Under review as a conference paper at ICLR 2026

RELIABILITY-ADJUSTED PRIORITIZED EXPERIENCE
REPLAY™

Anonymous authors
Paper under double-blind review

ABSTRACT

Experience replay enables data-efficient learning from past experiences in online
reinforcement learning agents. Traditionally, experiences were sampled uniformly
from a replay buffer, regardless of differences in experience-specific learning po-
tential. In an effort to sample more efficiently, researchers introduced [Prioritized|
[Experience Replay (PER)] In this paper, we propose an extension to[PER|by intro-
ducing a novel measure of temporal difference error reliability. We theoretically
show that the resulting transition selection algorithm, [Reliability-adjusted Priory
[itized Experience Replay (ReaPER)| enables more efficient learning than
We further present empirical results showing that[ReaPER] outperforms both uni-
form experience replay and [PER]across a diverse set of traditional environments
including several classic control environments and the Atari-10 benchmark, which
approximates the median score across the Atari-57 benchmark within one percent
of variance.

1 INTRODUCTION

[Reinforcement Learning (RL)| agents improve by learning from past interactions with their envi-
ronment. A common strategy to stabilize learning and improve sample efficiency is to store these
interactions — called transitions — in a replay buffer and reuse them through experience replay to
increase sample-efficiency. When using experience replay, the agent obtains mini-batches for training
by sampling transitions from the replay buffer. Mini-batches are traditionally obtained using random
sampling. However, a prioritization schemes can help to select more informative transitions, improv-
ing convergence speed and, ultimately, agent performance significantly (Schaul et al.| (2015)). As
such, the sampling scheme constitutes a performance-crititcal component for modern reinforcement
learning agents leveraging experience replay (Hessel et al.,[2017).

Among proposed prioritized sampling schemes, [PER|remains the most widely used (see Appendix [B).
[PER] was introduced in[Schaul et al.| (2015)). It samples transitions in proportion to their absolute
Temporal Difference Error (TDE)| which measures the distance between predicted and target Q-
values. Accordingly, [PER|follows the rationale that transitions with higher absolute[TDEs| bear higher
learning potential. While this rationale is intuitive, the[TDE]is a biased proxy as both the predicted
and the target Q-value are approximations. Hence, prioritizing transition selection based on absolute
can misdirect learning, potentially leading to degrading value estimates, if the target Q-value is
itself inaccurate. Such inaccurate targets may dampen convergence or in the worst case deteriorate
final policy performance.

To address the bias while retaining the efficient transition selection, we propose [ReaPER] an enhanced
experience replay strategy that extends [PER| by weighting the with a measure of target Q-value
reliability. This design is motivated by the observation that, when the agent’s estimation of future
states is inaccurate, the corresponding target Q-values become unreliable. In such cases, the [TDE]
ceases to be a dependable indicator of a transition’s learning potential, leading to ineffective or even
detrimental updates. By explicitly accounting for reliability, [ReaPER]| preserves the advantages of
[PER] over uniform experience replay while mitigating the negative impact of misleading priorities,
resulting in consistent performance improvements.

Intuition The rationale behind our reliability estimate becomes particularly intuitive in game
environments such as Go, Chess, or Tic Tac Toe. Consider a player assessing the current board

Under review as a conference paper at ICLR 2026

position: if they lack a reliable understanding of how the game might unfold, their evaluation of the
current state’s value is likely inaccurate. As shown in Figure[T] states closer to terminal outcomes
(i.e., near the end of the game) involve fewer remaining moves, making it easier for the agent to

Board state at timestep t Board state at timestep t+1 Board state at timestep t+2

X0 X0 X0
©) O|X
X X| X X|OX

Consecutive timesteps within the same episo

Figure 1: Subsequent states from a Tic Tac Toe game from the perspective of the agent placing circles.
Board state ¢ + 2 is terminal. States ¢ and ¢ 4 1 are losing under optimal play. For an inexperienced
player, recognizing that £ + 1 is a losing state is generally easier than recognizing ¢ as such. However,
once t + 1 is understood as losing, identifying ¢ as lost becomes more straightforward. In general,
accurately assessing ¢ + 1 is a prerequisite for reliably assessing t—especially when learning the
game without explicit knowledge of rules or win conditions. As long as the agent’s assessment of
t + 1 is flawed, its evaluation of ¢t remains unreliable.

accurately estimate their values. Early-game states, in contrast, rely on longer and more uncertain
rollouts. Thus, value estimates tend to be more reliable as one moves closer to the end of an episode.
This observation implies a hierarchical dependency in the learning of transitions within a trajectory,
wherein the accurate estimation of earlier state-action values is conditioned on the agent’s ability to
infer and propagate information from later transitions. Consequently, we suggest that the reliability
of target values — and by extension, of [TDEs|— should factor into experience replay prioritization.

State of the Art Experience replay has been an active field of research for decades. After its first
conceptualization by [Lin|(1992), various extensions, analyses and refinements have been proposed
(e.g.,|/Andrychowicz et al.| (2017); Zhang & Sutton| (2017)); [Isele & Cosgun| (2018)); [Rolnick et al.
(2018)); Rostami et al.| (2019); [Fedus et al.| (2020); Lu et al.| (2023)).

Central to our work is an active stream of research exploring optimized selection of experiences
from the replay buffer. The most notable contribution in this stream so far was (Schaul
et al} [2015). In essence, [PER] proposes to use the absolute [TDE| as a sampling weight, which
allows to select transitions with high learning potential more frequently compared to a uniform
sampling strategy. Various papers built upon the idea of using transition information as a transition
selection criterion: [Ramicic & Bonarini| (2017) explored an entropy-based selection criterion. |Gao
et al.| (2021) proposed using experience rewards for sample prioritization. Brittain et al.| (2019)
introduced Prioritized Sequence Experience Replay, which extends [PER|by propagating absolute
[TDEs| backwards throughout the episode before using them as a sampling criterion. Zha et al.[(2019)
and |Oh et al.| (2021) proposed dynamic, learning-based transition selection mechanisms. Yet, the
proposed approaches have not replaced [PER} remains the only prioritized sampling strategy
that is widely adopted by state-of-the-art[RL]algorithms. For a comprehensive review of the relevant
literature and a systematic breakdown of this claim, we refer to Appendix [B]

Contribution We propose ReaPER, a novel experience replay sampling scheme that improves upon
[PER]by reducing the influence of unreliable TD targets, ultimately leading to more stable learning and
better policy performance. Specifically, our contribution is threefold: first, we propose the concept of
target Q-value and [TDE]reliability and introduce a reliability score based on the absolute[TDEs|in
subsequent states of the same trajectory. Second, we present formal results proving the effectiveness
of the reliability-adjusted absolute [DE]as a transition selection criterion. Third, we leverage the
theoretical insights and the novel reliability score to propose[ReaPER] a sampling scheme facilitating
more effective experience replay. The proposed method is algorithm-agnostic and can be used within

any off-policy [RT]algorithm.

To substantiate our theoretical findings, we perform numerical experiments comparing to
[PER]across various traditional [RL]environments, namely CARTPOLE, ACROBOT, LUNARLANDER
and the ATARI-10 benchmark, which recovers 99.2% of variance within the median score estimate of
the full Atari-57 benchmark (Aitchison et al.,[2022). We show that both prioritized sampling strategies
outperform uniform experience replay, and further show that[ReaPER] consistently outperforms

Under review as a conference paper at ICLR 2026

Specifically, in environments of lower complexity like CARTPOLE, ACROBOT and LUNARLANDER,
[ReaPER]reaches the maximum score on average between 21.35% and 29.49% faster than [PER] In
environments of higher complexity, exemplified by the ATARI-10 benchmark, on average
achieves a 24.37% (S D = 23.76) higher peak performance.

2 PROBLEM STATEMENT

We consider a standard [Markov decision process (MDP)| as usually studied in an[RT]setting(Sutton
& Bartol, [1998). We characterize this MDE] as a tuple (S, A, P,r,~,p), where S is a finite state
space, A is a finite action space, P : S x A — A(S) is a stochastic kernel, 7 : S x A — R is a
reward function, v € (0, 1) is a discount factor, and p € A(S) denotes a probability mass function
denoting the distribution of the initial state, S7 ~ p. At time step ¢, the system is in state S; = s € S.
We denote by S; and A; the random variables representing the state and action at time ¢, and by
s € S and a € A their respective realizations. If an agent takes action A; = a € A, it receives
a corresponding reward (s, a), and the system transitions to the next state S;y; ~ P(+|s,a). We
define the random reward at time ¢ as R; = r(S¢, A;). The agent selects actions based on a policy
m: S = Avia Ay = 7(Sy).

Let PJ(-) = Prob(- | m,S1 ~ p) denote the probability of an event when following a policy T,
starting from an initial state S; ~ p, and let IE7[-] denote the corresponding expectation operator.
We consider problems with finite episodes, where n expresses the number of transitions within the
episode. Let GG; denote the discounted return at time ¢, Gy = Z?:t ~*~tR;. We define the Q-function
(or action-value function) for a policy 7 as

Q" (s,a) =EJ [Gy | Sy =54 =a] =] Zy’*tﬁzi 1S, =5, 4 =al . (1)

1=t

The ultimate goal of RL is to learn a policy that maximizes the Q-function, leading to Q*(s,a) =
max, Q™ (s,a). The policy is gradually improved by repeatedly interacting with the environ-
ment and learning from previously experienced transitions. A transition C; is a 5-tuple, C; =
(St, At, Ry, Si41,dy), where d; is a binary episode termination indicator, d; = 1;—,,. One popular
approach to learn @Q* is via Watkins’ Q-learning (Watkins|, [1989; Watkins & Dayanl|1992), where
Q-values are gradually updated via

Q(St, Ay) + Q(St, Ay) + 1 - 6y)

in which n € (0,1] is the learning rate and d; the [TDE| 0; = Quarget(St) — Q(St, A¢) with
Quarget(St) = Riq1 + (1 — dey1) - v - max, Q(Si41,a). For brevity of notation, we refer to the

absolute as 8, = ||

In practical RL applications, experience replay is commonly employed to stabilize and accelerate
learning. Transitions collected through agent-environment interaction are stored in a finite buffer
H = {Cy}Y,, from which mini-batches X C H of fixed size |X| = k are sampled to update
the Q-function. The sampling distribution over the buffer, denoted by 1 € A(H), determines the
likelihood 1(C}) of selecting transition C; € ‘H when constructing X'. In uniform experience replay,
1 1s the uniform distribution, whereas in@] (Schaul et al.| |20135), transitions are sampled according
to scalar priority values, derived from the absoluteéf .

Empirical evidence suggests that the effectiveness of the learning process is sensitive to the choice
of u, i.e., sampling transitions with high learning potential can improve convergence speed and
final performance. However, designing an optimal or near-optimal sampling distribution remains an
open problem. With this work, we aim to contribute to closing this gap by defining and efficiently
approximating a sampling distribution p* that maximizes learning progress using experience replay.

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

In the following, we provide the methodological foundation for We first introduce a
reliability score for absolute[TDEs| which we use to derive a[TDE}based reliability-adjusted transition
sampling method. We then provide theoretical evidence for its efficacy.

3.1 RELIABILITY SCORE

In bootstrapped value estimation, as in Q-learning, the target value
Quarget (St) = Reyr +v- (1 — dpgr) - max Q(St41,a) 3)

relies on the current estimate of future values. Consequently, the quality of an update to Q(S;, A;)
depends not only on the magnitude of the absolute &, but also on the reliability of the target
value Quarget(St).

We define the reliability of a target Q-value as a measure of how well it approximates the true future
return from a given state-action pair. Intuitively, a target value is reliable if it decreases the distance
between Q* (S, A¢) and Q(Sy, Ar). Conversely, a target is unreliable if training on it increases the
distance between Q*(S;, A¢) and Q(S;, Ay).

To motivate this concept and formalize its operational consequences, we consider a single episode
consisting of transitions (C1, ..., C,), from initial state .S; to terminal state S,, 1. We highlight
three key observations that explain how reliability varies along the trajectory and how it can be used
to improve sampling:

Observation 3.1 (Unreliable targets can degrade learning). Q,a,ge,(St) depends on the estimate
Q(St11,-) fort € {1,...,n — 1}, which may be inaccurate. If an update is based on a poor target
value, the resulting Q(Sy, Ay) may diverge from Q* (S, Ay), thereby degrading the estimate.

Observation 3.2 (Terminal transitions induce reliable updates). For terminal transitions, the target
is given directly by the environment, i.e., Quureei(Sn) = Ry, This target is exact, implying that the
corresponding [TDE| accurately reflects the deviation from the ground truth Q-value. Thus, updates
based on terminal transitions are guaranteed to shift Q(Sy,, A,) towards Q*(Sy, Ay,) if 6;7 > 0.

Observation 3.3 (Reliability propagates backward). An accurate update to Q(Sy, A¢) improves the
accuracy of Quarger(St—1) and earlier targets, which recursively depend on it. Therefore, updating
transitions near the end of the episode helps improving the reliability of Qaree: for earlier transitions.

These observations highlight a temporal hierarchy in transition learning: Learning later transitions
before learning earlier transitions appears advantageous. On the one hand, later targets rely on fewer
estimated quantities and are therefore more reliable. On the other hand, learning later transitions
positively impacts the target reliability for earlier transitions. Furthermore, a high [TDE|indicates a
misunderstanding of game dynamics for a given transition, thus rendering the value estimation in
predecessor transitions — which rely on the understanding of the value dynamics in the subsequent
rollout — less reliable. We therefore aim to resolve [TDEs| back-to-front. This motivates defining the
reliability of Qree(St) inversely related to the sum of future absolute

D1 07
POHET
Using this definition, we propose the reliability-adjusted
U, =Ry - 0;, (%)

as a sampling criterion for selecting transitions during experience replay. High values of W, corre-
spond to transitions that promise large updates and have reliable target values. Sampling weights p
can be obtained by normalizing the sampling criterion with the sum of ¥ over all transitions.

Ri=1- “

3.2 FORMAL ANALYSIS

We consider a set of transitions that constitutes a single complete trajectory of length n, D = {C;}74,
where C; = (S¢, At, Rt, Sty1,dy).

Under review as a conference paper at ICLR 2026

Updates are based on the 0r = Q(St, At) — Quarget (St), using the standard bootstrapped target
Qtarget(St) =Ry + 7(1 - dt) m(?XQ(SH-lv CL). (6)

Convergence A critical factor to ensure convergence in Q-learning is the alignment between the
and the true value estimation error Q(St, A:) — Q*(St, A¢). When the bootstrapped target is
biased, meaning Qrget (St) # Q*(St, Ar), the update direction may become misaligned, potentially
worsening the value estimate.

We defer the formal misalignment analysis to Lemma [C.T|and Lemma [C.2]in Appendix [C.1] In
essence, the expected change in squared true value estimation error due to an update of the value
function approximator under a sampling strategy p can be decomposed into three components, the
[TDE] variance, the true squared error, and the bias-error interaction

E.[A|Q(St, Ar) — Q™ (St AN =7 Z wE[67] = 21 ZN:&E[Q%} + QUZME[%&L (N
t=1 t=1 t=1
I [TDElvariance b True squared error b Bias-error-interaction I

where e, denotes the true value error, and €, denotes the target bias,

€t = Q(Sta At) - Q*(StaAt)v €t = Qtarget(st) - Q*(Stht)- (®)

By focusing on large PER aims to sample transitions with higher true squared error more
frequently, thus resolving errors faster and improving efficiency over uniform sampling. In the
following, we show that our ReaPER sampling scheme additionally controls the target bias, thereby
minimizing the bias-error interaction, while also preserving the advantages of [PER] This allows
[ReaPER]to increase sampling-efficiency over PER. To do so, we base the following formal analyses
on a key assumption relating target bias to absolute downstream

Assumption 3.4 (Target Bias via Downstream [TDESs). Along an optimal trajectory, the target bias &,
for each transition C} satisfies

el <A 6 ©

i=t+1

This assumption formalizes the intuition that bootstrapped targets primarily inherit bias from inaccu-
racies in future predictions. It reflects standard TD-learning dynamics under sufficient exploration
and function approximation stability. While — similar to the assumptions made in standard conver-
gence proofs for[RL]- this assumption can be violated during the early phases of training, it tends
to hold once value estimates stabilize. In a nutshell, Assumption [3.4] captures the intuition that
target bias predominantly arises from unresolved downstream reflecting a local perspective
on TD-learning dynamics. Unlike classical convergence proofs that require global exploration and
decaying learning rates, our assumption focuses on bounding the bias along observed trajectories
during finite-sample learning, making it more applicable to practical deep[RL} We refer the interested
reader to Appendix [C.2)for a detailed discussion.

Under Assumption [3.4] the reliability score R; —representing the fraction of downstream [TDE] within
a given trajectory — bounds the normalized target bias. This is captured in the following lemma.
Lemma 3.5 (Reliability Bounds Target Bias). Under Assumption

el AL =Ry D 67 (10)

i=1

For the proof of Lemma 3.5 we refer to Appendix [C.3] Lemma [3.5]expresses that transitions with
higher reliability scores exhibit lower target bias and thus yield more trustworthy [TDEs| This finding
motivates selecting training transitions not just by magnitude, but by a combination of
magnitude and reliability — as implemented in

Building on the established relationship between reliability and target bias, we derive the following
convergence hierarchy.

Under review as a conference paper at ICLR 2026

Proposition 3.6 (Convergence Hierarchy of Sampling Strategies). Under Assumption[3.4|and given
a fixed learning rate n, (e o< R85) yields lower expected Q-value error than standard

(pt o< 8;), which in turn outperforms uniform sampling,
BfQF™ ™ - Q1P = BlIQF™ - @*1P] 2 E[IQF™ —@*IPl, b

where IE denotes the expectation across training runs.

The corresponding proof, detailed in Appendix [C.4] formally compares the expected error decrease
terms under different sampling distributions, using Lemma [3.5]to bound the bias-error-interaction.
While we limit Proposition [3.6]to optimal policies for brevity of notation, we can straightforwardly
extend it to suboptimal policies.

Remark 3.7 (Extension to suboptimal policies). If the agent follows a fixed but suboptimal policy,
Assumption[3.4)can be relaxed to include an additive policy-induced bias term ¢ > 0, yielding

el <A) S +C (12)

i=t+1

In this case, |[ReaPER) still improves sampling efficiency in expectation, although the achievable
QO-value accuracy is lower-bounded by the policy suboptimality (. For further details, we refer the
interested reader to Appendix|C.5]

Together, these results provide the theoretical foundation for [ReaPER]s design: By prioritizing
transitions with high absolute and high reliability, selects relevant transitions while
improving alignment with the true value error, leading to faster and more stable learning.

Variance reduction In the following, we show that the proposed sampling scheme, based on

reliability-adjusted reduces the variance of the Q-function updates. As a first step towards

this result, we analyze the theoretically optimal distribution to sample from in order to minimize the

variance of the Q-function update step. Recall that Q-values are updated according to ([2)), where

the corresponding to a transition C; from the finite replay buffer # reads §; = Quarge(St) —
t) At

Q()-

We assume a fixed episode and treat the current -values as constants, focusing on analyzing the
update variance induced by the sampling distribution y over H. The update variance can then be

expressed as
N N N

> mVar[o] = mVarQuega (S = Y mo?, (13)
t=1 t=1 t=1
where the first equality follows from the definition of the and the assumption that the current
Q-values are constant. The second equality simply defines o; := Var[Qareet(S;)] as the variance of
the bootstrapped target for brevity.

Proposition 3.8 (Variance reduction via reliability-aware sampling). The distribution * minimizing
the update variance (13)) is given by

o+
py o< = forallt € {1,..., N} (14)
Ot

For the proof of Proposition[3.8] we refer to Appendix [C.6]

As a direct consequence of Proposition [3.8] we find that our proposed sampling scheme is
variance reducing if the reliability R is proportional to the inverse variance of the bootstrapped target.

As the true target Q* remains constant, a significant proportion of variance across runs for a given
state can be attributed to the target bias. As such, there exists a direct relationship between € and
o2. Hence, under Assumption it seems natural to assume R % Thus, constitutes a
reasonable proxy for the optimal inverse-variance weighted sampling strategy.

To provide further intuition for our formal results, we have conducted a supplementary simulation-
driven analysis showing that[ReaPER]achieves optimal transition selection in a stylized setting, which
we detail in Appendix [D}

—

10

11

12

13
14

Under review as a conference paper at ICLR 2026

4 RELIABILITY-ADJUSTED PRIORITIZED EXPERIENCE REPLAY

We have thus far introduced the reliability-adjusted and theoretically proven its effectiveness
as a transition selection criterion. In the following, we propose the sampling algorithm
built around the reliability-adjusted We give a distilled overview of the resulting sampling
scheme in Algorithm [T} Atits core, we create mini-batches by sampling from the buffer with ¥ as the
sampling weight. Specifically, at each training step 7 € {1,...,T'}, for every transition within the
buffer, that is, C; forall t € {1,..., N}, we updatereliabilities R and compute the transition
selection criterion W, (Algorithm[I] Line[5ff.). Based on W,, we sample k transitions from the buffer
7 to create the next mini-batch X' (Algorithm[I} Line Off.). For the full algorithm and an extended
explanation, we refer to Appendix [A]

Algorithm 1: Sampling transitions and updating the value function using [ReaPER|

Input: absolute(5+, episode vector ¢, current episode ®, batch size k, exponents «, w and
B, replay buffer H of size N, policy weights #, maximum priority p,,q, = 1, budget T’

forr € {1,...,T} do

Initialize accumulated weight change A = 0 and empty batch X = 0(%);

Add novel transitions to the buffer with maximum priority p,,4, and set ¢y = ®@;

Compute maximum episodic sum of absolute[TDEs} F' < max (vazl 5]1@:@.);

te{l,...,N}
fort e {1,...,N} do // Updating transition weights
Compute @ reliabilities as in Formula
Compute transition selection criterion Uy < RY - 6, “
Compute transition priorities p; <— A‘,I’it;
L >t Wi
form e {1,...,k} do // Sampling transitions
Sample a transition C; from H to add to batch & such that P(C; = X,,,) = p; for all
te{l,...,N}
Compute importance-sampling weight w; < % forallt € {1,...,N};
| Update 6;? and accumulate weight-change A <— A + w; - §; - VoQ(S;, 4;);

Update weights 0 < 0 +n - A;
| Update maximum priority piaz = max(Pmaz, max(p));

Starting from the naive implementation of [ReaPER| we require four technical refinements to obtain a
functional and efficient sampling algorithm.

L. Priority updates. To consistently maintain an updated sampling weight ¥, we track the
and reliabilities of stored transitions throughout the training. As it is computationally intractable to
re-calculate all[TDEs|on every model update, we implement a leaner update rule: As in[PER] we
assign transitions maximum priority when they are added to the buffer. Moreover, we assign the [TDE]
of transition C} every time C} is used to update the Q-function. We assign the reliability of transition
C} every time C; is used to update the Q-function, or if any other transition from the same episode is
used to update the Q-function, as it leads to a change in the sum of and possibly the subsequent
We update the priority ¥ when [TDE] or reliability are updated.

IL. Priority regularization. As the TDE]of a given transition may change by updating the model even
without training on this transition, TDEs|- and, in consequence, reliabilities — are not guaranteed to
be up-to-date. Thus, similar to[Schaul et al.| (2015), we introduce regularization exponents « € (0, 1]
and w € (0, 1] to dampen the impact of extremely high or low [TDEs|or reliabilities,

U, =RY -5 (15)

III. Reliabilities for ongoing episodes. As the sum of throughout an episode is undefined as
long as the episode is not terminated, so is the reliability. In these cases, we use the maximum sum of
of any episode within the buffer to obtain a conservative reliability estimate.

For this, we introduce ¢, a vector of length NV, where ¢ denotes the ¢-th position in ¢, which contains
a scalar counter of the trajectory during which transition C; was observed. As such, ¢ functions as a

Under review as a conference paper at ICLR 2026

positional encoding of transitions within the buffer. Specifically, it is used to identify all transitions
that belong to the same trajectory. This positional encoding allows us to calculate conservative
reliability estimates for a multi-episodic buffer.

‘We then define R; as

" s+ - . .
1 - Tzt for transitions of terminated episodes
Rt =

e (16)
1- (%) for transitions of ongoing episodes
where
N
F= B, (2_; o7 - 1@—%) (17

VI) Weighted importance sampling. Finally, just as every other non-uniform sampling method,
[ReaPER] violates the i.i.d. assumption. Thus, it introduces bias into the learning process, which can
be harmful when used in conjunction with state-of-the-art algorithms. Similar to Schaul et al.
(2015)), we use weighted importance sampling (Mahmood et al., 2014} to mitigate this bias. When
using importance sampling, each transition C} is assigned a weight w,, such that

8
AR S 7
“”—(N'pt) —<N'mt | (1o

We use this weight to scale the loss and perform Q-learning updates using J; - w; instead of d;.

5 NUMERICAL STUDY

We evaluated against[PER]across a diverse set of continuous control and Atari environments.
For continuous control, we considered the discrete action space environments from the Gymnasium
library (Towers et al., [2024)), namely CARTPOLE, ACROBOT and LUNARLANDER. For Atari,
following prior work, we use ATARI-10 as a computationally efficient yet representative benchmark
which recovers 99.2% of median score variance within the Atari-57 benchmark, ensuring relevance
to broader Atari-57 evaluations without incurring prohibitive computational overhead (Aitchison
et al.,[2022)). Across conditions, we used the same|Double Deep Q-Network (DDQN)|agent, neural
architecture, and model hyperparameters for all experiments. We controlled for all sources of
randomness using fixed seeds and compared algorithms using identical seeds per trial. Thus, the
only variation between conditions stemmed from the experience replay algorithm. Full experimental
details and hyperparameters are provided in Appendix [E]

Continuous control For each continuous control environment, we compared the performance
between [PER| and [ReaPER] across 20 training runs. Training ended preemptively when a pre-defined
score threshold was met (Towers et al., [2024).

Across all three environments, [ReaPER|consistently reached performance thresholds in fewer steps
than both uniform replay and CROB OT, this corresponded to improvements of 25.0% and
16.6%, respectively. For CARTPOLE, [ReaPER|reduced the steps needed by 41.4% and 32.6%, and a
similar pattern held in LUNARLANDER, with gains of 37.1% and 21.1%.

Atari consistently outperformed both uniform experience replay and on the ATARI-
10 benchmark. Specifically, outperformed [PER]and uniform experience replay in eight out of
ten games, tying [PER]in two games. Across all games, [ReaPER]achieved a a 22.97% higher median
peak score than [PER| and a 229.78% higher median peak score than uniform experience replay.
These results underline [ReaPER[s robustness across heterogeneous game dynamics and its ability
to scale to challenging, high-dimensional domains. Per-game curves are provided in Appendix [F]

(Figure[5).

Under review as a conference paper at ICLR 2026

g Acrobot CartPole LunarLander

< T 100+

8«30- -[30' -L‘

g L

2 20 4

L 0of | T
- B 1 10 . L ==
£ 101 1 T 1
o

& [ReaPER [PER UNI

Figure 2: Proportion of training steps required by [PER] uniform experience replay (UNI) and
to reach a pre-defined score thresholds given in|Towers et al.|(2024)) across 20 runs in three traditional

@ environments.

Q
Q
=]] p—
Amidar - g 1.00 ReaPER T
BattleZone - S _—
Bowling 1 5 0.75 1 PER FJ_’_,_,__
DoubleDunk - oy UNI
.)
Frostbite % 0.50 1
KungFuMaster - =5
NameThisGame 1 £
Phoenix 2 0.25 1
Qbert A g
RiverRaid 1 . : | . S 0.00 . | ' i
-20 0 20 40 60 80 = 0 1 2 3 4 5
Performance increase by ReaPER over PER (%) Timesteps le7

Figure 3: Left: Peak score increase of over[PER| Right: Median of the normalized cumulative
maximum of scores across the Atari-10 benchmark for[ReaPER| [PER]and uniform experience replay
(UNI). The normalized score at timestep ¢ is calculated by dividing the difference between the current
score and the random score by the difference between the maximum score in this game across all
sampling strategies and the random score.

Discussion [ReaPER|consistently outperforms[PER] indicating a substantial methodological advance.
Notably, did so with minimal hyperparameter tuning. We expect further gains through more
extensive tuning of key hyperparameters, including regularization exponents « and w, importance
sampling exponent 3 and learning rate 7).

A limitation of is its reliance on terminal states, which are a pre-requisite for calculating
meaningful lities. Further, tracks the episodic cumulative sums of to
calculate the reliability score, which causes computational overhead when are updated. Using
a naive implementation, this overhead is non-negligible at O(N). However, it can be reduced to
O(n — t) by only re-calculating the episodic cumulative sums for transitions on their update or the
update of a preceding transition within the same episode.

6 CONCLUSION

We introduced [ReaPER] a reliability-adjusted experience replay method that mitigates the detrimental
effects of unreliable targets in off-policy deep reinforcement learning. By formally linking target bias
to downstream temporal difference errors, we proposed a principled reliability score that enables
more efficient and stable sampling. Our theoretical analysis shows that improves both
convergence speed and variance reduction over standard and our empirical results confirm its
effectiveness across diverse benchmarks.

Beyond its immediate practical gains, highlights the importance of accounting for target
reliability in experience replay, particularly in deep [RL]settings where function approximation errors
and generalization artifacts are prevalent. We believe our work opens new avenues for incorporating
uncertainty and reliability estimates into replay buffers, and future research may explore adaptive
reliability estimation, extensions to actor-critic methods, and integration with representation learning.

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We provide extensive details of experimental settings and hyperparameters to reproduce our exper-
imental results in Appendix [El Source code for all experiments is available in the supplementary
materials, and will be open sourced.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU), 2018. URL https:
//arxiv.org/abs/1803.08375.

Matthew Aitchison, Penny Sweetser, and Marcus Hutter. Atari-5: Distilling the Arcade Learning
Environment down to Five Games, 2022. URL https://arxiv.org/abs/2210.02019.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay. 2017.
doi: 10.48550/ARXIV.1707.01495. URL https://arxiv.org/abs/1707.01495.

Antonin Raffin, Quentin Gallouédec, Noah Dormann, Adam Gleave, Anssi, Alex Pasquali, Juan
Rocamonde, M. Ernestus, Patrick Helm, Thomas Simonini, Quinn Sinclair, Corentin, Rohan Tangri,
Sidney Tio, Tobias Rohrer, Tom Dorr, Wilson, Steven H. Wang, Sam Toyer, Roland Gavrilescu,
Paul Maria Scheikl, Parth Kothari, Oleksii Kachaiev, Megan Klaiber, Marsel Khisamurdinov,
Mark Towers, Jan-Hendrik Ewers, Grégoire Passault, Dominic Kerr, and Costa Huang. Stable-
Baselines3 v2.4.0, November 2024. URL https://zenodo.org/doi/10.5281/zenodol
141784309,

Adria Puigdoménech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari Human Benchmark, 2020a.
URLhttps://arxiv.org/abs/2003.13350.

Adria Puigdomenech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andew Bolt, and Charles
Blundell. Never Give Up: Learning Directed Exploration Strategies, 2020b. URL https:
//arxiv.org/abs/2002.06038.

Marc Brittain, Josh Bertram, Xuxi Yang, and Peng Wei. Prioritized Sequence Experience Replay,
2019. URL https://arxiv.org/abs/1905.12726.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc Bellemare, and Aaron
Courville. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier. 2023.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Go-Explore:
a New Approach for Hard-Exploration Problems, 2019. URL https://arxiv.org/abs/
1901.10995.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting Fundamentals of Experience Replay, 2020. URL https
//arxiv.org/abs/2007.06700.

Jiashan Gao, Xiaohui Li, Weihui Liu, and Jingchao Zhao. Prioritized Experience Replay Method
Based on Experience Reward. In 2021 International Conference on Machine Learning and
Intelligent Systems Engineering (MLISE), pp. 214-219, Chongqing, China, July 2021. IEEE.
ISBN 9781665417365. doi: 10.1109/MLISE54096.2021.00045. URL https://ieeexplore,
ieee.org/document/9611651/l

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering Diverse Domains
through World Models, 2023. URL https://arxiv.org/abs/2301.04104.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining Improvements in
Deep Reinforcement Learning, 2017. URL https://arxiv.org/abs/1710.02298.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, and
David Silver. Distributed Prioritized Experience Replay, 2018. URL https://arxiv.org/
abs/1803.00933.

David Isele and Akansel Cosgun. Selective Experience Replay for Lifelong Learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 32(1), April 2018. ISSN 2374-3468, 2159-
5399. doi: 10.1609/aaai.v32i1.11595. URL https://ojs.aaai.org/index.php/AAAT/
article/view/11595l

11

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/2210.02019
https://arxiv.org/abs/1707.01495
https://zenodo.org/doi/10.5281/zenodo.14178439
https://zenodo.org/doi/10.5281/zenodo.14178439
https://arxiv.org/abs/2003.13350
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/1905.12726
https://arxiv.org/abs/1901.10995
https://arxiv.org/abs/1901.10995
https://arxiv.org/abs/2007.06700
https://arxiv.org/abs/2007.06700
https://ieeexplore.ieee.org/document/9611651/
https://ieeexplore.ieee.org/document/9611651/
https://arxiv.org/abs/2301.04104
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1803.00933
https://arxiv.org/abs/1803.00933
https://ojs.aaai.org/index.php/AAAI/article/view/11595
https://ojs.aaai.org/index.php/AAAI/article/view/11595

Under review as a conference paper at ICLR 2026

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
Experience Replay in Distributed Reinforcement Learning. 2019.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8(3-4):293-321, May 1992. ISSN 0885-6125, 1573-0565. doi: 10.1007/
BF00992699. URL http://link.springer.com/10.1007/BF00992699.

Cong Lu, Philip J. Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic Experience Replay, 2023.
URLhttps://arxiv.org/abs/2303.06614.

A Rupam Mahmood, Hado P van Hasselt, and Richard S. Sutton. Off-policy learning based on
weighted importance sampling with linear computational complexity. Advances in Neural Infor-
mation Processing Systems, pp. 3014-3022, 2014.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, 2013. URL
https://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529-533, February 2015. ISSN 0028-0836, 1476-4687. doi: 10.1038/nature14236.
URLhttps://www.nature.com/articles/naturel4d236.

Youngmin Oh, Kimin Lee, Jinwoo Shin, Eunho Yang, and Sung Ju Hwang. Learning to Sample
with Local and Global Contexts in Experience Replay Buffer, April 2021. URL http://arxivl
org/abs/2007.07358. arXiv:2007.07358 [cs, stat].

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3—-zo0o0,
2020.

Mirza Ramicic and Andrea Bonarini. Entropy-based prioritized sampling in Deep Q-learning. In
2017 2nd International Conference on Image, Vision and Computing (ICIVC), pp. 1068-1072,
Chengdu, China, June 2017. IEEE. ISBN 9781509062386. doi: 10.1109/ICIVC.2017.7984718.
URLhttp://ieeexplore.ieee.org/document/7984718/.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experience
Replay for Continual Learning, 2018. URL |https://arxiv.org/abs/1811.11682.

Mohammad Rostami, Soheil Kolouri, and Praveen K. Pilly. Complementary Learning for Overcoming
Catastrophic Forgetting Using Experience Replay, 2019. URL https://arxiv.org/abs/
1903.04566.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay. 2015.
doi: 10.48550/ARXIV.1511.05952. URL https://arxiv.org/abs/1511.05952,

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. 2019.
doi: 10.48550/ARXIV.1911.08265. URL https://arxiv.org/abs/1911.08265.

Max Schwarzer, Johan Obando-Ceron, Aaron Courville, Marc Bellemare, Rishabh Agarwal, and
Pablo Samuel Castro. Bigger, Better, Faster: Human-level Atari with human-level efficiency, 2023.
URLhttps://arxiv.org/abs/2305.19452.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. IEEE Transactions on Neural
Networks, 9(5):1054—1054, September 1998. ISSN 1045-9227, 1941-0093. doi: 10.1109/TNN.
1998.712192. URL https://ieeexplore.ieee.org/document/712192/.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulao, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A Standard
Interface for Reinforcement Learning Environments, 2024. URL |https://arxiv.org/abs/
2407.17032.

12

http://link.springer.com/10.1007/BF00992699
https://arxiv.org/abs/2303.06614
https://arxiv.org/abs/1312.5602
https://www.nature.com/articles/nature14236
http://arxiv.org/abs/2007.07358
http://arxiv.org/abs/2007.07358
https://github.com/DLR-RM/rl-baselines3-zoo
http://ieeexplore.ieee.org/document/7984718/
https://arxiv.org/abs/1811.11682
https://arxiv.org/abs/1903.04566
https://arxiv.org/abs/1903.04566
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1911.08265
https://arxiv.org/abs/2305.19452
https://ieeexplore.ieee.org/document/712192/
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032

Under review as a conference paper at ICLR 2026

Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double
Q-learning, 2015. URL https://arxiv.org/abs/1509.06461.

Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. EfficientZero V2: Mastering
Discrete and Continuous Control with Limited Data, 2024. URL https://arxiv.org/abs/
2403.00564.

Christopher Watkins. Learning From Delayed Rewards. PhD thesis, Kings College, London, 1989.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):279-292,
May 1992. ISSN 0885-6125, 1573-0565. doi: 10.1007/BF00992698. URL http://link,
springer.com/10.1007/BF00992698.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering Atari Games
with Limited Data, 2021. URL https://arxiv.org/abs/2111.00210.

Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. Experience Replay Optimization. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp.
4243-4249, Macao, China, August 2019. International Joint Conferences on Artificial Intelligence
Organization. ISBN 9780999241141. doi: 10.24963/ijcai.2019/589. URL https://www,
ijcai.org/proceedings/2019/589.

Shangtong Zhang and Richard S. Sutton. A Deeper Look at Experience Replay, 2017. URL
https://arxiv.org/abs/1712.01275.

13

https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/2403.00564
https://arxiv.org/abs/2403.00564
http://link.springer.com/10.1007/BF00992698
http://link.springer.com/10.1007/BF00992698
https://arxiv.org/abs/2111.00210
https://www.ijcai.org/proceedings/2019/589
https://www.ijcai.org/proceedings/2019/589
https://arxiv.org/abs/1712.01275

1

2
3
4
5
6

10
11
12
13
14
15

16

17
18

19

20

21
22
23
24

25

26
27
28
29
30

Under review as a conference paper at ICLR 2026

A ALGORITHM

Algorithm 2: Deep Q Learning with reliability-adjusted proportional prioritization

Input: batch size k, learning rate 7, replay period K, replay buffer size /N, exponents o, w and
5, budget T'.
Initialize replay memory H = 0, A = 0, p; = 1, episode vector ¢ = o), episodic count & = 1
and maximum sum of episodic F=1;
Observe S7 and choose A1 ~ m(51);
force {1,...,T} do

Initialize accumulated weight change A = 0 and empty batch X = 0(*);
Observe Scy1, Re, de;
Store transition C, = (S¢, A¢, Re, de, Set1) in H with ¢, = ® and p. = max,(p;) for all
te{l,...,N};
ifc=0 mod K then
form e {1,...,k} do
Sample a transmon C; from H to add to batch X" such that P(C; = X,,,) = p; for all
te{l,...,N}
Compute importance-sampling weight w; = % forallt € {1,...,N};
Compute[TDE|0; = Qyarget(Sj) — Q(SJ,A)
Accumulate weight-change A < A +wj; - §; - VoQ(S;, A;);
end
Update weights 0 < 0 +n - A;
From time to time, copy weights into target network, Grge < 0;
Update maximum sum of absolute[TDEs| F' <— {maxN} (Zl 1 5]l¢t:¢i);
te{1,...,
fort € {1,...,N} do
Compute [TDE]reliabilities,
+
1-— E”%&; for transitions of terminated episodes
Rt — i=1Y%
1-— (7F Zﬁzl L) for transitions of ongoing episodes
Update transition sampling criterion \I/t — Rf -0 “
Update transition priorities p; SN — 7
end
end
if d. = 1 then
fort € {1,...,N} | ¢+ = ¢.) do
n +
Compute [TDE]reliabilities for the finished episode, Ry = 1 — (Znt“&i) ;
i=1"1
end
D+ D+1;
end
Choose action A, ~ 7y(S.);
end

In the following, we describe how [ReaPER|operates in conjunction with a[Deep Q-Network (DQN)|
The agent begins by observing the initial state and selecting an action (Algorithm [2] Line[2).

For a fixed number of iterations, the agent interacts with the environment, observes the resulting
transition from its latest action, and stores this transition in the replay buffer with maximum priority
(Algorithm 2] Line[5].).

Every K steps, the agent performs a training update (Algorithm [2] Line [7). During training, it
samples a batch X’ from the buffer using the current priorities p as sampling weights (Algorithm 2]
Line 8ff.). The agent updates the model parameters using importance-sampling-weighted TD-errors
(Algorithm 2] Line[I4)), and uses the observed TD-errors to update the priorities p for all transitions

14

Under review as a conference paper at ICLR 2026

in the batch (Algorithm 2] Line[T7ff.). This involves recomputing the reliabilities based on the new
TD-errors, applying a conservative estimate for transitions from ongoing episodes (Algorithm [2]
Line[I8). The agent then recalculates the sampling criterion ® and updates the priorities p accordingly
(Algorithm 2] Line[20), concluding the training step.

Upon episode termination, the agent replaces the preliminary reliability estimate with the actual
reliability (Algorithm[2] Line[25). Throughout training, it tracks episode progress to enable continuous
recomputation of reliabilities (Algorithm [2] Line 27).

At each iteration, the agent selects the next action based on its current policy and state (Algorithm 2]
Line[29), initiating the next cycle.

B LITERATURE REVIEW

In the following, we substantiate our claim that[PER] constitutes the most practically relevant prior-
itized sampling strategy within reinforcement learning to this day. We first systematically review
state-of-the-art R[] algorithms and the sampling strategies they are employing. We further discuss
possible reasons for the limited adoption of proposed alternatives.

B.1 PRIORITIZED EXPERIENCE REPLAY AS THE STATE-OF-THE-ART

When we refer to as most practically relevant sampling strategy, we do not claim that DDQN
with as proposed in the original paper |Schaul et al.| (2015)), represents the state-of-the-art
in solving RL problems overall. Rather, we claim that to this day, no transition selection algorithm
within experience replay has demonstrated efficiency improvements comparable to those of
without incurring significant computational overhead. This claim is supported by the fact that
most state-of-the-art algorithms use PER, while no other prioritization strategy is used by any
state-of-the-art[RL] algorithm.

To support this, we have compiled Table|l} which lists leading algorithms on the Atari benchmark
since the introduction of [PER| and indicates whether they use experience replay and

Algorithm (Year) Authors [Year] Uses ER Uses|PER|

Rainbow Hessel et al[(2017) Yes Yes

Ape-X DQN Horgan et al.[(2018) Yes Yes

MuZero Schrittwieser et al.| (2019) Yes Yes, for the Atari benchmark
R2D2 Kapturowski et al.[(2019) Yes Yes

Go-Explore Ecoffet et al.| (2019) No No

NGU Badia et al.| (2020D) Yes Yes

Agent57 Badia et al.| (2020a) Yes Yes

EfficientZero Ye et al.| (2021) Yes Yes

Bigger, Better, Faster |Schwarzer et al.|(2023) Yes Yes

Dreamer-v3 Hafner et al. (2023) Yes No, butboosts performance2
SR-SPR D’Oro et al.[(2023) Yes Yes

EfficientZero-v2 Wang et al.| (2024) Yes Yes

Table 1: Overview of state-of-the-art reinforcement learning algorithms, highlighting whether they
utilize Experience Replay (ER) and Prioritized Experience Replay (PER).

The findings within Table[T]indicate that all state-of-the-art[RT] algorithms that rely on experience
replay also rely on The sole exception of this is Dreamer-v3 (Hafner et al., 2023)), which relies
on uniform sampling for ease of implementation, but explicitly states to boost performance.
This provides evidence that remains the de-facto standard prioritized sampling strategy, and
therefore represents a key point of reference for our study.

2While the classic Dreamer-v3 algorithm does not use but uniform sampling, the authors explicitly
report[PER]to improve performance. To directly quote [Hafner et al] (2023): "While prioritized replay (Schaul
et al.| [2015) is used by some of the expert algorithms we compare to and we found it to also improve the
performance of Dreamer, we opt for uniform replay in our experiments for ease of implementation."

15

Under review as a conference paper at ICLR 2026

B.2 SYSTEMATIC REVIEW OF PROPOSED ALTERNATIVES

While we discussed alternative prioritized sampling strategies to provide a comprehensive overview
of related work, these methods have seen limited adoption and are not integrated into state-of-the-art
reinforcement learning algorithms. We lay out potential reasons for the sparse adoption of the
approaches mentioned in the paper, and thereby discuss why we do not consider them a relevant
baseline for the present paper.

While we have reviewed alternative prioritized sampling strategies to provide a comprehensive
overview of related work, these methods have seen limited adoption and have not been widely
integrated into state-of-the-art reinforcement learning algorithms. We outline possible factors con-
tributing to their limited uptake and explain why, in the context of this study, we do not consider them
appropriate baselines.

Ramicic & Bonarini| (2017)) proposed entropy-based sampling. Their evaluation focused on a
single, non-standard environment and did not include a comparison against[PER] To the best of our
knowledge, the authors also did not release code, which may limit the ease of direct application.

Gao et al.|(2021)) proposed reward-based sampling and evaluated their approach in two environments,
FETCHREACH-V1 and PENDULUM-V(. While these experiments provide useful insights, no evalua-
tion was presented on more complex domains such as Atari games, making direct comparison with
the original study less straightforward. From a theoretical perspective, an emphasis on rewards
could potentially bias the algorithm toward greedier behavior, which might pose challenges in more
complex settings. To the best of our knowledge, code was not made publicly available, which may
limit immediate applicability.

Brittain et al.| (2019) proposed a refinement to by propagating priorities back through the
sequence of transitions. Their evaluation compared the approach to a proportional variant of
with a different parameterization than the o = .5, 8 = .5 setting recommended in the original paper,
which may have influenced baseline performance. To the best of our knowledge, the work was
released as a preprint in 2019 but has not appeared in a peer-reviewed venue, making it more difficult
to fully gauge the impact of the proposed method.

Zha et al.|(2019) introduced Experience Replay Optimization, a dynamic prioritization approach, and
evaluated it on eight continuous control environments using DDPG. Their method was compared
against[PER]and demonstrated improved performance, though not within the original experimental
setting of the [PER]paper. Key hyperparameters such as o and 3 were not reported, and, to the best of
our knowledge, the authors did not release code, which may limit the reproducibility and practical
applicability of their results.

Oh et al.|(2021)) introduced the Neural Experience Replay Sampler (NERS), which frames sample
selection as a reinforcement learning problem by training a separate agent. While this approach is
conceptually appealing, it introduces notable computational overhead, which may affect its practicality.
The evaluation was conducted on Atari games for 100,000 timesteps, rather than the conventional
50,000,000, providing insights into the early stages of learning. The authors report improvements
over [PER]in this regime; however, details on the configuration are not provided, and, to the best
of our knowledge, the implementation has not been released, which may limit reproducibility.

C DETAILED FORMAL ANALYSIS

We subsequently theoretically explore the properties of This section extends the formal
analysis in Section

C.1 CONVERGENCE BEHAVIOR

In the following, we provide a formal motivation for[ReaPER|by analyzing the influence of target
bias on convergence behavior. We do so by showing that a misaligned target may degrade the value
function, and then provide a decomposition of the expected error update.

Lemma C.1 (Update misalignment due to target bias). Let g = Vo(Q(St, At) — Quarger(St))?
denote the gradient of the[TDE]loss and let g} = Vo(Q(S, A¢) — Q*(St, Ar))? be the ideal gradient

16

Under review as a conference paper at ICLR 2026

that aligns with the true value error. Then,

(gt,87) = 2(Q(St, Ar) — Q*(St,At))2 —2(Q(Ss, Ar) — Q*(St, A¢))et- (19)
Proof of Lemma[C.1} We compute the gradients explicitly. We define
€ 1= Q(St, At) - Q*(St,At)7 €t = Qlarget(St) - Q*(St, At)- (20)
‘We now may rewrite the [DE]
0t = Quarget(St) — Q(S, Ay) = (Q* (S, Ap) + 1) — Q(Se, Ay) = —er + &4 2D
Now, the gradients are
8t = 2(@(575’ At) - Qtargel(st))vé’Q = 2(_6t)v0Q(StaAt)7 (22)
g = 2(Q(St, Ar) — Q" (S, Ar))VeQ(St, Ap) = 2e4VoQ(St, A). (23)
Hence,
(81, 87) = 4(=00)ed|[VoQ(Sr, Ar)||* = 4(er — e1)er [VaQ(St, Ar)|12. (24)
Simplifying yields
(81, 87) = 4(ef —)| VoQ(St,), (25)
which proves the result up to a constant factor of the norm. O

This result shows that even when the is large, its usefulness critically depends on the reliability
of the target value. When ¢, is large, the update may not improve the value function estimation.
When ¢, is sign-misaligned with the current true estimation error e;, the update will even degrade the
value function, pushing Q(S;, A;) further away from Q* (S, A;).

Based on these considerations, we proceed to compare various sampling strategies by analyzing the
expected change in the squared Q-value error caused by a single update step. The following lemma
provides a decomposition of this change and builds the foundation of our main theoretical result.

Lemma C.2 (Expected error update under sampling strategy p). Let ey = (Q(S¢, Ay) — Q* (S, Ap)).
Let Q denote the Q-function before an update, and let Q' denote the Q-function after the up-
date. Let I, [A[|Q(Sy, Ar) — Q*(Sr, Ao)[I”] = EL[l|Q"(Si, Ar) — Q*(Sh, Apl1? — [|Q(Se, Ar) —
Q*(St,At)HQ]. Then,

E.[AIQ(Se, Ar) — Q*(Se, A)IIP] =210 mE[(Q(Sy, Ar) — Q* (S, Ar))e]

t=1
n n
+7 Y w7 =20 mEle7). (26)
t=1 t=1
Proof of Lemma|C.2} We analyze the Q-value update
Q'(Sy, Ar) = Q(Sy, Ar) + 1. (27)
After the update
Q'(St, Ar) — Q" (Se, Ar) = Q(Sy, Ay) + 1oy — Q* (S, Ar) = ey + 1y, (28)
the squared error becomes
(Q'(St, Ar) — Q*(St, Ap))* = (er +164)* = €f + 2nesd; + 165 (29)
The expectation under sampling distribution p is
E[Ae;] = n°E[67] + 2nE[e;dt). (30)
Note that §; = Qrarget(St) — Q(St, Ar) = €+ — ey, 50
el = ey(er —) = ey — €7, €2))
hence
E[Ae] = n"E[57] — Elef]) + 2n(Elerer] (32)
(1) @) 3)
Summing over all transitions with p; gives the result. [

17

Under review as a conference paper at ICLR 2026

This decomposition highlights three components: (1) the variance of the [TDE] (2) the true squared
error and (3) the bias-error-interaction. The latter is key to explaining why ReaPER outperforms
other sampling strategies.

A key factor in the reliability of bootstrapped targets is the extent of downstream Intuitively, if
future states still exhibit significant[TDESs| the bootstrapped target for the current state is more likely
to be biased. This motivates the following technical assumption.

C.2 DISCUSSION OF ASSUMPTION [3.4]

Assumption [3.4]establishes a relationship between the target bias for a given transition and the sum
of for downstream transitions. This aligns with a conventional perspective in TD-learning
analysis, wherein bootstrapped targets predominantly inherit bias from inaccuracies in future value
estimates.

Although Assumption [3.4]appears rather limiting at first sight, it is in fact less strict than assumptions
made in classical Q-learning analyses: classical Q-learning convergence proofs (see, e.g., Watkins &
Dayan, 1992) rely on global exploration assumptions, ensuring that every state-action pair is visited
infinitely often, and on decaying learning rates to control noise. In contrast, Assumption [3.4] takes
a more local view, postulating that the target bias along an observed trajectory can be bounded by
unresolved downstream While classical assumptions ensure eventual global accuracy, our
assumption focuses on bounding the bias during finite-sample learning along actual agent trajectories,
which is more aligned with practical deep settings.

Under Assumption [3.4] the reliability score R; — which measures the proportion of downstream
along a trajectory — provides an upper bound on the normalized target bias ;. Lemma [3.5]
formalizes this relationship.

C.3 PROOF OF LEMMA[3.3

Proof. From the definition of R, we have
Z:’L:t+1 57:+

].—Rt: Zn_15+ .

(33)

Multiplying both sides by >, 5? , we obtain

n

i: 5 =(1-Ry)- > 5. (34)

i=t+1 i=1
Substituting this into Assumption 3.4} we find
e <A D ST =AM =R) Y6 (35)
i=t+1 =1
which proves the first inequality.
Rearranging the result gives
||
R <1-— , 36
IS i o
completing the proof. O
Moreover, it follows that
||
Re<1l— ————. 37
IR i o7

1=t+1 "1
suffer from higher target bias. This justifies using R+ to down-weight fransitions with unreliable [TDEs|

in the sampling distribution as long as downstream transitions suffer from high Consequently,
ReaPER not only emphasizes transitions with high learning potential (large &;") but also prioritizes
those with more reliable target estimates.

Lemma|[3.5|provides a formal link between the reliability score R; used in ReaPER and the target bias
€¢. Under Assumption transitions with large downstream (i.e., large > 5.1 likely

18

Under review as a conference paper at ICLR 2026

C.4 PROOF OF PROPOSITION

Proof. From Lemma|C.7} the expected change in squared error per update, conditioned on the current
Q-function, is

AE =Y wB57] =20) wEe] + 21 mElee]. (38)
t=1 t=1 t=1

We seek to maximize the second term (true error reduction) while minimizing the third term (bias-

error-interaction). The analysis proceeds by comparing the terms under the different sampling

strategies.

We now compare three sampling strategies:

Uniform sampling (y; = 1/n): No prioritization occurs. Transitions with small e? and potentially
large e,c, are sampled proportionally to their frequency of occurrence in the buffer. Hence, both the
error reduction term Y, y;[E[e?] and the bias term Y, y¢[E[ee,] are solely determined by the buffer
content, and sampling does not reduce error or bias.

PER samplmg (ut o< (6;7)): PER prioritizes transitions with large_ §;, which correlates with
larger €?. As such, the sampling increases error reduction over buffer content,

> FRE[]] > Y p M Ele], (39)
t=1 t=1

leading to faster true error reduction compared to uniform sampling. However, PER does not account
for target bias ;. Nevertheless, since PER focuses updates on transitions with large (rather
than arbitrary ones), it slightly reduces the bias-error-interaction compared to uniform:

Z py PR Eleser] <Y pf MM E[eye). (40)
t=1

ReaPER sampling (j1; < R.5;"): Prioritizes transitions with large and high reliability R, thus
additionally considering target bias (see Lemma|[C.3)). Thus, ReaPER achieves

ZMReaPERE et > ZNPER]E et > Z Un1formIE[] (4])

t=1

for the true error term, and

n n n
3 URPERE(eye,] < 3w PRE] < 3 p MM Elee), (42)
t=1 t=1 t=1

for the bias term.

Therefore, ReaPER leads to the steepest expected decrease in squared error per update, followed by
PER, followed by uniform sampling. Summing the per-step improvements over training steps, we
conclude

IEMUniform[”QT — Q*||2] > EHPER,[HQT — Q*||2} > IEMR,caPER[”QT — Q*||2], (43)
as claimed. O
C.5 DISCUSSION OF REMARK[3.7]

While Assumption [3.4]is stated under the premise that the agent follows an optimal policy, it can be
extended to fixed but suboptimal policies. We now briefly outline the modifications necessary if the
agent follows a fixed but suboptimal policy. In this case, the target bias €, cannot be bounded solely by
unresolved downstream [TDEs] as suboptimal actions introduce an additional, trajectory-independent
bias. Formally, suppose there exists a constant ¢ > 0 such that for all transitions along observed

trajectories,
|Q7F(Stht) _Q*(St7At)| S Cv (44)

19

Under review as a conference paper at ICLR 2026

where ()™ denotes the action-value function under the fixed policy 7. Then, under analogous reasoning
to Assumption [3.4} the target bias satisfies

el <A D) S+ ¢ (45)
i=t+1
This adjusted bound propagates through the subsequent results. In particular, Lemma [C.3]becomes

el A1 =R Y6+, (46)
i=1

and the reliability bound adjusts accordingly. In the error decomposition of Lemma [C.2] and the
convergence hierarchy in Proposition the additive term (introduces a bias floor that does not
vanish through learning. Consequently, while ReaPER still achieves improved sampling efficiency
by reducing the impact of target misalignment, the achievable Q-function accuracy is ultimately
lower-bounded by (. In the limit as — 0 (the policy approaches optimality), we recover the original
theory.

C.6 PROOF OF PROPOSITION[3.§]

Proof. First, we note that we can assume without loss of generality that there is a 7 > 0 such that the
distribution p* satisfies

N
Do = (47)
i=1

If sucha7 > 0does not exist, that implies Zf\il /Q(Sj which only holds if §; = Oforalli = 1,..., N
— a setting in which any sampling distribution from the buffer is optimal. Hence, equipped with @7),
the optimal sampling distribution p* is characterized as a solution to the following optimization
problem

N
: 2
min i0; 48
min ;n o (48)
N
subject to Z uiéf > T. (49)

i=1
We introduce Lagrange multipliers A > 0 for the inequality constraint and v for the probability
normalization constraint. Then, the Lagrangian reads

N N N
E(u,)\,y)—Zuiaf—i—)\(T—Zpﬁf) +1/<1_Zﬂi> (50)
i=1 =1 i=1

The KKT conditions for optimality are:

(Stationarity) oL _ 0 =\ —v=0 foralli=1,...,N (51)
Hi
N N
(Primal feasibility) Z b >, Z pwi=1, w>0 (52)
=1 =1
(Dual feasibility) A >0 53)
N
(Complementary slackness) A (7’ — Z ui(;;r) =0 54)
=1

In the following we distinguish two cases.

Case 1: Suppose vazl uidj' > 7. Then, complementary slackness implies A = 0. The stationarity
condition becomes

o?—v=0 = o}=v foralli=1,...,N, (55)
which is only possible if all 07 are equal. In general, this is not the case, so the constraint must be
active at optimality.

20

Under review as a conference paper at ICLR 2026

Case2: Then Zi\; pid;" = 7, and complementary slackness implies A > 0. From the stationarity
condition, we obtain

02 =N —v=0 = ol=)\+v (56)
Solving for A, we get
o2 —v
A= 1 — 57
57 (57)
This must hold for all ¢ = 1, ..., N, so the right-hand side must be constant across ¢, which implies
2 o+
% — 614' — constant & ur o ﬁ (58)

To justify the implication (a), note that the stationarity condition directly states 0 — v = \J;" =

+ +
% = Ugi_y. Therefore, a higher value Ug"_ — implies a higher gradient contribution exactly where p;
should be large. L O

D RESULTS IN A STYLIZED SETTING

We consider a single episode within a stylized setting. The agent is following the optimal path,
nget(St) = Q(St+1,At+1) where At+1 = W*(St+1) forall t € {1, e, — 1} At the end
of this episode, the agent obtains a final reward R, = 1. There are no intermediary rewards.
The agent aims to learn the correct Q-values for all transitions within this trial using a
[Q-learning (TQL)| approach (Watkins & Dayan, 1992). Qarget(S¢) are continuously updated to be
Q(Si+1, Ar1), wWith Qureer(Sn) being 1. We consider a transition C to be learned if the Q-value
reaches its (for real applications mostly unknown) ground-truth Q-value, Q(S;, A;) = Q*(St, A¢).
We consider the model to have converged when all Q-values reach their ground-truth Q-value,
Q(Si, Ar) = Q*(S¢, Ay) fort € {1,...,n}. This is the case when all[TDEs| within this trial have a
value of 0, 1.e.,9; =0fort € {1,...,n}.

The agent learns by repeatedly selecting & transition indices. For every selected transition C, the
Bellman equation is solved to update the Q-value, Q(S;, 4;) < Q(S;j, 4;) + v - §;. For the sake
of simplicity, we assume a discount factor v = 1, a batch size k = 1, and a learning rate = 1. As
71 = 1, learning on a transition C; implies setting the Q-value t0 Qyarget, 1-€., Q(S}, 4;5) = Quarget (S5).
We repeat this iterative process of sampling and the respective Q-value adaptation until the model
converged.

We use three different selection strategies to identify the transition index j, which determines the
transition C; that the model trains on next, uniform sampling, (Greedy Prioritized Experience Replayl|
(PER-g)} and [Greedy Reliability-adjusted Prioritized Experience Replay (ReaPER-g)l Uniform
sampling selects transitions at random with equal probability. [PER-g|selects the transition with the
highest [TDE] . [ReaPER-g|selects the transition with the highest reliability-adjusted . in both
PER-gland [ReaPER-g| if there is no unique maximum, ties are resolved by random choice.

We compare these selection strategies to the optimal solution, the Oracle. The Oracle selects the
transition C; with the highest index that has a absolute greater than zero, [= max(¢ | §; #
0) fort € {1,...,n}. Given nn = 1, using the Oracle, the agent will always converge within

n

+—1 15,20 < n steps and is therefore optimal. We compare the sampling strategies under varying
levels of Quarger reliability. Qrarger reliability here is determined by the extent of target Q-values
for unlearned transitions without immediate reward varying from zero: Reliability is high if Qarget
values remains close to the immediate observed reward unless specifically learned otherwise. Qarget
reliability decreases with more Qarger Values deviating from zero without observation of an immediate
reward and without being explicitly learned. In reality, this may happen either through Q-value
initialization or - more importantly, when using Q-functions - erroneous Q-value generalization across
state-action pairs.

In the present example, we simulate different levels of Qaree: reliability using different Q)-value
initializations. Specifically, we consider three Q)i reliability conditions: High, medium and low
Qtarger reliability. In all conditions, all Q (S, A¢) fort € {1,...,n} are first initialized to zero. Then,
depending on the reliability condition, some of these initializations are overwritten with ones to
induce unreliability. In the low reliability condition, every second Q-value is overwritten. In the

21

Under review as a conference paper at ICLR 2026

. § High target reliability Medium target reliability Low target reliability
55
o
= £ 5000 1 5000 - 3000
o =
iF
g
s B 0t== . . 0t=—= ; :
= 25 50 75 25 50 75 25 50 75
Episode length Episode length Episode length
Uniform —— PER-g = =::-- ReaPER-g

Figure 4: Performance comparison in a stylized setting for three sampling methods; uniform sampling,
PER-g| and [ReaPER-g| Performance is quantified as the number of updates until convergence minus
the minimally required number of updates given by an Oracle. Each sampling method is evaluated
using different episode lengths (between 10 and 100) and different levels of Qaree reliability (high,
medium and low).

medium reliability condition, every fourth Q-value is overwritten. In the high reliability condition, no
value is overwritten.

We employ every selection mechanism to train until convergence for episodes of length 10 to 100
across all reliability conditions. As shown in Figure 2, uniform sampling converges the slowest across
all reliability conditions. finds the optimal transition selection order when target reliability
is high. However, s convergence speed quickly diminishes as Q414 reliability decreases.
on the other hand actively accounts for changes in Q4. reliability. By doing so, it
consistently finds the ideal solution regardless of @41y reliability.

E EXPERIMENTAL SETTINGS

All training parameters for all environments were set to according to pre-existing recommendations
from previous research (Mnih et al., 2015} |Schaul et al., 2015} van Hasselt et al., 2015} |Raffin, 2020).
The full experimental settings are subsequently described in detail to enable full reproducibility.

Experience replay parameters Following the suggestion for proportional for DDQN] in
Schaul et al.|(2015)), o was set to 0.6 for As we expect increased need for regularization due to
the reliability-driven priority scale-down, we expected values smaller values for o and w in
We performed minimal hyperparameter tuning to find a suitable configuration. We did so by training
a single game, QBERT, on three configurations for @ and w, (1) @« = 0.2, w = 0.4, (2) a = 0.3,
w = 0.3 and (3) a = 0.4, w = 0.2. For the runs presented in the paper, the best-performing variant
(a = 0.4, w = 0.2) was used. For both [PER] and [ReaPER] 3 linearly increased with training time,
B < (0.4 — 1.0) as proposed in|Schaul et al.| (2015). A buffer size of 106 was used.

Atari preprocessing As in|Mnih et al.|(2015)), Atari frames were slightly modified before being
processed by the network. Preprocessing was performed using StableBaselines3’s AtariWrapper
(Antonin Raffin et al.| [2024)). All image inputs were rescaled to an 84x84 grayscale image. After
resetting the environment, episodes were started with a randomized number of NoOp-frames (up to
30) without any operation by the agent, effectively randomizing the initial state and consequently
preventing the agent from learning a single optimal path through the game. Four consecutive frames
were stacked to a single observation to provide insight into the direction of movement. Additionally, a
termination signal is sent when a life is lost. All these preprocessing steps can be considered standard
practice for ATARI games (e.g.,/Mnih et al.| (2013} |2015); [Schaul et al.|(2015)).

Training specifications Hyperparameters for learning to play CARTPOLE, ACROBOT and LU-
NARLANDER were set to RL Baselines3 Zoo recommendations (Raffin, [2020). Hyperparameters for
learning to play Afari games are set based on previous research by |Schaul et al.|(2015)), [Mnih et al.
(2015) and jvan Hasselt et al.| (2015).

22

Under review as a conference paper at ICLR 2026

Parameter CARTPOLE ACROBOT LUNARLANDER ATARI
Learning rate 2.3e-3 6.3e-4 6.3e-4 625e-5°
Budget Se4 le5 le5 5e7
Buffer size le5 Se4 Se4 le6
Timestep to start learning le3 le3 le3 Se4
Target network update interval 10 250 250 3e4
Batch size 64 128 128 32
Steps per model update 256 4 4 4
Number of gradient steps 128 4 4 1
Exploration fraction 0.16 0.12 0.12 0.02
Initial exploration rate 1 1 1 1
Final exploration rate 0.04 0.1 0.1 0.01
Evaluation exploration fraction 0.001 0.001 0.001 0.001
Number of evaluations 100 100 100 200
Trajectories per evaluation 5 5 5 1
Gamma 0.99 0.99 0.99 0.99
Max. gradient norm 10 10 10 00
Reward threshold 475 -100 200 00
Optimizer Adam Adam Adam RMSprop

Table 2: Comprehensive documentation of hyperparameters used within the CARTPOLE, ACROBOT,
LUNARLANDER and ATARI environments.

Network architecture For CARTPOLE, ACROBOT and LUNARLANDER, the network architecture
was equivalent to StableBaselines3’ default architecture (Antonin Raffin et al.,[2024): A two-layered
fully-connected net with 64 nodes per layer was used. For image observations as in the ATARI-10
<benchmark, the input was preprocessed to size 84 x 84 x 4. It was then passed through three
convolutional layers and two subsequent fully connected layers. The network architecture was equal
to the network architecture used inMnih et al.| (2015). Rectified Linear Units (Agarap, 2018) were
used as the activation function.

Evaluation For the environments CARTPOLE, ACROBOT and LUNARLANDER, 100 evaluations
were evenly spaced throughout the training procedure. Each agent evaluation consisted of five full
trajectories in the environment, going from initial to terminal state. The evaluation score of a single
agent evaluation is the average total score across those five evaluation trajectories. Training was
stopped when the agent reached a predefined reward threshold defined in the Gymnasium package
(Towers et al.,|2024)). For ATARI environments, as in|Schaul et al.|(2015)), 200 evaluations consisting
of a single trajectory were evenly spaced throughout the training procedure. No reward threshold was
set.

Score normalization: For ATARI games, scores were normalized to allow for comparability between
games. Let =,.,,, denote a single evaluation score that is to be normalized. Let =,.4,,40m denote the
score achieved by a randomly initialized policy in this game. Let =,,,,, denote the highest score
achieved in this game across either condition, ReaPER]or[PER] The normalized score =0y, is then
calculated via

[1]

—_
=

— raw — —=random

Snorm — . (59)

(1]

high — E7’0,ndom
F ATARI-10 RESULTS

Figure 5| displays the cumulative maximum scores gathered across 200 evaluation periods, which
were evenly spaced-out throughout the training runs.

3In the uniform experience replay condition, the learning rate was increased to 2.5e-4, as recommended in
seminal work (Mnih et al., 2015 |Schaul et al.| 2015} ivan Hasselt et al., 2015).

23

Under review as a conference paper at ICLR 2026

Amidar BattleZone

Bowling

1000 1

75
A 50000 f”_’j 50 1
04L 0 25—

KungFuMaster =~ NameThisGame

50000 A

15000 -

I 10000 [250007 T
j 5000 /_r"‘_
0- 04

ReaPER —— PER

UNI

DoubleDunk Frostbite
0 - |
T 5000 A I
_10 /| I
0 -
Qbert RiverRaid
20000 A —
20000 - I
f‘ 10000 //—/
0 -

Figure 5: Cumulative maximum evaluation score per game from the ATARI-10 benchmark across the

training period for|ReaPER] and uniform experience replay (UNI).
gp p

G HARDWARE SPECIFICATION

The ATARI experiments were conducted on a workstation equipped with an AMD Ryzen 9 7950X
CPU (32 cores at 4.5 GHz), 128 GB of RAM, and an NVIDIA RTX 4090 GPU with 24 GB of
memory (driver version 12.3). All other numerical experiments were performed on a 2024 MacBook

Air with an Apple M3 processor.

24

	Introduction
	Problem statement
	Methodology
	Reliability score
	Formal analysis

	Reliability-adjusted Prioritized Experience Replay
	Numerical study
	Conclusion
	Reproducibility statement
	Algorithm
	Literature Review
	Prioritized Experience Replay as the state-of-the-art
	Systematic review of proposed alternatives

	Detailed formal analysis
	Convergence behavior
	Discussion of Assumption 3.4
	Proof of Lemma 3.5
	Proof of Proposition 3.6
	Discussion of Remark 3.7
	Proof of Proposition 3.8

	Results in a stylized setting
	Experimental settings
	Atari-10 results
	Hardware specification

