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Handheld Mapping of Specular Surfaces using 
Consumer-Grade Flash LiDAR 

Tsung-Han Lin, Connor Henley, Siddharth Somasundaram, Akshat Dave, Moshe Laifenfeld, Ramesh 
Raskar 

Abstract-We propose an approach to leverage multi-bounce returns of a flash LiDAR on portable smartphones for 3D specular 
surface reconstruction. Traditional LiDAR systems assume that all returns are one-bounce returns, which can lead to an overestimation 
of the true mirror surface and cause it to appear as if there is a hole. However, in reality, returns from mirror surfaces follow 
multi-bounce paths. We operate with a consumer-grade, coarse multi-beam flash LiDAR, enabling real-time mapping on an affordable 
and portable smartphone. To address the challenges posed by the coarse setup, where the transmitter and receiver are co-located, we 
propose solving the association problem using the 'reciprocal pair' algorithm. This algorithm can distinguish between different types of 
bounces from multi-bounce returns. We have demonstrated detection over multiple consecutive frames for dense mirror mapping. In 
addition to 3D reconstruction, we show that multi-bounce returns enhance performance in applications such as segmentation and 
novel view synthesis. Our method can be integrated with state-of-the-art learned-based models, enhancing their robustness in 
discerning ambiguous scenarios. Importantly, our approach can map various specular surfaces like mirrors and glasses without 
assuming specific shapes, and it can operate on non-perpendicular specular-diffuse surface pairs. 

Index Terms-3D Reconstruction, Specular Surfaces, Multi-bounce Returns, Segmentation, Novel View Synthesis 

1 INTRODUCTION 

D ETECTION and mapping of specular surfaces like mir­
rors and glass remains a challenging unsolved problem 

in computer vision. These surfaces are ubiquitous indoors, 
yet most vision algorithms fail to handle their presence, 
often resulting in 3D reconstructions containing holes along 
specular surfaces, as shown in Fig. 1. The ability to properly 
detect, segment, and map mirror-like surfaces is critical for 
performance in downstream applications (e.g. robotics). For 
example, robots can collide with specular surfaces or fail 
to properly grasp them if they are not properly detected 
and mapped. In this work, we present a practical specular 
surface mapping approach that utilizes emerging consumer­
grade flash LiDAR cameras. 

1.1 Ambiguities with Conventional RGB and LiDAR. 

Existing RGB and depth cameras suffer from inherent ambi­
guities that make specular detection challenging. Each pixel 
in a camera measures light traveling in a scene along a 
certain ray. If this ray intersects a diffuse object, the pixel 
measurement will encode information about the surface of 
the object. However, if this ray intersects a specular surface, 
the surface will strongly reflect light from other parts of the 
scene along the camera ray. In this case, the light arriving 
at the pixel encodes information about other portions of the 
scene, as shown in Fig. 2(a). The problem of determining 
whether a pixel is measuring a specular reflection from 
a different part of the scene or a diffuse reflection along 
the camera ray is fundamentally ambiguous. As a result, 
3D mapping is challenging under the presence of specular 
objects using RGB cameras alone. 

• T.-H.L., C.H., S.S., A.D., R.R. are with Massachusetts Institute of 
Technology. 

• M.L. is with Apple. 

♦ 

Fig. 1. Mirror Reconstruction with Conventional LiDAR. Conven­
tional LiDAR systems fail to map the 3D shape of mirrors because 
mirrors reflect light away from the sensor. As a result, holes appear in 
the reconstruction. 

This ambiguity persists with scanning LiDAR sys­
tems as well. If a LiDAR scanner emits a laser spot to­
wards a specular point, the system will measure the time 
of flight (ToF) of three-bounce light traveling from the 
camera -+ specular point -+ a diffuse point in the scene -+ 
specular point -+ camera. Determining if this returned light 
is three-bounce light or one-bounce light that traveled past 
the mirror is also challenging, as shown in Fig. 2(b ). The 
same issue holds: there exists an ambiguity as to whether 
the light remained along the same camera ray or whether it 
interacted with other parts of the scene. This effect can also 
be seen in Fig. 1, where the camera mistakenly places points 
behind the mirror plane. 

1.2 Importance of Two-Bounce Returns. 

Conventional scanning LiDAR only measures light that is 
emitted and reflected along the same ray, leading to ambi­
guities between one-bounce and three-bounce light. In this 
work, we leverage ToF of two-bounce returns to resolve 
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Fig. 2. (a) RGB camera. RGB cameras struggle to differentiate real vs 
virtual images. (b) Conventional Scanning LiDAR. Scanning LiDAR 
cannot differentiate one-bounce vs three-bounce returns. (c) Flash Li­
DAR. Flash LiDAR can detect two-bounce returns from co-linear paths, 
as well as one-bounce and three-bounce returns. 

these ambiguities, as shown in Fig. 2(c). Two-bounce light 
paths occur when light is emitted along a ray that is different 
from the ray that the light returns from, as shown in Fig. 2(c). 
Measuring two-bounce light allows us to measure light 
bouncing either from specular to diffuse surface or from 
diffuse to specular surface. The presence of two-bounce 
light indicates the presence of a specular surface, enabling 
detection of real and virtual objects. 

1.3 Two-bounce Flash LiDAR. 

Flash LiDAR emits multiple laser spots at once and en­
ables detection of two-bounce returns. Henley et al. [1] 
demonstrate proof-of-concept results of utilizing a simu­
lated flash LiDAR for specular surface mapping. However, 
their approach relies on a non-confocal illumination setup, 
where the receiver is able to densely sample the scene 
spatially using mechanical scanning. As shown in Fig. 3, 
dense sampling of the receiver enables classification of two­
bounce returns by using the fact that non-confocal returns 
must be two-bounce. In practical scenarios, however, it is in­
feasible to have such high-resolution non-confocal captures 
on consumer devices, which are currently often limited to 
12 x 12 spatial resolution, making two-bounce classification 
challenging. In our work, we show how to disambiguate 
one-bounce, two-bounce, and three-bounce returns for spec­
ular surface mapping. 

1.4 Key Insight: Reciprocal Pairs and Multiple Frames. 

To overcome the low spatial resolution of consumer-grade 
LiDAR sensors, we introduce the reciprocal pair constraints 
to classify one-, two-, and three-bounce light. The recip­
rocal pair constraints is based on the observation that a 
specular surface can observe two- and three-bounce light, 
and a diffuse point can observe one- and two-bounce light. 
Combining this observation with Helmholtz reciprocity, we 
are able to derive conditions to detect pixels that measured 
light traversing the same paths, but in opposite directions. 
These reciprocal pair pixels can then be used to triangulate 
the position of diffuse and specular points in the scene. By 
moving the handheld device and scanning the scene in an 
unstructured manner, we can detect more reciprocal pair 
pixels and gradually accumulate a point cloud of the mirror. 
The reciprocal pair constraints and camera motion enable us 
to solve the mirror mapping problem even with low spatial 
resolution and multiplexed illumination on consumer-grade 
smartphone LiDAR devices. 

Henley et al. Setup 
Research-grade LiDAR 

X v 

Our Capture Setup 
Consumer-grade LiDAR 

Tx & Rx rays 
co-located 

v X 
2b coinciding with 2b not coinciding with 2b coinciding with 2b not coinciding with 

I b & 3b Ignored I b & 3b measured I b & 3b measured I b & 3b unmeasured 

Tx: Transmitter i.e. Laser Source 
Rx: Receiver i.e. SPAD pixel 

3b: three-bounce return 
2b: two-bounce return 
I b: one-bounce return 

Fig. 3. Comparing our consumer-grade capture setting with prior 
research-grade capture work. Henley et al. [1] consider a research­
grade setup with receiver (Rx) having a dense grid of SPAD pixels and 
thus can measure two-bounce returns that do not coincide with one­
bounce return, enabling a straightforward separation of one-, two- and 
three-bounce returns. In this work, we rely on a sparse grid of 12 x 12 
pixels in smartphone LiDAR. In this setting, we can only measure two­
bounce and three-bounce returns that coincide with one-bounce returns 
making it challenging to identify two-bounce returns. 

1.5 Our Contributions. 

The key challenge with our problem statement is that we 
are relying on consumer-grade LiDAR cameras that have 
low spatial resolution and flash illumination. As a result, 
detection and classification of one-, two-, and three-bounce 
signals becomes challenging, unlike the setup used by Hen­
ley et al. [1], which had a dense grid of pixels. Our key 
contribution is to derive a set of reciprocal pair constraints 
that enable this classification, from which we can identify 
diffuse and specular pixels and map their 30 locations. To 
the best of our knowledge, we are the first to develop an al­
gorithm that utilizes multi-beam returns for mirror mapping 
on consumer-grade LiDAR. Finally, we demonstrate that 
harnessing multi-bounce returns offers benefits beyond 30 
reconstruction, extending to applications like segmentation 
and novel view synthesis. We improved over other state-of­
art learned-based models on these applications, particularly 
in handling ambiguous scenes. Code will be released. 

Our contributions are summarized as follows: 

• Specular Mapping with Consumer-Grade Devices: 
We demonstrate specular mapping with consumer­
grade LiDARs that have low spatial resolution and 
flash illumination. 

• Reciprocal Pair Constraints: We derive constraints 
that enable classification of one-, two-, and three­
bounce light and use these constraints to map diffuse 
and specular surfaces. 

• Downstream Performance Improvement: Our 
multi-bounce LiDAR specular mapping technique 
enhances the performance of existing specular seg­
mentation, reconstruction, and novel view synthesis 
techniques that use RGB information. 
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2 RELATED WORKS 

2.1 RGB-based Mirror Mapping 

Early works in specular surface estimation from standard 
RGB cameras use geometric techniques to leverage the 
optical flow of reflections under a moving camera [2], [3], 
[4], the observation of specular highlights in varying light 
or camera position [5], [6], [7], and the distortions of known 
printed [8], [9], [10] or projected patterns [11],. [12], [13], 
[14], [15], [16]. Supervised, or learned-based techniques have 
been proposed for per-pixel segmentation of mirrors [17], 
[18]. These methods rely on RGB image cues, such as the 
mirror frame, texture discontinuity inside and outside the 
mirror, that may be confusing in some scenarios. Recently 
neural radiance field based-techniques [19], [20], [21] have 
focused on novel view synthesis in the presence of specular 
and gloss surfaces by modeling multi-view reflections. MS­
NeRF [19] cannot estimate the mirror depth correctly, and 
MirrorNeRF [20] requires correct mirror segmentation as in­
puts. Our method is physic-based that computes the correct 
segment and depth to the mirror, and so is more generalized 
to different scenes. 

2.2 Dense-depth-based Mirror Mapping 

Mei et al. [22] fuse RGB and ToF cameras, using ToF depth 
discontinuities as a mirror cue. However, this approach 
struggles to distinguish actual open spaces in the scene (e.g. 
doorways) from virtual holes caused by mirrors. Our multi­
bounce modeling provides a physics-based distinction be­
tween real scene holes and virtual depth holes caused by 
mirror reflections being mistaken as direct line-of-sight. 

2.3 LiDAR-based Mirror Mapping 

Other LiDAR methods rely on glare [23] or edge [24] detec­
tion, while we do not require these potentially ambiguous 
cues. Yang et al. [25] exploit LiDAR symmetry, but only 
model a specific three-bounce corridor case. We handle 
more general layouts analyzing one, two, and three bounces. 
Raskar et al. [26] propose two-bounce ToF to map specular 
surfaces, but without direct scene illumination. Kutulakos et 
al. [27] reconstruct specular surfaces through triangulation, 
they assume a known 3D reference point, whereas we make 
no such assumptions. O'Toole et al. [28] reconstruct specular 
geometries, but possess full control over the illumination 
pattern via a projector and can capture multiple images, 
making reconstruction well-posed. We show a method that 
can identify reciprocal pairs with a fixed illumination pat­
tern and a single capture, which is more ill-posed. 

Henley et al. also exploit multi-bounce returns [l], by ~s­
ing a single-beam and multi-beam flash to scan glass or rrur­
ror surfaces. However, their method assumes two-bounce 
returns can only arrive at the receiver from directions that 
are not coincident with any transmitted light rays, by in­
terpolating between one-bounce and three-bounce returns. 
Their method lacks the ability to distinguish two-bounce 
returns detected by typical, consumer-grade flash lidars that 
can only receive along the directions of transmitted beams. 
As a result, their method is unsuitable for baseline compar­
ison as it renders no detection on our device. Our method, 
by contrast, was designed to be used on consumer-grade 

flash lidar systems with coarse, low-resolution receivers. 
Using reciprocal pair constraints, we are able to distinguish 
between one-, two-, and three-bounce signals that return 
along transmitted beam paths. 

3 RECIPROCAL PAIR CONSTRAINTS 

Scanning a specular surface with conventional lidar systems 
is challenging because mirrors only reflect light in one 
direction, often away from the lidar sensor. As a result, the 
sensor doesn't receive any physical information that can be 
used to estimate the mirror geometry. In this section, we 
will describe how we can exploit multi-bounce signals from 
a consumer-grade handheld flash lidar. We first derive the 
reciprocal pair constraints, which enables classification of 
one-, two-, and three-bounce light. We then used the de­
tected reciprocal pair pixels and the corresponding bounce 
classification to map the 3D geometry of the specular and 
diffuse surfaces. 

3.1 Experimental Setup. 

Our lidar system consists of a pulsed laser and SPAD 
array sensor. The pulsed laser simultaneously illuminates 
a grid of 12 x 12 laser spots, and each pixel in a 12 x 12 
grid in the SPAD array is viewing one of these 144 spots. 
The laser spots and pixels have same viewing directions, 
and thus illuminate and image the same scene point. For 
consumer-grade devices, we assume that the sensor and 
laser are roughly co-located. This property enables us to 
derive convenient geometric relationships between the time­
of-flight measurements certain sets of pixels, referred to as 
reciprocal pairs. 

3.2 Reciprocal Pair Pixels. 

Reciprocal pairs are pairs of pixels that share the same multi­
bounce light paths. Consider the scene in Fig. 4. Pixel A 
is observing a point xd on the diffuse surface and pixel B 
is observing a point X 8 on the specular surface. Suppose 
that pixel B emits light towards X 8 • By Snell's Law, the 
incident light will be reflected by angle 0 relative to the 
surface normal towards Xd- The light from xd will then be 
measured by pixel A because diffuse surfaces reflect light 
in all directions. The position of xd relative to the surface 
normal at x 8 ensures that the incident laser pulse will be 
reflected to xd. 

Pixel A Measurement. Pixel A is observing a diffuse point 
xd and therefore will measure one-bounce and two-bounce 

I A A 
light. The one-bounce light travels the path xe ➔ xd ~ xe . 

The two-bounce light originates from the laser at p1.Xel B 
and travels the path x: ➔ Xs ➔ xd ➔ x:. 

Pixel B Measurement. Pixel B is observing a specular 
point Xs, and therefore will measure two-bounce and three­
bounce light but not one-bounce light. The two-bounce 

I B 
light travels the path x: ➔ xd ➔ X 8 ➔ xe . The three-
bounce light travels the path x: ➔ Xs ➔ xd ➔ Xs ➔ x: • 

Estimating Geometry from Reciprocal Pairs. Using the one­
bounce and two-bounce signals measured at pixel A, we can 
estimate the positions of xd and x 8 • The distance from the 
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Pixel A 
Measurement 

Constraint 1: Peak Match 

tfB = tfB 

Pixel A 

Pixel B 
Measurement 

Constraint 2: Path Diff Match 

tfB - tfB = tfB - tfB 

Xe Xe tfB = tfB 
(a) Measurement at Pixel A. (b) Measurement at Pixel B. (c) Reciprocal Pair Constraints. 

Fig. 4. Multi-Bounce Flash Lidar. (a) Pixel A, observing a diffuse point xd, measures one- and two-bounce light. (b) Pixel B , observing a specular 
point x s, measures two- and three-bounce light. (c) Reciprocal Pair Constraints. For (a) and (b) only, rays in red correspond to laser spots emitted 
by pixel A, and rays in blue correspond to laser spots emitted by pixel B . 

camera to the diffuse point lxd -xe l can be estimated using 
the one-bounce signal as 

rd= lxd - Xe l = cttB , (1) 

where c is the speed of light, tf B is the time-of-flight of the 
one-bounce light measured at pixel A. Once Xd is known, 
the position of the specular point Xs can be computed as a 
ray-ellipsoid intersection. 

Xs = INTERSECT(rB , £(xe, Xd , cttB - rd)) , (2) 

where rB corresponds to the viewing direction of pixel B 
and £(f1 , f2 , a) is a 3D spheroid ellipsoid with focus at fi 
and f2, major axis length a, minor axes length b = J a2 - J2, 
and focal length f = lf1 - f2I - An analytical expression for 
Xs is provided in the Supplementary. 

Problem Statement. The key insight is that reciprocal pair 
pixels enable mapping of a single point on a specular 
surface. However, there are two key challenges with using 
consumer-grade hardware for such techniques. (1) It is 
challenging to determine which two pixels are reciprocal 
pairs due to flash illumination. (2) Due to the sparse number 
of pixels, there is limited multi-bounce information. In the 
following subsection, we will discuss how to algorithmically 
mitigate these two challenges. 

3.3 Detecting Reciprocal Pairs in Flash Lidar 

In practice, it is unknown which two pixels in a 12 x 12 
array are reciprocal pairs, how many reciprocal pairs there 
are, and if any reciprocal pairs exist at all. In this section, we 
will introduce techniques to detect reciprocal pairs using 
two constraints: peak match and path diff match. Both 
constraints hold true under the assumption that the laser 
and SPAD sensor are roughly co-located. The constraints 
are visually explained in Fig. 4(c). 

3.3. 1 Constraint 1: Peak Match 
The peak match constraint is derived from Helmholtz reci­
procity. Consider the two-bounce returns that arrive at pixel 
A and pixel B in Fig. 4. The two-bounce light arriving at 
pixel A travels along the path x f -t X 8 -+ xd -+ x1. Simi­
larly, the two-bounce light arriving at pixel B travels along 
the path x1 -t Xs -t Xd -t xf. Because x1 = xf = Xe, 

these traversed paths are precisely the same. By Helmholtz 
Principle, the two traveling rays experience the same optical 
"adventure" (i.e. path), but in reverse directions. Therefore, 
they also share the same pathlength. The peak match con­
straint for reciprocal pair pixels can be expressed as 

(3) 

In Fig. 4, this equation can be understood by analyzing the 
blue paths in (a) and the red paths in (b). They are the same 
paths, but in opposite directions. 

3.3.2 Constraint 2: Path Diff Match 

While the peak match constraint is derived with respect to 
two-bounce light, the path diff match constraint is derived 
with respect to one-bounce, two-bounce, and three-bounce 
light. Recall that a reciprocal pair contains one pixel observ­
ing a specular surface and one pixel observing a diffuse sur­
face. The pixel observing the diffuse surface measures one­
and two-bounce light, and the pixel observing the specular 
surface observes two- and three-bounce light. Mathemati­
cally, the path diff match constraint can be expressed as 

(4) 

This constraint can be better understood in the context 
of Fig. 4(a) and (b) by subtracting the three-bounce path­
length from the two-bounce pathlength, and the two-bounce 
pathlength and the one-bounce pathlength. The resulting 
pathlength is lxe - xdl + lxd - x s l + lxs - x e l, which forms 
a triangle between Xe, Xd, and X8 • 

3.4 Specular Surface Estimation 

To reconstruct specular surface with a consumer-grade li­
dar sensor, we (1) detect reciprocal pair pixels (if any are 
detected) using the constraints in 3.3, (2) determine which 
pixel is observing a specular point and which pixel is 
observing a diffuse point, and (3) analytically compute the 
distance using the equations in 6. Each pixel measurement 
will contain up to two echos. An ECHO is defined as a 
measured pulse return. If a pixel only receives one ECHO, 
that pixel is assumed to be viewing a diffuse surface and the 
echo is one-bounce light. If a pixel receives two echos, then it 
measures two returning pulses. In this case, the first echo is 
either one-bounce or two-bounce light and the second echo 
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Fig. 5. Experimental Setup. We use a handheld device for 3D room 
scanning, eliminating the need for complex research-grade equipment 
or manual calibration. 

is either two-bounce or three-bounce light, as shown by the 
possible scenarios in Fig. 4(c). 

Resolving Echo Ambiguity. To resolve this echo ambiguity, 
we first apply the peak match constraint by computing pair­
wise differences between ECH01 and ECH02 for all pixels. 
Any pixel pair that satisfies ECHof - ECHo1 = 0 satisfies 
the peak match constraint, as shown in Fig. 4(c). Then, we 
test the path diff match constraint for all pixel pairs (A, B) 
that satisfied the peak match constraint. We perform this by 
computing IEcHo1 - ECHof11 - IEcHof - ECHofl- Pixel 
pairs that satisfy this second condition are reciprocal pairs. 
For these reciprocal pair pixels, we can determine which 
echoes correspond to the one-, two-, and three-bounce sig­
nals by referring to the time-of-flight ordering in Fig. 4(c). 

Estimating the Scene. Once we determine the one-, two-, 
and three-bounce signals in the reciprocal pair, we perform 
step (2) listed above. Step (2) can be accomplished by 
looking at the relative time-of-flight of the two reciprocal 
pair pixels. As shown in Fig. 4, one-bounce light arrives 
before three-bounce light. Therefore, by identifying which 
pixel measures one-bounce and three-bounce light, we can 
determine the diffuse and specular pixel. Lastly, once we 
determine the diffuse and specular pixel, we can compute 
the 3D position of diffuse and specular points using eq. (1) 
and eq. (2). Note that many captured frames will not have 
reciprocal pairs due to the happenstance of such reciprocal 
pairs. However, we show experimentally that these recip­
rocal pairs will appear periodically, and are sufficient to 
estimate the mirror geometry. 

4 RESULTS AND ANALYSIS 

4.1 Experimental Setup 

We use a consumer-grade smartphone LiDAR device. This 
device contains a low-spatial-resolution array of SPAD pix­
els. Each Rx pixel of the sensor array has a corresponding 
Tx laser emitter, such that the Tx and Rx are both pointing 
in the same direction and are approximately co-located. The 
viewing direction of each pixel (i.e. camera rays) is known 
through prior camera calibration. Each pixel measures a 
histogram of intensities. These histograms are pre-processed 
such that each pixel outputs (up to) two echos. The pre­
processing step consists of peak finding and computation of 
a confidence score based on SNR for each peak (or echo). 
From this pre-processing step, our method receives three 
inputs: (1) camera rays for each pixel, (2) detected echos for 

RGBimages 

Structure from 
Motion 

3D scene points 

LiDAR echoes 

Reciprocal Pairs 

3D mirror points 

Mesh 
Reconstruction 

Fig. 6. Dense 3D Mirror Reconstruction Pipeline. The dense 3D 
scene points and camera poses are computed from RGB images via 
structure-from-motion (SfM). 3D mirror surface points are computed 
using the reciprocal pair algorithm from the LiDAR. Spurious mirror 
points are filtered and densified with Poisson mesh reconstruction. After 
mirror surface is reconstructed, incorrect reflection points from SfM that 
are behind the mirror surfaces are removed with a culling algorithm. 

each pixel, and (3) the confidence score for each echo. We 
filter out echoes with lower confidence, with the threshold 
treated as a hyperparameter. 

We conduct scans of real-world rooms by freely moving 
around with the handheld device, without need for complex 
research-grade equipment or manual calibration, as shown 
in Fig. 5. The rooms are naturally illuminated at full bright­
ness by the existing room lights. We present the results 
of mirror surface reconstruction and demonstrate how our 
method enhances segmentation and novel view synthesis 
techniques. 

4.2 Dense 3D Mirror Reconstruction 

In this section, we outline the procedure for dense 3D mirror 
reconstruction. Mirror detection is accomplished using the 
reciprocal pair algorithm, and the scene is generated from 
structure-from-motion (SfM). Accurately locating the mirror 
surface allows for the removal of incorrect reflections. 

Dense Scene Map from RGB Refer to Fig. 6 for the pipeline. 
From RGB images, we use structure-from-motion (SfM) to 
reconstruct dense 3D scene points. SfM is readily available 
on smartphones either with ARKit or ARCore libraries, 
or COLMAP [29] on personal computers. Due to the low 
spatial resolution of the LiDAR, we resort to dense scene 
reconstruction from RGB images for better visualization 
and pose estimation. Attempts have been made to recon­
struct the scene solely with LiDAR 3D points. However, 
the scanned data quality is too sparse and noisy, lead­
ing LiDAR-based pose registration algorithms like Iterative 
Closest Point (ICP) [30] to drift after only a few frames. 

3D Mirror Points from LiDAR Given the input of two 
echoes per pixel of the Rx, we first resolve the association 
problem via the reciprocal pair constraints to determine 
which echo is one-, two-, or three-bounce return. Next, 
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Fig. 7. Quantitative Analysis of Detected 3D Mirror Points. First column shows the detected mirror points projected onto an image, shown as 
red points. The true mirror surface is highlighted with dashed blue lines. Second and third columns show the detected points in 3D, for front and 
top views respectively. The dense 3D scene is generated from RGB images via structure-from-motion. LiDAR's first echo is projected onto the 3D 
scene as green points for visualization. Forth column shows histograms of the distance of each 3D mirror points to an estimated mirror plane. 

Mirror Points projected onto Images 3D Mirror Points - Front View 3D Mirror Mesh 3D Mirror Mesh- Side View 

Fig. 8. Dense 3D Reconstruction of Mirror Mesh Surface. Scene 3 uses the sidewall for mirror mapping. Scene 2 uses the floor to map the 
large mirror. Scene 3 uses both the floor and ceiling to map mirror points on the top and bottom of the mirror, to reconstruct nearly all of the mirror 
surface. Blue dashed lines outlines the true mirror, detected 3D mirror points are shown as red points, and mirror surface is shown as red surface. 

Authorized licensed use limited to: MIT. Downloaded on January 23,2026 at 23:31:28 UTC from IEEE Xplore.  Restrictions apply. 



based on the analytical equations, we compute the distance 
to the diffuse surface r de using eq. (5). Given r de, we then 
compute the distance from LiDAR to the specular surfaces 
r sc using eq. ( 6). Finally, given r sc, the final 3D mirror points 
are reconstructed using eq. (7). At this stage, we need to 
integrate the 3D mirror points (from LiDAR) with the 3D 
scene points (from RGB images). Since SfM operates in a 
different world frame compared to LiDAR, we begin by 
projecting the 3D mirror points onto the 2D image plane 
using the known calibration between the LiDAR and camera 
sensors. Subsequently, the 2D mirror points are unprojected 
to 3D into the SfM world frame, with depth values up to a 
scale factor. 

Dense Mirror Surface Reconstruction Due to the limited 
spatial resolution, typically only a few (0-4) reciprocal pairs 
(and mirror points) are detected per frame. Therefore, we 
accumulate points over multiple frames to create a denser 
mirror surface. The poses of each frame are based on SfM 
estimation. We refine the 3D mirror points into a denser 
mirror surface using Poisson mesh reconstruction, which 
is more versatile compared to plane fitting. The reciprocal 
pair algorithm does not assume a planar specular surface, 
and similarly, we avoid assuming a planar mirror surface 
during dense surface reconstruction. Another benefit of the 
reciprocal pair algorithm is that it allows derivation of the 
normal for each mirror point, although our current results 
do not yet include this feature. 

Culling Reflection The scene generated from SfM incor­
rectly places reflections behind the mirror surface, assuming 
all RGB camera rays are one-bounce. Our method accurately 
locates the true 3D mirror surface, enabling the removal of 
incorrect reflections, illustrated by Fig. 9. The core concept 
involves checking if incorrectly placed reflection points, 
when projected onto the LiDAR's view frustum, intersect 
with the true mirror plane. If they do, these points are iden­
tified as reflections and not part of the diffuse scene points. 
In practice, we first compute the convex hull polygon of the 
detected mirror points in the 2D image. This convex hull 
serves as the LiDAR's frustum counterpart. By projecting all 
the 3D scene points onto the image plane, only the reflection 
points would be inside the convex hull and so are removed. 

4.2. 1 Quantitative Analysis 
Fig. 7 shows the mirror reconstruction quantitative results 
for two scenes. Scene 1 features a small mirror approx­
imately 1 foot tall, accompanied by a synthetic ceiling. 
The objective is to detect points on the top of the mirror 
using multi-bounce returns from the ceiling, alongside the 
lower part of the mirror from the floor. Scene 2 features a 
large mirror hanging on the walls, using only multi-bounce 
returns from the floor. Poster boards were positioned along 
the wall surface to assist with SfM pose registration and do 
not affect mirror point detection. First column shows the 3D 
mirror points projected onto the image (red points), most 
of which lie within the true mirror surface (dashed blue 
lines). Second column shows the quality of the 3D mirror 
points in a front-view, while the third column shows the top 
view. The fourth column quantifies the errors of the detected 
mirror points with a histogram showing the distances from 
the mirror plane. 

Detected Mirror Point Cloud Reflection Removed 

Compute Convex Hull 
Polygon of Mirror Points 

Project 3D points onto image and 
compute polygon intersection 

Fig. 9. Culling Reflection with 3D Mirror Reconstruction. Green 
circle shows the removal of incorrectly reflection points constructed from 
RGB-based SfM that are behind the true mirror surface reconstructed by 
our method. 

To estimate the ground truth for the 3D mirror surface 
plane, we assume the mirror plane aligns with the back wall 
it hangs on. We employ RANSAC [31] plane fitting on the 
first echo (which resembles the back wall) to estimate this 
plane. We plot the histogram showing the error, which is the 
shortest distance from each 3D point to the estimated plane. 
Excluding the outliers, both scenes indicate that the points 
are within 60mm of the mirror plane, with the majority 
being within 20mm of the mirror plane. Other sources of 
errors include LiDAR sensor noise, causing inaccuracies in 
mirror plane estimation (particularly in scenes with few 
points from the back wall), errors in SfM registration, depth 
scaling discrepancies between LiDAR and SfM coordinate 
frames, and floating-point precision issues related to the 
equality constraints of reciprocal pairs (where values under 
10mm are considered equal). 

4.2.2 Qualitative Analysis 

For scene 1 and 2, we include the dense mirror surface 
reconstruction from the mesh filtering, in Fig. 8(c). In scene 
1, the mirror surface nearly covers the entire mirror as it 
has detection from top and bottom of the mirror. In scene 2, 
most of the bottom of the large mirror is covered. Scene 3 
utilizes the left side wall of the mirror to reconstruct most of 
its left side. Notably, in scene 3, there is no back wall aligned 
with the mirror for quantifying errors. Note that all results 
are shown with the incorrect reflections behind the mirror 
removed. 

4.3 Mapping Glass 

We demonstrate our reciprocal pair algorithm on other 
specular surfaces such as glass. In Fig. 10, we map glass 
doors and glass walls. Glass is more challenging to detect 
due to its imperfectly specular nature, resulting in weaker 
and noisier signals. In (a), we map the bottom of the glass 
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(a) Glass Door (b) Glass Wall 

Fig. 1 o. Mapping Glass Surfaces. We show that our algorithm can 
detect other specular points such as (a) glass door and (b) glass wall. 
Glass door leverages multi-bounce returns from the floor, and Glass 
wall from both the floor and ceiling. Note that glass is more challenging 
than mirrors because of weaker and noisier signals. Detected points are 
shown as red points. 

RGB Connected-
RGBMask 

Segmentation Component Combined 
Overlapping 

LiDAR Mirror Mask Region 
Convex Hull LiDARMask 

Points 

Fig. 11 . Pipeline for refining RGB mirror segmentation with LiDAR. 

door by bouncing off the floor surface. In (b), we map the 
top and bottom sections of the glass wall on the right side 
of the door, bouncing off the floor and the ceiling. 

4.4 Enhancing RGB-based Mirror Segmentation with 
LiDAR 

In addition to 3D reconstruction, we demonstrate how lever­
aging multi-bounce returns from LiDAR can help in mirror 
segmentation. Fig. 11 shows the segmentation pipeline for 
combining both RGB and LiDAR results. For RGB, we use 
learned-based model MirrorNet [32) as demonstration. First, 
we binarize the probability output mask from MirrorNet 
and then use connected-components to separate different 
mask objects. From the LiDAR 3D mirror points, we apply 
convex-hull to obtain the polygon outline of the mask. 

Fig. 12. Refining RGB Segmentation with LiDAR. LiDAR corrects the 
incorrect mirror mask from RGB segmentation. First column shows the 
incorrect mirror mask detected by RGB-based segmentator (MirrorNet) , 
indicated by the yellow arrows. Second column shows masks from 
LiDAR mirror detection (mesh reconstruction from the detected points). 
Third column shows the combined mirror masks from both sensors. 
RGB gives a denser detection, while LiDAR can identifies the true mirror 
segment. 

(c) Real Glass (d) Fake Glass 

Fig. 13. Enhancing Robustness of Segmentation Detector. (a) True 
Mirror: Our algorithm successfully detects the mirror, shown as red 
points. MirrorNet [32) correctly identifies the mirror, shown in blue tint. (b) 
Fake Mirror: The frame contains only paper. MirrorNet misidentifies the 
paper as a mirror, while our algorithm rejects it. (c) True Glass: Glass 
is present inside the frame. Both our algorithm and MirrorNet detect 
it accurately. (d) Fake Glass: The frame is empty inside. MirrorNet 
incorrectly classifies the empty frame as a mirror, whereas our algorithm 
correctly rejects it. 

Subsequently, we determine the true mirror object mask by 
overlapping the RGB mask with the LiDAR mask. Finally, 
we apply a fill-in polygon algorithm to address any holes 
within the mask. 

Fig. 12 illustrates how we correct incorrect mirror seg­
mentation from any RGB-based detector. The first column 
shows ambiguous mirror detection from MirrorNet, pos­
sibly due to the absence of most of the 'mirror frame' 
cue in the image. Incorrect detections are indicated by the 
yellow arrows. The second column displays the LiDAR 
mask, which is more accurate but may only capture part 
of the mirror due to the reciprocal pair algorithm requiring 
adjacent surfaces for multi-bounce returns. By leveraging 
the strengths of both methods, the LiDAR mask identifies 
the true-positive areas, while the RGB mask helps detect a 
denser mirror segment, resulting in a clean segmentation as 
shown in the third column. 

For our analysis, we set up scenarios involving ambigu­
ous objects such as real and fake mirrors and glass. As 
depicted in Fig. 13, we test: (a) a true mirror, (b) a fake 
mirror with paper inside mimicking a mirror texture, (c) 
a true glass, and (d) a fake glass with nothing inside the 
frame, resembling transparent glass. 

Our algorithm correctly detects the true mirror (a) and 
true glass (c), as indicated by the red points in the detections. 
Additionally, we successfully reject the fake mirror (b) and 
fake glass (d) cases. MirrorNet [32), which primarily relies 
on cues from RGB images, fails on the fake mirror and fake 
glass scenarios (although to its credit, it is not trained on 
glass). It mistakenly detects glass as mirror, possibly basing 
off the cue of 'mirror frame'. 

The model [22), which trains on dense depth images 
using depth discontinuities as cues, would also fail on the 
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Fig. 14. Pipeline for enhancing novel view synthesis with LiDAR. 
MirrorNeRF requires mirror mask as input for novel view synthesis. We 
show the combined mask of from RGB and LiDAR masks produces 
better result from pure RGB mask of MirrorNet [32]. 

empty frame case (d), as it does not effectively distinguish 
between one-bounce and three-bounce returns. This limita­
tion was shown in the doorway scene of their paper. Our 
physics-based 3D point detection can be seamlessly inte­
grated with any RGB-based learned model for joint feature 
learning [33], harnessing the strengths of both approaches. 

4.5 Enhancing Novel View Synthesis with LiDAR 

We demonstrate how multi-bounce LiDAR returns can 
enhance a novel view synthesis model. The RGB-based 
learned model MirrorNeRF [20] relies on the accurate mirror 
mask as input for its Neural Radiance Field (NeRF) model. 
Creating a mirror mask manually involves labor-intensive 
labeling, so we have developed an automated solution for 
generating mirror masks. we present two pipelines: one 
using the result generated from the RGB-based mask using 
MirrorNet, and another using the combined mask from RGB 
and LiDAR masks, as discussed in Section 4.4. 

The results are shown in Fig. 15. First column shows 
the input sensor modalities. Second column shows the 
generated masks, where the RGB-based method incorrectly 
identifies part of the poster as the mirror, indicated by the 
yellow arrow. Given the mirror mask as input, third column 
shows the novel view synthesis results from MirrorNeRF. 
Qualitatively, the part of the poster that is incorrectly iden­
tified as mirror by RGB-based method appears blurrier 
than the combined RGB+LiDAR method. Quantitatively, the 
PSNR values of RGB+LiDAR method is also higher than 
RGB method, 24.1 vs 22.5 respectively. 

The PSNR improvement for the novel view synthesis re­
sult appears to be marginal. However, our results can handle 
edge cases better, which the PSNR metric cannot capture. 
Detecting specular points reduces the chances of detecting 
diffuse surface as a specular one and vice versa and avoids 
artifacts in rendering due to these false detections. The 
artifacts are sparse and localized. Thus our improvements 
have marginal effect on the overall PSNR, but enhance 
the robustness of novel view rendering techniques under 
specular surfaces. 

5 DISCUSSION AND LIMITATIONS. 

5.0.1 Single Reciprocal Pair and Duplicates. 

We analyze reciprocal pair detection in a single frame in 
Fig. 17. Visually, the mirror points (red triangles) correctly 
lie in the empty space along the wall. The two-bounce points 
(cyan) and three-bounce points (red +) all align in a single 

line directed towards a single pixel of the receiver. This 
alignment adheres to the reciprocal pair assumption, where 
the two-bounce and three-bounce returns are echoes at the 
same pixel spot. As shown in (b), the three-bounce point is 
the 'mirror image' of the one-bounce point, symmetric over 
the plane of the mirror, at the same distance d. The two­
bounce point appears off-plane from the diffuse surface. 

Due to the thresholding of floating-point number equal­
ity with the reciprocal pair constraints, we may get du­
plicates for the same diffuse point Fig. 18(a). We remove 
duplicate pair by choosing the pair with minimum overall 
errors from the constraints Fig. 18(b ). 

5.0.2 Motion and Angle of Scanning 

We investigate our ability to recover reciprocal pairs from 
various angles during scanning. When scanning, we try to 
keep the mirror surface and diffuse surface as 50/50 split 
in the receiver FoV. Using different motions (translation and 
rotation), we demonstrate our capability to recover recip­
rocal pairs from different angles. Fig. 16 shows a heatmap 
of number of detections of each pixel in the Rx. In cases 
of nearly static motion (left), detections are concentrated 
mostly in the middle rows from similar angles. With larger 
motions (right), we observe a wider spread of detections 
across the array, indicating successful capture of reciprocal 
pairs from diverse angles. 

5.0.3 Limitations 

Our method only reconstructs a sparse set of points and has 
limited accuracy. These limitations arise due to the limited 
sensor spatio-temporal resolution because (a) fewer recip­
rocal pairs are detected, (b) ambiguity between reciprocal 
pair candidates increases, and (c) 3D ranging resolution 
worsens. These effects will be mitigated and reconstructions 
will improve as the quality of commercial-grade LiDAR 
sensors improves, which is likely as they are becoming 
more ubiquitous. However, the goal of this paper was not 
to demonstrate high-quality 3D reconstruction, but rather to 
demonstrate that the use of multi-bounce signals (even with 
coarse resolution) can be useful for handling specularity in 
vision tasks. 

The reciprocal pair constraints necessitate the presence 
of reciprocity between incoming and outgoing lights within 
the sensor's field-of-view (FoV). This implies that our al­
gorithm requires both specular and bounce surfaces to be 
within the Fo V. However, this assumption is valid because 
many sensors have wide FOVs (45°) and many real-world 
scenes are> 1-2 meter away, including those in our capture 
setups. In the scenario where large mirrors extend beyond 
the Fo V, our method primarily captures the edges of the 
mirrors. Additionally, for multi-bounce triangulation to be 
effective, both specular and diffuse surfaces must be within 
a geometry where their angles are (90°) or less. However, we 
do not assume that the specular surfaces need to be planar. 

Lastly, spurious detections can occur due to sensor noise 
or inter-reflection light paths that undergoes more than 
three bounces from nearby objects in the scene. In Fig. 19 
(c) and (d), returns from sofa give erroneous mirror point 
detection, where the lights undergo more than three bounces 
between sofa, floor, and the mirror surfaces. 
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Fig. 15. Enhancing Novel View Synthesis (NeRF) with LiDAR. First column shows input sensor. RGB-only for the first row, and RGB+LiDAR 
for the second row. The mirror surface is highlighted with dashed blue lines. Red points shows the LiDAR mirror points. Second column shows 
the masks of mirror segmentation. RGB detector (first row) incorrectly segments part of the left poster as mirror, shown by the yellow arrow. By 
combining RGB and LiDAR masks, the correct mirror segmentation is constructed (second row). Third column shows the novel view synthesis 
with Mirror-NeRF that requires mirror masks as input. Incorrect masking from RGB segmentation results in worse rendered view comapred to the 
corrected mask from RGB+LiDAR segmentation. Yellow boxes show the zoomed-in regions. RGB PSNR: 22.5, RGB+LiDAR PSNR: 24.1. 
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Fig. 16. Larger Motion Increases Number of Reciprocal Pair Detec­
tions. Heatmap showing detection of the 12 x 12 SPAD array, where 
each cell indicates number of detections. The top half of the array 
corresponds to a mirror, and the bottom corresponds to the floor. (Left) 
controlled scene with minor phone movements, where the detection is 
mostly concentrated in the middle rows of the mirror. (Right) scene with 
large phone movements, we can observe the detections are more widely 
spread out. This indicates that our reciprocal pair method can effectively 
detect across a wider region of the receiver at various angles with more 
motions. 
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(b) Side View 

Fig. 17. Reciprocal Pair Detection in a Single Frame. The three­
bounce, two-bounce, and mirror points lie along the same line (yellow 
arrow) toward the sensor. (b) The three-bounce point is the 'mirror 
image' of the one-bounce point, symmetric over the plane of the mirror, 
with the same distance d. Two-bounce appears as off-plane from the 
diffuse surface. 

(a) Duplicates (b) Duplicates Removed 

Fig. 18. Removing Duplicates. Due to the thresholding of floating 
point number equality with the reciprocal pair constraints, we may get 
duplicates for the same diffuse point (a). We remove duplicate pair by 
choosing the pair with minimum overall errors from the constraints (b). 

6 CONCLUSION 

The handheld smartphone setup poses challenges due to its 
use of a coarse emitter and corresponding receiver for real­
time operation. We introduce the 'reciprocal pair' method to 
address the association problem, allowing us to distinguish 
between one-, two-, or three-bounce returns at these coarse 
scanned spots where the transmitter (Tx) and receiver (Rx) 
are co-located. Our results demonstrate the capability to 
reconstruct true specular surfaces in 3D and effectively cull 
reflections in the scene. 

We show our approach effectively enhances the ro­
bustness of state-of-the-art learning-based methods in am­
biguous scenarios, including segmentation and novel view 
synthesis applications. This not only paves the way for 
future applications but also highlights the simplicity and 
effectiveness of our methods for integration with various 
algorithms. We anticipate that leveraging multi-bounce re­
turns will unlock new possibilities in fields and applications 
that were previously unattainable. 
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(c) Nearby objects inter-reflections (di Nearby objects inter-reflections 

Fig. 19. False Positive Detection. (a) Potential false-positives (green 
circles) can occur due to sensor noise or inter-reflections from nearby 
objects in the scene. (b) Mesh reconstruction and morphological filtering 
can remove spurious detections over time. (c) and (d) shows the inter­
reflection from the sofa. One-bounce is shown as purple point, and 
mirror point is shown as red triangles. 
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7 SUPPLEMENTARY 
Here we derive the analytical expression for X s that is used 
in our experimental results. For a more precise measurement 
of the one-bounce return in eq. (1), we introduce x 1 as a 
point on the LiDAR transmitter, that has a baseline b from 
the receiver X e - Based on Fig. 4, the two-bounce path of 
pixel B is xi ---+ xd ---+ X s ---+ xf , and the one-bounce path of 
pixel A is xi ---+ Xd ---+ x1. Here we compute the range r de, 

which is the range from point xd to X e , Using the spherical 
coordinate, let 0 be the polar angle and ¢ be the azimuthal 
angle, and with a coordinate frame where X, Y, and Z axes 
point left, up, and forward with respect to the LiDAR, rdc is 
computed as: 

(5) 

where c is the speed of light, and the ToF of the one­
bounce return is t1 = ¼(rdl + rdc )-

Analytical expression of eq. (2): With the ToF of two­
bounce t2 = ¼(rdl + rds + r sc), and the relationship rds = 
c(t2 - t1) + r dc - rsc, we can substitute the expression using 
law of cosine for the triangle with xd, X e, X s endpoints, and 
compute r sc as: 

C flti2[flti2 + ~] 
rsc = - C 

2 .6.t12 + (1- cosJ)~ ' 
(6) 

where .6.ti2 = t2 - t1, the time difference between two­
bounce and one-bounce returns, and <5 is the angle between 
the direction of arriving echoes at pixel A and B, such that 
cos(J) = AB/ IAIIBI. 

Finally, the 3D coordinate X, Y, and Z of the point Xs 

on the specular surface is: 

sity. 

[X] [ cos(0) l Y = r sc sin( 0) sin( <p) , 
Z sin( 0)cos( <p) 

(7) 
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