
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RELIABILITY-ADJUSTED PRIORITIZED EXPERIENCE
REPLAY∗

Anonymous authors
Paper under double-blind review

ABSTRACT

Experience replay enables data-efficient learning from past experiences in online
reinforcement learning agents. Traditionally, experiences were sampled uniformly
from a replay buffer, regardless of differences in experience-specific learning po-
tential. In an effort to sample more efficiently, researchers introduced Prioritized
Experience Replay (PER). In this paper, we propose an extension to PER by intro-
ducing a novel measure of temporal difference error reliability. We theoretically
show that the resulting transition selection algorithm, Reliability-adjusted Prior-
itized Experience Replay (ReaPER), enables more efficient learning than PER.
We further present empirical results showing that ReaPER outperforms both uni-
form experience replay and PER across a diverse set of traditional environments
including several classic control environments and the Atari-10 benchmark, which
approximates the median score across the Atari-57 benchmark within one percent
of variance.

1 INTRODUCTION

Reinforcement Learning (RL) agents improve by learning from past interactions with their envi-
ronment. A common strategy to stabilize learning and improve sample efficiency is to store these
interactions – called transitions – in a replay buffer and reuse them through experience replay to
increase sample-efficiency. When using experience replay, the agent obtains mini-batches for training
by sampling transitions from the replay buffer. Mini-batches are traditionally obtained using random
sampling. However, a prioritization schemes can help to select more informative transitions, improv-
ing convergence speed and, ultimately, agent performance significantly (Schaul et al. (2015)). As
such, the sampling scheme constitutes a performance-crititcal component for modern reinforcement
learning agents leveraging experience replay (Hessel et al., 2017).

Among proposed prioritized sampling schemes, PER remains the most widely used (see Appendix B).
PER was introduced in Schaul et al. (2015). It samples transitions in proportion to their absolute
Temporal Difference Error (TDE), which measures the distance between predicted and target Q-
values. Accordingly, PER follows the rationale that transitions with higher absolute TDEs bear higher
learning potential. While this rationale is intuitive, the TDE is a biased proxy as both the predicted
and the target Q-value are approximations. Hence, prioritizing transition selection based on absolute
TDEs can misdirect learning, potentially leading to degrading value estimates, if the target Q-value is
itself inaccurate. Such inaccurate targets may dampen convergence or in the worst case deteriorate
final policy performance.

To address the bias while retaining the efficient transition selection, we propose ReaPER, an enhanced
experience replay strategy that extends PER by weighting the TDE with a measure of target Q-value
reliability. This design is motivated by the observation that, when the agent’s estimation of future
states is inaccurate, the corresponding target Q-values become unreliable. In such cases, the TDE
ceases to be a dependable indicator of a transition’s learning potential, leading to ineffective or even
detrimental updates. By explicitly accounting for reliability, ReaPER preserves the advantages of
PER over uniform experience replay while mitigating the negative impact of misleading priorities,
resulting in consistent performance improvements.

Intuition The rationale behind our reliability estimate becomes particularly intuitive in game
environments such as Go, Chess, or Tic Tac Toe. Consider a player assessing the current board

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

position: if they lack a reliable understanding of how the game might unfold, their evaluation of the
current state’s value is likely inaccurate. As shown in Figure 1, states closer to terminal outcomes
(i.e., near the end of the game) involve fewer remaining moves, making it easier for the agent to

Figure 1: Subsequent states from a Tic Tac Toe game from the perspective of the agent placing circles.
Board state t+ 2 is terminal. States t and t+ 1 are losing under optimal play. For an inexperienced
player, recognizing that t+ 1 is a losing state is generally easier than recognizing t as such. However,
once t+ 1 is understood as losing, identifying t as lost becomes more straightforward. In general,
accurately assessing t + 1 is a prerequisite for reliably assessing t—especially when learning the
game without explicit knowledge of rules or win conditions. As long as the agent’s assessment of
t+ 1 is flawed, its evaluation of t remains unreliable.

accurately estimate their values. Early-game states, in contrast, rely on longer and more uncertain
rollouts. Thus, value estimates tend to be more reliable as one moves closer to the end of an episode.
This observation implies a hierarchical dependency in the learning of transitions within a trajectory,
wherein the accurate estimation of earlier state-action values is conditioned on the agent’s ability to
infer and propagate information from later transitions. Consequently, we suggest that the reliability
of target values – and by extension, of TDEs – should factor into experience replay prioritization.

State of the Art Experience replay has been an active field of research for decades. After its first
conceptualization by Lin (1992), various extensions, analyses and refinements have been proposed
(e.g., Andrychowicz et al. (2017); Zhang & Sutton (2017); Isele & Cosgun (2018); Rolnick et al.
(2018); Rostami et al. (2019); Fedus et al. (2020); Lu et al. (2023)).

Central to our work is an active stream of research exploring optimized selection of experiences
from the replay buffer. The most notable contribution in this stream so far was PER (Schaul
et al., 2015). In essence, PER proposes to use the absolute TDE as a sampling weight, which
allows to select transitions with high learning potential more frequently compared to a uniform
sampling strategy. Various papers built upon the idea of using transition information as a transition
selection criterion: Ramicic & Bonarini (2017) explored an entropy-based selection criterion. Gao
et al. (2021) proposed using experience rewards for sample prioritization. Brittain et al. (2019)
introduced Prioritized Sequence Experience Replay, which extends PER by propagating absolute
TDEs backwards throughout the episode before using them as a sampling criterion. Zha et al. (2019)
and Oh et al. (2021) proposed dynamic, learning-based transition selection mechanisms. Yet, the
proposed approaches have not replaced PER: PER remains the only prioritized sampling strategy
that is widely adopted by state-of-the-art RL algorithms. For a comprehensive review of the relevant
literature and a systematic breakdown of this claim, we refer to Appendix B.

Contribution We propose ReaPER, a novel experience replay sampling scheme that improves upon
PER by reducing the influence of unreliable TD targets, ultimately leading to more stable learning and
better policy performance. Specifically, our contribution is threefold: first, we propose the concept of
target Q-value and TDE reliability and introduce a reliability score based on the absolute TDEs in
subsequent states of the same trajectory. Second, we present formal results proving the effectiveness
of the reliability-adjusted absolute TDE as a transition selection criterion. Third, we leverage the
theoretical insights and the novel reliability score to propose ReaPER, a sampling scheme facilitating
more effective experience replay. The proposed method is algorithm-agnostic and can be used within
any off-policy RL algorithm.

To substantiate our theoretical findings, we perform numerical experiments comparing ReaPER to
PER across various traditional RL environments, namely CARTPOLE, ACROBOT, LUNARLANDER
and the ATARI-10 benchmark, which recovers 99.2% of variance within the median score estimate of
the full Atari-57 benchmark (Aitchison et al., 2022). We show that both prioritized sampling strategies
outperform uniform experience replay, and further show that ReaPER consistently outperforms PER.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Specifically, in environments of lower complexity like CARTPOLE, ACROBOT and LUNARLANDER,
ReaPER reaches the maximum score on average between 21.35% and 29.49% faster than PER. In
environments of higher complexity, exemplified by the ATARI-10 benchmark, ReaPER on average
achieves a 24.37% (SD = 23.76) higher peak performance.

2 PROBLEM STATEMENT

We consider a standard Markov decision process (MDP) as usually studied in an RL setting(Sutton
& Barto, 1998). We characterize this MDP as a tuple (S,A, P, r, γ, p), where S is a finite state
space, A is a finite action space, P : S × A → ∆(S) is a stochastic kernel, r : S × A → R is a
reward function, γ ∈ (0, 1) is a discount factor, and p ∈ ∆(S) denotes a probability mass function
denoting the distribution of the initial state, S1 ∼ p. At time step t, the system is in state St = s ∈ S .
We denote by St and At the random variables representing the state and action at time t, and by
s ∈ S and a ∈ A their respective realizations. If an agent takes action At = a ∈ A, it receives
a corresponding reward r(s, a), and the system transitions to the next state St+1 ∼ P (·|s, a). We
define the random reward at time t as Rt = r(St, At). The agent selects actions based on a policy
π : S → A via At = π(St).

Let Pπ
p (·) = Prob(· | π, S1 ∼ p) denote the probability of an event when following a policy π,

starting from an initial state S1 ∼ p, and let Eπ
p [·] denote the corresponding expectation operator.

We consider problems with finite episodes, where n expresses the number of transitions within the
episode. Let Gt denote the discounted return at time t, Gt =

∑n
i=t γ

i−tRi. We define the Q-function
(or action-value function) for a policy π as

Qπ(s, a) = Eπ
p [Gt | St = s,At = a] = Eπ

p

[
n∑

i=t

γi−tRi | St = s,At = a

]
. (1)

The ultimate goal of RL is to learn a policy that maximizes the Q-function, leading to Q⋆(s, a) =
maxπ Q

π(s, a). The policy is gradually improved by repeatedly interacting with the environ-
ment and learning from previously experienced transitions. A transition Ct is a 5-tuple, Ct =
(St, At, Rt, St+1, dt), where dt is a binary episode termination indicator, dt = 1t=n. One popular
approach to learn Q⋆ is via Watkins’ Q-learning (Watkins, 1989; Watkins & Dayan, 1992), where
Q-values are gradually updated via

Q(St, At)← Q(St, At) + η · δt (2)

in which η ∈ (0, 1] is the learning rate and δt the TDE, δt = Qtarget(St)−Q(St, At) with
Qtarget(St) = Rt+1 + (1 − dt+1) · γ · maxa Q(St+1, a). For brevity of notation, we refer to the
absolute TDE as δ+t = |δt|.
In practical RL applications, experience replay is commonly employed to stabilize and accelerate
learning. Transitions collected through agent-environment interaction are stored in a finite buffer
H = {Ct}Nt=1, from which mini-batches X ⊂ H of fixed size |X | = k are sampled to update
the Q-function. The sampling distribution over the buffer, denoted by µ ∈ ∆(H), determines the
likelihood µ(Ct) of selecting transition Ct ∈ H when constructing X . In uniform experience replay,
µ is the uniform distribution, whereas in PER (Schaul et al., 2015), transitions are sampled according
to scalar priority values, derived from the absolute TDE δ+t .

Empirical evidence suggests that the effectiveness of the learning process is sensitive to the choice
of µ, i.e., sampling transitions with high learning potential can improve convergence speed and
final performance. However, designing an optimal or near-optimal sampling distribution remains an
open problem. With this work, we aim to contribute to closing this gap by defining and efficiently
approximating a sampling distribution µ⋆ that maximizes learning progress using experience replay.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHODOLOGY

In the following, we provide the methodological foundation for ReaPER. We first introduce a
reliability score for absolute TDEs, which we use to derive a TDE-based reliability-adjusted transition
sampling method. We then provide theoretical evidence for its efficacy.

3.1 RELIABILITY SCORE

In bootstrapped value estimation, as in Q-learning, the target value

Qtarget(St) = Rt+1 + γ · (1− dt+1) ·max
a

Q(St+1, a) (3)

relies on the current estimate of future values. Consequently, the quality of an update to Q(St, At)
depends not only on the magnitude of the absolute TDE δ+t , but also on the reliability of the target
value Qtarget(St).

We define the reliability of a target Q-value as a measure of how well it approximates the true future
return from a given state-action pair. Intuitively, a target value is reliable if it decreases the distance
between Q⋆(St, At) and Q(St, At). Conversely, a target is unreliable if training on it increases the
distance between Q⋆(St, At) and Q(St, At).

To motivate this concept and formalize its operational consequences, we consider a single episode
consisting of transitions (C1, . . . , Cn), from initial state S1 to terminal state Sn+1. We highlight
three key observations that explain how reliability varies along the trajectory and how it can be used
to improve sampling:
Observation 3.1 (Unreliable targets can degrade learning). Qtarget(St) depends on the estimate
Q(St+1, ·) for t ∈ {1, . . . , n− 1}, which may be inaccurate. If an update is based on a poor target
value, the resulting Q(St, At) may diverge from Q⋆(St, At), thereby degrading the estimate.
Observation 3.2 (Terminal transitions induce reliable updates). For terminal transitions, the target
is given directly by the environment, i.e., Qtarget(Sn) = Rn. This target is exact, implying that the
corresponding TDE accurately reflects the deviation from the ground truth Q-value. Thus, updates
based on terminal transitions are guaranteed to shift Q(Sn, An) towards Q⋆(Sn, An) if δ+n > 0.
Observation 3.3 (Reliability propagates backward). An accurate update to Q(St, At) improves the
accuracy of Qtarget(St−1) and earlier targets, which recursively depend on it. Therefore, updating
transitions near the end of the episode helps improving the reliability of Qtarget for earlier transitions.

These observations highlight a temporal hierarchy in transition learning: Learning later transitions
before learning earlier transitions appears advantageous. On the one hand, later targets rely on fewer
estimated quantities and are therefore more reliable. On the other hand, learning later transitions
positively impacts the target reliability for earlier transitions. Furthermore, a high TDE indicates a
misunderstanding of game dynamics for a given transition, thus rendering the value estimation in
predecessor transitions – which rely on the understanding of the value dynamics in the subsequent
rollout – less reliable. We therefore aim to resolve TDEs back-to-front. This motivates defining the
reliability of Qtarget(St) inversely related to the sum of future absolute TDEs,

Rt = 1−
∑n

i=t+1 δ
+
i∑n

i=1 δ
+
i

. (4)

Using this definition, we propose the reliability-adjusted TDE

Ψt = Rt · δ+t , (5)

as a sampling criterion for selecting transitions during experience replay. High values of Ψt corre-
spond to transitions that promise large updates and have reliable target values. Sampling weights p
can be obtained by normalizing the sampling criterion with the sum of Ψ over all transitions.

3.2 FORMAL ANALYSIS

We consider a set of transitions that constitutes a single complete trajectory of length n,D = {Ct}nt=1,
where Ct = (St, At, Rt, St+1, dt).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Updates are based on the TDE δt = Q(St, At)−Qtarget(St), using the standard bootstrapped target

Qtarget(St) = Rt + γ(1− dt)max
a

Q(St+1, a). (6)

Convergence A critical factor to ensure convergence in Q-learning is the alignment between the
TDE and the true value estimation error Q(St, At)−Q⋆(St, At). When the bootstrapped target is
biased, meaning Qtarget(St) ̸= Q⋆(St, At), the update direction may become misaligned, potentially
worsening the value estimate.

We defer the formal misalignment analysis to Lemma C.1 and Lemma C.2 in Appendix C.1. In
essence, the expected change in squared true value estimation error due to an update of the value
function approximator under a sampling strategy µ can be decomposed into three components, the
TDE variance, the true squared error, and the bias-error interaction

Eµ[∆|Q(St, At)−Q⋆(St, At)|2] = η2
n∑

t=1

µtE[δ
2
t]

TDE variance

− 2η

n∑
t=1

µtE[e
2
t]

True squared error

+2η

n∑
t=1

µtE[etεt]

Bias-error-interaction

, (7)

where et denotes the true value error, and εt denotes the target bias,

et = Q(St, At)−Q⋆(St, At), εt = Qtarget(St)−Q⋆(St, At). (8)

By focusing on large TDEs, PER aims to sample transitions with higher true squared error more
frequently, thus resolving errors faster and improving efficiency over uniform sampling. In the
following, we show that our ReaPER sampling scheme additionally controls the target bias, thereby
minimizing the bias-error interaction, while also preserving the advantages of PER. This allows
ReaPER to increase sampling-efficiency over PER. To do so, we base the following formal analyses
on a key assumption relating target bias to absolute downstream TDEs.
Assumption 3.4 (Target Bias via Downstream TDEs). Along an optimal trajectory, the target bias εt
for each transition Ct satisfies

|εt| ≤ λ

n∑
i=t+1

δ+i , (9)

This assumption formalizes the intuition that bootstrapped targets primarily inherit bias from inaccu-
racies in future predictions. It reflects standard TD-learning dynamics under sufficient exploration
and function approximation stability. While – similar to the assumptions made in standard conver-
gence proofs for RL – this assumption can be violated during the early phases of training, it tends
to hold once value estimates stabilize. In a nutshell, Assumption 3.4 captures the intuition that
target bias predominantly arises from unresolved downstream TDEs, reflecting a local perspective
on TD-learning dynamics. Unlike classical convergence proofs that require global exploration and
decaying learning rates, our assumption focuses on bounding the bias along observed trajectories
during finite-sample learning, making it more applicable to practical deep RL. We refer the interested
reader to Appendix C.2 for a detailed discussion.

Under Assumption 3.4, the reliability scoreRt –representing the fraction of downstream TDE within
a given trajectory – bounds the normalized target bias. This is captured in the following lemma.
Lemma 3.5 (Reliability Bounds Target Bias). Under Assumption 3.4,

|εt| ≤ λ(1−Rt)

n∑
i=1

δ+i . (10)

For the proof of Lemma 3.5, we refer to Appendix C.3. Lemma 3.5 expresses that transitions with
higher reliability scores exhibit lower target bias and thus yield more trustworthy TDEs. This finding
motivates selecting training transitions not just by TDE magnitude, but by a combination of TDE
magnitude and reliability — as implemented in ReaPER.

Building on the established relationship between reliability and target bias, we derive the following
convergence hierarchy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Proposition 3.6 (Convergence Hierarchy of Sampling Strategies). Under Assumption 3.4 and given
a fixed learning rate η, ReaPER (µt ∝ Rtδ

+
t) yields lower expected Q-value error than standard

PER (µt ∝ δ+t), which in turn outperforms uniform sampling,

E[||Q(Uniform)
T −Q⋆||2] ≥ E[||Q(PER)

T −Q⋆||2] ≥ E[||Q(ReaPER)
T −Q⋆||2], (11)

where E denotes the expectation across training runs.

The corresponding proof, detailed in Appendix C.4, formally compares the expected error decrease
terms under different sampling distributions, using Lemma 3.5 to bound the bias-error-interaction.
While we limit Proposition 3.6 to optimal policies for brevity of notation, we can straightforwardly
extend it to suboptimal policies.
Remark 3.7 (Extension to suboptimal policies). If the agent follows a fixed but suboptimal policy,
Assumption 3.4 can be relaxed to include an additive policy-induced bias term ζ ≥ 0, yielding

|εt| ≤ λ

n∑
i=t+1

δ+i + ζ. (12)

In this case, ReaPER still improves sampling efficiency in expectation, although the achievable
Q-value accuracy is lower-bounded by the policy suboptimality ζ. For further details, we refer the
interested reader to Appendix C.5.

Together, these results provide the theoretical foundation for ReaPER’s design: By prioritizing
transitions with high absolute TDE and high reliability, ReaPER selects relevant transitions while
improving alignment with the true value error, leading to faster and more stable learning.

Variance reduction In the following, we show that the proposed sampling scheme, based on
reliability-adjusted TDEs reduces the variance of the Q-function updates. As a first step towards
this result, we analyze the theoretically optimal distribution to sample from in order to minimize the
variance of the Q-function update step. Recall that Q-values are updated according to (2), where
the TDE corresponding to a transition Ct from the finite replay buffer H reads δt = Qtarget(St) −
Q(St, At).

We assume a fixed episode and treat the current Q-values as constants, focusing on analyzing the
update variance induced by the sampling distribution µ over H. The update variance can then be
expressed as

N∑
t=1

µtVar[δt] =
N∑
t=1

µtVar[Qtarget(St)] =

N∑
t=1

µtσ
2
t , (13)

where the first equality follows from the definition of the TDE and the assumption that the current
Q-values are constant. The second equality simply defines σ2

i := Var[Qtarget(Si)] as the variance of
the bootstrapped target for brevity.
Proposition 3.8 (Variance reduction via reliability-aware sampling). The distribution µ⋆ minimizing
the update variance (13) is given by

µ⋆
t ∝

δ+t
σ2
t

for all t ∈ {1, . . . , N} (14)

For the proof of Proposition 3.8, we refer to Appendix C.6.

As a direct consequence of Proposition 3.8, we find that our proposed ReaPER sampling scheme is
variance reducing if the reliabilityR is proportional to the inverse variance of the bootstrapped target.

As the true target Q⋆ remains constant, a significant proportion of variance across runs for a given
state can be attributed to the target bias. As such, there exists a direct relationship between ε and
σ2. Hence, under Assumption 3.4, it seems natural to assumeR ∝ 1

σ2 . Thus, ReaPER constitutes a
reasonable proxy for the optimal inverse-variance weighted sampling strategy.

To provide further intuition for our formal results, we have conducted a supplementary simulation-
driven analysis showing that ReaPER achieves optimal transition selection in a stylized setting, which
we detail in Appendix D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 RELIABILITY-ADJUSTED PRIORITIZED EXPERIENCE REPLAY

We have thus far introduced the reliability-adjusted TDE and theoretically proven its effectiveness
as a transition selection criterion. In the following, we propose ReaPER, the sampling algorithm
built around the reliability-adjusted TDE. We give a distilled overview of the resulting sampling
scheme in Algorithm 1. At its core, we create mini-batches by sampling from the buffer with Ψ as the
sampling weight. Specifically, at each training step τ ∈ {1, . . . , T}, for every transition within the
buffer, that is, Ct for all t ∈ {1, . . . , N}, we update TDE reliabilitiesRt and compute the transition
selection criterion Ψt (Algorithm 1, Line 5ff.). Based on Ψt, we sample k transitions from the buffer
H to create the next mini-batch X (Algorithm 1, Line 9ff.). For the full algorithm and an extended
explanation, we refer to Appendix A.

Algorithm 1: Sampling transitions and updating the value function using ReaPER
Input: absolute TDEs δ+, episode vector ϕ, current episode Φ, batch size k, exponents α, ω and

β, replay bufferH of size N , policy weights θ, maximum priority pmax = 1, budget T
1 for τ ∈ {1, . . . , T} do
2 Initialize accumulated weight change ∆ = 0 and empty batch X = 0(k);
3 Add novel transitions to the buffer with maximum priority pmax and set ϕt = Φ;

4 Compute maximum episodic sum of absolute TDEs, F ← max
t∈{1,...,N}

(∑N
i=1 δ

+
i · 1ϕt=ϕi

)
;

5 for t ∈ {1, . . . , N} do // Updating transition weights
6 Compute TDE reliabilities as in Formula 16;
7 Compute transition selection criterion Ψt ← Rω

t · δ+t
α

;
8 Compute transition priorities pt ← Ψt∑N

i=1 Ψi
;

9 for m ∈ {1, . . . , k} do // Sampling transitions
10 Sample a transition Cj fromH to add to batch X such that P(Ct = Xm) = pt for all

t ∈ {1, . . . , N};
11 Compute importance-sampling weight wj ← (N ·pj)

−β

maxt wt
for all t ∈ {1, . . . , N};

12 Update δ+j and accumulate weight-change ∆← ∆+ wj · δj · ∇θQ(Sj , Aj);

13 Update weights θ ← θ + η ·∆;
14 Update maximum priority pmax = max(pmax,max(p));

Starting from the naive implementation of ReaPER, we require four technical refinements to obtain a
functional and efficient sampling algorithm.

I. Priority updates. To consistently maintain an updated sampling weight Ψ, we track the TDEs
and reliabilities of stored transitions throughout the training. As it is computationally intractable to
re-calculate all TDEs on every model update, we implement a leaner update rule: As in PER, we
assign transitions maximum priority when they are added to the buffer. Moreover, we assign the TDE
of transition Ct every time Ct is used to update the Q-function. We assign the reliability of transition
Ct every time Ct is used to update the Q-function, or if any other transition from the same episode is
used to update the Q-function, as it leads to a change in the sum of TDEs and possibly the subsequent
TDEs. We update the priority Ψ when TDE or reliability are updated.

II. Priority regularization. As the TDE of a given transition may change by updating the model even
without training on this transition, TDEs – and, in consequence, reliabilities – are not guaranteed to
be up-to-date. Thus, similar to Schaul et al. (2015), we introduce regularization exponents α ∈ (0, 1]
and ω ∈ (0, 1] to dampen the impact of extremely high or low TDEs or reliabilities,

Ψt = Rω
t · δ+t

α
. (15)

III. Reliabilities for ongoing episodes. As the sum of TDE throughout an episode is undefined as
long as the episode is not terminated, so is the reliability. In these cases, we use the maximum sum of
TDEs of any episode within the buffer to obtain a conservative reliability estimate.

For this, we introduce ϕ, a vector of length N , where ϕt denotes the t-th position in ϕ, which contains
a scalar counter of the trajectory during which transition Ct was observed. As such, ϕ functions as a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

positional encoding of transitions within the buffer. Specifically, it is used to identify all transitions
that belong to the same trajectory. This positional encoding allows us to calculate conservative
reliability estimates for a multi-episodic buffer.

We then defineRt as

Rt =


1−

(∑n
i=t+1 δ+i∑n
i=1 δ+i

)
for transitions of terminated episodes

1−
(

F−
∑t

i=1 δ+i
F

)
for transitions of ongoing episodes

(16)

where

F = max
t∈{1,...,N}

(
N∑
i=1

δ+i · 1ϕt=ϕi

)
(17)

VI) Weighted importance sampling. Finally, just as every other non-uniform sampling method,
ReaPER violates the i.i.d. assumption. Thus, it introduces bias into the learning process, which can
be harmful when used in conjunction with state-of-the-art RL algorithms. Similar to Schaul et al.
(2015), we use weighted importance sampling (Mahmood et al., 2014) to mitigate this bias. When
using importance sampling, each transition Ct is assigned a weight wt, such that

wt =

(
1

N
· 1
pt

)β

=

(
1

N
·
∑N

i=1 Ψi

Ψt

)β

. (18)

We use this weight to scale the loss and perform Q-learning updates using δt · wt instead of δt.

5 NUMERICAL STUDY

We evaluated ReaPER against PER across a diverse set of continuous control and Atari environments.
For continuous control, we considered the discrete action space environments from the Gymnasium
library (Towers et al., 2024), namely CARTPOLE, ACROBOT and LUNARLANDER. For Atari,
following prior work, we use ATARI-10 as a computationally efficient yet representative benchmark
which recovers 99.2% of median score variance within the Atari-57 benchmark, ensuring relevance
to broader Atari-57 evaluations without incurring prohibitive computational overhead (Aitchison
et al., 2022). Across conditions, we used the same Double Deep Q-Network (DDQN) agent, neural
architecture, and model hyperparameters for all experiments. We controlled for all sources of
randomness using fixed seeds and compared algorithms using identical seeds per trial. Thus, the
only variation between conditions stemmed from the experience replay algorithm. Full experimental
details and hyperparameters are provided in Appendix E.

Continuous control For each continuous control environment, we compared the performance
between PER and ReaPER across 20 training runs. Training ended preemptively when a pre-defined
score threshold was met (Towers et al., 2024).

Across all three environments, ReaPER consistently reached performance thresholds in fewer steps
than both uniform replay and PER. In ACROBOT, this corresponded to improvements of 25.0% and
16.6%, respectively. For CARTPOLE, ReaPER reduced the steps needed by 41.4% and 32.6%, and a
similar pattern held in LUNARLANDER, with gains of 37.1% and 21.1%.

Atari ReaPER consistently outperformed both uniform experience replay and PER on the ATARI-
10 benchmark. Specifically, ReaPER outperformed PER and uniform experience replay in eight out of
ten games, tying PER in two games. Across all games, ReaPER achieved a a 22.97% higher median
peak score than PER, and a 229.78% higher median peak score than uniform experience replay.
These results underline ReaPER’s robustness across heterogeneous game dynamics and its ability
to scale to challenging, high-dimensional domains. Per-game curves are provided in Appendix F
(Figure 5).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Proportion of training steps required by PER, uniform experience replay (UNI) and ReaPER
to reach a pre-defined score thresholds given in Towers et al. (2024) across 20 runs in three traditional
RL environments.

Figure 3: Left: Peak score increase of ReaPER over PER. Right: Median of the normalized cumulative
maximum of scores across the Atari-10 benchmark for ReaPER, PER and uniform experience replay
(UNI). The normalized score at timestep t is calculated by dividing the difference between the current
score and the random score by the difference between the maximum score in this game across all
sampling strategies and the random score.

Discussion ReaPER consistently outperforms PER, indicating a substantial methodological advance.
Notably, ReaPER did so with minimal hyperparameter tuning. We expect further gains through more
extensive tuning of key hyperparameters, including regularization exponents α and ω, importance
sampling exponent β and learning rate η.

A limitation of ReaPER is its reliance on terminal states, which are a pre-requisite for calculating
meaningful TDE reliabilities. Further, ReaPER tracks the episodic cumulative sums of TDEs to
calculate the reliability score, which causes computational overhead when TDEs are updated. Using
a naive implementation, this overhead is non-negligible at O(N). However, it can be reduced to
O(n− t) by only re-calculating the episodic cumulative sums for transitions on their update or the
update of a preceding transition within the same episode.

6 CONCLUSION

We introduced ReaPER, a reliability-adjusted experience replay method that mitigates the detrimental
effects of unreliable targets in off-policy deep reinforcement learning. By formally linking target bias
to downstream temporal difference errors, we proposed a principled reliability score that enables
more efficient and stable sampling. Our theoretical analysis shows that ReaPER improves both
convergence speed and variance reduction over standard PER, and our empirical results confirm its
effectiveness across diverse benchmarks.

Beyond its immediate practical gains, ReaPER highlights the importance of accounting for target
reliability in experience replay, particularly in deep RL settings where function approximation errors
and generalization artifacts are prevalent. We believe our work opens new avenues for incorporating
uncertainty and reliability estimates into replay buffers, and future research may explore adaptive
reliability estimation, extensions to actor-critic methods, and integration with representation learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We provide extensive details of experimental settings and hyperparameters to reproduce our exper-
imental results in Appendix E. Source code for all experiments is available in the supplementary
materials, and will be open sourced.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU), 2018. URL https:
//arxiv.org/abs/1803.08375.

Matthew Aitchison, Penny Sweetser, and Marcus Hutter. Atari-5: Distilling the Arcade Learning
Environment down to Five Games, 2022. URL https://arxiv.org/abs/2210.02019.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay. 2017.
doi: 10.48550/ARXIV.1707.01495. URL https://arxiv.org/abs/1707.01495.

Antonin Raffin, Quentin Gallouédec, Noah Dormann, Adam Gleave, Anssi, Alex Pasquali, Juan
Rocamonde, M. Ernestus, Patrick Helm, Thomas Simonini, Quinn Sinclair, Corentin, Rohan Tangri,
Sidney Tio, Tobias Rohrer, Tom Dörr, Wilson, Steven H. Wang, Sam Toyer, Roland Gavrilescu,
Paul Maria Scheikl, Parth Kothari, Oleksii Kachaiev, Megan Klaiber, Marsel Khisamurdinov,
Mark Towers, Jan-Hendrik Ewers, Grégoire Passault, Dominic Kerr, and Costa Huang. Stable-
Baselines3 v2.4.0, November 2024. URL https://zenodo.org/doi/10.5281/zenodo.
14178439.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the Atari Human Benchmark, 2020a.
URL https://arxiv.org/abs/2003.13350.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, and Charles
Blundell. Never Give Up: Learning Directed Exploration Strategies, 2020b. URL https:
//arxiv.org/abs/2002.06038.

Marc Brittain, Josh Bertram, Xuxi Yang, and Peng Wei. Prioritized Sequence Experience Replay,
2019. URL https://arxiv.org/abs/1905.12726.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc Bellemare, and Aaron
Courville. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier. 2023.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, and Jeff Clune. Go-Explore:
a New Approach for Hard-Exploration Problems, 2019. URL https://arxiv.org/abs/
1901.10995.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting Fundamentals of Experience Replay, 2020. URL https:
//arxiv.org/abs/2007.06700.

Jiashan Gao, Xiaohui Li, Weihui Liu, and Jingchao Zhao. Prioritized Experience Replay Method
Based on Experience Reward. In 2021 International Conference on Machine Learning and
Intelligent Systems Engineering (MLISE), pp. 214–219, Chongqing, China, July 2021. IEEE.
ISBN 9781665417365. doi: 10.1109/MLISE54096.2021.00045. URL https://ieeexplore.
ieee.org/document/9611651/.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering Diverse Domains
through World Models, 2023. URL https://arxiv.org/abs/2301.04104.

Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining Improvements in
Deep Reinforcement Learning, 2017. URL https://arxiv.org/abs/1710.02298.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, and
David Silver. Distributed Prioritized Experience Replay, 2018. URL https://arxiv.org/
abs/1803.00933.

David Isele and Akansel Cosgun. Selective Experience Replay for Lifelong Learning. Proceedings
of the AAAI Conference on Artificial Intelligence, 32(1), April 2018. ISSN 2374-3468, 2159-
5399. doi: 10.1609/aaai.v32i1.11595. URL https://ojs.aaai.org/index.php/AAAI/
article/view/11595.

11

https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/1803.08375
https://arxiv.org/abs/2210.02019
https://arxiv.org/abs/1707.01495
https://zenodo.org/doi/10.5281/zenodo.14178439
https://zenodo.org/doi/10.5281/zenodo.14178439
https://arxiv.org/abs/2003.13350
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/2002.06038
https://arxiv.org/abs/1905.12726
https://arxiv.org/abs/1901.10995
https://arxiv.org/abs/1901.10995
https://arxiv.org/abs/2007.06700
https://arxiv.org/abs/2007.06700
https://ieeexplore.ieee.org/document/9611651/
https://ieeexplore.ieee.org/document/9611651/
https://arxiv.org/abs/2301.04104
https://arxiv.org/abs/1710.02298
https://arxiv.org/abs/1803.00933
https://arxiv.org/abs/1803.00933
https://ojs.aaai.org/index.php/AAAI/article/view/11595
https://ojs.aaai.org/index.php/AAAI/article/view/11595

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
Experience Replay in Distributed Reinforcement Learning. 2019.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine Learning, 8(3-4):293–321, May 1992. ISSN 0885-6125, 1573-0565. doi: 10.1007/
BF00992699. URL http://link.springer.com/10.1007/BF00992699.

Cong Lu, Philip J. Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic Experience Replay, 2023.
URL https://arxiv.org/abs/2303.06614.

A Rupam Mahmood, Hado P van Hasselt, and Richard S. Sutton. Off-policy learning based on
weighted importance sampling with linear computational complexity. Advances in Neural Infor-
mation Processing Systems, pp. 3014–3022, 2014.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning, 2013. URL
https://arxiv.org/abs/1312.5602.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529–533, February 2015. ISSN 0028-0836, 1476-4687. doi: 10.1038/nature14236.
URL https://www.nature.com/articles/nature14236.

Youngmin Oh, Kimin Lee, Jinwoo Shin, Eunho Yang, and Sung Ju Hwang. Learning to Sample
with Local and Global Contexts in Experience Replay Buffer, April 2021. URL http://arxiv.
org/abs/2007.07358. arXiv:2007.07358 [cs, stat].

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo,
2020.

Mirza Ramicic and Andrea Bonarini. Entropy-based prioritized sampling in Deep Q-learning. In
2017 2nd International Conference on Image, Vision and Computing (ICIVC), pp. 1068–1072,
Chengdu, China, June 2017. IEEE. ISBN 9781509062386. doi: 10.1109/ICIVC.2017.7984718.
URL http://ieeexplore.ieee.org/document/7984718/.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P. Lillicrap, and Greg Wayne. Experience
Replay for Continual Learning, 2018. URL https://arxiv.org/abs/1811.11682.

Mohammad Rostami, Soheil Kolouri, and Praveen K. Pilly. Complementary Learning for Overcoming
Catastrophic Forgetting Using Experience Replay, 2019. URL https://arxiv.org/abs/
1903.04566.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay. 2015.
doi: 10.48550/ARXIV.1511.05952. URL https://arxiv.org/abs/1511.05952.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. 2019.
doi: 10.48550/ARXIV.1911.08265. URL https://arxiv.org/abs/1911.08265.

Max Schwarzer, Johan Obando-Ceron, Aaron Courville, Marc Bellemare, Rishabh Agarwal, and
Pablo Samuel Castro. Bigger, Better, Faster: Human-level Atari with human-level efficiency, 2023.
URL https://arxiv.org/abs/2305.19452.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. IEEE Transactions on Neural
Networks, 9(5):1054–1054, September 1998. ISSN 1045-9227, 1941-0093. doi: 10.1109/TNN.
1998.712192. URL https://ieeexplore.ieee.org/document/712192/.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium: A Standard
Interface for Reinforcement Learning Environments, 2024. URL https://arxiv.org/abs/
2407.17032.

12

http://link.springer.com/10.1007/BF00992699
https://arxiv.org/abs/2303.06614
https://arxiv.org/abs/1312.5602
https://www.nature.com/articles/nature14236
http://arxiv.org/abs/2007.07358
http://arxiv.org/abs/2007.07358
https://github.com/DLR-RM/rl-baselines3-zoo
http://ieeexplore.ieee.org/document/7984718/
https://arxiv.org/abs/1811.11682
https://arxiv.org/abs/1903.04566
https://arxiv.org/abs/1903.04566
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1911.08265
https://arxiv.org/abs/2305.19452
https://ieeexplore.ieee.org/document/712192/
https://arxiv.org/abs/2407.17032
https://arxiv.org/abs/2407.17032

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement Learning with Double
Q-learning, 2015. URL https://arxiv.org/abs/1509.06461.

Shengjie Wang, Shaohuai Liu, Weirui Ye, Jiacheng You, and Yang Gao. EfficientZero V2: Mastering
Discrete and Continuous Control with Limited Data, 2024. URL https://arxiv.org/abs/
2403.00564.

Christopher Watkins. Learning From Delayed Rewards. PhD thesis, Kings College, London, 1989.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning, 8(3-4):279–292,
May 1992. ISSN 0885-6125, 1573-0565. doi: 10.1007/BF00992698. URL http://link.
springer.com/10.1007/BF00992698.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering Atari Games
with Limited Data, 2021. URL https://arxiv.org/abs/2111.00210.

Daochen Zha, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. Experience Replay Optimization. In
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp.
4243–4249, Macao, China, August 2019. International Joint Conferences on Artificial Intelligence
Organization. ISBN 9780999241141. doi: 10.24963/ijcai.2019/589. URL https://www.
ijcai.org/proceedings/2019/589.

Shangtong Zhang and Richard S. Sutton. A Deeper Look at Experience Replay, 2017. URL
https://arxiv.org/abs/1712.01275.

13

https://arxiv.org/abs/1509.06461
https://arxiv.org/abs/2403.00564
https://arxiv.org/abs/2403.00564
http://link.springer.com/10.1007/BF00992698
http://link.springer.com/10.1007/BF00992698
https://arxiv.org/abs/2111.00210
https://www.ijcai.org/proceedings/2019/589
https://www.ijcai.org/proceedings/2019/589
https://arxiv.org/abs/1712.01275

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ALGORITHM

Algorithm 2: Deep Q Learning with reliability-adjusted proportional prioritization
Input: batch size k, learning rate η, replay period K, replay buffer size N , exponents α, ω and

β, budget T .
1 Initialize replay memoryH = ∅, ∆ = 0, p1 = 1, episode vector ϕ = 0(N), episodic count Φ = 1

and maximum sum of episodic TDE F = 1;
2 Observe S1 and choose A1 ∼ πθ(S1);
3 for c ∈ {1, . . . , T} do
4 Initialize accumulated weight change ∆ = 0 and empty batch X = 0(k);
5 Observe Sc+1, Rc, dc;
6 Store transition Cc = (Sc, Ac, Rc, dc, Sc+1) inH with ϕc = Φ and pc = maxt(pt) for all

t ∈ {1, . . . , N};
7 if c ≡ 0 mod K then
8 for m ∈ {1, . . . , k} do
9 Sample a transition Cj fromH to add to batch X such that P(Ct = Xm) = pt for all

t ∈ {1, . . . , N};
10 Compute importance-sampling weight wj =

(N ·pj)
−β

maxt wt
for all t ∈ {1, . . . , N};

11 Compute TDE δj = Qtarget(Sj)−Q(Sj , Aj);
12 Accumulate weight-change ∆← ∆+ wj · δj · ∇θQ(Sj , Aj);
13 end
14 Update weights θ ← θ + η ·∆;
15 From time to time, copy weights into target network, θtarget ← θ;

16 Update maximum sum of absolute TDEs, F ← max
t∈{1,...,N}

(∑N
i=1 δ

+
i · 1ϕt=ϕi

)
;

17 for t ∈ {1, . . . , N} do
18 Compute TDE reliabilities,

Rt =


1−

(∑n
i=t+1 δ+i∑n
i=1 δ+i

)
for transitions of terminated episodes

1−
(

F−
∑t

i=1 δ+i
F

)
for transitions of ongoing episodes

19 Update transition sampling criterion Ψt ← Rω
t · δ+t

α
;

20 Update transition priorities pt ← Ψt∑N
i=1 Ψi

;

21 end
22 end
23 if dc = 1 then
24 for t ∈ {1, . . . , N} | ϕt = ϕc) do

25 Compute TDE reliabilities for the finished episode, Rt = 1−
(∑n

i=t+1 δ+i∑n
i=1 δ+i

)
;

26 end
27 Φ← Φ+ 1;
28 end
29 Choose action Ac ∼ πθ(Sc);
30 end

In the following, we describe how ReaPER operates in conjunction with a Deep Q-Network (DQN).
The agent begins by observing the initial state and selecting an action (Algorithm 2, Line 2).

For a fixed number of iterations, the agent interacts with the environment, observes the resulting
transition from its latest action, and stores this transition in the replay buffer with maximum priority
(Algorithm 2, Line 5f.).

Every K steps, the agent performs a training update (Algorithm 2, Line 7). During training, it
samples a batch X from the buffer using the current priorities p as sampling weights (Algorithm 2,
Line 8ff.). The agent updates the model parameters using importance-sampling-weighted TD-errors
(Algorithm 2, Line 14), and uses the observed TD-errors to update the priorities p for all transitions

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

in the batch (Algorithm 2, Line 17ff.). This involves recomputing the reliabilities based on the new
TD-errors, applying a conservative estimate for transitions from ongoing episodes (Algorithm 2,
Line 18). The agent then recalculates the sampling criterion Φ and updates the priorities p accordingly
(Algorithm 2, Line 20), concluding the training step.

Upon episode termination, the agent replaces the preliminary reliability estimate with the actual
reliability (Algorithm 2, Line 25). Throughout training, it tracks episode progress to enable continuous
recomputation of reliabilities (Algorithm 2, Line 27).

At each iteration, the agent selects the next action based on its current policy and state (Algorithm 2,
Line 29), initiating the next cycle.

B LITERATURE REVIEW

In the following, we substantiate our claim that PER constitutes the most practically relevant prior-
itized sampling strategy within reinforcement learning to this day. We first systematically review
state-of-the-art RL algorithms and the sampling strategies they are employing. We further discuss
possible reasons for the limited adoption of proposed alternatives.

B.1 PRIORITIZED EXPERIENCE REPLAY AS THE STATE-OF-THE-ART

When we refer to PER as most practically relevant sampling strategy, we do not claim that DDQN
with PER, as proposed in the original PER paper Schaul et al. (2015), represents the state-of-the-art
in solving RL problems overall. Rather, we claim that to this day, no transition selection algorithm
within experience replay has demonstrated efficiency improvements comparable to those of PER,
without incurring significant computational overhead. This claim is supported by the fact that
most state-of-the-art RL algorithms use PER, while no other prioritization strategy is used by any
state-of-the-art RL algorithm.

To support this, we have compiled Table 1, which lists leading algorithms on the Atari benchmark
since the introduction of PER, and indicates whether they use experience replay and PER.

Algorithm (Year) Authors [Year] Uses ER Uses PER
Rainbow Hessel et al. (2017) Yes Yes
Ape-X DQN Horgan et al. (2018) Yes Yes
MuZero Schrittwieser et al. (2019) Yes Yes, for the Atari benchmark
R2D2 Kapturowski et al. (2019) Yes Yes
Go-Explore Ecoffet et al. (2019) No No
NGU Badia et al. (2020b) Yes Yes
Agent57 Badia et al. (2020a) Yes Yes
EfficientZero Ye et al. (2021) Yes Yes
Bigger, Better, Faster Schwarzer et al. (2023) Yes Yes
Dreamer-v3 Hafner et al. (2023) Yes No, but PER boosts performance2

SR-SPR D’Oro et al. (2023) Yes Yes
EfficientZero-v2 Wang et al. (2024) Yes Yes

Table 1: Overview of state-of-the-art reinforcement learning algorithms, highlighting whether they
utilize Experience Replay (ER) and Prioritized Experience Replay (PER).

The findings within Table 1 indicate that all state-of-the-art RL algorithms that rely on experience
replay also rely on PER. The sole exception of this is Dreamer-v3 (Hafner et al., 2023), which relies
on uniform sampling for ease of implementation, but explicitly states PER to boost performance.
This provides evidence that PER remains the de-facto standard prioritized sampling strategy, and
therefore represents a key point of reference for our study.

2While the classic Dreamer-v3 algorithm does not use PER but uniform sampling, the authors explicitly
report PER to improve performance. To directly quote Hafner et al. (2023): "While prioritized replay (Schaul
et al., 2015) is used by some of the expert algorithms we compare to and we found it to also improve the
performance of Dreamer, we opt for uniform replay in our experiments for ease of implementation."

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 SYSTEMATIC REVIEW OF PROPOSED ALTERNATIVES

While we discussed alternative prioritized sampling strategies to provide a comprehensive overview
of related work, these methods have seen limited adoption and are not integrated into state-of-the-art
reinforcement learning algorithms. We lay out potential reasons for the sparse adoption of the
approaches mentioned in the paper, and thereby discuss why we do not consider them a relevant
baseline for the present paper.

While we have reviewed alternative prioritized sampling strategies to provide a comprehensive
overview of related work, these methods have seen limited adoption and have not been widely
integrated into state-of-the-art reinforcement learning algorithms. We outline possible factors con-
tributing to their limited uptake and explain why, in the context of this study, we do not consider them
appropriate baselines.

Ramicic & Bonarini (2017) proposed entropy-based sampling. Their evaluation focused on a
single, non-standard environment and did not include a comparison against PER. To the best of our
knowledge, the authors also did not release code, which may limit the ease of direct application.

Gao et al. (2021) proposed reward-based sampling and evaluated their approach in two environments,
FETCHREACH-V1 and PENDULUM-V0. While these experiments provide useful insights, no evalua-
tion was presented on more complex domains such as Atari games, making direct comparison with
the original PER study less straightforward. From a theoretical perspective, an emphasis on rewards
could potentially bias the algorithm toward greedier behavior, which might pose challenges in more
complex settings. To the best of our knowledge, code was not made publicly available, which may
limit immediate applicability.

Brittain et al. (2019) proposed a refinement to PER by propagating priorities back through the
sequence of transitions. Their evaluation compared the approach to a proportional variant of PER
with a different parameterization than the α = .5, β = .5 setting recommended in the original paper,
which may have influenced baseline performance. To the best of our knowledge, the work was
released as a preprint in 2019 but has not appeared in a peer-reviewed venue, making it more difficult
to fully gauge the impact of the proposed method.

Zha et al. (2019) introduced Experience Replay Optimization, a dynamic prioritization approach, and
evaluated it on eight continuous control environments using DDPG. Their method was compared
against PER and demonstrated improved performance, though not within the original experimental
setting of the PER paper. Key hyperparameters such as α and β were not reported, and, to the best of
our knowledge, the authors did not release code, which may limit the reproducibility and practical
applicability of their results.

Oh et al. (2021) introduced the Neural Experience Replay Sampler (NERS), which frames sample
selection as a reinforcement learning problem by training a separate agent. While this approach is
conceptually appealing, it introduces notable computational overhead, which may affect its practicality.
The evaluation was conducted on Atari games for 100,000 timesteps, rather than the conventional
50,000,000, providing insights into the early stages of learning. The authors report improvements
over PER in this regime; however, details on the PER configuration are not provided, and, to the best
of our knowledge, the implementation has not been released, which may limit reproducibility.

C DETAILED FORMAL ANALYSIS

We subsequently theoretically explore the properties of ReaPER. This section extends the formal
analysis in Section 3.2.

C.1 CONVERGENCE BEHAVIOR

In the following, we provide a formal motivation for ReaPER by analyzing the influence of target
bias on convergence behavior. We do so by showing that a misaligned target may degrade the value
function, and then provide a decomposition of the expected error update.

Lemma C.1 (Update misalignment due to target bias). Let gt = ∇θ(Q(St, At) − Qtarget(St))
2

denote the gradient of the TDE loss and let g⋆
t = ∇θ(Q(St, At)−Q⋆(St, At))

2 be the ideal gradient

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

that aligns with the true value error. Then,

⟨gt,g
⋆
t ⟩ = 2(Q(St, At)−Q⋆(St, At))

2 − 2(Q(St, At)−Q⋆(St, At))εt. (19)

Proof of Lemma C.1. We compute the gradients explicitly. We define

et := Q(St, At)−Q⋆(St, At), εt := Qtarget(St)−Q⋆(St, At). (20)

We now may rewrite the TDE,

δt = Qtarget(St)−Q(St, At) = (Q⋆(St, At) + εt)−Q(St, At) = −et + εt. (21)

Now, the gradients are

gt = 2(Q(St, At)−Qtarget(St))∇θQ = 2(−δt)∇θQ(St, At), (22)

g⋆
t = 2(Q(St, At)−Q⋆(St, At))∇θQ(St, At) = 2et∇θQ(St, At). (23)

Hence,
⟨gt,g

⋆
t ⟩ = 4(−δt)et∥∇θQ(St, At)∥2 = 4(et − εt)et∥∇θQ(St, At)∥2. (24)

Simplifying yields
⟨gt,g

⋆
t ⟩ = 4(e2t − etεt)∥∇θQ(St, At)∥2, (25)

which proves the result up to a constant factor of the norm.

This result shows that even when the TDE is large, its usefulness critically depends on the reliability
of the target value. When εt is large, the update may not improve the value function estimation.
When εt is sign-misaligned with the current true estimation error et, the update will even degrade the
value function, pushing Q(St, At) further away from Q⋆(St, At).

Based on these considerations, we proceed to compare various sampling strategies by analyzing the
expected change in the squared Q-value error caused by a single update step. The following lemma
provides a decomposition of this change and builds the foundation of our main theoretical result.
Lemma C.2 (Expected error update under sampling strategy µ). Let et = (Q(St, At)−Q⋆(St, At)).
Let Q denote the Q-function before an update, and let Q′ denote the Q-function after the up-
date. Let Eµ[∆∥Q(St, At) − Q⋆(St, At)∥2] = Eµ[||Q′(St, At) − Q⋆(St, At)||2 − ||Q(St, At) −
Q⋆(St, At)||2]. Then,

Eµ

[
∆∥Q(St, At)−Q⋆(St, At)∥2

]
= 2η

n∑
t=1

µtE
[
(Q(St, At)−Q⋆(St, At))εt

]
+ η2

n∑
t=1

µtE[δ2t]− 2η

n∑
t=1

µtE[e2t]. (26)

Proof of Lemma C.2. We analyze the Q-value update

Q′(St, At) = Q(St, At) + ηδt. (27)

After the update

Q′(St, At)−Q⋆(St, At) = Q(St, At) + ηδt −Q⋆(St, At) = et + ηδt, (28)

the squared error becomes

(Q′(St, At)−Q⋆(St, At))
2 = (et + ηδt)

2 = e2t + 2ηetδt + η2δ2t . (29)

The expectation under sampling distribution µ is

E[∆et] = η2E[δ2t] + 2ηE[etδt]. (30)

Note that δt = Qtarget(St)−Q(St, At) = εt − et, so

etδt = et(εt − et) = etεt − e2t , (31)

hence
E[∆et] = η2E[δ2t]

(1)

−E[e2t])
(2)

+2η(E[etεt]

(3)

. (32)

Summing over all transitions with µt gives the result.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

This decomposition highlights three components: (1) the variance of the TDE, (2) the true squared
error and (3) the bias-error-interaction. The latter is key to explaining why ReaPER outperforms
other sampling strategies.

A key factor in the reliability of bootstrapped targets is the extent of downstream TDEs. Intuitively, if
future states still exhibit significant TDEs, the bootstrapped target for the current state is more likely
to be biased. This motivates the following technical assumption.

C.2 DISCUSSION OF ASSUMPTION 3.4

Assumption 3.4 establishes a relationship between the target bias for a given transition and the sum
of TDEs for downstream transitions. This aligns with a conventional perspective in TD-learning
analysis, wherein bootstrapped targets predominantly inherit bias from inaccuracies in future value
estimates.

Although Assumption 3.4 appears rather limiting at first sight, it is in fact less strict than assumptions
made in classical Q-learning analyses: classical Q-learning convergence proofs (see, e.g., Watkins &
Dayan, 1992) rely on global exploration assumptions, ensuring that every state-action pair is visited
infinitely often, and on decaying learning rates to control noise. In contrast, Assumption 3.4 takes
a more local view, postulating that the target bias along an observed trajectory can be bounded by
unresolved downstream TDEs. While classical assumptions ensure eventual global accuracy, our
assumption focuses on bounding the bias during finite-sample learning along actual agent trajectories,
which is more aligned with practical deep RL settings.

Under Assumption 3.4, the reliability score Rt — which measures the proportion of downstream
TDE along a trajectory — provides an upper bound on the normalized target bias εt. Lemma 3.5
formalizes this relationship.

C.3 PROOF OF LEMMA 3.5

Proof. From the definition ofRt, we have

1−Rt =

∑n
i=t+1 δ

+
i∑n

i=1 δ
+
i

. (33)

Multiplying both sides by
∑n

i=1 δ
+
i , we obtain

n∑
i=t+1

δ+i = (1−Rt) ·
n∑

i=1

δ+i . (34)

Substituting this into Assumption 3.4, we find

|εt| ≤ λ

n∑
i=t+1

δ+i = λ(1−Rt) ·
n∑

i=1

δ+i , (35)

which proves the first inequality.

Rearranging the result gives

Rt ≤ 1− |εt|
λ
∑n

i=1 δ
+
i

, (36)

completing the proof.

Moreover, it follows that

Rt ≤ 1− |εt|
λ
∑n

i=1 δ
+
i

. (37)

Lemma 3.5 provides a formal link between the reliability scoreRt used in ReaPER and the target bias
εt. Under Assumption 3.4, transitions with large downstream TDEs (i.e., large

∑n
i=t+1 δ

+
i) likely

suffer from higher target bias. This justifies usingRt to down-weight transitions with unreliable TDEs
in the sampling distribution as long as downstream transitions suffer from high TDE. Consequently,
ReaPER not only emphasizes transitions with high learning potential (large δ+t) but also prioritizes
those with more reliable target estimates.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C.4 PROOF OF PROPOSITION 3.6

Proof. From Lemma C.2, the expected change in squared error per update, conditioned on the current
Q-function, is

∆E = η2
n∑

t=1

µtE[δ
2
t]− 2η

n∑
t=1

µtE[e
2
t] + 2η

n∑
t=1

µtE[etεt]. (38)

We seek to maximize the second term (true error reduction) while minimizing the third term (bias-
error-interaction). The analysis proceeds by comparing the terms under the different sampling
strategies.

We now compare three sampling strategies:

Uniform sampling (µt = 1/n): No prioritization occurs. Transitions with small e2t and potentially
large etεt are sampled proportionally to their frequency of occurrence in the buffer. Hence, both the
error reduction term

∑
t µtE[e

2
t] and the bias term

∑
t µtE[etεt] are solely determined by the buffer

content, and sampling does not reduce error or bias.

PER sampling (µt ∝ (δ+t)): PER prioritizes transitions with large TDE δ+t , which correlates with
larger e2t . As such, the sampling increases error reduction over buffer content,

n∑
t=1

µPER
t E[e2t]≫

n∑
t=1

µUniform
t E[e2t], (39)

leading to faster true error reduction compared to uniform sampling. However, PER does not account
for target bias εt. Nevertheless, since PER focuses updates on transitions with large TDEs (rather
than arbitrary ones), it slightly reduces the bias-error-interaction compared to uniform:

n∑
t=1

µPER
t E[etεt]≪

n∑
t=1

µUniform
t E[etεt]. (40)

ReaPER sampling (µt ∝ Rtδ
+
t): Prioritizes transitions with large TDE and high reliabilityRt, thus

additionally considering target bias (see Lemma C.3). Thus, ReaPER achieves
n∑

t=1

µReaPER
t E[e2t]≫

n∑
t=1

µPER
t E[e2t]≫

n∑
t=1

µUniform
t E[e2t], (41)

for the true error term, and
n∑

t=1

µReaPER
t E[etεt]≪

n∑
t=1

µPER
t E[etεt]≪

n∑
t=1

µUniform
t E[etεt], (42)

for the bias term.

Therefore, ReaPER leads to the steepest expected decrease in squared error per update, followed by
PER, followed by uniform sampling. Summing the per-step improvements over training steps, we
conclude

EµUniform [∥QT −Q⋆∥2] ≥ EµPER [∥QT −Q⋆∥2] ≥ EµReaPER [∥QT −Q⋆∥2], (43)

as claimed.

C.5 DISCUSSION OF REMARK 3.7

While Assumption 3.4 is stated under the premise that the agent follows an optimal policy, it can be
extended to fixed but suboptimal policies. We now briefly outline the modifications necessary if the
agent follows a fixed but suboptimal policy. In this case, the target bias εt cannot be bounded solely by
unresolved downstream TDEs, as suboptimal actions introduce an additional, trajectory-independent
bias. Formally, suppose there exists a constant ζ ≥ 0 such that for all transitions along observed
trajectories,

|Qπ(St, At)−Q⋆(St, At)| ≤ ζ, (44)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where Qπ denotes the action-value function under the fixed policy π. Then, under analogous reasoning
to Assumption 3.4, the target bias satisfies

|εt| ≤ λ

n∑
i=t+1

δ+i + ζ. (45)

This adjusted bound propagates through the subsequent results. In particular, Lemma C.3 becomes

|εt| ≤ λ(1−Rt)

n∑
i=1

δ+i + ζ, (46)

and the reliability bound adjusts accordingly. In the error decomposition of Lemma C.2 and the
convergence hierarchy in Proposition C.4, the additive term ζ introduces a bias floor that does not
vanish through learning. Consequently, while ReaPER still achieves improved sampling efficiency
by reducing the impact of target misalignment, the achievable Q-function accuracy is ultimately
lower-bounded by ζ . In the limit as ζ → 0 (the policy approaches optimality), we recover the original
theory.

C.6 PROOF OF PROPOSITION 3.8

Proof. First, we note that we can assume without loss of generality that there is a τ > 0 such that the
distribution µ⋆ satisfies

N∑
i=1

µ⋆
i δ

+
i ≥ τ. (47)

If such a τ > 0 does not exist, that implies
∑N

i=1 µ
⋆
i δ

+
i which only holds if δi = 0 for all i = 1, . . . , N

– a setting in which any sampling distribution from the buffer is optimal. Hence, equipped with (47),
the optimal sampling distribution µ⋆ is characterized as a solution to the following optimization
problem

min
µ∈∆N

N∑
i=1

µiσ
2
i (48)

subject to
N∑
i=1

µiδ
+
i ≥ τ. (49)

We introduce Lagrange multipliers λ ≥ 0 for the inequality constraint and ν for the probability
normalization constraint. Then, the Lagrangian reads

L(µ, λ, ν) =
N∑
i=1

µiσ
2
i + λ

(
τ −

N∑
i=1

µiδ
+
i

)
+ ν

(
1−

N∑
i=1

µi

)
(50)

The KKT conditions for optimality are:

(Stationarity)
∂L
∂µi

= σ2
i − λδ+i − ν = 0 for all i = 1, . . . , N (51)

(Primal feasibility)
N∑
i=1

µiδ
+
i ≥ τ,

N∑
i=1

µi = 1, µi ≥ 0 (52)

(Dual feasibility) λ ≥ 0 (53)

(Complementary slackness) λ

(
τ −

N∑
i=1

µiδ
+
i

)
= 0 (54)

In the following we distinguish two cases.

Case 1: Suppose
∑N

i=1 µiδ
+
i > τ . Then, complementary slackness implies λ = 0. The stationarity

condition becomes
σ2
i − ν = 0 ⇒ σ2

i = ν for all i = 1, . . . , N, (55)
which is only possible if all σ2

i are equal. In general, this is not the case, so the constraint must be
active at optimality.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Case 2: Then
∑N

i=1 µiδ
+
i = τ , and complementary slackness implies λ > 0. From the stationarity

condition, we obtain
σ2
i − λδ+i − ν = 0 ⇒ σ2

i = λδ+i + ν (56)
Solving for λ, we get

λ =
σ2
i − ν

δ+i
(57)

This must hold for all i = 1, . . . , N , so the right-hand side must be constant across i, which implies

σ2
i

δ+i
− ν

δ+i
= constant

(a)⇒ µ⋆
i ∝

δ+i
σ2
i

(58)

To justify the implication (a), note that the stationarity condition directly states σ2
i − ν = λδ+i ⇒

1
λ =

δ+i
σ2
i−ν

. Therefore, a higher value δ+i
σ2
i−ν

implies a higher gradient contribution exactly where µi

should be large.

D RESULTS IN A STYLIZED SETTING

We consider a single episode within a stylized setting. The agent is following the optimal path,
Qtarget(St) = Q(St+1, At+1) where At+1 = π⋆(St+1) for all t ∈ {1, . . . , n − 1}. At the end
of this episode, the agent obtains a final reward Rn = 1. There are no intermediary rewards.
The agent aims to learn the correct Q-values for all transitions within this trial using a Tabular
Q-learning (TQL) approach (Watkins & Dayan, 1992). Qtarget(St) are continuously updated to be
Q(St+1, At+1), with Qtarget(Sn) being 1. We consider a transition Ct to be learned if the Q-value
reaches its (for real applications mostly unknown) ground-truth Q-value, Q(St, At) = Q⋆(St, At).
We consider the model to have converged when all Q-values reach their ground-truth Q-value,
Q(St, At) = Q⋆(St, At) for t ∈ {1, . . . , n}. This is the case when all TDEs within this trial have a
value of 0, i.e., δt = 0 for t ∈ {1, . . . , n}.
The agent learns by repeatedly selecting k transition indices. For every selected transition Cj , the
Bellman equation is solved to update the Q-value, Q(Sj , Aj) ← Q(Sj , Aj) + γ · δj . For the sake
of simplicity, we assume a discount factor γ = 1, a batch size k = 1, and a learning rate η = 1. As
η = 1, learning on a transition Cj implies setting the Q-value to Qtarget, i.e., Q(Sj , Aj) = Qtarget(Sj).
We repeat this iterative process of sampling and the respective Q-value adaptation until the model
converged.

We use three different selection strategies to identify the transition index j, which determines the
transition Cj that the model trains on next, uniform sampling, Greedy Prioritized Experience Replay
(PER-g), and Greedy Reliability-adjusted Prioritized Experience Replay (ReaPER-g). Uniform
sampling selects transitions at random with equal probability. PER-g selects the transition with the
highest TDE δ. ReaPER-g selects the transition with the highest reliability-adjusted TDE Ψ. in both
PER-g and ReaPER-g, if there is no unique maximum, ties are resolved by random choice.

We compare these selection strategies to the optimal solution, the Oracle. The Oracle selects the
transition Cl with the highest index that has a absolute TDE greater than zero, l = max(t | δt ̸=
0) for t ∈ {1, . . . , n}. Given η = 1, using the Oracle, the agent will always converge within∑n

t=1 1δt ̸=0 ≤ n steps and is therefore optimal. We compare the sampling strategies under varying
levels of Qtarget reliability. Qtarget reliability here is determined by the extent of target Q-values
for unlearned transitions without immediate reward varying from zero: Reliability is high if Qtarget
values remains close to the immediate observed reward unless specifically learned otherwise. Qtarget
reliability decreases with more Qtarget values deviating from zero without observation of an immediate
reward and without being explicitly learned. In reality, this may happen either through Q-value
initialization or - more importantly, when using Q-functions - erroneous Q-value generalization across
state-action pairs.

In the present example, we simulate different levels of Qtarget reliability using different Q-value
initializations. Specifically, we consider three Qtarget reliability conditions: High, medium and low
Qtarget reliability. In all conditions, all Q(St, At) for t ∈ {1, . . . , n} are first initialized to zero. Then,
depending on the reliability condition, some of these initializations are overwritten with ones to
induce unreliability. In the low reliability condition, every second Q-value is overwritten. In the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 4: Performance comparison in a stylized setting for three sampling methods; uniform sampling,
PER-g, and ReaPER-g. Performance is quantified as the number of updates until convergence minus
the minimally required number of updates given by an Oracle. Each sampling method is evaluated
using different episode lengths (between 10 and 100) and different levels of Qtarget reliability (high,
medium and low).

medium reliability condition, every fourth Q-value is overwritten. In the high reliability condition, no
value is overwritten.

We employ every selection mechanism to train until convergence for episodes of length 10 to 100
across all reliability conditions. As shown in Figure 2, uniform sampling converges the slowest across
all reliability conditions. PER-g finds the optimal transition selection order when target reliability
is high. However, PER-g’s convergence speed quickly diminishes as Qvalue reliability decreases.
ReaPER-g on the other hand actively accounts for changes in Qvalue reliability. By doing so, it
consistently finds the ideal solution regardless of Qvalue reliability.

E EXPERIMENTAL SETTINGS

All training parameters for all environments were set to according to pre-existing recommendations
from previous research (Mnih et al., 2015; Schaul et al., 2015; van Hasselt et al., 2015; Raffin, 2020).
The full experimental settings are subsequently described in detail to enable full reproducibility.

Experience replay parameters Following the suggestion for proportional PER for DDQN in
Schaul et al. (2015), α was set to 0.6 for PER. As we expect increased need for regularization due to
the reliability-driven priority scale-down, we expected values smaller values for α and ω in ReaPER.
We performed minimal hyperparameter tuning to find a suitable configuration. We did so by training
a single game, QBERT, on three configurations for α and ω, (1) α = 0.2, ω = 0.4, (2) α = 0.3,
ω = 0.3 and (3) α = 0.4, ω = 0.2. For the runs presented in the paper, the best-performing variant
(α = 0.4, ω = 0.2) was used. For both PER and ReaPER, β linearly increased with training time,
β ← (0.4→ 1.0) as proposed in Schaul et al. (2015). A buffer size of 106 was used.

Atari preprocessing As in Mnih et al. (2015), Atari frames were slightly modified before being
processed by the network. Preprocessing was performed using StableBaselines3’s AtariWrapper
(Antonin Raffin et al., 2024). All image inputs were rescaled to an 84x84 grayscale image. After
resetting the environment, episodes were started with a randomized number of NoOp-frames (up to
30) without any operation by the agent, effectively randomizing the initial state and consequently
preventing the agent from learning a single optimal path through the game. Four consecutive frames
were stacked to a single observation to provide insight into the direction of movement. Additionally, a
termination signal is sent when a life is lost. All these preprocessing steps can be considered standard
practice for ATARI games (e.g., Mnih et al. (2013; 2015); Schaul et al. (2015)).

Training specifications Hyperparameters for learning to play CARTPOLE, ACROBOT and LU-
NARLANDER were set to RL Baselines3 Zoo recommendations (Raffin, 2020). Hyperparameters for
learning to play Atari games are set based on previous research by Schaul et al. (2015), Mnih et al.
(2015) and van Hasselt et al. (2015).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Parameter CARTPOLE ACROBOT LUNARLANDER ATARI

Learning rate 2.3e-3 6.3e-4 6.3e-4 625e-53

Budget 5e4 1e5 1e5 5e7
Buffer size 1e5 5e4 5e4 1e6
Timestep to start learning 1e3 1e3 1e3 5e4
Target network update interval 10 250 250 3e4
Batch size 64 128 128 32
Steps per model update 256 4 4 4
Number of gradient steps 128 4 4 1
Exploration fraction 0.16 0.12 0.12 0.02
Initial exploration rate 1 1 1 1
Final exploration rate 0.04 0.1 0.1 0.01
Evaluation exploration fraction 0.001 0.001 0.001 0.001
Number of evaluations 100 100 100 200
Trajectories per evaluation 5 5 5 1
Gamma 0.99 0.99 0.99 0.99
Max. gradient norm 10 10 10 ∞
Reward threshold 475 -100 200 ∞
Optimizer Adam Adam Adam RMSprop

Table 2: Comprehensive documentation of hyperparameters used within the CARTPOLE, ACROBOT,
LUNARLANDER and ATARI environments.

Network architecture For CARTPOLE, ACROBOT and LUNARLANDER, the network architecture
was equivalent to StableBaselines3’ default architecture (Antonin Raffin et al., 2024): A two-layered
fully-connected net with 64 nodes per layer was used. For image observations as in the ATARI-10
<benchmark, the input was preprocessed to size 84 × 84 × 4. It was then passed through three
convolutional layers and two subsequent fully connected layers. The network architecture was equal
to the network architecture used in Mnih et al. (2015). Rectified Linear Units (Agarap, 2018) were
used as the activation function.

Evaluation For the environments CARTPOLE, ACROBOT and LUNARLANDER, 100 evaluations
were evenly spaced throughout the training procedure. Each agent evaluation consisted of five full
trajectories in the environment, going from initial to terminal state. The evaluation score of a single
agent evaluation is the average total score across those five evaluation trajectories. Training was
stopped when the agent reached a predefined reward threshold defined in the Gymnasium package
(Towers et al., 2024). For ATARI environments, as in Schaul et al. (2015), 200 evaluations consisting
of a single trajectory were evenly spaced throughout the training procedure. No reward threshold was
set.

Score normalization: For ATARI games, scores were normalized to allow for comparability between
games. Let Ξraw denote a single evaluation score that is to be normalized. Let Ξrandom denote the
score achieved by a randomly initialized policy in this game. Let Ξmax denote the highest score
achieved in this game across either condition, ReaPER or PER. The normalized score Ξnorm is then
calculated via

Ξnorm =
Ξraw − Ξrandom

Ξhigh − Ξrandom
. (59)

F ATARI-10 RESULTS

Figure 5 displays the cumulative maximum scores gathered across 200 evaluation periods, which
were evenly spaced-out throughout the training runs.

3In the uniform experience replay condition, the learning rate was increased to 2.5e-4, as recommended in
seminal work (Mnih et al., 2015; Schaul et al., 2015; van Hasselt et al., 2015).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Figure 5: Cumulative maximum evaluation score per game from the ATARI-10 benchmark across the
training period for ReaPER, PER and uniform experience replay (UNI).

G HARDWARE SPECIFICATION

The ATARI experiments were conducted on a workstation equipped with an AMD Ryzen 9 7950X
CPU (32 cores at 4.5 GHz), 128 GB of RAM, and an NVIDIA RTX 4090 GPU with 24 GB of
memory (driver version 12.3). All other numerical experiments were performed on a 2024 MacBook
Air with an Apple M3 processor.

24

	Introduction
	Problem statement
	Methodology
	Reliability score
	Formal analysis

	Reliability-adjusted Prioritized Experience Replay
	Numerical study
	Conclusion
	Reproducibility statement
	Algorithm
	Literature Review
	Prioritized Experience Replay as the state-of-the-art
	Systematic review of proposed alternatives

	Detailed formal analysis
	Convergence behavior
	Discussion of Assumption 3.4
	Proof of Lemma 3.5
	Proof of Proposition 3.6
	Discussion of Remark 3.7
	Proof of Proposition 3.8

	Results in a stylized setting
	Experimental settings
	Atari-10 results
	Hardware specification

