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Abstract

Traditional reinforcement learning (RL) relies on carefully designed reward func-
tions, which are challenging to implement for complex behaviors and may introduce
biases in real-world applications. Preference-based RL (PbRL) offers a promising
alternative by using human feedback, yet its extensive demand for human input
constrains scalability. To address that, this paper proposes a proximal policy ex-
ploration algorithm (PPE), designed to enhance the efficiency of human feedback
by concentrating on near-policy regions. By incorporating a policy-aligned query
mechanism, our approach not only increases the accuracy of the reward model but
also reduces the need for extensive human interaction. Our results demonstrate that
improving the reward model’s evaluative precision in near-policy regions enhances
policy optimization reliability, ultimately boosting overall performance. Further-
more, our comprehensive experiments show that actively encouraging diversity in
feedback substantially improves human feedback efficiency.

1 Introduction

In reinforcement learning (RL), the reward function is pivotal as it specifies the learning objectives and
guides agents toward desired behaviors. Traditional RL has seen significant achievements in complex
domains such as gaming and robotics, largely due to the use of well-designed reward functions
[1, 2, 3]. Yet, constructing these functions presents significant challenges. The intricate process
of designing suitable reward functions that accurately encapsulate complex behaviors like cooking
or summarizing books is both time-consuming and prone to human cognitive biases [4, 5, 6, 7, 8].
Additionally, embedding social norms into these functions remains an unresolved issue [9].

An emerging alternative that addresses these challenges is preference-based reinforcement learning
(PbRL), also known as RL from human feedback (RLHF). This approach bypasses the need for
meticulously engineered rewards by leveraging (human) overseer preferences between pairs of agent
behaviors [10, 11, 12, 13, 14, 15, 16, 17]. In PbRL, agents learn to optimize behaviors that align
with the demonstrated human preferences, offering a more intuitive and flexible method for teaching
desired outcomes. This not only enables a more natural communication of complex desired behaviors
but also aligns the agents’ actions more closely with human values.
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Despite its advantages, PbRL has notable limitations. The approach heavily depends on human
input, and labeling a vast number of preference queries can be labor-intensive, potentially limiting its
applicability in real-world settings where rapid adaptation is essential[13, 14, 15]. Furthermore, PbRL
typically requires extensive human feedback, which can be time-consuming or sometimes infeasible
to gather. To overcome these challenges, prior research has explored various strategies for improving
feedback efficiency. These strategies include selecting the most informative queries to improve the
quality of the learned reward function while minimizing the required teacher input [12, 18, 19, 20].
Also, techniques such as sampling based on ensemble disagreements, mutual information, or behavior
entropy have been employed to target behaviors to refine the overall reward model more effectively
[10, 13, 16, 18, 20]. Moreover, query-policy alignment (QPA) [21] method ensures that both queries
and policy learning progress concurrently, significantly reducing feedback unrelated to the current
policy, thereby enhancing feedback efficiency. However, these methods overlook the investigation
of the relationship between the preference buffer and the effectiveness of the reward model. This
oversight can lead the reward model to inaccurately evaluate data that is out of the preference buffer’s
distribution, potentially leading to misguided policy improvements.

To address this issue, we conducted a study focusing on enhancing the coverage of the preference
buffer. We found that the learned reward model provides more accurate evaluations for trajectories
that fall within the preference buffer’s distribution. Based on this insight, we developed the Proximal
Policy Exploration (PPE) algorithm. This approach encourages the agent to explore data that is out
of the preference buffer’s distribution but close to the current policy, thereby indirectly increasing the
preference buffer’s coverage and enhancing the reliability of the reward model’s evaluations for the
near-policy distribution.

2 Preliminaries

In PbRL, we consider an agent that interacts with an environment in discrete time steps. At each
time step t, the agent receives a state st from the environment and selects an action at based on its
policy. Unlike traditional RL, where the environment returns a reward r(st, at) evaluating the agent’s
behavior, PbRL employs human feedback. Here, a teacher provides preferences between pairs of
agent behaviors, which the agent uses to adjust its policy [10, 11, 12, 22, 23].

Formally, a behavior segment τ consists of a sequence of time-indexed observations and actions
{(s1, a1), . . . , (sH , aH)}. The teacher indicates their preferences among these segments, identifying
preferred behaviors or marking segments as equally preferred or incomparable. The primary objective
in PbRL is to train the agent to perform behaviors aligned with human with minimal feedback.

The PbRL learning process involves two main steps: (1) Agent Learning: The agent interacts with the
environment to collect experiences and updates its policy using existing RL algorithms to maximize
the sum of proxy rewards. (2) Reward Learning: The reward model r̂ψ is optimized based on
feedback received from the teacher, denoted as (τ0, τ1, yp) ∼ Dp. This cyclical process continually
refines both the policy and the reward model.

Using a preference dataset Dp, the reward model r̂ψ learns to assign higher proxy returns Ĝψ =∑
t r̂ψ(st, at) to preferred trajectories. Employing the Bradley-Terry model [24], the probability that

one trajectory is preferred over another is computed as:

Pψ(τ
1 ≻ τ0) =

exp
(∑

t r̂ψ(s
1
t , a

1
t )
)∑

i∈{0,1} exp
(∑

t r̂ψ(s
i
t, a

i
t)
) . (1)

The probability estimate Pψ is used to minimize the cross-entropy between the predicted and true
preference labels:

LCE = −E(τ0,τ1,yp)∼Dp

[
I{yp = (τ0 ≻ τ1)} logPψ(τ0 ≻ τ1) + I{yp = (τ1 ≻ τ0)} logPψ(τ1 ≻ τ0)

]
.

(2)

After optimizing the reward function r̂ψ from human preferences, PbRL algorithms enable training
of RL agents with standard RL algorithms, treating the proxy rewards from r̂ψ as if they were direct
rewards from the environment.
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3 Method

3.1 Why Coverage Is Important? — A Motivating Example

We designed an experiment to observe the relationship between the effectiveness of the reward model
and the coverage of transitions in the preference buffer used to train the reward model.

(a) (b) (c)

Figure 1: Observe the reward model’s effectiveness in a random walk task with a grid world. (a).
Training the reward model with preference data generated from trajectory pairs within the training
region marked by the red frame, and assessing the correlation between the proxy and ground truth
returns across all trajectories in the evaluation region denoted by the green frame; (b). The Spearman
correlation coefficient between proxy returns and ground truth returns for all trajectories in various
evaluation regions, using reward models trained with preference data from different training regions;
(c). The variance in the proxy rewards associated with transitions inside and outside of the training
region changes in the size of the training region.

As shown in Figure 1, we set up an environment in a grid world where the robot can move in four
directions: up, down, left, and right. Each cell in the grid world has an associated ground truth reward,
which corresponds to a ground truth return for the robot’s trajectory. It should be noted that Figure
1a serves as a schematic representation; in reality, the grid world is a 10x10 lattice. Additionally, the
horizontal axes in Figures 1b and 1c represent the side lengths of the respective region.

To further experiment, we designated two areas within the grid world as the training region and the
evaluation region, as illustrated in Figure 1a . First, we uniformly sampled 1,000 trajectory pairs of
length 3 in the training region. Based on the relative sizes of their ground truth returns, we assigned
preference labels to these trajectory pairs and stored them in a preference buffer. Next, we trained
a reward model using the data from the preference buffer with a Bradley-Terry (BT) loss. Finally,
we evaluated all trajectories of length 6 in the evaluation region using the learned reward model to
determine their merit. The correlation between the proxy returns computed by the reward model and
the ground truth returns were assessed using the Spearman correlation coefficient to further analyze
the effectiveness of the reward model.

Results displayed in Figure 1b indicate that a larger training region enhances the ability of the
reward model, learned from the corresponding preference buffer, to effectively evaluate the merits of
trajectories. This phenomenon is intuitive yet underscores the critical importance of increasing the
coverage of the preference buffer over the transition space. Consider the policy optimization process:
if the preference buffer does not comprehensively cover the transition distribution associated with the
current policy, the proxy rewards generated by the reward model may be unreliable, rendering the
direction of policy optimization meaningless. It is only when the coverage of the preference buffer is
extensive that the reward model, learned from it, can reliably evaluate a broader area. Based on this
insight, it is essential to include the coverage of the preference buffer as an optimization target within
the pipeline of PbRL.

Figure 1c demonstrates that the variance in outputs from ensemble reward models, given the same
transition input, does not enable distinction of whether the transition belongs to the training region.
Therefore, the method proposed by [15] cannot expand the preference buffer’s coverage actively.
Consequently, it is crucial to design an exploration method specifically aimed at actively enlarging
the coverage of the preference buffer.
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3.2 How to Improve Coverage of Preference Buffer? — Proximal Policy Exploration

3.2.1 Estimating the Uncertainty of Transitions via Random Network

To increase the coverage of the preference buffer, we propose a metric to measure the out-of-
distribution (OOD) degree of current state-action pairs. Our approach is inspired by [25]. We utilize
ensemble number n detection networks dθi(s, a), for i ∈ {1, . . . , n}, to distill a target random
network d0(s, a) that does not learn during the process. This ensemble of networks is utilized to
assess the transitions (s, a) ∈ τ , wherein τ belongs to Dp and symbolizes the trajectory preserved
in the preference buffer Dp. The discrepancy σθ(s, a) = maxi |dθi(s, a) − d0(s, a)| serves as an
indicator to determine whether a given state-action pair (s, a) is encompassed by Dp.

3.2.2 Maximizing Preference Buffer Coverage via Proximal Policy Exploration

Algorithm 1 Proximal Policy Exploration

1: for Each interaction to the environment do
2: at ∼ πT (st) ▷ sample from the target policy
3: if σ(st, at) ≤ 0.1 then ▷ detect if (st, at) out of the preference buffer distribution
4: pass
5: else
6: at ∼ πE(st) ▷ resample from the behavior policy
7: end if
8: Using at to interact with the environment.
9: end for

We aim to develop a behavior policy πE such that the state-action pairs (s, a) it generates when
interacting with the environment can support the distribution produced by the current target policy
πT . This support is crucial as it enhances the transition distribution in the replay buffer, which in turn
improves the distribution in the preference buffer used for training with respect to the current target
policy πT . Formally, the exploration policy πE = N (µE ,ΣE) is defined as follows:

µE , δE = argmax
µ,Σ:Kl(N (µ,Σ)|N (µT ,ΣT ))≤ϵ

E
a∼N (µ,Σ)

[σ(s, a)]. (3)

where the use of ϵ constrains the selection of the behavior policy to the vicinity of the current target
policy. The closed-form solution for the parameters can be computed as:

µE = µT +

√
2ϵ · ΣT [∇aσ(s, a)]a=µT√

[∇aσ(s, a)]Ta=µT
ΣT [∇aσ(s, a)]a=µT

, and ΣE = ΣT . (4)

In practical applications, we can simply implement the proximal policy exploration as an algorithmic
plugin within an existing algorithmic framework, as shown in Algorithm 1. This integration allows
the enhancement of the policy exploration process without the need for extensive modifications to the
current framework.

4 Experiments and Conclusion
PEBBLE SURF QPA QPA+PPE

Hammer 37.76± 51.59 49.29± 35.77 65.52± 40.38 77.41± 16.71
Drawer-open 20.00± 44.72 39.48± 54.15 39.67± 54.37 79.52± 44.53
Swap-Into 73.23± 34.66 59.64± 51.12 58.58± 31.54 77.17± 20.69
Door-Open 99.11± 2.60 79.88± 42.95 80.00± 44.72 96.47± 7.02

Table 1: The experimental results of Meta-World tasks are documented in the table, where we have
recorded the mean and variance of the final 10-step evaluation outcomes for five seeds trained via
different algorithms.

We conducted experiments on the tasks of Hammer, Drawer-Open, Sweep-Into, and Door-Open
within the Meta-World environment. We set the maximum query feedback limit for Hammer and
Sweep-Into at 10,000, while for Drawer-Open and Door-Open, the limit was set at 4,000.
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(a) Drawer-open (b) Hammer (c) Sweep-into

Figure 1: The outperforming experiment results of our method compared with other methods are
depicted in the graph. The x-axis represents the number of training steps during evaluation, while the
y-axis indicates the success rate of the agent completing the task at the current training step.

We compared our method against well-established algorithms such as PEBBLE, SURF, and QPA, on
these complex tasks. Our method demonstrated a significant advantage, underscoring the importance
of enhancing the coverage of the preference buffer and its influence on the agent’s learning process.

Our method actively optimizes the coverage of the preference buffer around the proximal policy
distribution. As a result, the reward model learned by our method can provide a more reliable
evaluation standard for policy optimization. This leads to our method outperforming the baseline
methods.

In future work, we plan to explore a query method that is compatible with current algorithms to
further improve feedback efficiency.
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A Why Spearman Correlation Coefficient?

We chose the Spearman correlation coefficient over the Pearson correlation coefficient for several
compelling reasons. Firstly, Spearman’s method excels at assessing monotonic relationships, which
is advantageous as it does not presuppose a linear relationship between variables. This attribute is
crucial for analyzing data where linear assumptions may not hold. Secondly, Spearman’s coefficient
is less sensitive to outliers and non-normal distributions, thereby providing robustness in handling
datasets that deviate from normal distribution patterns. Significantly, our study involves preference
data that inherently rank pairs of items based on preference. Consequently, the Spearman correlation
coefficient is particularly suited to evaluate the relationship between proxy return and ground truth
return, as it effectively measures the strength and direction of association between ranked variables.

B Proof of Eq.(4)

Consider the formula for the KL divergence between two high-dimensional Gaussian distributions:

DKL(N (µ,Σ),N (µT ,ΣT )) =
1

2

[
(µ− µT )

TΣ−1
T (µ− µT )− log det(Σ−1

T Σ) + tr(Σ−1
T Σ)− n

]
.

(5)

When DKL(N (µ,Σ),N (µT ,ΣT )) ≤ ϵ is employed as a constraint, the solution to the optimization
problem argmax

µ,Σ
Ea∼N (µ,Σ)[σθ(s, a)] is typically achieved through iterative means. However,

considering our objective for the calculated µ,Σ to more effectively explore data from the out-of-
preference buffer distribution within the proximal policy region, and the real-time requirement for
problem-solving with each agent-environment interaction, we propose a more efficient closed-form
approximation to the original problem by appropriately tightening the constraint, as shown in Eq.(4).

We introducing Σ = ΣT , and the tightened constraint can be expressed as:

DKL(N (µ,ΣT ),N (µT ,ΣT )) ≤ ϵ.

→1

2

[
(µ− µT )

TΣ−1
T (µ− µT )− log det(Σ−1

T ΣT ) + tr(Σ−1
T ΣT )− n

]
≤ ϵ.

→1

2

[
(µ− µT )

TΣ−1
T (µ− µT )

]
≤ ϵ.

(6)

Substituting this into Eq.(3), we derive a simplified optimization problem:

max
µ

E
a∼N (µ,ΣT )

[σθ(s, a)],

s.t.(µ− µT )
TΣ−1

T (µ− µT ) ≤ 2ϵ.
(7)

To address the problem in Eq.(7), we construct the following Lagrangian function:

L = σθ(s, a)− ξ((µ− µT )
TΣ−1

T (µ− µT )− 2ϵ). (8)

Deriving with respect to µ yields:

∇µL = ∇aσθ(s, a)|a=µ − ξΣ−1
T (µ− µT ). (9)

Setting ∇µL = 0, we find:

µ = µT +
1

ξ
ΣT ∇aσθ(s, a)|a=µ . (10)

By applying the KKT conditions, we deduce:

(µ− µT )
TΣ−1

T (µ− µT )− 2ϵ = 0.

ξ > 0.
(11)
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Further, via plugging Eq.(10) in Eq.(11), we can solve to obtain:

1

ξ2

(
ΣT ∇aσθ(s, a)|a=µ

)T
Σ−1
T

(
ΣT ∇aσθ(s, a)|a=µ

)
= 2ϵ, ξ > 0.

→ξ2 =
[∇aσθ(s, a)]

T
a=µΣT [∇aσθ(s, a)]a=µ

2ϵ
, ξ > 0.

→ξ =

√
[∇aσθ(s, a)]

T
a=µ ΣT [∇aσθ(s, a)]a=µ

2ϵ
.

(12)

Through Eq.(12), we find that ξ is a function of µ. However, Eq.(10) is a differential equation, which
is challenging to solve directly for µ. Therefore, we perform a Taylor expansion on [∇aσθ(s, a)]a=µ:

∇aσθ(s, a)|a=µ ≈ ∇aσθ(s, a)|a=µT
+ ∇2

aσθ(s, a)
∣∣
a=µT

(µ− µT ). (13)

This implies that when µ is sufficiently close to µT , we can approximate:

∇aσθ(s, a)|a=µ ≈ ∇aσθ(s, a)|a=µT
. (14)

Since our goal is to increase the density of proximal policy data in the preference buffer, thereby
enhancing the reward model’s evaluation capability under the current policy distribution, this approxi-
mation does not conflict with our objective and is indeed very fitting.

Thus, further, we can deduce:

µ ≈ µT +

√
2ϵ · ΣT [∇aσθ(s, a)]a=µT√

[∇aσθ(s, a)]Ta=µT
ΣT [∇aσθ(s, a)]a=µT

. (15)

Therefore, the exploration behavior policy N (µE ,ΣE) can be expressed as

µE = µT +

√
2ϵ · ΣT [∇aσθ(s, a)]a=µT√

[∇aσθ(s, a)]Ta=µT
ΣT [∇aσθ(s, a)]a=µT

, and ΣE = ΣT . (16)

C Experimental Details

The details of the experiment setting are shown below:

Task Total Feedback Frequency of feedback Reward batch

Hammer 10000 5000 50
Drawer-open 4000 5000 20
Swap-Into 10000 5000 50
Door-Open 4000 5000 20
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