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Abstract— Recent studies reveal that well-performing rein-
forcement learning (RL) agents in training often lack resilience
against adversarial perturbations during deployment. This
highlights the importance of building a robust agent before
deploying it in the real world. Most prior works focus on
developing robust training-based procedures to tackle this
problem, including enhancing the robustness of the deep neural
network component itself or adversarially training the agent
on strong attacks. In this work, we instead study an input
transformation-based defense for RL. Specifically, we propose
using a variant of vector quantization (VQ) as a transformation
for input observations, which is then used to reduce the
space of adversarial attacks during testing, resulting in the
transformed observations being less affected by attacks. Our
method is computationally efficient and seamlessly integrates
with adversarial training, further enhancing the robustness
of RL agents against adversarial attacks. Through extensive
experiments in multiple environments, we demonstrate that
using VQ as the input transformation effectively defends against
adversarial attacks on the agent’s observations.

I. INTRODUCTION

Modern deep reinforcement learning (RL) agents [33],
[10], [14] typically rely on deep neural networks (DNN) as
powerful function approximators. Nevertheless, it has been
discovered that even a well-trained RL agent may drastically
fail under the small adversarial perturbations in the input
during deployment [15], [27], [18], [1], [37], making it risky
to execute on safety-critical applications such as autonomous
driving [50]. Therefore, it is necessary to develop techniques
to assist the RL agents in resisting adversarial attacks in input
observations before deploying them into the real world.

There have been many works proposed in the literature in
defending against adversarial attacks on input observations.
A line of work focuses on enhancing the robustness of DNN
components by enforcing properties such as invariance and
smoothness via regularization schemes [42], [53], [35], [49],
resulting in deep policy outputs that exhibit similar actions
under bounded perturbations. Another line of work considers
training the RL agent in an adversarial manner, where an
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adversary is introduced to perturb the agent’s input while
it interacts with an environment. Sampled trajectories under
these attacks are subsequently used for training, resulting in
a more resilient RL agent. In this approach, the perturbation
can be induced from the policy/value function [18], [2], [37],
[25] or more recently, it can be generated by another RL-
based adversary [52], [43]. While training with RL-based
attackers can attain high long-term rewards under attacks, it
often requires extra samples and computations for training.

Aforementioned strategies can be regarded as robust
training-based defenses, aimed at learning resilient policy
networks against adversarial attacks. Meanwhile, in the
field of image classification, there are also numerous input
transformation-based defenses [6], [26], [12], [38], [13], [17],
[40] that mitigate such attacks without altering the under-
lying model. These defenses attempt to reduce adversarial
perturbations in the input by transforming it before feeding
to the model. The transformation process commonly involves
denoisers for purifying perturbations [13], [17], [40], [34] or
simply utilizes image processing techniques to weaken the
effect of attacks [6], [29], [12], [48], [38]. Therefore, this
approach potentially benefits RL agents without requiring
significant changes to underlying RL algorithms. However,
denoiser-based transformations often leverage powerful gen-
erative models such as GAN [41], [17] or diffusion model
[34] to remove noise, which may introduce overhead in
both training and inference for RL agents. On the other
hand, the processing-based transformations are appealing due
to their non-differential nature, making it challenging for
adversaries to circumvent the defenses. Additionally, these
transforms are also cost-efficient and versatile, making them
suitable for use with RL agents. Nonetheless, many of these
transformations are tailored to image data [6], [12], [48],
[38] and may not easily extend to vector inputs such as low-
dimensional states in continuous control tasks.

Motivated by this limitation, we propose using a variant of
vector quantization (VQ) as a suitable input transformation-
based defense for RL, which is generally applicable for
both image input and continuous state. The key idea of our
approach is to utilize VQ for discretizing the observation
space and subsequently train the RL agent within this trans-
formed space. This strategy effectively reduces the space
of adversarial attacks [15], [18], [53] that can impact the
agent’s observations, producing transformed inputs that are
minimally affected by attacks. Our proposed approach is
computationally efficient and modifies only the input rather
than the model itself, allowing it to synergistically comple-
ment other robust training-based defenses and enhance the



overall robustness of the RL agent.
The main contributions of the paper are as follows: (i)

we propose a novel input transformation-based defense for
RL agent using VQ, (ii) we introduce an effective way to
incorporate the proposed defense in the RL algorithms, and
(iii) we demonstrate through extensive experiments that our
proposed method effectively mitigates adversarial attacks on
many environments across domains and settings. The code
can be found at https://github.com/tunglm2203/vq robust rl.

II. RELATED WORK

Adversarial Attacks on State Observations. Since the
discovery of adversarial examples in the classification [44],
vulnerabilities in state observations of deep RL were first
demonstrated by [15], [27], [18]. [15] evaluated the ro-
bustness of DQN agents in the Atari domain using FGSM
[11] to attack at each step. Instead, [18] proposed using
the value function to determine when to launch attack. [27]
concentrated on attacking within specific steps of trajectories
and employed a planner to craft perturbations that steer the
agent toward a target state. [1] explored the black-box setting,
revealing transferable adversarial examples across different
DQN models. In contrast to crafting perturbations solely
based on the policy, [37] introduced a more potent attack
leveraging both the policy and the Q function. Recently,
[53] formalized attacks on observations through a state-
adversarial Markov decision process, demonstrating that the
most powerful attacks can be learned as an RL problem.
Based on this, [52] and [43] introduced the RL-based adver-
saries for black-box and white-box attacks, respectively.

Robust Training for Deep RL. To enhance the robustness
of RL agents against adversarial attacks on observations, pre-
vious works have primarily focused on strategies involving
adversarial examples during training. [18]; [2] are concurrent
works that first proposed to adversarially train DQN agents
on Atari games. They used weak attacks on pixel space
during rollouts and preserved perturbed frames for training.
However, this approach exhibited limited improvements in
several Atari games. Another line of research introduces a
regularization-based approach to enhancing the robustness of
DQN agents. [39] proposed Lipschitz regularization, while
[53] used a hinge loss regularizer to promote the smoothness
of Q function under bounded perturbations. [35] utilized
robustness verification bound tools to compute the lower
bound of Q function, thereby certifying the robustness of
action selection. In continuous control tasks, a similar adver-
sarial training approach was initially explored by [15], where
attacks are induced from both policy and Q function, and
the trajectories sampled under attacks are used for training.
However, recent work [53] found that this approach may
not reliably improve the robustness against new attacks.
[52] proposed an alternative training paradigm involving
LSTM-based RL agents and a black-box RL-based adversary.
Similarly, [43] proposed the same training paradigm with the
white-box RL adversary, leading to a more robust RL agent.
Smoothness regularization has also been proposed to improve

the robustness of the policy model in online RL setting [42],
[53], as well as in offline setting [49].

Input Transformation Based Defenses. In the domain
of image classification, aside from robust training methods
[31], [51], there have been many studies on defending
adversarial attacks through input transformations [29], [12],
[48], [38], [41], [13], [17], [40], [34]. Several works utilized
traditional image processing such as image cropping [12],
rescaling [29], or bit depth reduction [48] to mitigate the
impact of adversarial attacks on the classifier. Other methods
employed the powerful generative models [41], [17], [34] or
trained the denoisers [26], [13] to reconstruct clean images.
However, given our focus on control tasks using RL, it is
more appropriate to adopt cost-efficient techniques for coun-
tering attacks. Furthermore, denoisers composed of DNNs
are also vulnerable to gradient-based attacks. Motivated by
the utilization of image processing techniques, we propose
to use VQ as an input transformation. Notably, unlike bit
depth reduction [48] that employs uniform quantization, our
method learns representative points to quantize inputs based
on the statistic of input examples.

Input Transformation on Deep RL. Input transformation
has been widely investigated in deep RL to enhance gener-
alization [45], [5] or improve sample efficiency [21], [19],
[30]. Domain randomization, as proposed in [45], aims to
transfer policies from simulators to the real world. Simple
augmentations like cutout [5] or random convolution [23],
as demonstrated in [5] and [23], have been shown to assist
agents in generalizing to unseen environments. To reduce
sample complexity in pixel-based RL, [21] applied image
augmentations to the observations during agent training.
Furthermore, [19] employed augmentation to regularize Q
functions, further improving sample efficiency. Vanilla vector
quantization (VQ) has been utilized in several works to re-
duce the state space for generalization in tabular RL [7], [22]
and continuous control [32]. Our proposed method differs
from these works by quantizing individual dimensions rather
than entire vectors, making it more scalable. To the best of
our knowledge, our use of input transformation represents
the first attempt at leveraging it to enhance robustness against
adversarial attacks in RL.

III. PRELIMINARIES
A. Reinforcement Learning.

An reinforcement learning (RL) environment is modeled
by a Markov decision process (MDP), defined as M =
(S,A, R, P, γ), where S is the state space, A is the action
space, R : S × A × S → R is the reward function,
P : S × A → S is the transition probability distribu-
tion, and γ ∈ [0, 1) is a discount factor. An agent takes
actions based on a policy π : S → A. The objective
of the RL agent is to maximize the expected discounted
return Eπ[

∑∞
t=0 γ

tR(st, at, st+1)], which is the expected
cumulative sum of rewards when following the policy π
in the MDP. This objective can be evaluated by a value
function V π(s) := Eπ[

∑∞
t=0 γ

tRt|s0 = s], or the action
value function Qπ(s, a) := Eπ[

∑∞
t=0 γ

tRt|s0 = s, a0 = a].



B. Test-time Adversarial Attacks.

We consider adversarial attacks on the state observations
during test time, which is formulated as SA-MDP [53].
Specifically, during testing, the agent’s observation is ad-
versarially perturbed at every time step by an adversary
equipped with a certain budget ϵ. Note that, the adversary
only alters the observations and the true underlying states
of the environment do not change. This setting fits many
realistic scenarios such as measurement errors, noise in
sensory signals, or man-in-the-middle (MITM) attacks for
a deep RL system. For example, in robotic manipulation, an
attacker can add imperceptible noise to the camera capturing
an object, however, the actual object’s location is unchanged.
In this paper, we consider a ℓ∞ norm threat model, in
which the adversary is restricted to perturb the observation
s into ŝ ∈ B(s, ϵ) = {ŝ : ∥s − ŝ∥∞ ≤ ϵ}. Additionally,
since the adversary only appears at the test time, we assume
that the true states can be observed during training. This is
important since our input transformation is learned to capture
the statistic of states while training the agent.

C. Vector Quantization.

Vector quantization (VQ) is a common technique widely
used for learning discrete representation [46], [36], [28], [16].
In this work, we use VQ block similar to VQ-VAE [46] with
some modifications. We present the process of basic VQ
here and leave the modification in the next section. Initially,
the VQ block, referred to as Q, maintains a codebook C
consisting of a set of items {ck}Kk=1. Given an input vector
z, Q outputs the item cm which is closest to z in Euclidean
distance as cm = Q(z), with m = argmink ∥ck − z∥2. The
codebook item can be updated by ℓ2 error or the exponential
moving average to move the item toward corresponding
unquantized vectors assigned to that item. In the backward
pass, the VQ block is treated as an identity function, referred
to as straight-through gradient estimation [3]. The hyper-
parameter K controls the size of the codebook, where lower
values would lead to lossy compression but potentially yield
more abstract representations.

IV. METHODOLOGY

A. Input Transformation based Defense for RL

To understand the effectiveness of input transformation-
based defense for the RL agent, we commence by analyzing
its performance under adversarial perturbations utilizing the
tools developed in SA-MDP [53]. Let f1, f2 be functions
mapping S → S , and let π represent a Gaussian policy with a
constant independent variance. Assuming the policy network
is L-Lipschitz continuous, we obtain:

max
s∈S

{V π◦f1(s)−V π◦f2◦ν(s)} ≤ ζmax
s∈S

max
ŝ∈B(s,ϵ)

∥f1(s)−f2(ŝ)∥2
(1)

where, ν is optimal adversary corresponding to π, ζ is a
constant independent of π. The proof of Eq. (1) relies on
L-Lipschitz continuity of the policy network.

Eq. (1) suggests two distinct approaches for narrowing
the gap between natural performance and performance under

perturbation. Firstly, when considering f1 as an identity func-
tion, we can design f2 to reconstruct s from ŝ, which involves
minimizing maxŝ∈B(s,ϵ) ∥s − f2(ŝ)∥2. Secondly, we can
design f1 and f2 to reduce the difference in the transformed
space, as expressed by maxŝ∈B(s,ϵ) ∥f1(s) − f2(ŝ)∥2 being
small. While the first approach can be achieved by utilizing
a denoiser, it carries certain disadvantages, as discussed in
Section II. Therefore, we opt for the second approach to
counter adversarial attacks. In this approach, V π◦f1(s) is not
guaranteed to be identical to V π(s), as the agent operates
within the transformed space rather than the origin one.
However, as long as f1 retains the essential information
from the original space, the agent’s performance can be
maintained, as shown in our experiments.

B. VQ Mitigating Adversarial Perturbations

Different to previous works [46], [28], [16], which use VQ
to discretize the latent space, we directly apply VQ to each
dimension of the raw input space as a transformation, and
then train the RL agents directly on the transformed inputs.
We define the space of adversarial attack in transformed
space by B̄(s, ϵ) = {Q(ŝ) : ∥s − ŝ∥∞ ≤ ϵ}. Intuitively,
B̄(s, ϵ) is a set of possible items ck to which the perturbed
state ŝ can be assigned. We find that using VQ with an
appropriate small codebook size as the input transformation
effectively reduces the space of adversarial attacks, i.e.,
the size of B̄, without significantly reducing the natural
performance of the agent. As depicted in Fig. 1a (top) for
one-dimensional data, supposing the state s is assigned to
the item c2, and the adversary can arbitrarily perturb the
state s within the ϵ ball. We can see that if the B(s, ϵ)
is still lying within the boundaries of c2 (the blue dotted
lines), Q will transform both s and ŝ ∈ B(s, ϵ) into the
same item, i.e., Q(s) = Q(ŝ) for ∀ŝ ∈ B(s, ϵ). Additionally,
we also observe that the space of attacks is proportional to
the size of the codebook. It means that K decreases leading
to smaller size of B̄(s, ϵ), thus stronger in resisting the
adversarial perturbations. This is illustrated in Fig. 1a, larger
K shrinks the radius of items, while smaller K enlarges the
radius. Moreover, due to straight-through estimation, VQ also
inherits non-differential properties as image transformations.
For states lying close to the boundary, with appropriate small
K and not too large ϵ, the transformed states are altered at
most to the closest neighbor items.

To better understand the effectiveness of VQ for counter-
ing adversarial attacks, we illustrate it with a toy regression
task. We train a predictor πθ to regress from the state to the
action on the walker-medium-v2 dataset [8], using VQ
as input transformation. The model is optimized by minimiz-
ing the MSE between the prediction and ground truth action.
At the test time, we introduce the adversary on the state s to
obtain the perturbed state ŝ = argmaxŝ∈B(s,ϵ) ∥πθ(s)− a∥2,
with a is the ground truth. The maximization is solved by
using 10-step projected gradient descent (PGD) as in [20],
[37]. We evaluate the performance (i.e., MSE) under different
scales of ϵ, where ϵ = 0 corresponds to ŝ = s.

As the result shown in Fig. 1b, smaller values of K are
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(a) VQ reduces attack’s space.
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Fig. 1: (a) Illustration of using VQ to reduce space of
adversarial attacks. The green and red dots indicate codebook
items, whereas the red dot represents an item to which the
state s is assigned after VQ process. The blue dotted line
indicates the boundaries. (b) Illustration of the effectiveness
of VQ in countering attacks in the regression task.

more effective in countering the adversarial attacks, while the
robustness of the model with larger K will become closer to
the model without using VQ. Additionally, we also observe
that smaller K will slightly decrease the natural performance
(i.e., ϵ = 0), which is resulted from the lossy compression.
Therefore, we can adjust K to control the trade-off between
the natural performance and the robustness.

The VQ block originally uses the same codebook for
all dimensions of the input [46], [36], [28], [16]. However,
since we use VQ for the raw input observations instead of
latent space, which is not learnable to adapt the codebook
items, fitting the same codebook for every dimension might
limit its expressiveness to approximate the state density,
especially for the small size of the codebook. We propose
to use separate codebooks for each dimension of input
to improve its expressiveness. Therefore, our modified VQ
block maintains a set of codebooks {Ci}Di=1, where D is
the dimension of inputs, each codebook consists of a set
of item {ck}Kk=1, with ck ∈ R. The codebook items are
updated by ℓ2 error similar to [46]. Specifically, considering
the dimension d, let {sdk,i}

Nd,k

i=1 be the set of state elements
closest to the item cdk, so that the codebook items are updated
by minimizing following objective:

LV Q =
1

D

1

K

D∑
d=1

K∑
k=1

1

Nd,k

Nd,k∑
i=1

∥sdk,i − cdk∥22 (2)

While the VQ transformation described above is appealing
for this approach, naively incorporating it into the RL algo-
rithms may deteriorate the natural performance. This is be-
cause the state distribution induced by the policy is changed
over the course of training, which is caused by the policy

being continuously improved, thus the state distribution at the
beginning may be very different at the end of training. As a
result, the codebooks learned from the data induced by a low-
performance policy at the beginning might be inadequate to
reflect the state distribution induced by the high-performance
policies at the end. Moreover, codebook items may converge
to a local minimum similar to K-means [4]. To mitigate
this, we propose to slowly update codebooks when the agent
performance is low, i.e., when the agent is in exploration; and
update faster when it reaches higher performance, i.e., when
the agent is in exploitation. To control the rate of update,
we scale LV Q based on the current agent’s performance. For
simplicity, we approximate current performance by using the
average value of Q within a mini-batch during training. Then,
we scale LV Q in Eq. (2) by the factor λ defined as follows:

λ =

1
|B|

∑
si∈B |Qπ(si, π(si))|

α
(3)

where α is hyper-parameter, π is the current training policy,
B is mini-batch. During training, we alternatively update
between the RL agent and the codebooks.

V. EXPERIMENTS

A. Evaluation in MuJoCo

In this section, we evaluate the effectiveness of the pro-
posed method against common adversarial attacks in both
online and offline RL settings. We adopt three common
attacks as used in [53], [52], namely Random, Action Diff,
and Min Q. Given an attack budget ϵ and a state s, adversaries
generate perturbed state ŝ as follows: (1) Random: ŝ is
uniformly sampled within B(s, ϵ), (2) Action Diff : ŝ is
induced from the agent’s policy. Specifically, ŝ is searched
within B(s, ϵ) to satisfy maxŝ∈B(s,ϵ) D(π(·|s)||π(·|ŝ)), with
D is KL divergence, (3) Min Q: Different from Action Diff,
this adversary generates perturbations based on both the
agent’s policy and Q function, which is a relatively stronger
attack. ŝ is selected to satisfy minŝ∈B(s,ϵ) Q(s, a), with a is
the policy output. For Action Diff and Min Q, we use 10-step
PGD as in [20], [37].

1) Online RL: For online RL setting, we follow the
experiment setup as in [53], but use Soft Actor-Critic (SAC)
as a base RL algorithm due to its sample efficiency and
higher performance on Gym MuJoCo [14]. We conduct ex-
periments on five environments including Walker2d, Hopper,
Ant, Reacher, and InvertedPendulum. For α in Eq. (3), we
search in {30, 40, 50, 60} and set a value of 30 for Hopper
and 60 for the others. Regarding the codebook size, we set
K = 8 for Walker2d and Reacher, and K = 16 for the
others. We compare the proposed method with vanilla SAC
and SAC with bit depth reduction [48] (SAC-BDR), where
uniform quantization is naively performed in each dimension
of the input. Additionally, we also incorporate VQ into a
strong adversarial training baseline [53], referred to as SAC-
SA, to see whether it can further improve the robustness.

We evaluate the robustness of methods under different
scales of ϵ, where ϵ = 0 corresponds to the natural
performance (see in Appendix), and generate the return



TABLE I: Average robustness score and standard deviation
in Mujoco for online RL setting over five seeds. In each
environment, we bold the highest average score in each
setting: with and without robust training-based defense.

Env. Method Random Action Diff Min Q Average

W
al

ke
r2

d

SAC 84.4± 5 42.1± 4 40.4± 3 55.7
SAC-BDR 88.8± 4 48.6± 6 43.8± 7 60.4
SAC-VQ 88.9± 4 65.4± 8 50.9± 7 68.4
SAC-SA 91.6± 1 66.3± 7 47.7± 7 68.6
SAC-SA-BDR 91.1± 2 72.1± 2 50.9± 3 71.4
SAC-SA-VQ 92.5± 5 77.5± 6 52.9± 6 74.3

H
op

pe
r

SAC 65.2± 7 36.8± 5 36.4± 4 46.1
SAC-BDR 72.7± 5 45.7± 6 44.0± 3 54.1
SAC-VQ 72.5± 6 50.2± 5 45.5± 5 56.2
SAC-SA 91.7± 3 67.1± 4 61.8± 4 73.5
SAC-SA-BDR 90.3± 3 68.6± 4 63.55± 4 74.2
SAC-SA-VQ 91.2± 8 70.2± 7 64.42± 5 75.3

A
nt

SAC 71.5± 4 30.8± 3 32.02± 3 44.8
SAC-BDR 68.0± 6 34.9± 4 31.12± 5 44.7
SAC-VQ 78.5± 8 41.9± 7 39.34± 6 53.2
SAC-SA 85.3± 3 50.3± 7 53.73± 5 63.1
SAC-SA-BDR 81.5± 4 54.6± 5 52.06± 6 62.7
SAC-SA-VQ 86.7± 3 59.7± 4 55.15± 2 67.2

R
ea

ch
er

SAC 99.2± 0.2 94.9± 0.7 95.27± 0.6 96.5
SAC-BDR 99.2± 0.2 96.4± 0.6 96.36± 0.4 97.3
SAC-VQ 99.3± 0.1 97.2± 0.1 96.89± 0.2 97.8
SAC-SA 99.6± 0.1 98.1± 0.2 97.02± 0.3 98.3
SAC-SA-BDR 99.2± 0.4 98.1± 0.5 97.81± 0.5 98.4
SAC-SA-VQ 99.6± 0.1 98.9± 0.1 97.92± 0.2 98.8

Pe
nd

ul
um

SAC 88.2± 12 60.2± 11 69.28± 13.4 72.5
SAC-BDR 99.8± 3 80.5± 10 88.47± 6.9 89.6
SAC-VQ 100± 0 91.1± 4 94.98± 2.1 95.3
SAC-SA 100± 0 88.3± 1 62.49± 3.7 83.6
SAC-SA-BDR 100± 0 92.2± 3 58.91± 4.6 83.7
SAC-SA-VQ 100± 0 97.8± 1 59.75± 7.4 85.8

curves under different attack levels. For better quantitative
measurement, we consider the robustness score (RC) defined
as the areas under the perturbation curve, where the returns
are normalized between Rmin and Rmax. Specifically, given
a normalized perturbation curve, the RC is computed by
RC = 1

N

∑N
i=1 R[i], with R is the list of returns evaluated

on N monotonically increasing attack scales, each return
value is averaged over 50 episodes similar to [53].

According to the result shown in Tab. I, our method
consistently enhances the robustness score over vanilla SAC,
with an averaged improvement of 11%. While SAC-BDR
succeeds in enhancing the robustness of SAC, it falls short by
5% compared to ours, highlighting the advantage of learning
codebooks over uniform quantization. When coupled with
SAC-SA, the robustness can be further enhanced. However,
in the case of the InvertedPendulum under the Min Q attack,
VQ exacerbates performance degradation. This could be
attributed to the use of smoothness regularization, which
also negatively impacts performance compared to vanilla
SAC. Therefore, the combination with VQ may degrade
performance. Remarkably, SAC-VQ achieves comparable
performance with SAC-SA in the Walker2d environment
and surpasses it in the InvertedPendulum. Overall, utilizing
VQ as input transformation effectively mitigates the impact
of attacks and further enhances the robustness of robust
training-based defenses.

2) Offline RL: For offline RL setting, we use TD3BC
[9] as a baseline and conduct on {walker2d, hopper, ant}-

TABLE II: Average robustness score and standard deviation
in Mujoco for offline RL setting over five seeds. In each
environment, we bold the highest average score in each
setting: with and without robust training-based defense

Env. Method Random Action Diff Min Q Average

W
al

ke
r2

d TD3BC 81.6± 2.2 57.7± 3.2 38.4± 2 59.3
TD3BC-VQ 83.0± 1.3 70.7± 1.6 47.8± 4 67.2
TD3BC-SA 84.4± 1.3 68.9± 2 43.0± 3.4 65.5
TD3BC-SA-VQ 85.0± 0.4 74.3± 1.8 45.1± 3.3 68.1

H
op

pe
r TD3BC 53.8± 0.8 43.7± 1.1 21.0± 3.1 39.6

TD3BC-VQ 52.2± 1.2 44.2± 0.7 27.6± 2.9 41.4
TD3BC-SA 54.4± 0.9 45.7± 0.6 23.5± 1.5 41.2
TD3BC-SA-VQ 52.6± 4.9 44.5± 3 26.2± 1.6 41.1

A
nt

TD3BC 84.8± 5.3 52.6± 5.6 56.3± 4.5 64.6
TD3BC-VQ 83.0± 7.2 58.8± 4.9 60.5± 4.7 67.5
TD3BC-SA 88.7± 4.1 60.2± 3.6 61.9± 4.1 70.3
TD3BC-SA-VQ 92.7± 3.2 70.7± 3.1 68.8± 1.4 77.4

medium-v2 datasets. Following a similar comparison in the
online setting, we incorporate VQ into a robust training-
based defense [53], [49]. We search for K within {8, 12, 16}
for all datasets, except for hopper-medium-v2 where we
broaden the search to {8, 16, 24, 28, 32} and report the best
score. This setting presents more challenges compared to the
online setting due to the state distribution shift problem [24].
This problem arises because codebooks learned from the
offline dataset might inaccurately reflect the density of states
induced by the current policy at test time. We investigate
whether VQ is helpful for improving the robustness in this
challenging setting. The evaluation metric is same with
online setting. As shown in Tab. II, we observe that VQ
is still able to enhance the robustness of base algorithms in
almost tasks. However, the magnitude of improvements is
lower compared to the online setting. The most substantial
improvement are observed in the Walker2d and Ant datasets.

B. Evaluation in Atari

We investigate effectiveness of VQ into the Double DQN
[47] on two Atari games: Freeway and Pong. These envi-
ronments feature high-dimensional pixel inputs and discrete
action spaces. We set K = 4 for these environments. For the
robustness evaluation, we use 10-step l∞-PGD untargeted
attack. Additionally, we also incorporate bit depth reduction
for the DQN agent, referred as DQN-BDR. Furthermore,
we integrate the proposed method into a state-of-the-art
method, namely RADIAL [35], to investigate whether it
can enhance robustness. As demonstrated in Tab. III, the
DQN-VQ is more effective compared to DQN-BDR. This
outcome underscores the advantages of learning codebooks
over uniform quantization. Surprisingly, our method is able
to achieve comparable with RADIAL without adversarial
training. By combining VQ with RADIAL, we achieve
further improvement in robustness, especially at larger values
of ϵ such as 10/255 for Pong and 5/255 for Freeway.

C. Ablation Study

Effectiveness of Codebook Size. We provide the experiment
showing the effectiveness of different codebook sizes in Fig.
2. Across environments, the small values of K often lead to



Fig. 2: The comparison between agents using different sizes of the codebook on Walker2d and Reacher.

Fig. 3: The comparison between sharing and separate codebooks for all dimensions of states on Walker2d and Reacher.

TABLE III: The mean reward of 10 runs ± the standard error
in the Atari domain. Each run is averaged over 20 episodes.
The highest score in each column of environments is bold.

Env. Method/Metric Natural Reward PGD

ϵ 0 3/255 5/255

Fr
ee

w
ay

DQN 33.9 ± 0.07 0.0 ± 0.0 0.0 ± 0.0
DQN-BDR 33.2 ± 0.1 32.7 ± 0.6 27.8 ± 0.7
DQN-VQ 33.5 ± 0.7 32.9 ± 0.8 28.1 ± 1.7

RADIAL 33.4 ± 0.7 33.4 ± 0.6 28.5 ± 0.9
RADIAL-BDR 33.9 ± 0.9 33.0 ± 0.8 30.5 ± 0.9
RADIAL-VQ 33.9 ± 0.4 33.2 ± 0.7 32.4 ± 1.1

ϵ 0 5/255 10/255

Po
ng

DQN -21.0 ± 0.0 -21.0 ± 0.0 -21.0 ± 0.0
DQN-BDR 20.9 ± 0.4 14.7 ± 5.5 -21.0 ± 0.0
DQN-VQ 21.0 ± 0.0 20.4 ± 0.9 -20.3 ± 0.5

RADIAL 21.0 ± 0.0 21.0 ± 0.0 -20.8 ± 0.4
RADIAL-BDR 21.0 ± 0.0 21.0 ± 0.0 16.5 ± 0.9
RADIAL-VQ 21.0 ± 0.0 21.0 ± 0.0 21.0 ± 0.0

more robustness in a wide range of attack scales. However,
too small K causes a drop in natural performance, and
the large value of K (e.g., 32) tends to have little benefit
for resisting perturbations as analyzed in Section IV-B. It
is important to emphasize that the dynamics of different
environments can vary significantly, which in turn affects
the distribution of states. Therefore, selecting an appropriate
value of K for each environment is crucial to achieving
robust performance.

Effectiveness of Separate Codebooks. The Fig. 3 compares
performance between shared and unshared (i.e., separate)
codebook for each dimension. The result shows that using
the shared codebook across dimensions can reduce natural
performance due to its limited expressiveness. Consequently,
the robustness under attacks is also decreased.

Fig. 4: Ablation on adaptive learning codebook.

Adaptive Learning Codebook. To demonstrate the effec-
tiveness of adaptive scale during updating codebooks, we

show the natural performance during training of Walker2d
and Ant in Fig. 4. The “fixed scale” means no scale used for
LV Q loss. The result shows that adaptive scale is important
to achieve high natural performance at the end of training.

Fig. 5: The correlation between the input difference and
relative difference of performance.

Input Difference vs. Robustness. We measure Spearman’s
rank correlation coefficient between (1) the difference be-
tween clean and perturbed inputs after quantized and (2)
the relative difference between the natural and robust per-
formance under perturbation. The result shown in Fig. 5
indicates a high correlation between the two quantities. This
supports Eq. (1) that decreasing the input difference will
increase its robustness performance.

TABLE IV: Average training time on Walker2d-v2.

Method Runtime (s/iteration)

SAC 0.0220
SAC-VQ 0.0232
SAC-SA 0.0326
SAC-SA-VQ 0.0350

D. Computational Cost Comparison.

We compare training time when using VQ transformation
on a single machine with one GPU (RTX 3080). The result
is shown in Tab. IV. When combined with vanilla SAC and
SAC-SA, VQ slightly increases the training time to 5% and
7%, respectively.

VI. CONCLUSION

We have presented a novel defense based on input transfor-
mation to counter adversarial attacks on state observations.
Our proposed approach is both cost-efficient and highly
effective in defending against such attacks. Furthermore,
when combined with robust training-based defenses, it sig-
nificantly enhances the overall robustness of RL agents. We



have conducted thorough analyses to evaluate the efficacy of
vector quantization in countering attacks. To the best of our
knowledge, this is the first study to investigate the use of
input transformation-based defenses for RL.
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APPENDIX
Performance bound. SA-MDP [53] provides an upper
bound of performance gap between the two policies trained
on non-adversarial MDP and state-adversarial MDP (SA-
MDP), respectively. We based on this to derive our upper
bound in Eq. (1). Formally, given a policy π and its value
function V π(s), under the optimal adversary ν in SA-MDP,
theorem 5 in [53] stated that:

max
s∈S

{V π(s)− V π◦ν(s)} ≤ κmax
s∈S

max
ŝ∈B(s,ϵ)

DTV (π(·|s), π(·|ŝ))
(4)

where, DTV (π(·|s), π(·|ŝ)) is the total variance distance
between π(·|s) and π(·|ŝ), κ is a constant that does not
depend on π, B(s, ϵ) = {ŝ : ∥s−ŝ∥∞ ≤ ϵ}, and π◦ν denotes
the policy under perturbations: π(a|ν(s)). The total variation
distance is not easy to compute for most distributions, thus
we upper bound DTV by the KL divergence:

DTV (π(·|s), π(·|ŝ)) ≤
√

1

2
KL (π(·|s) ∥ π(·|ŝ)). (5)

We assume that the policy is Gaussian with constant indepen-
dence variance, which is commonly used in RL algorithms
such as TD3 [10]. Supposing that π(·|s) ∼ N (µs,Σs)
and π(·|ŝ) ∼ N (µŝ,Σŝ), where µ ∈ Rd and µs, µŝ

are respectively produced by neural networks µθ(s), µθ(ŝ),
and Σ is a diagonal matrix independent of state s (i.e.,
Σs = Σŝ = Σ). Assuming policy network is L-Lipschitz
continuous, we have:

KL(π(·|s) ∥ π(·|ŝ)) = 1

2
(log

|Σŝ|
|Σs|

− d+ tr(Σ−1
ŝ Σs)

+ (µŝ − µs)
⊤Σ−1

ŝ (µŝ − µs))

≤ C2∥µŝ − µs∥22
= C2∥µθ(s)− µθ(ŝ)∥22
≤ C2L∥s− ŝ∥22.

(6)
The first inequality because of Σŝ,Σs are positive, thus exist
C ∈ R+ to satisfy this. The second inequality because
of the policy is L-Lipschitz continuous. Now we introduce
two function f1, f2 that map S → S , and apply these two
functions into input states s and ŝ, respectively. We have:

KL (π(·|f1(s)) ∥ π(·|f2(ŝ))) ≤ C2L∥f1(s)− f2(ŝ)∥22. (7)

Combining (4), (5), (6), and (7) we have:

max
s∈S

{V π◦f1(s)− V π◦f2◦ν(s)} ≤ ζmax
s∈S

max
ŝ∈B(s,ϵ)

∥f1(s)− f2(ŝ)∥2
(8)

where, ζ = 1√
2
κC

√
L, π◦f1 and π◦f2◦ν denote π(·|f1(s))

and π(·|f2(ν(ŝ))), respectively. □
Robustness Evaluation Under Different Attack Scales. We
provide the raw perturbation curves for online and offline RL
setting in Fig. 6 and 7, respectively. These curves are used
to obtain robustness score in Tab. I and II

Fig. 6: Comparisons under different attacks w.r.t. different
scales of ϵ in online RL setting. The y-axis indicates the
unnormalized return. The curve is averaged over five seeds,
with ±1 standard deviation shading.

Fig. 7: Comparisons under different attacks w.r.t. different
budget ϵ’s in offline RL setting. The y-axis indicates nor-
malized return. The curve is averaged over five seeds, with
±1 standard deviation shading.


