitions for our RL Capa-
bility tests, explain why certain tasks test certain properties,
and go into more detail underlying the interactions involved
in each task. We discuss both the RL Capability Tests and
the Interactive Dialogue Tasks.

B.1. RL Capabilities

A central objective of our benchmark is to evaluate the core
capabilities that RL enables in large language models. Some
of these capabilities are computational, and relate to core
decision-making irrespective of the considerations of natural
language, such as playing chess, while others are semantic.
The RL Capability Tests are text-based games designed to 1)
isolate specific RL capabilities and 2) be language analogs
of tasks where RL is known to succeed.

Strategic decision making. RL shines in goal-directed
tasks that require multi-step planning and strategic decision-
making. Strategic decision-making can range from asking
follow-up questions (e.g., in the 20 Questions task), to com-
plex strategy in chess. We chose to include Wordle to test
strategic decision-making in a partially observed environ-

ment. Chess and Endgames test strategic decision-making,
but in a fully observed environment and with a more difficult
strategy. Each of these tasks tests the ability of the agent to
plan over a game multiple moves in length to reach a goal.

Complex language. Our benchmark includes realistic lan-
guage and interaction scenarios, requiring LLMs to combine
their knowledge from pretraining to help solve tasks dur-
ing RL finetuning. Rather than focusing entirely on simple
causal logic and strategy of the sort found in text games,
several of our tasks specifically emphasize the use of re-
alistic language. The Maze, Text-Nav, Chess, and Chess
Endgames are all text-based representations of symbolic
tasks where RL has shown success. We include both the
Maze and Text-Nav because they are very similar tasks but
are different in that Text-Nav includes more complicated tex-
tual descriptions and Maze has a more complicated layout.
We leave the exploration of further applications of complex
language to the Interactive Dialogue tasks.

Credit assignment. In RL, rewards are often delayed rel-
ative to the action that was pivotal to the outcome. A seller
agent might state a particularly compelling feature of the
product and then, several turns later, complete a successful
sale. RL must determine the statements that led to the good
outcome, and reinforce them. Chess, Endgames, Maze and
Text-Nav test credit assignment, because success in the task
is dependent on factors the agent cannot control, such as the
starting location in Maze and Text-Nav or the opponent’s
moves in Chess and Endgames. Therefore the RL algorithm
must learn to correctly assign credit to good actions rather
than lucky wins.

Partial observability. In language tasks, the state consists
of the entire history of tokens, and an agent may need to
examine this entire context to infer the correct state. The
mental states of a speaker in a dialogue (e.g., whether the
buyer is impatient in a selling task), previously observed
facts in a guessing game, and other hidden variables might
induce partial observability. We focus on the effect that
partial observability has on performance by including both
fully observed (FO) and partially observed (PO) versions of
the Maze and Text-Nav tasks.

Trajectory stitching. A key capability of offline RL is the
ability to perform trajectory stitching. Trajectory stitching
refers to the capability of algorithms to learn from optimal
actions taken in suboptimal trajectories. This capability is
especially desirable when learning from offline data with
a high percentage of suboptimal data. All of the RL Capa-
bility Tests test trajectory stitching, because they include
suboptimal data. The inclusion of suboptimal requires an of-
fline algorithm to utilize information from suboptimal data
to generate optimal trajectories. Further details about our
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Label Percentages for GPT Percentages for MC Model
Car Dealer Guess City 20 Questions Car Dealer Guess City 20 Questions

1 - Not Natural 4.44% 13.33% 24.44% 8.89% 11.11% 22.22%
2 - Slightly Unnatural 24.44% 35.56% 31.11% 17.78% 40.00% 24.44%
3 - Neutral/Natural 20.00% 24.44% 15.56% 17.78% 20.00% 8.89%
4 - Quite Natural 24.44% 22.22% 13.33% 31.11% 20.00% 35.56%
5 - Very Natural 26.67% 4.44% 15.56% 24.44% 8.89% 8.89%

Table 4. User study of humans rating conversations from GPT and from our MC model for three tasks: Car Dealer, Guess City, and 20
Questions.

-= Living Room =-
You are carrying nothing on you right now. 

You make out a table…. There are unblocked 
exits to the east, south and west. Available 
actions:...

No

There are walls to your left, The goal is 
at position 8, 6. Your current position is 
at position 5, 3. There are walls to your 
left, below you. 

Is it an animal?

– Twenty Questions –

Is it an inanimate object?

Yes

– Fully Observed Maze –

move up

– Car Dealer –

Hi. I'm looking for a Honda SUV with a backup 
camera. Can you show me what you have? 

Good morning!... How can I assist you today?

Of course! We have a great selection of Honda 
SUVs …Would you like me to go over the 

details?

– Fully Observed Text-Nav –

pick up stale food

Figure 4. Example trials for tasks in LMRL-Gym. Each task requires the agent to perform a multi-turn interaction with an environment –
either a text game or another LLM simulating a human speaker. Full details of tasks are provided in Appendix D.

dataset generation strategies can be found in Appendix D.

B.2. RL Capability Tasks

Maze. We design a maze task and maze-solving dataset
to test the credit assignment and trajectory stitching capabil-
ities discussed in Appendix B.1. We test trajectory stitching
by including highly suboptimal data. We test credit assign-
ment by restricting the generation of the data such that the
only dataset trajectories that reaches the goal start near the
goal. We accomplish this by splitting the maze up into sym-
metrical submazes and restricting all traversed states in a
dataset trajectory to a given submaze. The fully observed
version of the maze (FO) includes the coordinates in the
maze in each state, whereas the partially observed version
only includes the history of actions. We design the reward
function such that the agent receives a reward of −1 for
non-goal states and 0 for goal states.

Text-based Navigation (Text-Nav). We design a text-
based game based on navigation in a house environment
using a modified version of the TextWorld engine (Côté
et al., 2018). This task tests credit assignment and trajectory
stitching like the maze task as well as testing the ability of
the agent to parse more complex language, and learn which
text is relevant and not relevant to solving the task at hand.

Wordle. We use the game of Wordle as a flexible unit-
test task for assessing the ability of our language models to
execute complex information-seeking behavior in a partially
observed setting. In the game Wordle the agent is given at
most 6 attempts to guess a hidden 5-letter word. After each
guess, the agent is told whether each letter in the guessed
word is: 1) in the hidden word and in the right position, 2)
in the hidden word but not in the right position, or 3) not in
the hidden word. Through this process, each step provides
the agent with more information on what the correct word
would be and narrows the possible choices for the final
word. Since Wordle involves reasoning about words at the
level of individual letters, this can induce issues for standard
language model tokenizers. Therefore, we represent words
as a sequence of space-separated letters, which will cause
most standard LM tokenizers to automatically represent
each letter as a separate token.

Chess. We create a text-based chess task to test the strate-
gic decision-making, credit assignment, and trajectory stitch-
ing abilities of an RL algorithm. To generate the data, we
have Stockfish 15.1 simulating the agent of various strengths
play against another environment Stockfish engine with elo
1200 simulating the environment. This test trajectory stitch-
ing, because the agent needs to make good and legal moves
in losing positions as well as winning positions. We use
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FEN (Forsyth-Edwards Notation) notation to represent the
board state at each turn and we utilize the SAN (Short Alge-
braic Notation) to represent each action, both of which are
standard notations used by the chess community.

Endgames (Theoretical Chess Endgames). Chess
endgames provide a simpler and more goal-directed vari-
ation of the chess task. By focusing on the endgame, we
encourage algorithms to learn strategy rather than memo-
rizing the opening moves of a chess game. A classic the-
oretical endgame position consists of a position where the
only pieces on the board are the two kings and the queen.
Although the board position appears simple, a sequence of
carefully calculated moves is required to win. A simpler
board state allows language models to make progress with-
out fewer computational resources. We use an ϵ-greedy
dataset generation process, meaning we generate an optimal
move with probability ϵ and a random move with probability
1 − ϵ. This forces the model to trajectory stitch and learn
from optimal moves in failed trajectories and not suboptimal
moves in successful trajectories.

B.3. Interactive Dialogue Tasks

For the interactive dialogue tasks, we chose two tasks
that involve rational decision-making (20Qs, Guess) and
information gathering and one that involves negotiation
(Car Dealer). These tasks aim to simulate real world
interactions between humans.

Unlike in supervised learning, where training and valida-
tion losses serve as reliable indicators of performance, in
RL, these metrics do not provide a meaningful measure of
policy effectiveness (Sutton & Barto, 2018). Instead, the
policy must interact with the environment for evaluation.
However, in the case of language-based RL tasks, relying
on human evaluators to conduct thousands of assessment
rollouts throughout and after training becomes infeasible.
To address this challenge, we have built simulators with an-
other LLM for tasks involving dialog and carefully scripted
environments for text-game tasks. While simulation may
not perfectly replicate human natural language in social sit-
uations, it provides a strong indicator to assess the efficacy
of an RL method (Park et al., 2023).

20Qs (Twenty Questions). This task tests information
gathering to see if a policy can successfully reason about
an unknown subject based on context to determine what it
is. Additionally, it also evaluates the ability of the model
to understand semantics, as it also needs knowledge about
the objects in question. In twenty questions, one player (the
oracle) thinks of an object, and the agent (the guesser) tries
to guess what it is by asking a series of yes-or-no questions.
In this interaction, the oracle serves as the environment, and

the agent learning a policy to solve the game is the guesser.

Guess (Guess My City). This task simulates a more com-
plicated guessing game, where one player (the oracle) is
from a specific city, and the other player (the guesser) tries
to guess what city the oracle is from. Here, the guesser can
ask not only yes and no questions, but can also ask open-
ended questions. This task tests strategic decision-making
and the ability of algorithms to handle complex language, as
it allows the agent to go beyond learning to ask yes/no ques-
tions and learning to ask questions open-ended questions
that provide the agent with more information.

Car Dealer. This task simulates a conversation between
a car buyer and a car dealer, each with different strategies
for getting the best deal. The buyer wants to buy a certain
type of car within a certain budget, and the car dealer wants
to complete the sale ideally with a high sale price. We
have designed the task such that there exist three different
kinds of sellers and three different buyers, each primed with
a different strategy. Hence, agents should learn to make
agreements with buyers who are most compatible with their
strategy. This allows us to test the ability of RL algorithms
to learn strategic decision-making and credit assignment, by
learning which strategies led to a successful sale of the car.

C. Further details on desiderata for effective
multi-turn RL

A crucial aspect of training RL models involves assessing,
both during and after the training process, the extent to
which the trained policy has successfully accomplished its
objectives. Although LLMs are able to perform well on
tasks, do not have any way of knowing how to solve a
specific task like a text game or selling a car, because they
need to train on the particular game/customers/etc.

Unlike in supervised learning, where training and valida-
tion losses serve as reliable indicators of performance, in
RL, these metrics do not provide a meaningful measure of
policy effectiveness (Sutton & Barto, 2018). Instead, the
policy must interact with the environment for evaluation.
However, in the case of language-based RL tasks, relying
on human evaluators to conduct thousands of assessment
rollouts throughout and after training becomes infeasible.
To address this challenge, we have built simulators with an-
other LLM for tasks involving dialog and carefully scripted
environments for text-game tasks. While simulation may
not perfectly replicate human natural language in social sit-
uations, it provides a strong indicator to assess the efficacy
of an RL method (Park et al., 2023).

Measure of Success. Similar to the point on being easy
to evaluate, our tasks must have a clear measure of success.
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For example, if a deal is made, or if a word is correctly
guessed, or the game is won these are clearly distinct from
a deal not being made or losing the game. This provides
a clear goal for the agent to achieve and also make it easy
for researchers to compare methods. In addition this allows
for a intuitive reward design where we reward the agent for
success and penalize for failure.

Unit Test Functionality. We aim to design a benchmark
such that some of the tasks can be used to test and isolate RL
capabilities as described in Appendix B.1. This means that
we create a benchmark that emphasize some capabilities
over others. For example, we design a maze task such that
it evaluates the credit assignment and trajectory stitching
capabilities, but uses more simple language. Other tasks
such as twenty questions test the complex language and
partial observability capabilities with less emphasis on credit
assignment.

Task-Specific Reasoning. In our tasks we utilize informa-
tion and reasoning problems that a large language model is
unlikely to have seen in the pre-training data. This means
that the algorithm must adapt to a specific task environment
through fine-tuning. For example, it is unlikely that the
algorithm will have experienced a specific maze layout or
the preferences of a specific customer in the pre-training
data.

Suboptimal Data. RL has the advantage of being able
to use suboptimal data in order to learn more optimal be-
haviors and therefore learn a policy better than the policy
represented in the dataset. As discussed in the previous
section on capabilities enabled by RL, the way that RL can
do this is by stitching together optimal parts of suboptimal
trajectories or learning to assign credit to the optimal actions
within suboptimal trajectories. In addition, suboptimal data
can be utilized by RL to learn the dynamics of the MDP
outside of the space traversed by optimal trajectories.

D. Dataset Generation, Statistics, & Rewards
We provide further details on how each dataset was gener-
ated as well as relevant statistics.

D.1. Maze

We aim to collect our 1.2k trajectories in such a way that it
will challenge the algorithm to perform trajectory stitching
and credit assignment. We do this by splitting up the maze
into three ”submazes” and then controlling generation
such that the dataset trajectories are restricted to one of
the submazes. The trajectories themselves are generated
using a policy such that 15% of the actions are taken by
a suboptimal maze solver and the remaining 85% of the

actions are random.

This tests trajectory stitching, because there are no optimal
paths from the start to the goal thereby forcing the algorithm
to trajectory stitch. Furthermore, this also tests credit assign-
ment, because the only paths which successfully reach the
goal are the ones that start in the same submaze as the goal.
Therefore the algorithm must learn to realize that successful
trajectories occur because of taking the correct actions, not
because of random chance. The reward function is 0 for
every action that takes the agent to the goal, -1 for every
move that is not the goal. Each episode has a maximum of
100 moves.

D.2. Text-Based Navigation

We design a text-based game based on navigation in a house
environment using a modified version of the TextWorld
engine (Côté et al., 2018). The house environment consists
of 10 uniquely named rooms with various interactable
objects that can be opened, closed, picked up, or placed.
The agent is tasked to pick up stale food from the living
room and place it into the fridge in the kitchen. At the
beginning of each episode, the agent spawns at a random
room in the house. The state of the environment consists of
the following components: (1) the room that the agent is
currently in, (2) the objects that the agent currently holds,
(3) the objects in the room that the agent can interact with,
and (4) the exits the agent can take (as a cardinal direction).

Like in the maze task, we collect data so that algorithms
must perform both trajectory stitching and credit assignment
to successfully solve the task. We do this by partitioning
the rooms in the house into two halves based on proximity
to the kitchen. We consider two behavior policies that col-
lect the dataset, each of which behaves greedily-optimal in
one half of the rooms, and uniformly at random otherwise.
Therefore, if the agent spawns in rooms farther from the
kitchen, trajectory stitching is required to learn a successful
trajectory. Moreover, successful trajectories in the dataset
will only be due to the agent spawning in a room close to the
kitchen, which can only be recognized with proper credit
assignment. The reward is 1 for reaching the goal state and
0 for every state that is not the goal state.

D.3. Wordle

For wordle we define the environment to use a subset of 400
words from the official wordle vocabulary list. We then gen-
erate the dataset using a policy that samples a word uniform
at random from this vocabulary with 66% probability and
otherwise samples a word from the vocabulary that meets all
known letter constraints. This policy achieves a reward of
-4.12, which is far worse than the -1.94 reward achieved by a

17



LMRL Gym: Benchmarks for Multi-Turn RL with LMs

high performing scripted policy, which we use to represent
a loose upper bound for this task. We generate 1 million
trajectories for training and 100k trajectories for evaluation,
using our suboptimal policy. The reward is -1 for every
word that is not a final guess and 0 for every word that is
not.

D.4. Chess

We collect our data for the chess task using Stockfish 15.1 to
generate both sides of the board. The Stockfish opponent in
the dataset is Stockfish with an elo of 1200 which matches
the environment, and the Stockfish engine with the white
pieces has levels ranging from an elo of 800 to 1600. We
choose to keep the level of the Stockfish opponent fixed so
that there are no inconsistencies between the dataset and
the evaluation of the chess agent in the environment. When
generating the dataset, we first uniformly randomly select
a Stockfish elo y between 800 and 1600 and then generate
100 games of chess play between the Stockfish agent of elo
y and the opponent of elo 1200. In addition to storing the
state and action, we also store the opponent’s move and the
elo of the Stockfish agent used to generate the agent policy
in that game so that the dataset can be filtered by elo used.
The reward is 1 for a move that results in victory, 0 for a
legal move and -1 for an illegal move.

D.5. Chess Endgames

We generate the dataset by first selecting a random legal
theoretical endgame position and a probability ϵ. Then
we generate a game from the random position, making a
random move with probability ϵ and an optimal computer
move with probability 1 − ϵ. The opponent in the dataset
and the evaluation environment is Stockfish elo 1200. We
only include positions with a Queen, Queen and Rook,
Rook, and two Rooks and select 30,000 random starting
positions for each variation. (i.e. 30,000 positions with only
a Queen in addition to the two Kings, another 30,000 with
only Queen and Rook etc) for a total of 120,000 theoretical
endgame positions.

Because there are more restrictions on this version of the
task with fewer pieces on the board, we check how many
states in the dataset are unique and we find that there are
1,086,314 unique states in the dataset which accounts for
93% of the states being unique. In addition, 38.28% of the
moves in the dataset are generated by the stockfish engine.
In the dataset of won games, 94.8% of the states are unique
and 41.78% of the games are made by the engine with
58.623% of the total states in the dataset of victorious games.
The reward is the same as for chess.

D.6. Twenty Questions

The dataset we collect consists of 100K full conversations
between the guesser and the oracle. The oracle can choose
from a set of 158 unique objects taken from 17 different cat-
egories of objects/animals. Each object has a roughly equal
amount of conversations in the dataset but varies in terms
of how many conversations are successful in guessing the
object. However, every object has at least one conversation
where it is guessed correctly to facilitate learning. For the
reward function, since we want the guesser to guess the cor-
rect word in as few guesses as possible, the reward function
reflects this by penalizing the guesser for each question that
does not guess the correct word.

r(question) =

{
0 if question guessed word
−1 otherwise

(1)

If the guesser model correctly guessed the word, then the
trajectory ends. Over twenty questions, the maximum total
sum of rewards is 0 if the guesser guessed the word on the
first question, whereas the minimum is −20 if the guesser
did not guess the word in twenty questions.

The method for collecting the dataset is as follows. For
each conversation, we select uniformly at random from the
above list the word that the oracle is answering question
about. The oracle is an LLM (OpenAI’s GPT3.5) given the
following prompt. In our prompts, we denote variables that
we fill in with variable data with {{variable}}.

You are a question answering oracle.

You will answer each question about

an object with Yes or No. If the

answer could be both, answer with

the most typical scenario. Here are

a few examples:

example 1:

object: Computer

question: Does the object use

electricity?

answer: Yes.

explanation of answer: Computers

need electricity to function.

example 2:

object: Cup

question: Is the object a piece of

furniture?

answer: No.

explanation of answer: A cup is a

utensil, not a furniture.
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example 3:

object: Pen

question: Is the object alive?

answer: No.

explanation of answer: A pen is not

a living organism.

example 4:

object: Apple

question: Is it edible?

answer: Yes.

explanation of answer: An apple is

an edible fruit.

Answer the question about the object

truthfully.

object: {{word}}
question: {{question}}
answer (yes or no):

By using the OpenAI TextCompletion API, we can extract
from the generated text either ”yes” or ”no”.

We also prompt another LLM (the same model as the oracle)
to generate questions for the guesser. The prompt for the
guesser changes depending on the input to the model and
how far along it is in its guessing process. The following
prompt is used for the first guess:

You are playing a game of twenty

questions. You can ask 20 yes-no

questions to determine the identity

of an object chosen by an oracle.

Each turn, you can ask a question

and receives a "Yes" or "No" as the

answer. You are smart, so you will

ask the question that will narrow

down the possible objects as much

as possible. Don’t get stuck on one

idea and try to branch out if you

get stuck.

Generate the first yes-no question

you will ask to determine the

object.

The following prompt is used for the subsequent guesses:

You are playing a game of twenty

questions. You can ask 20 yes-no

questions to determine the identity

of an object chosen by an oracle.

Each turn, you can ask a question

and receives a "Yes" or "No" as

the answer. You have already asked

{{conversation length}} questions.

You are smart, so you will ask the

question that will narrow down

the possible objects as much as

possible. Don’t get stuck on one

idea and try to branch out if you

get stuck.

Here are the questions you’ve asked

and their corresponding answers:

{{list of questions and answers, e.g.

Is the object alive? No.}}

Based on what you know about the

object so far, generate the next

yes-no question you will ask to

determine the object.

The following prompt is used for the final guess after the
guesser has guessed 19 times:

You are playing a game of twenty

questions. You can ask 20 yes-no

questions to determine the identity

of an object chosen by an oracle.

Each turn, you can ask a question

and receives a "Yes" or "No" as the

answer. You have already asked 19

questions, so this is your final

guess.

Here are the questions you’ve asked

and their corresponding answers:

{{list of questions and answers, e.g.

Is the object alive? No.}}

Based on what you know about the

object so far, generate your final

guess of what the object is. Only

guess one object.

Is the object

We determine whether the guesser has correctly guessed the
word, and thus ending the conversation, by using the NLTK
POS tagger to check that the only nouns that the question
contains are the correct words, and that they appear at the
end of the sentence.

We used these prompts to generate 1000 conversations by
prompting the GPT3 back and forth using the response of
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one to add to the response of the other as described. After-
wards, we fine-tuned two FLAN-T5-XL models with our
collected conversations to generate 100K more conversa-
tions. The FLAN-T5-XL oracle also serves as the environ-
ment for the RL environment when we evaluate the trained
policy.

D.7. Guess My City

This dataset also consists of 100K full conversations be-
tween the guesser and the oracle. The oracle can choose
from a set of 100 unique cities, which we selected by look-
ing at the most populated cities in the world. Each city has
a roughly equal amount of conversations in the dataset but
varies in terms of how many conversations are successful
in guessing the object. However, every object has at least
one conversation where it is guessed correctly to facilitate
learning. The reward function is the same as that for 20
Questions, with a similar data generation and prompt struc-
ture. However, we do include constraints in the prompt to
make sure that the name of the city or country it is in is not
revealed in the answer from the oracle.

D.8. Car Dealer

This dataset consists of 19k conversations between a car
dealer and a buyer. The car dealer and the buyer have three
distinct strategies each that they employ. We design the car
dealer and buyer pairs such that the car dealer is best at
selling to a particular buyer personality, but often fails to
sell to the other buyer personalities. This ensures that the
seller can learn information about the buyer and i.e. their
persona to figure out if they can form an agreement. The
buyer personalities are 1) a buyer that loves discounts 2) a
buyer that wants a lot of cool features on their car and 3) an
impatient buyer. The car dealer personalities are 1) a car
dealer that loves to give discounts 2) a car dealer that talks
a lot about the features of the car and 3) a very concise car
dealer.

We created this protocol of creating car dealer and buyer
strategies in order to encourage the car dealer to employ
diverse negotiation tactics. The ideal car dealer would be
able to be concise, provide the right amount of discounts,
and talk enough about the car to get the buyer interested
without overwhelming them. By employing such a strategy
of buyer and car dealer personas, we ensure that algorithms
that do well in this task will learn effective strategies,
understanding of language, and interpretation of the other
speaker, amongst many other persuasive techniques. We
seek to show that our baseline algorithms do learn to
improve their strategy over the dataset.

In the conversation below, the buyer and car dealer are

unable to form an agreement as their strategies do not align.

Background buyer: The buyer will

never buy from the seller unless

given a discount.

Background seller: The agent never

gives discounts, never talks about

the features of the car, and is very

concise.

Preferred brands: Tesla

Preferred features: ["Apple

CarPlay/Android Auto", "Bluetooth",

"Blind spot monitoring", "Navigation

system", "Leather seats",

"Sunroof/moonroof", "Remote start",

"Heated seats", "Third-row seating",

"Backup camera"], "budget": "90k"

Agent: Good morning, how can I

assist you today?

Buyer: Hi, I’m interested in

purchasing a Tesla Minivan.

Agent: Great choice. Our

dealership has a variety of Tesla

models available.

Buyer: Do you have any discounts

available?

Agent: I’m sorry, but we don’t

offer discounts.

Buyer: Without a discount, I’m not

sure if I can afford it.

Agent: I understand. The Tesla

Minivan is a premium vehicle with

advanced features.

Buyer: Is there any flexibility

with the price?

Agent: Our prices are fixed, and we

don’t negotiate.

Buyer: I really want the Tesla

Minivan, but I can’t go over my

budget of $90k.

Agent: I appreciate your budget

constraint. Let me check the

available options for you.

Agent checks inventory.

Agent: We do have a Tesla Minivan

with all the features you mentioned,

priced at $95k.

Buyer: That’s above my budget. Is

there anything you can do to bring

the price down?

Agent: I’m sorry, but as I

mentioned earlier, our prices are

fixed.
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Buyer: Is there any possibility

of getting the same features in a

different model within my budget?

Agent: Unfortunately, the Tesla

Minivan is the only model that

offers all the features you

mentioned.

Buyer: In that case, I’m afraid I

won’t be able to purchase the car.

Agent: I understand. Thank you for

considering our dealership. If you

change your mind, feel free to reach

out.

Buyer: (probability of buying:

0%, purchase price: $0) [End of

conversation]

Probability of buying: 0

Purchase price: $0

In the conversation below, the buyer and car dealer have
similar personas of wanting to hear and speak about the
features of the car respectively.

Background buyer: The buyer will

only buy the car if it meets all of

their specifications.

Background seller: The agent never

gives discounts and loves to talk a

lot about features of the car.

Preferred brands: "Lexus",

"preferred features": [Navigation

system"], "budget": "70k"

Agent: Good afternoon! Welcome

to our car dealership. How can I

assist you today?

Buyer: Hi there! I’m looking for

a Lexus Minivan with a Navigation

system.

Agent: Excellent choice! The Lexus

Minivan is a top-notch vehicle with

plenty of impressive features. The

Navigation system is definitely

a must-have. Let me show you

some options we have available.

Buyer: That sounds great. I’m

quite particular about my budget,

though. I have a maximum of $70,000

to spend.

Agent: Noted. We have a few Lexus

Minivans in stock that fall within

your budget. Let me tell you

about their features and options.

This way, you can make an informed

decision.

Buyer: I appreciate that, but I

really want to stick to my budget.

I won’t be able to go over $70,000.

Agent: I understand your concern,

but unfortunately, we do not offer

any discounts or negotiate on

prices. However, let me assure

you that the Lexus Minivan is worth

every penny. Its advanced safety

features, luxurious interior, and

reliable performance make it a great

investment.

Buyer: I understand your point,

but I’m afraid I won’t be able to

stretch my budget beyond $70,000.

Agent: I completely respect your

budget and decision. Let me show

you a Lexus Minivan that fits your

requirements perfectly. It has all

the features you desire, including

the Navigation system. The price of

this model is $72,000.

Buyer: I really like the sound

of that car, but I can’t go over

my budget. Is there anything else

available within my price range?

Agent: I apologize for any

inconvenience caused. Let me check

our inventory to see if there are

any other options that meet your

requirements and budget.

Agent checks inventory

Agent: Good news! I found another

Lexus Minivan that meets all your

specifications and falls within your

budget. This model is priced at

$69,500.

Buyer: That sounds much better!

I’m interested in that car.

Agent: I’m glad to hear that! This

particular Lexus Minivan is a great

choice. It has the Navigation

system, as well as additional

features such as leather seats,

a sunroof, and advanced safety

technology. The total price is

$69,500.

Buyer: That sounds perfect! I’ll

take it!

Agent: Fantastic! I’m thrilled

that we could find the perfect car

for you. Your total purchase price

will be $69,500.

Buyer: Probability of buying a car:
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100%

Purchase price: $69,500.

Agent: Congratulations! You’ve

made an excellent choice. I’ll

start the paperwork and get

everything ready for you.

We provide another conversation with different value pref-
erences for the buyer, where the buyer forms an agreement
with the seller that is higher than their budget:

===========

Preferred Features: Honda, Remote

start, Third-row seating, Bluetooth,

Navigation system, Backup camera,

Apple CarPlay/Android Auto, Heated

seats.Budget: $10000

===========

Seller: Welcome to our car

dealership. How can I assist you

today?

Buyer: I’m looking for a Honda

Sedan with remote start, third-row

seating, Bluetooth, navigation

system, backup camera, Apple

CarPlay/Android Auto, and heated

seats. Seller: I have a Honda Sedan

available. No discounts or features

to discuss. The price is $15,000.

Buyer: That’s too expensive. My

budget is $10,000.

Seller: I understand your budget is

10, 000.Thepriceis15,000.

Buyer: I can’t go over $10,000.

That’s my limit.

Seller: I understand your limit is

$10,000. The price is $15,000.

Buyer: I really want a Honda Sedan,

but $15,000 is too much for me.

Seller: I understand, but the price

is $15,000.

Buyer: Okay, I’ll take it for

$10,000. Seller: I appreciate your

interest. The price is $15,000.

Buyer: Fine, I’ll pay $15,000.

Let’s get this done. Seller: Thank

you for your decision. The price is

$15,000.

We provide a sample example of a conversation in the train-
ing and evaluation set respectively.

Evaluation Example:

Background buyer: The buyer will

only buy the car if it meets all of

their specifications.

Background seller: The agent never

gives discounts and loves to talk a

lot about features of the car.

Preferred brands: "Tesla",

"preferred features": [Backup

camera, Leather seats"], "budget":

"30k"

Seller: Good afternoon! Welcome

to our car dealership. How can I

assist you today?

Buyer: Hi there! I’m looking to

buy a Tesla Sedan with a backup

camera and leather seats. Do you

have any available?

Seller: Absolutely! We have a few

Tesla Sedans in stock that meet your

specifications. They are packed

with features and I’m sure you’ll be

impressed. Let me show you what we

have.

Buyer: Great! I’m excited to see

them.

Seller: This first Tesla Sedan

we have is a 2020 model. It has

a beautiful backup camera that

provides a clear view of your

surroundings. The leather seats

are incredibly comfortable and add

a touch of luxury to the interior.

The price for this model is $35,000.

Buyer: $35,000 is a bit higher than

my budget of $30,000. Is there any

flexibility in the price?

Seller: I apologize, but we do

not offer discounts on our cars.

However, let me assure you that this

Tesla Sedan is worth every penny.

It is an excellent investment for

the long term and offers unmatched

performance and safety features.

Buyer: I understand, but it’s

important for me to stick to my

budget. Is there any other Tesla

Sedan that comes closer to my

budget?

Seller: I completely understand

your concern. Let me check our

inventory for other options.[Agent

takes a few moments to check

inventory]

Agent: I have good news! We have

another Tesla Sedan that is a 2019
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model. It also has a backup camera

and leather seats. The price for

this model is $28,000.

Buyer: That sounds much better.

Can you tell me more about this

specific model?

Agent: Of course! This 2019 Tesla

Sedan is in excellent condition.

It has the same backup camera

and leather seats as the previous

model I showed you. It also comes

with advanced safety features and

impressive performance capabilities.

The previous owner took great care

of it, and it has low mileage. I

truly believe this is an amazing

deal.

Buyer: The price is within my

budget, and the features sound

appealing. I’m leaning towards this

one. Can you provide any additional

incentives or options?

Agent: I’m sorry, but as I

mentioned earlier, we do not offer

discounts or incentives. However, I

can assure you that this Tesla Sedan

is a fantastic choice. It meets

all your specifications and offers

exceptional value for the price.

Buyer: I understand. Given that

it meets all my requirements and is

within my budget, I think I’m ready

to make the purchase.

Agent: That’s great to hear! I

believe you’ve made an excellent

choice. The predicted probability

of you buying this car is 100%, and

the purchase price is $28,000."

E. Hyperparameters for All Tasks

F. Evaluation Details
We normalize Table 2 such that 50 is the dataset average
return, 0 is the minimum, and 100 is the maximum. The
normalization process works as follows: if the reward is
greater than the average return we calculate:

score = 50 +
raw return − dataset average

max raw return − dataset average
× 50

Otherwise if the reward is less than the average return we

calculate

score =
raw return − min raw return

dataset average − min raw return
× 50

In the following sections, we discuss more in-depth the
evaluation protocol for the various tasks.

F.1. Maze

For evaluating the maze task, we take 32 rollouts from each
of the 25 possible positions and then average the result. In
the environment, the agent has 100 moves to successfully
make it to the goal otherwise the episode will terminate.
Since the agent receives -1 reward for every move that does
not reach the goal state the minimum possible goal state, the
minimum reward is -101. We compute the dataset average
reward, by sampling actions according to how likely they are
in the dataset. We compute the maximum possible reward
by evaluating the optimal policy from each of the possible
start positions and averaging the results.

F.2. Chess

To evaluate the chess agent, we have it play 1000 games
against Stockfish elo 1200 from the beginning of the game.
As the game progresses, the board positions get increasing
OOD for the chess agent so the chess agent often makes
illegal moves. To measure this, we track the percent of
illegal moves as well as the average episode length for the
full game chess agent.

For filtered BC, we simply trained the agent only on games
in the dataset which resulted in a victory for the agent, thus
denoted BC-Won. Note that BC-Won achieves the worst
performance of all algorithms listed. This is because there
is a distribution shift between the state visited by a BC-
Won agent and the rollouts of the policy. In other words,
the ”winning positions” and the ”rollout positions” are two
overlapping but distinct distributions especially since the
full-game chess agent did not succeed in winning any games.

F.3. Chess Endgames

To evaluate the chess agent in endgame positions, we select
645 positions not contained in the training dataset and which
are not trivially solvable. By trivially solvable, we mean a
position which could be solved by stockfish in one to four
moves. In order to check this, we use Stockfish’s evaluation
tools to select positions which are a mate in 15 or greater.
We then have the chess agent play one game from each
position of these positions and keep these positions fixed for
evaluation purposes. In this case we consider filtered BC to
be training BC on all of the trajectories which ended in a
victory.
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20Qs, Guess,
Car

Maze FO, PO Text-Nav Chess Endgames Wordle

BC
model gpt2-medium,

gpt2-medium,
gpt2-xl

gpt2-small gpt2-small gpt2-small gpt2-small gpt2-small

lr 1e-4 1e-4 1e-4 1e-4, 1e-5, 1e-4 1e-4
batch size 128 128 128 128, 256, 32 128 128

%BC
model gpt2-medium,

gpt2-medium,
gpt2-xl

gpt2-small gpt2-small gpt2-small gpt2-small gpt2-small

lr 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
batch size 128 128 128 128 128 128
filter method top 10% success success success success top 30%

MC

model gpt2-medium,
gpt2-medium,
gpt2-xl

gpt2-small gpt2-small gpt2-small gpt2-small gpt2-small

lr 1e-4 1e-4 1e-4 1e-4 1e-4 3e-5
batch size 128 128 128 64 64 32
β 16 16 4 8 8 64
discount γ 0.99 0.99 0.99 0.99 0.99 1.0
cql weight 0.001 0.5 0.001 1e-4 1, 1e-4 0.01

ILQL

model gpt2-medium,
gpt2-medium,
gpt2-xl

gpt2-small gpt2-small gpt2-small gpt2-small gpt2-small

lr 1e-4 1e-4 1e-4 1e-4 1e-4 3e-5
batch size 128 128 128 128 128 32
β 4 16 1 8 8 32
cql weight 0.001 0.5 0.001 1e-4 1 0.01
expectile τ 0.7 0.99 0.7 0.7 0.7 0.7
discount γ 0.99 0.99 0.99 0.99 0.99 0.99

PPO

model gpt2-medium,
gpt2-medium,
gpt2-xl

gpt2-small gpt2-small gpt2-small gpt2-small gpt2-small

lr 1e-6 1e-6 5e-6 1e-5 1e-5 3e-5
rollouts 2048 512 4000 1024 512 512
batch size 128 128 128 128 128 32
GAE λ 0.95 0.95 0.95 0.95 0.95 0.95
discount γ 0.99 0.99 0.99 0.99 0.99 0.99
KL coef. 0.01 0.1 0.01 0.01 0.01 0.001
clip range 0.2 0.2 0.2 0.2 0.2 0.2
BC loss
weight

0 0 0 0 0 10

Table 5. Hyperparameters for baseline experiments.
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alg. BC % BC MC Return ILQL Online PPO Online % BC GPT4

FO Maze -72.1 -56.4 -48.1 -6.97 -37.7 -71.7 -39.7
PO Maze -79.5 -82.9 -80.3 -52.9 -91.7 -79.5 -88.0

FO Text-Nav 0.39 0.54 0.63 0.88 0.81 0.62 0.52
PO Text-Nav 0.25 0.49 0.58 0.76 0.80 0.53 0.21

Wordle -2.81 -2.85 -2.16 -2.04 -2.63 -2.15 -5.42 -
Chess -22.3 -56.5 -28.2 -21.4 -16.0 -22.3 -81.3

Endgames 0.112 -0.439 0.588 0.452 0.814 0.112 -22.87
20Qs -16.0 -14.6 -13.9 -14.2 -14.9 -16.8 -13.0
Guess -17.0 -15.2 -11.2 -12.5 -15.1 -19.2 -10.13
Car 44.5 54.8 57.2 46.3 50.5

Table 6. Raw statistics for all tasks. In the main paper, the statistics are normalized. Refer to Table 2

Reward Min Score Dataset Average Score Reward Max Score

FO Maze -101 -83 -6.84
PO Maze -101 -83 -25.75

F0 Text-Nav 0 0.26 1
PO Text-Nav 0 0.26 1

Wordle -6 -4.12 -1.94
Chess -401 0.21 1

Endgames -1 0.586 1
20Qs -20.0 -17.3 -12.6
Guess -20.0 -18.8 -8.56

Car 0

Table 7. In this table we report the minimum, dataset average, and maximum reward used to normalize the results in Table 6 to get
Table 2.

As we can see in the table above, PPO Online significantly
outperforms all of the other methods. To investigate whether
PPO Online’s performance is simply due to dataset collected,
we fine-tune our BC agent on the PPO Online dataset. We
do ablations where the data used for training is from the last
50, 25 and 10 rounds of data collection for the PPO policy.
We choose to do this ablation because we expect the quality
of the PPO policy performance increases in the later rounds
of data collection.

F.4. Wordle

To evaluate Wordle, we rollout 4096 trajectories against
the environment and report the average reward across all
rollouts.

G. Baseline Details
G.1. MC Details

The target for these heads is the discounted return-to-go:

Rt =

T−1∑
i=t

γi−trt (2)

and we use MSE loss for the Q head:

J(Q) = E(st,at,rt:T−1)∼D
[
(Q(st, at)−Rt)

2
]

(3)

(4)

where D represents the dataset. In MC, Q(st, at) represents
how much more rewards the policy will get if it takes action
at at the state st under some policy (in this case the policy
that collected the dataset).

During rollout, when sampling, we perturb the base BC
policy with the learned value-functions (Snell et al., 2022a).
Let πβ represent the policy trained with BC, and α represent
a scalar multiplier, then:

πMC(at|st) ∝ πβ(at|st)αQ(st,at) (5)

G.2. PPO Details

PPO Implementation Details Our PPO implementation
uses a learned value function to estimate an advantage base-
line. Our value function is fit using GAE (Schulman et al.,
2018) value estimates and is implemented as a linear head
on top of the same transformer as the policy. We apply clip-
ping to both the importance weights and the value function,
as is done in (Castricato et al., 2023). We also apply a KL
penality to the reward, as is standard for RLHF (Stiennon
et al., 2022). On some of our tasks, we add a supervised
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BC BC-Won ILQL MC Returns PPO Offline PPO Online

reward -23.189 -56.522 -20.46 -25.47 -20.90 -15.95

percent illegal 24.929% 34.91% 24.76 % 25.64% 23.05% 21.96%

episode length 51.01 92.02 47.96 53.44 48.69 44.19

Table 8. Results of chess agent in the full game positions against Stockfish Elo 1200.

BC % BC MC ILQL PPO Offline PPO Online

reward 0.112 -0.439 0.588 0.452 -0.019 0.814

percent victories 26.233 26.419 69.3 56.7 28.37 88.4

percent illegal 0.967 2.717 0.692 0.66 0.925 0.722

episode length 12.923 23.477 11.92 14.6 25.24 8.38

Table 9. Comparison between the different baseline methods. The best performance is achieved by PPO Online with a 0.13 gap in
performance between PPO Online and the next best-performing method of MC Returns. PPO Online attains overall the highest reward,
but BC-Engine wins more frequently and MC Returns and ILQL make fewer illegal moves.

learning, BC, loss term to the standard PPO loss to prevent
the model in distribution; this is similar to the approach
taken in (Ouyang et al., 2022), which adds a pretraining loss
term to the PPO loss to mitigate performance regressions
on some benchmark tasks during RLHF.

PPO Instabilities In some cases we observed training
instabilities with PPO in which the policy’s performance
would increase for a little bit and then collapse (see Figure 5).
We overcame these instabilities in PPO by 1) increasing the
number of rollouts 2) tuning the KL coefficient and 3).

H. Symbolic Maze Environment
The purpose of the fully-observed non-language-based
MazeGame was to set an upper bound on both sample ef-
ficiency and performance for the language-based versions.
Code to run experiments for the symbolic maze task can
be found here: REDACTED. We ran online and offline
Q-learning on this environment. The online Q-learning
method is DQN and the offline Q-learning method is CQL.
We found that Q-learning was able to perform optimally on
the Maze task in both the online and offline setting. We find
it interesting that although ILQL for the language version of
the Maze task matches the performance of CQL on the fully
observed non-language task, MC Returns, PPO, and BC do
not. On the other hand, MC Returns performs better than
ILQL on other, more complicated tasks. This discrepancy
highlights room for improvement for the RL baselines. The
results are shown in Table 11.

I. Generated Examples from Trained Models
We show an example of a conversation between BC model
(seller) and the oracle model (buyer):

===========

Preferred brands: Lexus, 46

features, backup camera, blind

spot monitoring, sunroof. Budget:

$90000.

===========

Seller: Good afternoon! How may I

assist you today?

Buyer: Hi there! I’m looking

for a Lexus SUV with a backup

camera, blind spot monitoring, and a

sunroof. Do you have anything like

that?

Seller: Absolutely! We have a few

models that fit that description.

Do you have a budget in mind?

Buyer: Well, I’d like to stay

around $90,000, but I’m willing to

go over that if I find the perfect

car.

Seller: Great! Let me show you our

selection. This Lexus SUV here has

all the features you’re looking for.

Have a seat inside and take a look.

Buyer: Wow, this is really nice!

How much does it cost? Seller: The

MSRP for this model is $87,000, but

we can work with you on the price.

Buyer: Hmm, that’s a bit high for

me. Do you have any other options?
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BC Complete Last 50 Last 25 Last 10 PPO Online

reward 0.112 0.201 0.17 0.189 0.235 0.814

percent victories 26.233 38.636 37.023 40.558 41.271 88.4

percent illegal 0.967 1.165 1.159 1.213 1.175 0.722

episode length 12.923 13.21 14.22 14.647 13.338 8.38

Table 10. Comparison between PPO Online and BC agents fine-tuned on the dataset collected by PPO during training. We chose to train
on the complete PPO dataset, the last 50 rounds, last 25 rounds, and last 10 rounds of data collected. PPO Online performance still far
surpassed performance of the BC agents trained on the PPO policy dataset. Furthermore, there is no substantive difference between
training on the complete PPO dataset and the PPO dataset collected in the last 10 rounds.

Figure 5. An example of an observed PPO training instability on the fully observed maze task.

alg. DQN CQL

Symbolic Maze 100.0 100.0

Table 11. Results for CQL and DQN on the symbolic maze envi-
ronment. These are normalized in the same way as results on LM
RL tasks.

Seller: Of course! We have this

similar model here for $80,000.

It’s a great car and has all the

features you’re looking for.

Buyer: That’s more in my budget.

Let me take a look inside.

Seller: Absolutely! And if you’re

interested, we could also discuss

financing options.

Buyer: I’m definitely interested in

financing. How does that work here?

Seller: Well, we have a few options

available. We can work with your

bank or credit union, or we can

discuss financing through our

dealership. We also have some

special offers and promotions

available that may be of interest

to you.

Buyer: That sounds good. I

definitely want to make sure I’m

getting the best deal possible.

Seller: Of course! We want to make

sure you’re completely satisfied

with your purchase. And this car

here is a great value for the

features you’re getting. Buyer:

You know what, I think I’m sold!

Let’s do this.

Seller: Wonderful! I just need to

get some paperwork started and we

can get the financing process going.

Congratulations on your new car!

We show a conversation between the MC model (seller) and
the oracle (buyer):

===========

Preferred brands: Audi,

Sunroof/moonroof, Leather seats,

Heated seats. Budget: $70000

===========

Seller: Good morning, how can I

assist you today?

Buyer: I’m looking to buy an Audi
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Sedan.

Seller: Certainly, we have a range

of Audi Sedans available. What

features are you interested in?

Buyer: I want a car with a

sunroof/moonroof, leather seats,

and heated seats.

Seller: I understand. Let me check

our inventory for Audi Sedans with

those features. (Pause)

Seller: We have a few options that

meet your requirements. The prices

range from $75,000 to $85,000.

Buyer: My budget is $70,000. Can

you offer a lower price?

Seller: I’m sorry, but we don’t

offer any discounts. The prices are

as listed.

Buyer: I really can’t go over my

budget. Is there anything you can

do? Seller: I apologize for the

inconvenience, but the prices are

fixed. We have quality Audi Sedans

that meet your preferences. Buyer:

(Sighs) Okay, let’s say I consider

going slightly over my budget. How

much would it be? Seller: The

closest option to your budget is

priced at $75,000. Buyer: Hmm,

that’s not bad. Can you go any

lower?

Seller: I’m sorry, but I can’t

lower the price.

Buyer: Alright, I’ll take it.

What’s the final price?

Seller: The final price is $75,000.

Buyer: Okay, let’s proceed with the

purchase then.

J. Human Evaluation Examples
You are playing a game of twenty

questions. You can ask 20 yes-no

questions to determine the identity

of an object chosen by an oracle.

Each turn, you can ask a question

and receives a "Yes" or "No" as the

answer. You are smart, so you will

ask the question that will narrow

down the possible objects as much

as possible. Don’t get stuck on one

idea and try to branch out if you

get stuck.

Human: Does the item belong

indoors?

Oracle: No.

Is the item used for playing sports?

Oracle: Yes.

Human: Is the item a ball?

Oracle: Yes.

Human: Do you throw the item?

Oracle: Yes.

Human: Do you bounce the item?

Oracle: No.

Human: Is it a baseball?

Oracle: No.

Human: Is it a football?

Oracle: Yes.

28


