
Revisiting Successor Features for Inverse Reinforcement Learning

Arnav Kumar Jain 1 2 Harley Wiltzer 1 3 Jesse Farebrother 1 3 Irina Rish 1 2 Glen Berseth 1 2

Sanjiban Choudhury 4

Abstract

In inverse reinforcement learning (IRL), an agent
seeks to replicate expert demonstrations through
interactions with the environment. Traditionally,
IRL is treated as an adversarial game, where an
adversary searches over reward models, and a
learner optimizes the reward through repeated
RL procedures. This game-solving approach is
both computationally expensive and difficult to
stabilize. Instead, we embrace a more fundamen-
tal perspective of IRL as that of state-occupancy
matching: by matching the cumulative state fea-
tures encountered by the expert, the agent can
match the returns of the expert under any reward
function in a hypothesis class. We present a sim-
ple yet novel framework for IRL where a policy
greedily matches successor features of the expert
where successor features efficiently compute the
expected features of successive states observed
by the agent. Our non-adversarial method does
not require learning a reward function and can
be solved seamlessly with existing value-based
reinforcement learning algorithms. Remarkably,
our approach works in state-only settings with-
out expert action labels, a setting which behav-
ior cloning (BC) cannot solve. Empirical results
demonstrate that our method learns from as few as
a single expert demonstration and achieves com-
parable performance on various control tasks.

1. Introduction
The primary objective in imitation learning (Abbeel & Ng,
2004; Silver et al., 2016; Ziebart et al., 2008; Swamy et al.,
2021; Ho & Ermon, 2016) is to allow agents to reproduce
behaviors by observing demonstrations from an expert. In-
teractive approaches like Inverse Reinforcement Learning

1Mila- Quebec AI Institute 2Université de Montréal 3McGill
University 4Cornell University. Correspondence to: Arnav<arnav-
kumar.jain@mila.quebec>.

ICML 2024 Workshop on Models of Human Feedback for AI Align-
ment, Vienna, Austria. Copyright 2024 by the author(s).

(IRL; Abbeel & Ng, 2004; Ziebart et al., 2008) have led to
agents that are more robust at recovering from their own
mistakes in the environment. These methods show promis-
ing results when learning with a few expert demonstrations,
and have been deployed in various real-world applications
like autonomous-driving (Bronstein et al., 2022; Vinitsky
et al., 2022; Igl et al.).

The problem of imitating a demonstrator can be fundamen-
tally viewed as that of matching the state occupancy distri-
bution between the imitating agent and the expert. While, in
theory, distribution matching can replicate the exact behav-
ior regardless of the reward function (Abbeel & Ng, 2004),
estimating the occupancy distribution of a policy is difficult
in continuous or large state spaces. Instead, many works
consider matching moments of the distributions (Swamy
et al., 2021), where the moments are chosen from a class of
all possible reward functions. This leads to the following
modern formulation of many IRL methods as a min-max
game between an adversary that learns a reward function to
maximally differentiate between the agent and expert; and a
reinforcement learning (RL) subroutine that maximizes the
adversarial reward. However, all such methods encounter
a set of well-documented challenges: (1) optimizing an
adversarial game between the agent and the expert can be
unstable, often requiring multiple tricks to stabilize training
(Swamy et al., 2022), (2) the inner loop involves repeatedly
solving a computationally expensive RL problem (Swamy
et al., 2023), and (3) the reward function class must be spec-
ified in advance. Motivated by these challenges, this leads
us to the following research question:

Can a non-adversarial approach for occupancy matching
recover the expert’s behavior?

To address this question, we revisit feature-matching — a
generalization of the distribution-matching formulation of
this problem (Ziebart et al., 2008; Abbeel & Ng, 2004; Syed
& Schapire, 2007; Syed et al., 2008) — with two key in-
sights. First, rather than estimating the expected cumulative
sum of features through Monte Carlo rollouts, we achieve a
low-variance, fully online algorithm by employing temporal-
difference-based methods introduced with Successor Fea-
tures (SF Barreto et al., 2017). Additionally, we leverage
recent work on learning rich domain-independent base fea-

1

Revisiting Successor Features for Inverse Reinforcement Learning

tures (e.g., Touati & Ollivier, 2021; Farebrother et al., 2023;
Park et al., 2024; Gomez et al., 2024) to simultaneously
learn state features alongside their corresponding successor
features, lifting one of the primary limitations of feature
matching. These two insights enable the development of a
novel non-adversarial policy-gradient method that directly
minimizes the feature gap, i.e., the expected deviation in
successor features of the imitation agent and the expert.
Specifically, the imitation agent greedily updates its deci-
sion policy to minimize the feature gap from any source
state experienced by the expert — notably only requiring
access to states, not the expert’s actions. Our method of
Successor Feature Matching (SFM) performs on par with
state-of-the-art adversarial methods eliminating the need
to solve a bi-level optimization problem while being both
conceptually simpler and easier to optimize.

To summarize, our work makes the following contributions:

1. We introduce Successor Feature Matching (SFM), a
novel algorithm for imitating expert behavior by learn-
ing state features and their corresponding successor
features for an imitation policy trained to match the
empirical successor features of an expert demonstrator.

2. We present a novel architecture for SFM and also im-
plemented a state-only version of MM with an updated
RL subroutine to have a more competitive baseline.

3. We demonstrate the efficacy of SFM from as few as
a single expert demonstration across various Mujoco
environment (Todorov et al., 2012) using expert demon-
strations from the D4RL dataset (Fu et al., 2020). No-
tably, SFM, a non-adversarial algorithm can match
the state-of-the-art performance of moment-matching
methods in this challenging benchmark.

2. Related Work
Inverse Reinforcement Learning (IRL) methods typically
combine expected feature matching with adversarial game
dynamics, assuming the base features are known upfront
(Abbeel & Ng, 2004; Ziebart et al., 2008; Syed & Schapire,
2007; Syed et al., 2008). The advent of modern deep learn-
ing architectures led to methods (e.g. Ho & Ermon, 2016;
Swamy et al., 2021; Fu et al., 2018) that do not estimate ex-
pected features, but instead learn a more expressive reward
function that captures the differences between the expert and
the the agent. The class of Moment Matching (MM; Swamy
et al., 2021) methods offers a general framework that unifies
existing algorithms through the concept of moment match-
ing, or equivalently Integral Probability Metrics (IPM; Sun
et al., 2019). In contrast to these methods, our approach
is non-adversarial and focuses on directly addressing the
problem of matching expected features. Furthermore, unlike

prior methods in Apprenticeship Learning (AL; Abbeel &
Ng, 2004) and Maximum Entropy IRL (Ziebart et al., 2008),
our work does not assume the knowledge of base features.
Instead, SFM leverages representation learning technique
to extract relevant features from the raw observations. The
method most similar to ours is IQ-Learn (Garg et al., 2021),
a non-adversarial approach that utilizes an inverse Bellman
operator to directly estimate the value function of the expert.
Our method is also non-adversarial, but offers a significant
advantage over IQ-Learn: it does not require knowledge
of expert actions during training. Methods that solve this
more challenging task of imitation without expert action la-
bels are called state-only IL (Torabi et al., 2019) algorithms.
However, many existing state-only methods also rely on ad-
versarial approaches (Torabi et al., 2018; Zhu et al., 2020).
For instance, GAILfO (Torabi et al., 2018) modifies the
discriminator to account for state-only inputs. In our work,
to ensure a fair comparison with SFM, we similarly imbue
recent moment matching methods (Swamy et al., 2021) with
a state-only discriminator along with further modifications
to the RL inner loop, resulting in significantly improved
performance.

Successor Features (SF; Barreto et al., 2017) general-
ize the idea of the successor representation (SR) (Dayan,
1993) by modeling the expected cumulative state features
discounted according to the time of state visitation. In-
stead of employing SFs for tasks such as transfer learning
(Barreto et al., 2017; Lehnert et al., 2017; Ma et al., 2018;
Barreto et al., 2018; Borsa et al., 2019; Abdolshah et al.,
2021), representation learning (Le Lan et al., 2022; 2023a;
Farebrother et al., 2023; Ghosh et al., 2023; Le Lan et al.,
2023b), exploration (Zhang et al., 2017; Machado et al.,
2020; Jain et al., 2024), or zero-shot RL (Touati et al., 2023;
Park et al., 2024), our approach harnesses SFs for Inverse
Reinforcement Learning (IRL), aiming to match expected
features of the expert. Within the body of work on imitation
learning SFs have been used within the adversarial framing
of IRL typically serving as the basis for estimating the value-
function that best explains the expert (Lee et al., 2019; Filos
et al., 2021; Abdulhai et al., 2022). In contrast, our work in-
stead seeks to directly match SFs through a policy-gradient
update rule without requiring any bi-level optimization.

3. Background
Reinforcement Learning (RL; Sutton & Barto, 2018)
typically considers a Markov Decision Process (MDP) de-
fined by M = (S,A, T , r, γ, P0), where S and A de-
note the state and action spaces, T : S × A → ∆(S)
denotes the transition kernel, r : S × A → [−1, 1] is
the reward function, γ is the discount factor, and P0 is
the initial state distribution. Starting from the initial state
s0 ∼ P0 an agent takes actions according to its policy

2

Revisiting Successor Features for Inverse Reinforcement Learning

π : S → ∆(A) producing trajectories τ = {s0, a1, s1, . . . }.
The value function and action-value are respectively de-
fined as V π(s) = Eπ[

∑∞
t=0 γ

tr(St, At)|S0 = s] and
Qπ(s, a) = Eπ[

∑∞
t=0 γ

tr(St, At)|S0 = s,A0 = a]
where γ ∈ [0, 1) represents the discount factor. The
performance is the expected return obtained by follow-
ing policy π from the initial state, given by J(π) =
Es0∼P0 [Eπ[

∑∞
t=0 γ

tr(St, At) |S0 = s]], and can be rewrit-
ten as J(π) = Es0∼P0 [V

π(s0)].

The Successor Representation (SR; Dayan, 1993) provides
the expected occupancy of future states for a given pol-
icy. For tabular state spaces, temporal-difference learn-
ing can be employed to estimate the SR. Successor Fea-
tures (SF) (Barreto et al., 2017) generalize the idea of
successor representation (SR) (Dayan, 1993) by instead
counting the discounted sum of state features ψψψπ(s, a) =
Eπ[

∑∞
t=0 γ

tϕ(St, At)|S0 = s,A0 = a] after applying
the feature mapping ϕ : S × A → Rd. The SR is re-
covered when ϕ is the identity function with ϕ typically
serving as a form of dimensionality reduction to learn
SFs in continuous or large state spaces. For tasks where
the reward function can be expressed as a combination
of base features ϕ and a weight function w ∈ Rd such
that r(s, a) = ϕ(s, a)⊤w, the performance of a policy π
can be rewritten as Qπ(s, a) = ψψψπ(s, a)⊤w and J(π) =
Es0∼P0,a∼π(s0)[ψψψ

π(s0, a)]
⊤w (Barreto et al., 2017).

Inverse Reinforcement Learning (IRL; Ng et al., 2000;
Abbeel & Ng, 2004; Ziebart et al., 2008) is the task of
deriving behaviors using demonstrations through interacting
with the environment. In contrast to RL where the agent
improves its performance using the earned reward, IRL
deals with learning without access to the reward function.
As highlighted in (Swamy et al., 2021), this corresponds to
minimizing an Integral Probability Metric (IPM) (Sun et al.,
2019) between the agent’s state-visitation occupancy and
the expert’s which can be framed as a task to minimize the
imitation gap given by:

J(πE)− J(π)

≤ sup
f∈Fϕ

E
τ∼π

∞∑
t=0

γtf(st, at)− E
τ∼πE

∞∑
t=0

γtf(st, at)

where Fr : S × A → [−1, 1] denotes the class of reward
basis functions. Under this taxonomy, the agent being the
minimization player selects a policy π ∈ Π to compete with
a discriminator that picks a reward moment function f ∈ Fr
to maximize the imitation gap, and this min-max game is
framed as minπmaxf∈F J(πE)− J(π). Note that, we use
the the reward moment matching framework because as they
are achieve performance gap that is linear with the horizon
length (Swamy et al., 2021).

By restricting the class of reward basis functions to be within

span of some base-features ϕ of state-action pairs such that
Fϕ ∈ {f(s, a) = ϕ(s, a)⊤wf}, the imitation gap becomes:

J(πE)− J(π) (1)

≤ sup
f∈Fϕ

E
τ∼π

∞∑
t=0

γtϕ(st, at)
⊤wf − E

τ∼πE

∞∑
t=0

γtϕ(st, at)
⊤wf

(2)

= sup
f∈Fϕ

[
E

τ∼π

∞∑
t=0

γtϕ(st, at)− E
τ∼π

∞∑
t=0

γtϕ(st, at)

]⊤

wf

(3)

= sup
f∈Fϕ

(
E

s∼P0,a∼π
[ψψψπ(s, a)]− E

s∼P0,a∼πE

[ψψψE(s, a)]

)⊤

wf ,

(4)

where ψψψE(s, a) denotes the successor features (SF) of the
expert policy πE for a given state s and action a. Under
this assumption, the agent that matches the SF with the
expert will minimize the performance gap across the class
of restricted basis reward functions. Solving this objec-
tive of matching expected features between the agent and
the expert has been studied in prior methods where prior
methods have often resorted to an adversarial game (Ziebart
et al., 2008; Abbeel & Ng, 2004; Syed & Schapire, 2007;
Syed et al., 2008). In the following section, we introduce a
non-adversarial approach that updates the policy greedily
to align the SFs between the expert and the agent, rather
than learning a reward function to capture their behavioral
divergence.

4. Successor Feature Matching (SFM)
Consider the setting where the agent has access to the ex-
pert demonstrations and the online environment but cannot
query the expert policy. To learn a policy, we need an al-
gorithm that can match the expected features between the
expert demonstrations and the agent rollouts. We observed
in Equation 4 that the IRL task can be solved using the
objective of matching SF conditioned on the initial state dis-
tribution. In this regard, we define a utility function defined
as the Mean Squared Error (MSE) between the expected
features of the expert and the agent, given by:

Uψ = ∥ψ̂̂ψ̂ψπ − ψ̂̂ψ̂ψE∥22, (5)

where ψ̂̂ψ̂ψπ = Es∼P0,a∼π(s)[ψψψ
π(s, a)] and ψ̂̂ψ̂ψE =

Es∼P0,a∼πE(s)[ψψψ
E(s, a)] represents the expected SF of

agent and expert conditioned on the initial state distribu-
tion P0.

Since the agent is provided with expert demonstrations and
cannot query the expert policy, the SF for the expert with
M demonstrations {τ i = {si0, ai0, ..., siT−1, a

i
T−1}}Mi=1 is

3

Revisiting Successor Features for Inverse Reinforcement Learning

obtained using:

ψ̂̂ψ̂ψE =
1

M

M∑
i=1

T−1∑
t=0

γtϕ(sit, a
i
t), (6)

where T represents the horizon length. For a given base fea-
ture function ϕ, the SF for the expert policy is fixed and the
utility function defined in Equation 5 is a convex and non-
linear function with respect to the SF of the agent (Zahavy
et al., 2021). Note that, the utility function defined in Equa-
tion 5 is contingent on the SF which changes with the policy
π during training. To learn policies without an adversarial
game for this task, we propose to optimize this non-linear
objective where our method leverages the prowess of the
Deterministic Policy Gradient (DPG) (Silver et al., 2014)
algorithm.

Taking inspiration from off-policy actor-critic methods for
standard RL tasks (Fujimoto et al., 2018; 2023; Haarnoja
et al., 2018), SFM maintains a deterministic actor and a
network to estimate the SF for agent’s policy. Here, instead
of having a critic to estimate the expected returns, the agent
has a network to predict the discounted expected features.
The network to predict SF of the agent is a parameterized
and differentiable function with parameters θ and is denoted
by ψψψθ. To obtain actions for a given state, SFM maintains
a deterministic actor through a parameterized function πµ
with parameters µ.

Given an approximation ψψψθ, the SF network is updated
using 1-step temporal difference (TD)-error. Here, the target
value is obtained using the base feature of the current state
obtained via the base feature function ϕ and the SF of the
action taken at the next state, which is denoted by:

yyy(s, a) = ϕ(s) + γψψψθ̄(s
′, πµ(s

′)) (7)

where s, s′ ∈ S represent the current and next state, θ̄ are
the parameters of the target SF network, and the SF at the the
next state is obtained using the current policy πµ. Notably,
we assume here that the base feature function only depends
on the state information and does not depend on the state-
action pair. Later in this section, we will emphasize on this
assumption in Proposition 4.2 and further demonstrate how
this leads to a state-only IRL algorithm. The parameters of
the SF network are optimized using the MSE loss between
the current SF estimate and the target yyy to get:

LSF = ∥ψψψθ(s, a)− yyy(s, a)∥22, (8)

where a ∈ A and the gradients are not propagated through
the target network. The SF network updates itself iteratively
via bootstrapping and keeps track of this quantity for the
current policy that changes during the training phase. To
update the actor network πµ, we first show how SFM esti-
mates the SF of the current policy conditioned on the initial
state distribution ψ̂̂ψ̂ψθ.

Proposition 4.1. Conditioned on a given initial state distri-
bution P0, the following holds:

(1− γ)Es∼P0
[ψψψπ(s, π(s))] (9)

= Es,s′∼B[ψψψ
π(s, π(s))− γψψψπ(s′, π(s′))], (10)

where B is the replay buffer and π is a deterministic policy.

The proof of Proposition 4.1 is deferred to the Appendix A.
Proposition 4.1 presents a way to estimate the SF for the
agent conditioned on the initial state distribution. The pro-
posed derivation can utilize samples coming from a different
state-visitation distribution and uses an off-policy replay
buffer in this work. Similar to standard off-policy RL algo-
rithms (Fujimoto et al., 2018; 2023; Haarnoja et al., 2018),
SFM maintains a replay buffer B to store the transitions and
use it for sampling. Note that this proposition is applicable
only when the base features depend on the state and not on
the action sampled from the buffer.

Note that the utility function defined in Equation 5 depends
only on the initial state distribution and does not specify a
way of updating the actor for any other state. By plugging
Equation 9 in Equation 5, we redefine the utility function to
represent the gap between the expected features of the agent
and the expert, which can depend on a state which is outside
the support of initial state distribution. Thus, we define the
loss for the actor called SF-Gap loss (LG) obtained using:

LG =

∥∥∥∥ 1

1− γ E
s,s′∼B

[ψψψ
πµ

θ (s)− γψψψπµ

θ̄
(s′)]− ψ̂̂ψ̂ψE

∥∥∥∥2
2

, (11)

where ψψψπθ (s) = ψψψθ(s, π(s)), and where we use the target
network ψψψθ̄ to get SF at the next state. We can see that
Equation 11 approximates the utility function on states sam-
pled from the replay buffer B. To obtain the gradients with
respect to the actor parameters µ, we propose using the De-
terministic Policy Gradient (DPG) algorithm (Silver et al.,
2014) that estimates the gradients by applying the chain-rule
over Equation 11.

Proposition 4.2. The gradients of the actor for a batch of
sampled transitions from the replay buffer obtained by apply-
ing the DPG (Silver et al., 2014) algorithm to Equation 11
is:

∇µLG =

d∑
i=1

zi E
s∼B

[∇µπµ(s)∇aψψψθ,i(s, a)|a=πµ(s)],

(12)
where zi = 2((1 − γ)−2Es,s′∼B[ψψψθ,i(s, πµ(s)) −
γψψψθ,i(s

′, πµ(s
′))] − ψψψEi) and ψψψθ,i denotes the SF at the

i-th dimension for the current policy and ψψψEi is the i-th
dimension of SF of expert policy.

We provide the details of this derivation in Appendix A.
Proposition 4.2 provides a way to estimate the gradients for

4

Revisiting Successor Features for Inverse Reinforcement Learning

the actor and optimize the objective defined in Equation 5.
Note that, this is achieved using a given batch of state-action
transitions which is sampled from the replay buffer.

To highlight, our mechanism of updating the actor network
is different than existing actor-critic algorithm in standard
RL where the utility function or the action-value function
can be estimated for every state-action pair, and the agent
is updated to maximize this function. This is because for
the task of matching expected features, it is challenging to
estimate this quantity for state-action pairs that are outside
the support of expert’s state-visitation distribution. However,
with the assumption that the initial state distribution will not
change, the agent can estimate the utility function, and we
show how our method SFM uses Proposition 4.2 to derive
an update rule for the agent’s policy.

Since the agent has access to the expert demonstrations
comprising of the states visited by the expert. We propose
another loss function to utilize this information and update
the actor to match the SF of the agent on states visited by
the expert. To understand this, lets consider a state sampled
from expert demonstration s ∼ τE , and compute the action
from the current agent’s policy as a = πµ(s). Now, the
SF network provides an estimate of ψψψθ(s, a) for this state
and conditioned on the agent’s policy. Furthermore, the SF
for the expert ψψψE(s) can be estimated using the discounted
sum of base features of all successor states from the state s.
We define the loss function, called SF-Cloning loss, which
estimates the MSE between the SF of the agentψψψθ(s, a) and
the expert ψψψE(s) across states sampled from the expert’s
distribution such that:

LC = Es∼τE∥ψψψθ(s, πµ(s))−ψψψE(s)∥22, (13)

where s ∼ τE represents any state sampled from the trajec-
tories in the demonstrations. The actor can further utilize the
DPG algorithm to update itself for this objective. Interest-
ingly, this loss is different from behavior cloning (BC) loss
because firstly, it does not use the expert action information,
and secondly, this objective updates the agent to match fu-
ture state-visitation occupancy with that of the expert. Since
SFM assumes that the base features are dependent only on
the states, then the expected features encoded by the SF
network would also depend only on the states. This explains
that the loss function introduced in Equation 13 is based on
the state-only information.

Overall, the total loss to update the actor network of the
agent can be computed as the linear combination of losses
defined in Equation 9 and Equation 13 denoted as:

Lπ = λGLG + λCLC , (14)

where λG and λC represent the hyperparameters to scale the
different loss terms. In Algorithm 1, we outline the training
procedure for SFM. In the remainder of this section we will

discuss the base feature function ϕ (Section 4.1) and the
implementation details of SFM (Section 4.2).

4.1. Base Feature Function

We described in Section 3 that SF depends on a base fea-
ture function ϕ : S → Rd. In this work, SFM learns the
base features jointly while learning the policy. We also ex-
perimented with multiple base feature functions including
Random Features, Hilbert Representations (HR) (Park et al.,
2024), Inverse Dynamics Model (Pathak et al., 2017) and
Forward Dynamics Model (FDM). We describe them be-
low and unless otherwise mentioned, we have used FDM
base feature function as it performed superior to other meth-
ods (Figure 3). Below, we briefly outline the description of
these base feature functions:

Random Features (Random): This denotes a function
where the parameters of the base feature network ϕ are
initialized randomly at the start of training and kept fixed.

Inverse Dynamics Model (IDM): The key idea is to learn
a function that extracts the controllable aspects of the envi-
ronment. This is attained by learning an Inverse Dynamics
Model (IDM) g : Rd × Rd → A that predicts the action for
given state and next state pair by optimizing:

Lg,ϕ = Es,a,s′ [∥g(ϕ(s), ϕ(s′))− a∥22], (15)

where both g and ϕ are learned using this loss function.

Forward Dynamics Model (FDM): In the forward dy-
namics model (FDM), the key idea is to learn a one-step
transition model to predict the next state for on a given state-
action pair. For a base feature function ϕ : S → Rd, the
forward dynamics model f : Rd ×A → S is learned via:

Lf,ϕ = Es,a,s′ [∥f(ϕ(s), a)− ϕ(s′)∥22]. (16)

Hilbert Representations (HR): The premise of Hilbert
Representations (HR) is that two states that are closer in
the feature space should be temporally closer. HR (Park
et al., 2024) utilizes the temporal distance between features
as d∗ϕ(s, g) = ∥ϕ(s)− ϕ(g)∥, where this metric represents
that time step taken to reach a state g from s. Furthermore,
they proposed learning these features by leveraging a goal-
conditioned value-based approach to minimize the following
temporal distance loss:

Lϕ = E
s,s′,g

[ℓ2τ (−1(s ̸= g)− γd∗ϕ̄(s
′, g) + d∗ϕ(s, g)] (17)

where ϕ̄ is the target base feature network, γ is the discount
factor and ℓ2τ computes the expectile loss with an asymmet-
ric ℓ2 loss (Newey & Powell, 1987) to estimate the max
operator in the Bellman backup (Kostrikov et al., 2021).

5

Revisiting Successor Features for Inverse Reinforcement Learning

Figure 1: Comparison of the proposed method SFM with an offline method BC (Pomerleau, 1988), adversarial state-only IRL methods
MM (Swamy et al., 2021), our implementation of state-only MM, a non-adversarial method IQ-Learn (Garg et al., 2021) with uses expert
action labels, and Expert trained with the reward function on infinite horizon continuous control tasks. Average Returns are reported
across 5 seeds with mean value and 95% confidence interval shading.

4.2. Network Architecture

Since SFM does not involve estimating a reward function
and cannot leverage an off-the-shelf RL algorithm to learn a
Q-funtion, we propose a novel architecture for our method.
SFM is composed of 4 different networks- actor πµ, SF
network ψψψθ, base feature function ϕ and FDM f . Taking
inspiration from state-of-the-art RL algorithms, we mantain
target networks for both actor and the SF network. Since,
SF network acts similarly to a critic in actor-critic like al-
gorithms, SFM comprises of two networks to estimate the
SF (Fujimoto et al., 2018). Here, instead taking a minimum
over estimates of SF from these two networks, our method
performed better with average over the two estimates of SF.
To implement the networks of SFM, we incorporated several
components from the TD7 (Fujimoto et al., 2023) algorithm.
Moreover, unlike MM (Swamy et al., 2021), SFM did not
require techniques like gradient penalty (Gulrajani et al.,
2017), OAdam optimizer (Daskalakis et al., 2017) and a
learning rate scheduler. In Appendix B and C, we provide
the pseudocode of the SFM and describe the architecture
used for the practical implementation of SFM.

5. Experiments
Through our experiments, we answer the following research
questions to understand how effective our method is at using
successor features for IRL: (1) can SFM learn an imitation
policy with as little as a single demonstration, (2) what are
the contributions of the different loss terms, and (3) what
effects base feature function have on the learning progress?

5.1. Experimental Setup

We evaluate our method on the following continuous control
environments- Ant, HalfCheetah, Hopper and Walker. Fol-
lowing the investigation in (Jena et al., 2020) which showed
that the IRL algorithms are prone to biases in the learned

reward function, we consider infinite horizon tasks where all
episodes are truncated after 1000 steps in the environment.
For each environment, the expert demonstrations are ex-
tracted from the widely used D4RL ”expert-v2” dataset (Fu
et al., 2020). For our experiments, the agent is provided
with a single expert demonstration which is sampled at the
start and kept fixed during the training phase. The agents are
trained for 1M environment steps and we report the mean
performance across 5 seeds with 95% confidence interval
shading. We implemented SFM in Jax (Bradbury et al.,
2018) and it takes about ∼2 hours to train one run on sin-
gle NVIDIA A100 GPU. An important hyperparameter to
tune was the discount factor γ for estimating the SF, where
γ = .99 worked best for Ant task and γ = .995 was used
for other environments. We provide more details about the
implementation in Appendix C and hyperparameters in the
Appendix D.

The baselines include behavior cloning (BC) (Pomerleau,
1988) which is a supervised learning based imitation learn-
ing method trained to match actions taken by the expert.
To compare with a non-adversarial IRL method, we report
results with IQ-Learn (Garg et al., 2021) which requires the
knowledge of expert action labels. To compare with state-
only IRL algorithms, we implemented a state-only version
of MM (moment matching) (Swamy et al., 2021)– which
is an adversarial IRL approach and used the version where
the integral probability metric (IPM) is replaced with the
Jenson-Shannon divergence (was shown to achieve better or
comparable performance with GAIL (Swamy et al., 2022)).
For the state-only MM baseline, we modified the discrim-
inator network to depend only on the state and not on the
actions. Lastly, to keep parity with the proposed method
SFM, we replaced the the SAC (Haarnoja et al., 2018) with
TD7 (Fujimoto et al., 2023) as the RL method.

6

Revisiting Successor Features for Inverse Reinforcement Learning

Figure 2: Study of different compositions of loss functions for updating the actor network. Here, SFM-M is the SFM model without LG

loss (Equation 9), SFM-C is the SFM model without LC loss (Equation 13). We also report average returns of BC (Pomerleau, 1988) and
the Expert trained with reward function in the environment. We observe that the

5.2. Results

Figure 1 presents the average returns across all environ-
ments. To highlight, our implementation of the state-only
MM algorithm achieves superior performance and con-
verges faster when compared with the original version. We
observe that the proposed method SFM learns to solve the
task with a single demonstration from the expert and signifi-
cantly outperforms the adversarial baseline IQ-Learn, and
without using the action label information in the demonstra-
tions. Moreover, BC does fails in this regime of few expert
demonstrations as the agent is unpredictable upon encoun-
tering states not in the expert dataset. Our implementation
of MM performed better than SFM on Ant and HalfCheetah
environments. However, SFM learned to perform better than
the expert scores on the Ant task and reaches close to the
expert score on the HalfCheetah task. Whereas on Hopper
and Walker2d environments, no algorithms reached expert’s
performance. We believe these are more challenging tasks
where the dynamical systems are less stable and the agent
can reach states which are hard to recover from. On these
task, SFM performed better than MM while being more
stable at training.

The SFM agent updates the actor network to minimize the
1) SF-Gap loss (LG) that computes the difference between
expected feature between expert and the agent when condi-
tioned on the initial state distribution (Equation 9) and 2)
SF-Cloning loss (LC) to match the SF between the agent
and the expert at states visited by the expert’s policy (Equa-
tion 13). Towards this end, we study the effect of different
loss function in Figure 2. Here, SFM-G (λG = 0, λC = 1)
and SFM-C (λG = 1, λC = 0) represent the variant of
SFM without the SF-Gap and SF-Cloning loss. We observe
that on Ant and HalfCheetah environments, the SFM-G
agent was failing similarly to BC. However, on Hopper and
Walker2d, the SFM-G variant performs better than BC but
did not reach optimal behaviors. We believe that SF Cloning
loss is interesting and will perform better with more expert

transitions (as observed with BC) and leave this question
for future research. The variant without the SF-Cloning loss
was performing well and similar to SFM on HalfCheetah
and Hopper environments with a slight drop in performance
on Ant and Walker2d tasks. This demonstrates that SF-Gap
loss (Equation 9) is a crucial component of SFM which, sim-
ilar to IRL methods, updates the agent at any state visited
in the environment and enables them to be more robust and
recover from their mistakes.

In Figure 3, we present the comparison of different
base features functions ϕ (descrived in Section 4.1).
We experiment with Random Feature, Inverse Dynamics
Model (IDM) (Pathak et al., 2017) which learns to predicts
the action for a given state and next-state pair, Hilbert Rep-
resentations (HR) (Park et al., 2024) which use the notion
of temporal distance between states as a distance metric,
Forward Dynamics Model (FDM) which is a one-step tran-
sition model to predict the next-state conditioned on a given
state-action pair. We observe in Figure 3 that FDM achieves
superior results when compared with other base feature
functions. The closest to FDM was the IDM based features
which attained similar performance to FDM on all environ-
ments except Walker2d and similar trends were observed
for HR features (Park et al., 2024). Lastly, Random features
was not doing well when compared with other base features.
We believe our approach can leverage any representation
learning technique and a potential avenue for future work
would be to leverage pretrained features for more complex
tasks and speed-up learning.

6. Limitations
One limitation of SFM is that the algorithm is currently tied
with a particular choice of RL solvers, i.e. deterministic
policy gradients. We believe our approach can be extended
to a broader set of solvers that optimize both deterministic
and stochastic policies. Secondly, our method only works

7

Revisiting Successor Features for Inverse Reinforcement Learning

Figure 3: Effect of different base feature functions on the performance of the agent. Here, we compare with Random, Inverse Dynamics
Model (IDM), Hilbert Representations (HR) (Park et al., 2024) and Forward Dynamics Models (FDM). Note that all these base feature
functions where learned during the training phase.

with state-only base feature functions. We believe future
work can lift this assumption by doing on-policy over a
learned world model. Finally, while SFM is simpler than
IRL methods, it still doesn’t theoretically alleviate the explo-
ration problem that IRL methods encounter. A promising
direction of future work would be to combine SFM with
mechanisms like reset distribution (Swamy et al., 2023) or
hybrid IRL (Ren et al., 2024) to improve computational
efficiency.

7. Discussion
We introduced SFM—a novel non-adversarial method for
IRL that requires no expert action labels for training—via
a reduction to a deterministic policy gradient algorithm.
Through experiments in standard IRL benchmarks, SFM
roughly matches the performance of the state of the art in
IRL, and considerably exceeds the performance of existing
non-adversarial methods. Of independent concern, our ex-
periments illustrate that IRL methods are truly only as good
as their RL subroutine: we achieve state-of-the-art in IRL
by augmenting the existing MM method with the recent
state-of-the-art TD7 algorithm(Fujimoto et al., 2023) for
online RL, and achieve similar performance with our SFM
approach built on TD7.

While SFM has not convincingly advanced the start-of-the-
art in performance in the D4RL benchmark, we note that
SFM has many desirable properties, which makes it a stand-
out method among its competitors. Most notably, SFM is
simple. It is relatively robust to feature learning methods,
and is no less stable to train than online RL. This is not the
case with adversarial approaches, which involve much more
complex game dynamics in training, and generally require
the implementation of several tricks to stabilize the opti-
mization. This is similar to issues observed while training
GAN (Goodfellow et al., 2014; Gulrajani et al., 2017) which
needs tricks like gradient penalty and significant tuning of

important hyperparameters.

In the context of Large Language Models (LLMs), learning
to align the agent with human preferences is challenging.
Towards this goal, existing methods like RLHF (Ouyang
et al., 2022) involve learning a reward model of human pref-
erences, leading to massively impactful LLM finetuning.
NLHF (Munos et al., 2023) proposes an alternative prefer-
ence model meant to capture the lack of total ordering of
outcomes due to different preferences among a population,
introducing another form of adversarial preference learning.
More recently, alternatives such as DPO (Rafailov et al.,
2024) and SPIN (Chen et al., 2024) demonstrated fantastic
performance gains by circumventing the reward learning
component of RLHF, similarly to how SFM circumvents the
reward learning and game-theoretic optimization in IRL. We
believe future work can look into harnessing the potential of
SFM for a reward free method to align human preferences.

Current IRL algorithms have struggled to scale to high-
dimensional inputs like images because due to the com-
plex interaction between adversarial training and represen-
tation learning. In many real-world applications, the ob-
servations can be complex and interactions are expensive.
However, standard RL algorithms have been successful at
solving more challenging tasks with high-dimensional in-
puts (Hafner et al., 2023; Mnih et al., 2015; Yarats et al.,
2021). We believe SFM can leverage the recent advance-
ments in RL to unlock substantial performance gains in
more complex IRL problems. Moreover, future works can
pre-train the base features for SF using offline datasets.

Acknowledgements
The authors would like to thank Lucas Lehnert and Adri-
ana Hugessen for their valuable feedback and discussions.
The writing of the paper benefited from discussions with
Darshan Patil, Mandana Samiei, Matthew Fortier, Zichao
Li and anonymous reviewers. This work was supported

8

Revisiting Successor Features for Inverse Reinforcement Learning

by Fonds de Recherche du Québec, National Sciences and
Engineering Research Council of Canada (NSERC), Calcul
Québec, Canada CIFAR AI Chair program, and Canada
Excellence Research Chairs (CERC) program. The authors
are also grateful to Mila (mila.quebec) IDT and Digital Re-
search Alliance of Canada for computing resources. SC was
supported by NSF NSF RI (2312956).

References
Abbeel, P. and Ng, A. Y. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first
international conference on Machine learning, pp. 1,
2004.

Abdolshah, M., Le, H., George, T. K., Gupta, S., Rana, S.,
and Venkatesh, S. A new representation of successor
features for transfer across dissimilar environments. In
International Conference on Machine Learning, pp. 1–9.
PMLR, 2021.

Abdulhai, M., Jaques, N., and Levine, S. Basis for inten-
tions: Efficient inverse reinforcement learning using past
experience. CoRR, abs/2208.04919, 2022.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T.,
van Hasselt, H. P., and Silver, D. Successor features for
transfer in reinforcement learning. Advances in neural
information processing systems, 30, 2017.

Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D.,
Hessel, M., Mankowitz, D., Zidek, A., and Munos, R.
Transfer in deep reinforcement learning using successor
features and generalised policy improvement. In Inter-
national Conference on Machine Learning, pp. 501–510.
PMLR, 2018.

Borsa, D., Barreto, A., Quan, J., Mankowitz, D. J., van
Hasselt, H., Munos, R., Silver, D., and Schaul, T. Uni-
versal successor features approximators. In International
Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=S1VWjiRcKX.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Bronstein, E., Palatucci, M., Notz, D., White, B., Kuefler,
A., Lu, Y., Paul, S., Nikdel, P., Mougin, P., Chen, H., et al.
Hierarchical model-based imitation learning for planning
in autonomous driving. In 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp.
8652–8659. IEEE, 2022.

Chen, Z., Deng, Y., Yuan, H., Ji, K., and Gu, Q. Self-play
fine-tuning converts weak language models to strong lan-
guage models. arXiv preprint arXiv:2401.01335, 2024.

Daskalakis, C., Ilyas, A., Syrgkanis, V., and Zeng,
H. Training gans with optimism. arXiv preprint
arXiv:1711.00141, 2017.

Dayan, P. Improving generalization for temporal difference
learning: The successor representation. Neural computa-
tion, 5(4):613–624, 1993.

Farebrother, J., Greaves, J., Agarwal, R., Lan, C. L.,
Goroshin, R., Castro, P. S., and Bellemare, M. G. Proto-
value networks: Scaling representation learning with
auxiliary tasks. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=oGDKSt9JrZi.

Filos, A., Lyle, C., Gal, Y., Levine, S., Jaques, N., and
Farquhar, G. PsiPhi-learning: Reinforcement learning
with demonstrations using successor features and inverse
temporal difference learning. In International Conference
on Machine Learning (ICML), 2021.

Fu, J., Luo, K., and Levine, S. Learning robust re-
wards with adverserial inverse reinforcement learning.
In International Conference on Learning Representa-
tions, 2018. URL https://openreview.net/forum?
id=rkHywl-A-.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning, 2020.

Fujimoto, S., van Hoof, H., and Meger, D. Addressing
function approximation error in actor-critic methods. In
Dy, J. and Krause, A. (eds.), Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 1587–
1596. PMLR, 10–15 Jul 2018.

Fujimoto, S., Meger, D., and Precup, D. An equivalence be-
tween loss functions and non-uniform sampling in expe-
rience replay. Advances in neural information processing
systems, 33:14219–14230, 2020.

Fujimoto, S., Chang, W.-D., Smith, E. J., Gu, S. S., Pre-
cup, D., and Meger, D. For SALE: State-action repre-
sentation learning for deep reinforcement learning. In
Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.
net/forum?id=xZvGrzRq17.

Garg, D., Chakraborty, S., Cundy, C., Song, J., and Ermon,
S. IQ-learn: Inverse soft-q learning for imitation. In
Beygelzimer, A., Dauphin, Y., Liang, P., and Vaughan,

9

https://openreview.net/forum?id=S1VWjiRcKX
http://github.com/google/jax
https://openreview.net/forum?id=oGDKSt9JrZi
https://openreview.net/forum?id=oGDKSt9JrZi
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=rkHywl-A-
https://openreview.net/forum?id=xZvGrzRq17
https://openreview.net/forum?id=xZvGrzRq17

Revisiting Successor Features for Inverse Reinforcement Learning

J. W. (eds.), Advances in Neural Information Process-
ing Systems, 2021. URL https://openreview.net/
forum?id=Aeo-xqtb5p.

Ghosh, D., Bhateja, C. A., and Levine, S. Reinforcement
learning from passive data via latent intentions. In In-
ternational Conference on Machine Learning (ICML),
2023.

Gomez, D., Bowling, M., and Machado, M. C. Proper lapla-
cian representation learning. In International Conference
on Learning Representations (ICLR), 2024.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. Advances in neural informa-
tion processing systems, 27, 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
Advances in neural information processing systems, 30,
2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

Ho, J. and Ermon, S. Generative adversarial imitation learn-
ing. Advances in neural information processing systems,
29, 2016.

Igl, M., Kim, D., Kuefler, A., Mougin, P., Shah, P., Shiarlis,
K., Anguelov, D., Palatucci, M., White, B., and Whiteson,
S. Symphony: Learning realistic and diverse agents for
autonomous driving simulation, 2022. URL https://arxiv.
org/abs/2205.03195.

Jain, A. K., Lehnert, L., Rish, I., and Berseth, G. Maximum
state entropy exploration using predecessor and successor
representations. Advances in Neural Information Process-
ing Systems, 36, 2024.

Jena, R., Agrawal, S., and Sycara, K. Addressing reward
bias in adversarial imitation learning with neutral reward
functions. arXiv preprint arXiv:2009.09467, 2020.

Kostrikov, I., Nair, A., and Levine, S. Offline reinforce-
ment learning with implicit q-learning. arXiv preprint
arXiv:2110.06169, 2021.

Le Lan, C., Tu, S., Oberman, A., Agarwal, R., and Belle-
mare, M. G. On the generalization of representations in

reinforcement learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 2022.

Le Lan, C., Greaves, J., Farebrother, J., Rowland, M., Pe-
dregosa, F., Agarwal, R., and Bellemare, M. G. A novel
stochastic gradient descent algorithm for learning princi-
pal subspaces. In International Conference on Artificial
Intelligence and Statistics (AISTATS), 2023a.

Le Lan, C., Tu, S., Rowland, M., Harutyunyan, A., Agarwal,
R., Bellemare, M. G., and Dabney, W. Bootstrapped rep-
resentations in reinforcement learning. In International
Conference on Machine Learning (ICML), 2023b.

Lee, D., Srinivasan, S., and Doshi-Velez, F. Truly batch ap-
prenticeship learning with deep successor features. arXiv
preprint arXiv:1903.10077, 2019.

Lehnert, L., Tellex, S., and Littman, M. L. Advantages
and limitations of using successor features for transfer in
reinforcement learning. arXiv preprint arXiv:1708.00102,
2017.

Ma, C., Wen, J., and Bengio, Y. Universal successor rep-
resentations for transfer reinforcement learning. arXiv
preprint arXiv:1804.03758, 2018.

Machado, M. C., Bellemare, M. G., and Bowling, M. Count-
based exploration with the successor representation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 5125–5133, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Munos, R., Valko, M., Calandriello, D., Azar, M. G., Row-
land, M., Guo, Z. D., Tang, Y., Geist, M., Mesnard, T.,
Michi, A., et al. Nash learning from human feedback.
arXiv preprint arXiv:2312.00886, 2023.

Newey, W. K. and Powell, J. L. Asymmetric least squares
estimation and testing. Econometrica: Journal of the
Econometric Society, pp. 819–847, 1987.

Ng, A. Y., Russell, S., et al. Algorithms for inverse rein-
forcement learning. In Icml, volume 1, pp. 2, 2000.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Park, S., Kreiman, T., and Levine, S. Foundation
policies with hilbert representations. arXiv preprint
arXiv:2402.15567, 2024.

10

https://openreview.net/forum?id=Aeo-xqtb5p
https://openreview.net/forum?id=Aeo-xqtb5p

Revisiting Successor Features for Inverse Reinforcement Learning

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International conference on machine learning,
pp. 2778–2787. PMLR, 2017.

Pomerleau, D. A. Alvinn: An autonomous land vehicle
in a neural network. Advances in neural information
processing systems, 1, 1988.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36,
2024.

Ren, J., Swamy, G., Wu, Z. S., Bagnell, J. A., and Choud-
hury, S. Hybrid inverse reinforcement learning. arXiv
preprint arXiv:2402.08848, 2024.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and
Riedmiller, M. Deterministic policy gradient algorithms.
In International conference on machine learning, pp. 387–
395. Pmlr, 2014.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Sun, W., Vemula, A., Boots, B., and Bagnell, D. Prov-
ably efficient imitation learning from observation alone.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 6036–6045. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/sun19b.
html.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Swamy, G., Choudhury, S., Bagnell, J. A., and Wu, S. Of
moments and matching: A game-theoretic framework for
closing the imitation gap. In International Conference on
Machine Learning, pp. 10022–10032. PMLR, 2021.

Swamy, G., Rajaraman, N., Peng, M., Choudhury, S., Bag-
nell, D., Wu, S., Jiao, J., and Ramchandran, K. Minimax
optimal online imitation learning via replay estimation.
In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K.
(eds.), Advances in Neural Information Processing Sys-
tems, 2022. URL https://openreview.net/forum?
id=1mFfKXYMg5a.

Swamy, G., Wu, D., Choudhury, S., Bagnell, D., and Wu,
S. Inverse reinforcement learning without reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 33299–33318. PMLR, 2023.

Syed, U. and Schapire, R. E. A game-theoretic approach to
apprenticeship learning. Advances in neural information
processing systems, 20, 2007.

Syed, U., Bowling, M., and Schapire, R. E. Apprenticeship
learning using linear programming. In Proceedings of the
25th international conference on Machine learning, pp.
1032–1039, 2008.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In International Confer-
ence on Intelligent Robots and Systems, 2012.

Torabi, F., Warnell, G., and Stone, P. Generative ad-
versarial imitation from observation. arXiv preprint
arXiv:1807.06158, 2018.

Torabi, F., Warnell, G., and Stone, P. Recent advances
in imitation learning from observation. arXiv preprint
arXiv:1905.13566, 2019.

Touati, A. and Ollivier, Y. Learning one representation to
optimize all rewards. Advances in Neural Information
Processing Systems, 34:13–23, 2021.

Touati, A., Rapin, J., and Ollivier, Y. Does zero-shot rein-
forcement learning exist? In The Eleventh International
Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=MYEap OcQI.

Vinitsky, E., Lichtlé, N., Yang, X., Amos, B., and Foerster,
J. Nocturne: a scalable driving benchmark for bringing
multi-agent learning one step closer to the real world.
Advances in Neural Information Processing Systems, 35:
3962–3974, 2022.

Yarats, D., Fergus, R., Lazaric, A., and Pinto, L. Mastering
visual continuous control: Improved data-augmented re-
inforcement learning. arXiv preprint arXiv:2107.09645,
2021.

Zahavy, T., O’Donoghue, B., Desjardins, G., and Singh, S.
Reward is enough for convex mdps. Advances in Neural
Information Processing Systems, 34:25746–25759, 2021.

Zhang, J., Springenberg, J. T., Boedecker, J., and Bur-
gard, W. Deep reinforcement learning with successor
features for navigation across similar environments. In
2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 2371–2378. IEEE, 2017.

Zhu, Z., Lin, K., Dai, B., and Zhou, J. Off-policy imi-
tation learning from observations. Advances in neural
information processing systems, 33:12402–12413, 2020.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., Dey, A. K., et al.
Maximum entropy inverse reinforcement learning. In
Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

11

https://proceedings.mlr.press/v97/sun19b.html
https://proceedings.mlr.press/v97/sun19b.html
https://openreview.net/forum?id=1mFfKXYMg5a
https://openreview.net/forum?id=1mFfKXYMg5a
https://openreview.net/forum?id=MYEap_OcQI

Revisiting Successor Features for Inverse Reinforcement Learning

A. Proofs
Lemma A.1. For a given initial state distribution P0, a deterministic policy π and ψψψπ defined as before, the following
holds:

(1− γ)Es∼P0 [ψψψ
π(s1)] = Es,a∼ρπ [ψψψπ(s)− γψψψπ(s′)], (18)

where ψψψπ(s) = Ea∼π(s)[ψψψπ(s, a)] and ρπ is the state-action visitation distribution of policy π.

Proof. The state-visitation distribution over state-action pairs on the right-side of (18) can be expanded to form a telescoping
sum. Suppose ρπt (s) be the marginal distribution of state at time t. Then,

Es,a∼ρπ [ψψψπ(s)− γψψψπ(s′)]

= (1− γ)
∞∑
t=0

γtEs∼ρπt ,a∼π(s)[ψψψ
π(s)− Es′∼T (.|s,a)[ψψψ

π(s′)]]

= (1− γ)
∞∑
t=0

γtEs∼ρπt ,a∼π(s)[ψψψ
π(s)]− (1− γ)

∞∑
t=0

Es′∼ρπt+1
[ψψψπ(s′)]]

= (1− γ)Es∼P0
[ψψψπ(s)].

For the last part, we replaced ρπ0 with the initial state distribution P0. This completes the proof.

Proposition 4.1. Conditioned on a given initial state distribution P0, the following holds:

(1− γ)Es∼P0 [ψψψ
π(s, π(s))] (9)

= Es,s′∼B[ψψψ
π(s, π(s))− γψψψπ(s′, π(s′))], (10)

where B is the replay buffer and π is a deterministic policy.

Proof. Lemma A.1 presents a way to estimate SF for a given initial state distribution and the occupancy measure of the
policy π. We begin the proof by first showing that Lemma A.1 holds for for any valid occupancy measure. Leveraging the
fact that for any valid occupancy measure, there exists an unique policy that generates it (Ho & Ermon, 2016), we let the
policy be β(a|s) that generated the occupancy measure ρβ .

Let ρβt denote the marginal state distribution at time t. Then,

Es,a∼ρβ [ψψψπ(s)− γψψψπ(s′)]

= (1− γ)
∞∑
t=0

γtEs∼ρβt ,a∼β(s)[ψψψ
π(s)− Es′∼T (.|s,a)[ψψψ

π(s′)]]

= (1− γ)
∞∑
t=0

γtEs∼ρβt ,a∼β(s)[ψψψ
π(s)]− (1− γ)

∞∑
t=0

Es′∼ρβt+1
[ψψψπ(s′)]]

= (1− γ)Es∼P0
[ψψψπ(s)].

Notably, the proof relies on the fact that ψψψπ is a function of the state only and does not depend on the action. If the policy π
is deterministic, using ψψψπ(s) = ψψψπ(s, π(s)) gives:

(1− γ)Es∼P0 [ψψψ
π(s, π(s1))] = Es,s′∼B[ψψψ

π(s, π(s))− γψψψπ(s′, π(s′))],

where B is the replay buffer. This completes the proof.

Proposition 4.2. The gradients of the actor for a batch of sampled transitions from the replay buffer obtained by applying
the DPG (Silver et al., 2014) algorithm to Equation 11 is:

∇µLG =

d∑
i=1

zi E
s∼B

[∇µπµ(s)∇aψψψθ,i(s, a)|a=πµ(s)], (12)

where zi = 2((1− γ)−2Es,s′∼B[ψψψθ,i(s, πµ(s))− γψψψθ,i(s′, πµ(s′))]−ψψψEi) and ψψψθ,i denotes the SF at the i-th dimension
for the current policy and ψψψEi is the i-th dimension of SF of expert policy.

12

Revisiting Successor Features for Inverse Reinforcement Learning

Proof. For the loss function

LG = ∥(1− γ)−1Es,s′∼B[ψψψθ(s, πµ(s))− γψψψθ(s′, πµ(s′))]− ψ̂̂ψ̂ψE∥22 (19)

the gradient for the actor is given by:

∇µLG = ∇µ
d∑
i=1

{(1− γ)−1Es,s′∼B[ψψψθ(s, πµ(s))− γψψψθ(s′, πµ(s′))]− ψ̂̂ψ̂ψE}2

=

d∑
i=1

zi∇µ{(1− γ)−1Es,s′∼B[ψψψθ(s, πµ(s))− γψψψθ(s′, πµ(s′))]− ψ̂̂ψ̂ψE}

=

d∑
i=1

zi{(1− γ)−1∇µEs,s′∼B[ψψψθ(s, πµ(s))}

=

d∑
i=1

zi{(1− γ)−1Es,s′∼B[∇µψψψθ(s, πµ(s))}

=

d∑
i=1

zi{(1− γ)−1Es,s′∼B[∇µπµ(a)∇aψψψθ(s, a)|a=πµ(s)}

Here, we defined zi = 2{(1− γ)−1Es,s′∼B[ψψψθ(s, πµ(s))− γψψψθ(s′, πµ(s′))]− ψ̂̂ψ̂ψE}.

This completes the proof.

13

Revisiting Successor Features for Inverse Reinforcement Learning

B. Algorithm

Algorithm 1 Successor Feature Matching (SFM)

1: Expert trajectory τE = {si0, ai0, ..., siT−1, a
i
T−1}Mi=1

2: Initialize actor and target actors: πµ, πµ̄, where µ̄← µ
3: Initialize SF and target SF networks: ψψψθ1 , ψψψθ2 , ψψψθ̄1 ,ψψψθ̄2 such that θ̄1 ← θ1, θ̄2 ← θ2
4: Initialize base feature network ϕ and FDM network f
5: Initialize an empty replay buffer B = {}
6: while Training do
7: Observe state s and select action using a = µ(s) + ϵ, where ϵ ∼ N (0, 1)
8: Execute a in environment and get next state s′ and done d
9: Append transition to replay buffer: B ← B ∪ (s, a, s′, d)

10: Estimate SF of expert through demonstrations using

ψ̂̂ψ̂ψE = 1
M

M∑
i=1

T−1∑
t=0

γtϕ(sit, a
i
t)

11: if update networks then
12: Sample a mini-batch D = {(s, a, s′, d)} from B
13: Get target actions: a′ = πµ̄(s

′) + ϵ, where ϵ ∼ N (0, 1)
14: Compute target SF value for every transition tuple (s,a, s’, d) using

yyy(s, a) = ϕ(s) + γ(1− d) 12{ψψψθ̄1(s
′, a′) +ψψψθ̄2(s

′, a′)}

15: Update parameters θ1 and θ2 of SF network by taking gradients over

LSF = 1
|D|

∑
(s,a,s′)∼D

∥ψψψθ1(s, a)− yyy(s, a)∥22 + ∥ψψψθ2(s, a)− yyy(s, a)∥22

16: Update actor parameters µ using using the following loss

LG = ∥(1− γ)−1Es,s′∼B[ψψψθ(s, πµ(s))− γψψψθ̄(s′, πµ̄(s′))]− ψ̂̂ψ̂ψE∥22

17: Sample states visited by the expert agent from the demonstrations sE ∼ τE
18: Update actor parameters µ using the following loss

LM = EsE∼τE∥ψψψθ(sE , πµ(sE))−ψψψE(sE)∥22,

where ψψψE(s) is the discounted expected sum of features of future states from sE .
19: Update base feature function and FDM f over D using Lf,ϕ = Es,a,s′ [∥f(ϕ(s), a)− ϕ(s′)∥22]
20: if update targets then
21: Update target parameters of actor using µ̄← µ
22: Update target parameters of SF network using θ̄1 ← θ1, θ̄2 ← θ2
23: end if
24: end if
25: end while=0

14

Revisiting Successor Features for Inverse Reinforcement Learning

C. Implementation Details
The architecture used in this work is inspired from the TD7 (Fujimoto et al., 2023) algorithms for continuous control tasks
(Pseudocode 2). We will describe the networks and sub-components used below:

• Two functions to estimate the SF (ψψψθ1 , ψψψθ2)

• Two target functions to estimate the SF (ψψψθ̄1 , ψψψθ̄2)

• A policy network πµ

• A target policy network πµ̄

• An encoder with sub-components fν , gν

• A target encoder with sub-components fν̄ , gν̄

• A fixed target encoder with sub-components f¯̄ν , g¯̄ν

• A checkpoint policy πc and the checkpoint encoder fc

• A base feature function ϕ

Encoder: The encoder comprises of two sub-networks to output state and state-action embedding, such that zs = fν(s) and
zsa = gν(z

s, a). The encoder is updated using the following loss:

L(fν , gν) =
(
gν(fν(s), a)− |fν(s′)|×

)2

(20)

=
(
zsa − |zs

′
|×
)2

, (21)

where s, a, s′ denotes the sampled transitions and | . |× is the stop-gradient operation. Also, we represent z̄s = fν̄(s),
z̄sa = gν̄(z̄

s, a), ¯̄zs = f¯̄ν(s), and ¯̄zsa = g¯̄ν(¯̄z
s, a).

SF network: Motivation by standard RL algorithms (Fujimoto et al., 2018; 2023), SFM uses a pair of networks to estimate
the SF. The network to estimate SF are updated with the following loss:

L(ψψψθi) = ∥target−ψψψθi(z̄sa, z̄s, s, a)∥22, (22)

target = ϕ(s) +
1

2
γ ∗ clip([ψψψθ̄1(x) +ψψψθ̄2(x)],ψψψmin,ψψψmax), (23)

x = [¯̄zs
′a′ , ¯̄zs

′
, s′, a′] (24)

a′ = πµ̄(¯̄z
s′ , s′) + ϵ,where ϵ ∼ clip(N (0, σ2),−c, c). (25)

Here, instead of taking the minimum over the SF networks for bootstrapping at the next state(Fujimoto et al., 2018), the
mean over the estimates of SF is used. The action at next state a′ is samples similarly to TD3 (Fujimoto et al., 2018) and the
same values of (zs, zsa) are used for each SF network. Moreover, the algorithm does clipping similar to TD7 (Fujimoto
et al., 2023) on the predicted SF at the next state which is updated using target ((23)) at each time step, given by:

ψψψmin ← min(ψψψmin, target) (26)
ψψψmax ← min(ψψψmax, target) (27)

Policy: SFM uses a single policy network which takes [zs, s] as input and is updated using the following loss function
described in Section 4.

15

Revisiting Successor Features for Inverse Reinforcement Learning

Upon every target update frequency training steps, the target networks are updated by cloning the current network
parameters and remains fixed:

(θ1, θ2)← (θ̄1, θ̄2) (28)
µ← µ̄ (29)

(ν1, ν2)← (ν̄1, ν̄2) (30)
(ν̄1, ν̄2)← (¯̄ν1, ¯̄ν2) (31)

(32)

Moreover, the agent maintains a checkpointed network similar to TD7 (Refer to Appendix F of TD7 (Fujimoto et al., 2023)
paper). However, TD7 utilizes the returns obtained in the environment for checkpointing. Since average returns is absent in
the IRL tasks, it is not clear how to checkpoint policies. Towards this end, we propose using the negative of MSE between
the SF of trajectories generated by agent and the SF of demonstrations as a proxy of checkpointing. To highlight some
differences with the TD7 (Fujimoto et al., 2023) algorithm, SFM does not utilize a LAP (Fujimoto et al., 2020) and Huber
loss to update SF network, and we leave investigating them for future research.

Base Features: Since we use a base feature function ϕ, we have two networks- 1) To provide the embedding for the state,
and 2) To predict the next state from the current state and action. Pseudocode 1 provides the description of the network
architectures and the corresponding forward passes.

state-only MM: For the state-only MM method, we used the same architecture as TD7 for the RL subbroutine (Fujimoto
et al., 2023). c Note that, SFM does not require any of these techniques for learning.

Pseudocode 1. Base Feature Network Details

Variables:
phi_dim = 128

Base Feature Network ϕ to encode state:

l0 = Linear(state_dim, 512)
l2 = Linear(512, 512)
l3 = Linear(512, phi_dim)

Base Feature ϕ Forward Pass:
input = state
x = Layernorm(l1(x))
x = tanh(x)
x = ReLU(x)
phi_s = L2Norm(l3(x))

FDM Network:
l0 = Linear(phi_dim + action_dim, 512)
l1 = Linear(512, 512)
l2 = Linear(512, action_dim)

FDM Network Forward Pass:
input = concatenate([phi_s, action])
x = ReLU(l0(x))
x = ReLU(l1(x))
action = tanh(l2(x))

16

Revisiting Successor Features for Inverse Reinforcement Learning

Pseudocode 2. SFM Network Details

Variables:
phi_dim = 128
zs_dim = 256

Value SF Network:
▷ SFM uses two SF networks each with similar architechture and forward pass.

l0 = Linear(state_dim + action_dim, 256)
l1 = Linear(zs_dim * 2 + 256, 256)
l2 = Linear(256, 256)
l3 = Linear(256, phi_dim)

SF Network ψψψθ Forward Pass:
input = concatenate([state, action])
x = AvgL1Norm(l0(inuput))
x = concatenate([zsa, zs, x])
x = ELU(l1(x))
x = ELU(l2(x))
sf = l3(x)

Policy π Network:
l0 = Linear(state_dim, 256)
l1 = Linear(zs_dim + 256, 256)
l2 = Linear(256, 256)
l3 = Linear(256, action_dim)

Policy π Forward Pass:
input = state
x = AvgL1Norm(l0(input))
x = concatenate([zs, x])
x = ReLU(l1(x))
x = ReLU(l2(x))
action = tanh(l3(x))

State Encoder f Network:
l1 = Linear(state_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, zs_dim)

State Encoder f Forward Pass:
input = state
x = ELU(l1(input))
x = ELU(l2(x))
zs = AvgL1Norm(l3(x))

State-Action Encoder g Network:
l1 = Linear(action_dim + zs_dim, 256)
l2 = Linear(256, 256)
l3 = Linear(256, zs_dim)

State-Action Encoder g Forward Pass:
input = concatenate([action, zs])
x = ELU(l1(input))
x = ELU(l2(x))
zsa = l3(x)

17

Revisiting Successor Features for Inverse Reinforcement Learning

D. Hyperparameters
In Table 1, we provide the details of the hyperparameters used for learning. Many of our hyperparamters are similar to the
TD7 (Fujimoto et al., 2023) algorithm. Important hyperparameters include the discount factor γ for the SF network and
tuned it with values γ = [0.98, 0.99, 0.995] and report the ones that worked best in the table. Rest, our method was robust to
hyperparameters like learning rate and batch-size used during training.

Name Value

Batch Size 1024
Discount factor γ for SF .99 (Ant), .995 (Others)
Actor Learning Rate 5e-4
SF network Learning Rate 5e-4
Base feature function learning Rate 5e-4
FDM learning rate 5e-4
Network update interval 250
Target noise .2
Target Noise Clip .5
Number of layers 4
Number of units 400
Action noise .2
Environments steps 1e6

Table 1: Hyper parameters used to train SFM.

18

