
R3-NL2GQL: A Model Coordination and Knowledge Graph Alignment
Approach for NL2GQL

Anonymous ACL submission

Abstract

While current tasks of converting natural001
language to SQL (NL2SQL) using Founda-002
tion Models have shown impressive achieve-003
ments, adapting these approaches for convert-004
ing natural language to Graph Query Language005
(NL2GQL) encounters hurdles due to the dis-006
tinct nature of GQL compared to SQL, along-007
side the diverse forms of GQL. Moving away008
from traditional rule-based and slot-filling009
methodologies, we introduce a novel approach,010
R3-NL2GQL, integrating both small and large011
Foundation Models for ranking, rewriting, and012
refining tasks. This method leverages the inter-013
pretative strengths of smaller models for initial014
ranking and rewriting stages, while capitaliz-015
ing on the superior generalization and query016
generation prowess of larger models for the fi-017
nal transformation of natural language queries018
into GQL formats. Addressing the scarcity of019
datasets in this emerging field, we have devel-020
oped a bilingual dataset, sourced from graph021
database manuals and selected open-source022
Knowledge Graphs (KGs). Our evaluation of023
this methodology on this dataset demonstrates024
its promising efficacy and robustness.025

1 Introduction026

Graph-based data structures are central to diverse027

areas such as financial risk management, social028

networking, and healthcare(Yu et al., 2022; Zhang029

et al., 2023). To manage this data efficiently,030

graph databases are widely used, offering an ef-031

fective means to represent and store complex, in-032

terconnected information (Qiu et al., 2023). De-033

spite their utility, the intricacy of GQL poses a034

challenge for those not specialized in the field,035

making it hard to leverage graph databases for036

data analysis and application development. Mean-037

while, although numerous NL2SQL approaches038

have shown promise (Pourreza and Rafiei, 2023)039

(Dong et al., 2023) (Tai et al., 2023), their direct040

application to NL2GQL is hindered by the differ-041

Table 1: Some keywords of SQL and GQL (using the
nGQL language as an example) showcasing the

differences between SQL and GQL.

GQL SQL

C INSERT VERTEX,
INSERT EDGE

INSERT

R DELETE, DROP DELETE

U ALTER, UPDATE,
UPSERT

UPDATE

D
MATCH, LOOKUP,

OPTIONAL MATCH,
GO,FETCH, SHOW,

GET, SUBGRAPH, FIND

SELECT

Keywords WHERE, LIMIT,
SKIP, ORDER BY,

YIELD, WITH

WHERE, HAVING,
ORDER BY, JOIN

Expression
count(), max(),
strcasecmp(),

timestamp(), properties()

sum(), ceil(), abs(),
lower(), data()

ences in focus and syntactic complexity between 042

SQL and GQL, as shown in Table 1. 043

Regarding information retrieval in KGs, al- 044

though triplet vector-based retrieval methods (Baek 045

et al., 2023) offer efficiency and accuracy, they 046

compromise the graph’s structural integrity, lim- 047

iting their utility in complex queries. In contrast, 048

GQL-based methods maintain rich data and logical 049

pathways, bridging the conversational and data- 050

structured worlds, and enhancing the model’s inter- 051

activity and interpretability, as shown in Figure 1. 052

Therefore, implementing a system for the 053

NL2GQL task has become particularly important, 054

but the progress in NL2GQL has been modest, with 055

efforts predominantly concentrating on the Cypher 056

(one type of the GQL). Many solutions, such as 057

Text2Cypher, a Python library, use template-based 058

methods to transform natural language into Cypher, 059

ensuring syntactic correctness but requiring exten- 060

sive customization for specific data schemas. More 061

1

Sony Panasonic

Apple Samsung

Tim
Cook Apple

Hold_stock

related_comp
any_industry

Upstream

…

Graph DB

GQL

APPLE INC

Apple Inc.

company_
introduction

Apple Inc. is
a globally
technology…

listing_date December 12,
1976

company_
name Apple Inc.

amount $10 billion

company_id AAPL

Query
I want to see the equity chain of Apple.

Figure 1: Retrieval algorithm based on triplet vector v.s.
GQL-based method.

recently, SpCQL (Guo et al., 2022) introduced the062

Text to Cypher task and developed the first dedi-063

cated dataset, using seq2seq models as a baseline.064

However, this approach has only achieved a 2%065

success rate in generating accurate Cypher queries,066

indicating significant potential for improvement,067

while the lack of schemas makes this dataset diffi-068

cult to apply in real-world environments.069

The challenges in NL2GQL stem from several070

key factors: 1) Multiple Model Requirements:071

Graph databases complicate GQL formulation with072

their intricate node-edge structures. Our experi-073

ments have shown that a single small model can-074

not learn GQL syntax through Few-Shot or Fine-075

tuning. Larger models, although better at gen-076

eralizing across schemas, often struggle to align077

with the specific schemas or data elements within078

graph databases, leading to errors or hallucina-079

tions, making it difficult to solve the NL2GQL080

task with a single model. 2)Limited Resources:081

The nascent stage of NL2GQL, contrasted with the082

well-resourced NL2SQL field, leads to a scarcity083

of datasets (Yu et al., 2018; Zelle and Mooney,084

1996; Ma and Wang, 2021) and tools, hampering085

research and development efforts in this area.086

To address these issues, we developed R3-087

NL2GQL, combining the specialized insights of088

fine-tuned smaller models with the broad adapt-089

ability of larger ones. The smaller model acts as a090

ranker and rewriter, while the larger model refines091

the GQL generation. We also integrated original092

KG data to optimize alignment, aiming to improve093

the larger model’s zero-shot performance. Facing094

a lack of NL2GQL datasets, we created a bilin-095

gual dataset with thousands of high-quality entries,096

marking a novel application of Foundation Models097

in NL2GQL.098

We summarize our contributions as follows:099

• Model Coordination Approach: We de-100

vised a strategy that harnesses both smaller101

and larger Foundation Models to overcome 102

NL2GQL obstacles. Our method involves 103

translating schemas into code structures and 104

outlining the basic skeleton for GQL types. In 105

this setup, smaller models function as rankers 106

and rewriters, with a larger model refining the 107

process to enhance GQL generation. 108

• Bilingual Dataset: We create a bilingual 109

dataset and set evaluation standards. To the 110

best of our knowledge, this represents the first 111

multi-schema dataset for the NL2GQL task. 112

• Retrieval and Alignment: By leveraging 113

node and edge-based representations inherent 114

to database storage mechanics, we address 115

alignment issues between user queries and 116

database schema and elements. Employing 117

a multi-level retrieval mechanism, we con- 118

nect the relevant data elements to enhance the 119

model’s logical reasoning, thereby improving 120

the accuracy of GQL generation. 121

2 Task Formulation 122

To address the challenge of information loss in nat- 123

ural language schema representations, we devised 124

a novel approach for schema and query formulation 125

in the context. 126

2.1 Code-Structured Graph Schema 127

Description 128

Transitioning from natural language descriptions to 129

a structured, code-based representation for graph 130

schemas ensures semantic integrity for entities, re- 131

lationships, and attributes. This involves encapsu- 132

lating the schema within a Python code structure 133

to reflect the graph’s architecture. 134

The code structure schema defines various 135

schema structures, consisting of Tag and Edge. 136

Subclasses represent each graph’s schema, utiliz- 137

ing Python features for detailed and precise de- 138

scriptions: 1) Concept names as Python classes; 139

2) Class annotations for in-depth explanations; 3) 140

Class inheritance for hierarchical relationships; 4) 141

Init functions for attributes of tags or edges. 142

The code structured schema, depicted in Fig- 143

ure 2, enhances the model’s interpretability by 144

maintaining semantic consistency and leveraging 145

the alignment between graph data and object- 146

oriented paradigms (Bi et al., 2023). 147

2

Nodes
class player(Tag):

def __init__(self,vid,name:str,age:int):
self.vid=vid
self.name=name
self.age=age

Edge

class follow(Edge):
def __init__(self,src_vid,dst_vid,degree:int):

self.src_vid=src_vid
self.dst_vid=dst_vid
self.degree=degree

Code Structure Schema

the request CRUD function
class CRUD():

def QUERY(self):
"""
FETCH PROP ON {<tag_name>[, tag_name ...] | *}
<vid> [, vid ...]
YIELD <return_list> [AS <alias>];
"""
Example:FETCH PROP ON player "player100" YIELD properties(vertex);

the request clause
class Clause():

def LIMIT(self):
"""
YIELD <var> [| LIMIT [<offset_value>,] <number_rows>]
"""
Example:GO FROM "player100" OVER follow REVERSELY YIELD $$.player.name AS Friend,

$$.player.age AS Age | ORDER BY $-.Age, $-.Friend | LIMIT 1, 3

Code Structure Skeleton

Skeleton of ‘FETCH’

In-Context Learning

Plain text Schema

the node type:[{'player':[name,age],'team':[name],}]
the edge type:[{'like':[likeness],'teammate':[start_year]}]

Figure 2: The examples of plain-text schema, code-structure schema, and code-structure skeleton: The plain-text
schema serves as the vanilla schema prompt and is written in natural language. The code-structure schema leverages
the Python language to re-represent the schema of graphs, with the aim of enhancing the model’s inference
capabilities. The code-structure skeleton extracts essential keywords and clause information, focusing on GQL.

2.2 Code-Structured Skeleton for GQL148

To facilitate the handling of diverse GQL queries,149

the keywords of GQL are abstracted into a struc-150

tured framework, aligning them with CRUD opera-151

tions such as "MATCH" and "FIND" and supple-152

mentary clauses such as “LIMIT” and “GROUP.”153

This framework is also expressed through Python’s154

class and function constructs, augmented with com-155

ments and illustrative examples to demystify the156

application of each keyword. The design, as shown157

in right of Figure 2, promotes a more clear com-158

prehension and generation of GQLs by delivering159

a tangible, example-centric context for every oper-160

ation within the graph database ecosystem.161

2.3 NL2GQL Task162

A task can be formally represented as:163

q = f(n,G,S), (1)164

where G is the data of the given Graph165

database, including the data format G =166

{(s, r, o) |s, o ∈ N , r ∈ E}, where N represents167

node set and E represents edge set. S represents168

the schema of the graph database, n represents169

the natural language requirements input by the170

user, and can be segmented according to the to-171

ken n = {n1, n2, n3, ..., ni}, q represents the final172

generated GQL.173

3 R3-NL2GQL Framework174

The R3-NL2GQL framework pioneers a coordina-175

tion strategy, merging several models to mitigate176

the limitations of relying on a single model, as il-177

lustrated in Figure 3. The process initializes with a178

finely tuned smaller model serving as a ranker, ex- 179

cel at identifying key components like CRUD oper- 180

ations, clauses, and schema classes from the input. 181

To tackle the alignment challenge, another smaller 182

model leverages Few-Shot learning to fetch and 183

validate information against the graph database, 184

functioning as a rewriter to guarantee data preci- 185

sion. The outputs of these models are then further 186

honed by a larger model, tapping into its sophisti- 187

cated generalization and synthesis capabilities to 188

ultimately generate accurate GQLs. 189

3.1 Smaller Foundation Model as Ranker 190

The transformation from natural language queries 191

to GQL involves distinct phases, each presenting 192

unique challenges: 193

• CRUD Keyword Selection: Identifying the 194

correct CRUD keywords is foundational, set- 195

ting the stage for the query structure. 196

• Clause Determination: Following CRUD 197

keyword selection, the next step involves 198

choosing the necessary clauses to construct 199

a coherent query, considering filters, sorting, 200

and other elements aligned with user intent. 201

• Node and Edge Identification: The final 202

phase entails pinpointing the specific nodes 203

and edges to interact with within the GQL 204

schema, ensuring the query fetches the in- 205

tended data. 206

To address these steps efficiently, we introduce 207

a smaller foundation model as a ranker. Draw- 208

ing on the benefits of code pre-training, which is 209

considered by some studies to enhance a model’s 210

3

Node Embedding Edge Embedding

Type VertexID TagID Properties

Type PartID VertexID EdgeType PropertiesRank

Node

Relationship

‘Fred Weasley’: {‘name’: ‘Fred Weasley’,
‘birth’: ‘1978.4.1, England’,…,‘eye_color’: ‘brown’, …}

Query: What is Weasley's eye color?

Graph DataBase

Smaller Ranker

Smaller Rewriter

Larger Refiner

Nodes
class Character():

def __init__(self,vid,name,born,…):
self.vid = vid
self.name = name
self.born = born
…

class College():
def __init__(self,vid,name):

self.vid=vid
self.name=name

…
Edges
class Belong_to():

def __init__(self,scr_id,tag_id):
self.scr_id = scr_id
self.tag_id = tag_id

…

Code Structure Schema Code Structure Skeleton

the CRUD function
class CRUD():

def QUERY(self):
"""
FETCH PROP ON {… | *} <vid> [, vid ...] YIELD <return_list> [AS <alias>];
"""
Example: …

the clause function
class Clause():

def LIMIT(self):
"""
YIELD <var> [| LIMIT …]
"""
Example: …

Nodes
class Character():

def __init__(self,vid,name,born,…):
self.vid = vid
self.name = name
self.born = born
…

Edges

the CRUD function
class CRUD():

def QUERY(self):
"""
FETCH PROP ON {… | *} <vid> [, vid ...] YIELD <return_list> [AS <alias>];
"""
Example: …

the clause function

FETCH PROP ON character "Fred Weasley"
YIELD character.eye;

Final GQL

Query: What is Weasley's eye color?

‘Fred Weasley’: {‘name’: ‘Fred Weasley’,
‘birth’: ‘1978.4.1,

England’,…,‘eye_color’: ‘brown’, …}

Double-Level retrieval

Aligning
Information:

New Query: What is Fred Weasley's eye color?

Figure 3: An Overview of R3-NL2GQL: Employing a smaller white-box model as a ranker, it selects required
CRUD functions, clauses, and schema from the input. Another smaller white-box model serves as a rewriter,
aligning the query with the intrinsic database k-v storage to mitigate the hallucinations. Lastly, a larger model is
harnessed for the purpose of generating GQL, capitalizing on its ability in generalization and generation.

reasoning capabilities(Yang et al., 2024), we utilize211

code-structured schemas and skeletons to assist the212

ranker in its task:213

SCHsub, SKECRUD&clause = ranker(SCH, SKE, n) (2)214

Here, "SCH" and "SKE" represent the code-215

structured schema and skeleton, while "n" is the216

natural language query. The output includes a217

schema subset (SCHsub) and the necessary key-218

words and clauses (SKECRUD&clause), both in code219

structure, ensuring alignment with the query’s in-220

tent.221

A specialized dataset, detailed in Section 4,222

was developed for training and evaluating the223

ranker, ensuring its effectiveness in facilitating the224

NL2GQL conversion process.225

3.2 Smaller Foundation Model as Rewriter226

To guarantee the accurate linkage of corresponding227

nodes, edges, and schema within the graph data by228

the generated GQL, we employ a smaller model to229

serve as the rewriter for precise alignment.230

3.2.1 Aligning Data in Graph Databases231

Figure 4 illustrates the challenge of aligning user232

queries with the actual graph data, such as mis-233

matches between queried entities and their repre-234

sentations in the database. For example, a query235

about ‘Harry Potter’s mother’ may not directly cor- 236

respond to the existing graph structure, necessitat- 237

ing adjustments to fit the schema. At the same time, 238

the model may also create node or edge types that 239

are not included in the schema, and this hallucina- 240

tion phenomenon will lead to errors. 241

Query1:
Who is Harry Potter's mother?

The correct GQL1:
MATCH (v1:character{name:’Harry Potter’})-[:kindred{rel_type:’mother’}]->[v2]
RETURN v2

The model’s GQL1:
MATCH (v1:character{name:’Harry Potter’})-[:mother]->[v2]
RETUEN v2

Query2:
What is the birth date of Potter?

The correct GQL2:
MATCH (v1:character{name:’Harry Potter’})
RETURN v1.character.born

The model’s GQL2:
MATCH (v1:character{name:’Potter’})
RETURN v1.character.born

Figure 4: The challenge of aligning user queries with
the actual graph data: the error has been marked in red.

3.2.2 Graph Database Storage Principles 242

Graph databases, such as Neo4j, NebulaGraph, and 243

JanusGraph, store data as nodes and edges using 244

distinct storage engines. These systems organize 245

graph data into array-like files, translating them 246

into a “node: attributes, edge: attributes” format, as 247

shown in Appendix C. This storage method aligns 248

4

Pair (nl, query) Daily dialogue format data

Select Graph SchemaAdd Chain of Thought

#the request function : ['OTHER()’]
#the request clause : []
#the request class : []

Fine-tune Data

Knowledge
Graph

GQL documents / cases
Extract GQL

Generate
questions

Manual data
review

{"prompt": "Show all
the space.",
"content": "SHOW
SPACES”}

{"prompt": "Can you
show us all the space?",
"content": "SHOW
SPACES"}

{"prompt": "Can you show us all the space?",
"content": "SHOW SPACES",
"reason": "#the request function : ['OTHER()’]\n
#the request clause : []\n
#the request class : []\n"}

Code Structure Schema

Code Structure Skeleton

LLM
generate
questions

LLM

Ernie-Bot

GPT

LLM

GLM-130B

LLM Manually
generate
GQLs

Figure 5: Data construction pipeline

with our retrieval methods, minimizing continuous249

query requests and reducing memory usage during250

the alignment process.251

3.2.3 Data Retrieval252

The goal of data retrieval is to accurately match253

the user’s query with the corresponding data in the254

DB, addressing alignment issues. This involves a255

two-level retrieval and alignment process:256

Character-Level Alignment: Utilizing Leven-257

shtein Distance(Yujian and Bo, 2007) (Minimum258

Edit Distance) to calculate the similarity between259

the query and database entities, defined as Equa-260

tion 3.261

U1 =
min[len(Q), len(I)]
Levenshtein(Q, I)

(3)262

where "Q" is the user’s input NL query, and "I"263

represents the data within the graph.264

Semantic Vector-Based Alignment: Embed-265

ding both the user query and graph data in a dense266

vector space to facilitate deeper semantic matching,267

defined as Equation 4.268

U2 =
Emb(Q) · Emb(I)
∥Emb(Q)∥∥Emb(I)∥

(4)269

This step focuses on rectifying discrepancies be-270

tween the query and the actual graph data, ensuring271

the query’s alignment with the database’s structure.272

3.3 Larger Foundation Model as Refiner273

Positioned as the culminating element in our274

methodology, the larger model integrates inputs275

from the preceding smaller models, enhancing276

GQLs generation. It consolidates code-structured277

schemas and skeletons identified by the ranker, 278

along with the rewriter’s adjusted queries and per- 279

tinent retrieval outcomes. This amalgamation, en- 280

riched by the larger model’s advanced Zero-Shot 281

capabilities, facilitates the creation of refined GQL 282

queries. This synergy between the models ampli- 283

fies the system’s ability to interpret and respond to 284

complex queries with heightened accuracy. 285

4 Data Design 286

In contrast to the numerous open-source datasets 287

for NL2SQL tasks, such as Spider and KaggleD- 288

BQA (Lee et al., 2021), GQL is deficient in large- 289

scale, diverse-schema datasets that meet real-world 290

industrial requirements. Most existing datasets pre- 291

dominantly focus on Cypher, making it challenging 292

to create a dataset for GQLs. 293

To address this gap, we developed a multi- 294

schema dataset for NL2GQL. Leveraging Foun- 295

dation Models’ proficiency in generating Cypher, 296

we choose nGQL for our research to evaluate our 297

approach. This section outlines our methodology 298

for defining GQL generation tasks and synthetic 299

data generation, as shown in Figure 5. 300

4.1 Pair Design 301

In constructing the dataset, we avoided directly 302

extracting NL-GQL pairs from GQL documents 303

due to their inability to capture complex human- 304

database interactions. Instead, we used two meth- 305

ods. 1) We manually crafted sample pairs, prior- 306

itizing code interpretability over generation, and 307

employed a GQL2NL strategy, using Foundation 308

Models to generate multiple natural language inter- 309

5

pretations for each GQL query, followed by man-310

ual refinement to closely mimic real-world queries.311

2) To include diverse graph schemas, we adapted312

open-source graph datasets, using their schema313

and entity information to generate KBQA-style314

questions with Foundation Models, and then metic-315

ulously annotated the GQLs manually to create316

accurate pairs. These methods resulted in a high-317

fidelity dataset with numerous NL-GQL pairs, as318

shown in Equation 5.319

D = Pair(NLi, GQLi). (5)320

4.2 Data Refinement321

The initial dataset may contain inaccuracies and322

lack linguistic variety, necessitating a phase of data323

filtering and restructuring. Significant human and324

computational efforts correct any NL or GQL dis-325

crepancies. To enhance naturalness and diversity,326

we expanded and refined the data. For example,327

"Find node a" was rephrased to "Hello, I want to328

find node a, could you assist me by returning its329

information?" This approach, applied across lan-330

guages, resulted in a polished and versatile founda-331

tional dataset.332

4.3 Incorporating Schema, Skeleton, and333

Reasoning334

To train the ranker model, we supplemented the335

training dataset with relevant data. We propose336

a refined tripartite reasoning framework for GQL337

formulation, which includes: 1) selecting suitable338

CRUD operations based on user-input natural lan-339

guage queries, 2) choosing appropriate conditional340

clauses like LIMIT and WHERE to meet result con-341

straints, and 3) identifying specific node or edge342

types from the schema for precise GQL construc-343

tion. This approach results in the final training344

dataset, as shown in Equation 6, with ’SCH’ for345

’SCHEMA,’ ’SKE’ for ’SKELETON,’ and ’REA’346

for ’REASONING’.347

Dtrain = {NLi, GQLi, SCHi, SKEi, REAi}. (6)348

4.4 Data Setting349

Through a structured data engineering approach,350

we constructed a diverse dataset encompassing351

nine different sectors such as finance, healthcare,352

sports, and literature, selecting samples from var-353

ious schemas to enhance the model’s generaliza-354

tion capabilities. In each category, we employed355

the K-Center Greedy (Kleindessner et al., 2019) 356

method to identify the most diverse samples. This 357

approach maintained the original schema distribu- 358

tion, ultimately generating a bilingual dataset of 359

5000 samples, which was split into training and 360

testing sets at a 4:1 ratio. The test set included 361

schema types absent from the training set to evalu- 362

ate the model’s generalization capabilities. 363

5 Experiment 364

We introduced a multi-tiered evaluation system for 365

NL2GQL tasks, covering aspects from syntax to 366

semantics, detail in Appendix D. Utilizing the 367

dataset, we test the performance of our framework 368

against GPT family counterparts. 369

5.1 Settings 370

In the absence of established NL2GQL models, we 371

benchmarked against three prominent Foundation 372

Models: text-davinci-003, gpt-3.5-turbo-0613, and 373

GPT-4. These models, extensively trained on di- 374

verse textual and code data, served as our baseline 375

using a Vanilla Prompt of natural language-GQL 376

pairs with serialized text schemas. Experiments 377

were conducted in Zero-Shot, One-Shot, and Few- 378

Shot settings, with the latter two involving random 379

selection of examples from training data. 380

We also evaluated four smaller Foundation Mod- 381

els as ranker and rewriter: LLaMA3-7B(Touvron 382

et al., 2023), InternLM (Team, 2023), ChatGLM2 383

(Zeng et al., 2022), Flan-T5 (Chung et al., 2024), 384

and BLOOM (Le Scao et al., 2023), each signifi- 385

cantly smaller than GPT family models. To address 386

sampling variability, experiments were repeated 387

thrice for each model, and results were averaged. 388

For the larger Foundation Models, we used Ope- 389

nAI’s API with specific settings (temperature 0.2, 390

top_p 0.7) to generate nGQLs. The BGE model 391

facilitated embedding during retrieval, with experi- 392

ments conducted on an NVIDIA A800 GPU using 393

Pytorch 2.0 and Deepspeed. The ranker model 394

was fine-tuned using LoRA (lora_rank of 8) and 395

optimized with the AdamW optimizer. 396

5.2 Main Results 397

Table 2 showcases the comparative performance 398

between our R3-NL2GQL framework and leading 399

GPT series models across Zero-Shot, One-Shot, 400

and Few-Shot scenarios. Our results indicate that 401

our proposed approach with Zero-Shot excels in 402

the Vanilla Few-Shot setting, underscoring that its 403

6

Table 2: Comparison of the four metrics (%) among R3-NL2GQL and the GPT family models. The bold numbers
denote the best results and the underlined ones are the second-best performance.

Model Syntax Comprehension Execution Intra Execution
Accuracy Accuracy Accuracy Accuracy

Zero-Shot
Vanilla Prompt (text-davinci-003) 8.59 88.17 5.44 63.28
Vanilla Prompt (GPT-3.5-turbo-0613) 6.42 88.35 4.39 68.36
Vanilla Prompt (GPT-4) 13.77 89.72 9.83 71.83

One-Shot
Vanilla Prompt (text-davinci-003) 18.67 89.53 12.45 66.71
Vanilla Prompt (GPT-3.5-turbo-0613) 20.45 89.15 14.45 70.65
Vanilla Prompt (GPT-4) 25.33 90.32 19.39 76.53

Few-Shot
Vanilla Prompt (text-davinci-003) 41.16 90.01 29.79 72.37
Vanilla Prompt (GPT-3.5-turbo-0613) 28.70 90.67 21.56 75.12
Vanilla Prompt (GPT-4) 48.23 91.13 42.08 87.25

Our
R3-NL2GQL (GPT-3.5-turbo-0613) 36.82 90.15 30.53 82.92
R3-NL2GQL (GPT-4) 57.04 91.57 51.09 89.56

performance is not solely reliant on the inherent404

capabilities of the GPT series models but rather405

on the reasoning and enhancements integrated into406

this method. Further examination of the CA metric407

and outputs from the validation dataset indicates408

that models with larger parameters demonstrate409

better understanding and adaptability, particularly410

in handling intricate schema environments. By411

harnessing the capabilities of larger models and412

integrating insights from smaller models, our ap-413

proach enhances entity linking and generalization,414

leading to improved performance.415

5.3 Ablation experiment416

We conducted ablation studies to evaluate the con-417

tributions of various components within the R3-418

NL2GQL framework, focusing on the impact of419

different inputs on the large model’s final out-420

put. These findings, detailed in Figure 7, explored421

the role of code-structured skeletons as syntax-422

constrained context prompts, effectively transition-423

ing the Few-Shot methodology to a Zero-Shot424

paradigm. For a comprehensive analysis, we also425

included the second-best Few-Shot performance426

with a Vanilla Prompt (GPT-4) from Table 2. Our427

proposed Code Prompt showed improvements over428

the Vanilla Prompt’s Few-Shot format across all429

four metrics, with a 6% increase in performance430

on SA and EA.431

The results underscored the significant enhance-432

Figure 6: Ablation experiments on smaller models such
as LLaMA3-7B, InternLM, ChatGLM2, Flan-T5, and
BLOOM.

ment brought about by incorporating a code- 433

structured schema and skeleton prompt across all 434

models. Replacing the Few-Shot approach with a 435

code-structured skeleton not only refined grammat- 436

ical accuracy but also enriched the models with a 437

broader spectrum of GQL keywords, diversifying 438

the models’ output styles and altering the GQL 439

generation style closer to the standard GQL for- 440

mat. Simultaneously, to validate the capabilities 441

of smaller models, we conducted Few-Shot and 442

fine-tuning experiments on these models, as shown 443

in Figure 6. The results revealed extremely low 444

SA for these methods. Even after fine-tuning, the 445

SA was only about 10%, and the IEA metric was 446

below 70%. This indicates the low generalization 447

7

Figure 7: The ablation experiment of GPT-4 and GPT3.5, focus on designing the ablation of each key component.

and GQL syntax learning abilities of these smaller448

models, affirming the necessity of collaboration449

between large and small models.Ultimately, the450

synergistic use of both larger and smaller mod-451

els within our framework proved most effective,452

adeptly synthesizing crucial information and reduc-453

ing hallucinations to deliver superior results.454

6 Discussions455

6.1 Error Analysis456

Based on Table 2 , the EA indicator for R3-457

NL2GQL is 51.09%, while the IEA indicators for458

almost all methods have reached levels above 70%,459

with R3-NL2GQL nearly reaching 90%. This indi-460

cates that the vast majority of errors are caused by461

syntax errors in the generated GQL. We categorize462

the error types into three major categories and six463

minor categories, with specific details and exam-464

ples provided in Appendix E. Figure 8 presents a465

statistical analysis of the error information, show-466

ing that the majority of errors are caused by Larger467

Refiner, and in-context learning style struggles to468

incorporate new GQL syntax into the Foundation469

Model. Additionally, 13.87% of errors are caused470

by misunderstandings of the query. Among the471

errors in the Ranker, schema selection errors are472

more likely to affect the final outcome, while the473

Rewriter demonstrates better performance.474

6.2 Optimal Schema and Skeleton Format for475

GQL Generation476

The format in which language types, such as code477

or natural language, are presented plays a pivotal478

role in a model’s ability to grasp the NL2GQL479

task and comprehend the underlying graph schema.480

This, in turn, affects its capability to apply these in-481

sights to new, unseen scenarios or schemas. Unlike482

the ambiguous nature of natural language, code483

Figure 8: Error Statistical Analysis.

language, with its structured syntax and clear ex- 484

ecution paradigms, offers a more precise medium 485

for representing instructions and programming con- 486

structs. This structured approach, especially in 487

object-oriented languages with features like class 488

inheritance and method definitions, aligns well 489

with graph schema representation, enhancing a 490

model’s reasoning capacity for complex tasks, as 491

suggested by recent studies (Bi et al., 2023). 492

7 Conclusion 493

Our study presents a novel model coordination 494

framework designed for the NL2GQL task, lever- 495

aging the complementary strengths of larger and 496

smaller Foundation Models. By delineating clear 497

roles for each model, we markedly improve the 498

NL2GQL conversion. Additionally, the develop- 499

ment of a GQL-specific bilingual dataset under- 500

scores the superior performance of our framework. 501

These results pave the way for future advancements 502

in the field of NL2GQL, offering a robust founda- 503

tion for further exploration and development. 504

8

Limitation and Ethics Statement505

Our study centers on the nGQL query syntax.506

While analogous languages exist, we have not ex-507

tended our experimentation to include them. Fur-508

thermore, the absence of prior assessment stan-509

dards for NL2GQL tasks means the evaluation cri-510

teria we have devised might not be exhaustive.511

The dataset used in the paper does not contain512

any private information. All annotators have re-513

ceived enough labor fees corresponding to their514

amount of annotated instances.515

References516

Jinheon Baek, Alham Fikri Aji, Jens Lehmann, and517
Sung Ju Hwang. 2023. Direct fact retrieval from518
knowledge graphs without entity linking. arXiv519
preprint arXiv:2305.12416.520

Zhen Bi, Ningyu Zhang, Yinuo Jiang, Shumin Deng,521
Guozhou Zheng, and Huajun Chen. 2023. When522
do program-of-thoughts work for reasoning? arXiv523
preprint arXiv:2308.15452.524

Hyung Won Chung, Le Hou, Shayne Longpre, Barret525
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi526
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.527
2024. Scaling instruction-finetuned language models.528
Journal of Machine Learning Research, 25(70):1–53.529

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,530
Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang Lou.531
2023. C3: Zero-shot text-to-sql with chatgpt.532

Aibo Guo, Xinyi Li, Guanchen Xiao, Zhen Tan, and Xi-533
ang Zhao. 2022. Spcql: A semantic parsing dataset534
for converting natural language into cypher. In Pro-535
ceedings of the 31st ACM International Conference536
on Information & Knowledge Management, pages537
3973–3977.538

Matthäus Kleindessner, Pranjal Awasthi, and Jamie539
Morgenstern. 2019. Fair k-center clustering for data540
summarization. In International Conference on Ma-541
chine Learning, pages 3448–3457. PMLR.542

Teven Le Scao, Angela Fan, Christopher Akiki, El-543
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman544
Castagné, Alexandra Sasha Luccioni, François Yvon,545
Matthias Gallé, et al. 2023. Bloom: A 176b-546
parameter open-access multilingual language model.547

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew548
Richardson. 2021. Kaggledbqa: Realistic eval-549
uation of text-to-sql parsers. arXiv preprint550
arXiv:2106.11455.551

Pingchuan Ma and Shuai Wang. 2021. Mt-teql: eval-552
uating and augmenting neural nlidb on real-world553
linguistic and schema variations. Proceedings of the554
VLDB Endowment, 15(3):569–582.555

Mohammadreza Pourreza and Davood Rafiei. 2023. 556
Din-sql: Decomposed in-context learning of text- 557
to-sql with self-correction. 558

Rui Qiu, Yi Ming, Yisen Hong, Haoyu Li, and Tong 559
Yang. 2023. Wind-bell index: Towards ultra-fast 560
edge query for graph databases. In 2023 IEEE 561
39th International Conference on Data Engineering 562
(ICDE), pages 2090–2098. IEEE. 563

Chang-You Tai, Ziru Chen, Tianshu Zhang, Xiang 564
Deng, and Huan Sun. 2023. Exploring chain-of- 565
thought style prompting for text-to-sql. 566

InternLM Team. 2023. Internlm: A multilingual lan- 567
guage model with progressively enhanced capabili- 568
ties. 569

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 570
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 571
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 572
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 573
Grave, and Guillaume Lample. 2023. Llama: Open 574
and efficient foundation language models. 575

Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R. 576
Fung, Sha Li, Zixuan Huang, Xu Cao, Xingyao 577
Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai. 578
2024. If llm is the wizard, then code is the wand: A 579
survey on how code empowers large language mod- 580
els to serve as intelligent agents. 581

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 582
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 583
ing Yao, Shanelle Roman, et al. 2018. Spider: A 584
large-scale human-labeled dataset for complex and 585
cross-domain semantic parsing and text-to-sql task. 586
arXiv preprint arXiv:1809.08887. 587

Wenhao Yu, Chenguang Zhu, Lianhui Qin, Zhihan 588
Zhang, Tong Zhao, and Meng Jiang. 2022. Diversi- 589
fying content generation for commonsense reason- 590
ing with mixture of knowledge graph experts. In 591
Proceedings of the 2nd Workshop on Deep Learn- 592
ing on Graphs for Natural Language Processing 593
(DLG4NLP 2022), pages 1–11, Seattle, Washington. 594
Association for Computational Linguistics. 595

Li Yujian and Liu Bo. 2007. A normalized levenshtein 596
distance metric. IEEE transactions on pattern analy- 597
sis and machine intelligence, 29(6):1091–1095. 598

John M Zelle and Raymond J Mooney. 1996. Learn- 599
ing to parse database queries using inductive logic 600
programming. In Proceedings of the national confer- 601
ence on artificial intelligence, pages 1050–1055. 602

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, 603
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, 604
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: 605
An open bilingual pre-trained model. arXiv preprint 606
arXiv:2210.02414. 607

Ningyu Zhang, Lei Li, Xiang Chen, Xiaozhuan Liang, 608
Shumin Deng, and Huajun Chen. 2023. Multimodal 609
analogical reasoning over knowledge graphs. 610

9

http://arxiv.org/abs/2307.07306
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2304.11015
http://arxiv.org/abs/2305.14215
http://arxiv.org/abs/2305.14215
http://arxiv.org/abs/2305.14215
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2401.00812
http://arxiv.org/abs/2401.00812
http://arxiv.org/abs/2401.00812
http://arxiv.org/abs/2401.00812
http://arxiv.org/abs/2401.00812
https://doi.org/10.18653/v1/2022.dlg4nlp-1.1
https://doi.org/10.18653/v1/2022.dlg4nlp-1.1
https://doi.org/10.18653/v1/2022.dlg4nlp-1.1
https://doi.org/10.18653/v1/2022.dlg4nlp-1.1
https://doi.org/10.18653/v1/2022.dlg4nlp-1.1
http://arxiv.org/abs/2210.00312
http://arxiv.org/abs/2210.00312
http://arxiv.org/abs/2210.00312

A Difference Between SQL and GQL611

Structured Query Language (SQL) and Graph Query Language (GQL) are fundamentally different in their612

approach to data querying, SQL being tailored for relational databases with its tabular data structure and613

GQL designed for graph databases which utilize nodes, edges, and properties. SQL provides a declarative614

approach for users to specify desired data, allowing for complex multi-table join operations and fine-615

grained control over data retrieval. In contrast, GQL is intuitive for expressing complex relationships and616

patterns, enabling users to specify the depth and breadth of queries while retrieving granular data, making617

it particularly suitable for applications with highly interconnected data.618

B Details of GQL Skeleton619

GQL incorporates a set of essential keywords within its skeleton, which can be categorized into CRUD620

operations and clauses. The CRUD operations, such as INSERT, MATCH, UPDATE, and DELETE,621

facilitate the creation, retrieval, modification, and deletion of data within a graph database. These622

operations enable users to interact with the database by specifying actions to be performed on the nodes623

and edges. On the other hand, the clauses in GQL, such as LIMIT, GROUP BY, and WHERE, provide a624

means to refine and constrain the query results. These clauses allow users to specify conditions, control625

the number of results returned, and group the data based on certain attributes. The combination of CRUD626

operations and clauses in GQL empowers users to effectively manipulate and retrieve data from graph627

databases, catering to a wide range of querying needs.628

Table 3: Some CRUD Keywords in GQL Skeleton

Keyword Keyword Meaning Keyword Example

CREATE
SPACE

Create a new graph database
space

CREATE SPACE my_graph(space_id: int, ...);

CREATE
TAG

Create a vertex label, defining
vertex properties

CREATE TAG person(name: string, age: int);

CREATE
EDGE

Create an edge type, defining
edge properties

CREATE EDGE knows(since: int);

INSERT Insert new vertices or edges into
the database

INSERT VERTEX person(name, age) VALUES "al-
ice":("Alice", 30);

GO Traverse the database based on
specified conditions

GO FROM "alice" OVER knows YIELD $$.per-
son.name;

FETCH Retrieve properties of vertices
or edges

FETCH PROP ON person "alice" YIELD per-
son.name, person.age;

LOOKUP Index-based query operation LOOKUP ON person WHERE person.age > 25
YIELD person.name;

MATCH Match graph patterns, used for
complex queries

MATCH (p:person)-[:knows]->(f:person) RETURN
p.person.name, f.person.name;

UPDATE Update properties of vertices or
edges in the database

UPDATE VERTEX "alice" SET person.age = 31;

UPSERT Insert or update operation; in-
sert if it does not exist

UPSERT VERTEX "bob" SET person.name = "Bob",
person.age = 28;

DELETE Delete vertices or edges from
the database

DELETE VERTEX "bob";

10

Table 3: Some CRUD Keywords in GQL Skeleton

Keyword Keyword Meaning Keyword Example

GET
SUB-
GRAPH

Obtain a subgraph of the graph GET SUBGRAPH 2 STEPS FROM "alice" YIELD
VERTICES AS friends, EDGES AS relationships;

FIND
PATH

Find a path between two ver-
tices

FIND SHORTEST PATH FROM "alice" TO "bob"
OVER * YIELD path as p;

Table 4: Some Clauses Keywords in GQL Skeleton

Keyword Keyword Meaning Keyword Example

GROUP
BY

Group results by a variable and
apply aggregation functions

GO FROM "player100" OVER follow BIDIRECT
YIELD $$.player.name as Name | GROUP BY $-
.Name YIELD $-.Name as Player, count(*) AS
Name_Count

LIMIT Limit the number of rows re-
turned by a query

GO FROM "player100" OVER follow REVERSELY
YIELD $$.player.name AS Friend, $$.player.age AS
Age | ORDER BY $-.Age, $-.Friend | LIMIT 1, 3

SKIP Skip a number of rows before
starting to return rows from a
query

MATCH (v:playername:"Tim Duncan") –> (v2) RE-
TURN v2.player.name AS Name, v2.player.age AS
Age ORDER BY Age DESC SKIP 1

SAMPLE Sample a specified list of steps
in a traversal

GO 3 STEPS FROM "player100" OVER * YIELD
properties($$).name AS NAME, properties($$).age
AS Age SAMPLE [1,2,3]

ORDER
BY

Sort the results of a query by
one or more expressions

FETCH PROP ON player "player100", "player101",
"player102", "player103" YIELD player.age AS age,
player.name AS name | ORDER BY $-.age ASC,
$-.name DESC

WHERE Filter the results of a query
based on specified conditions

MATCH (v:player) WHERE v.player.name
== "Tim Duncan" XOR (v.player.age < 30
AND v.player.name == "Yao Ming") OR NOT
(v.player.name == "Yao Ming" OR v.player.name
== "Tim Duncan") RETURN v.player.name,
v.player.age

WITH Use the results of a match ex-
pression for further processing

MATCH p=(v:playername:"Tim Duncan")–() WITH
nodes(p) AS n UNWIND n AS n1 RETURN DIS-
TINCT n1

UNWIND Expand a list and return each
element as a separate row

UNWIND [1,2,3] AS n RETURN n

11

C Core Storage of Graph Databases629

Graph databases, such as Neo4j, NebulaGraph, and JanusGraph, utilize nodes and edges to store data,630

each employing their own unique storage mechanisms. They organize graph data within files, often in the631

form of arrays, which can be readily converted to a “{node: attributes}, {edge: attributes}” structure,632

as illustrated in Figure 9. This array-based storage approach is particularly well-suited to the retrieval633

techniques employed in our alignment method, preventing the need for repeated queries to the graph634

database during alignment and consequently reducing memory consumption.

NebulaGraph

Type PartID VertexID TagID SerializedValue

Type PartID
Vertex

ID
Edge
Type

Serialized
Value

Vertex
ID

Rank
Place
Holder

Node

Edge

Neo4j

inUse nextRelld nextPropld

inUse
first
Node

second
Node

relationship
Type

first
PrevRelld

Node

Relationship
first

NextRelld
second

PrevRelld

JanusGraph

label id +
direction

sort key
adjacent
vertex id

edge id
signature

key

key id
property

id
property

value

Edge

Property

labels Extra

second
NextRelld

nextPropld firstInChainMarker

Property inUse type keyIndexId propBlock nextPropId

Vertex

other
properties

vertex id

Figure 9: The storage formats of the three graph databases

635

D Evaluation Metrics Definition636

Given the complexity of graph databases, where multiple natural languages can describe a single GQL and637

vice versa, traditional NL2SQL evaluation metrics like Logical and Execution Accuracy are insufficient.638

GQL’s intricate structure, capable of yielding diverse query results, and the variability in functional639

keywords for identical natural language queries necessitate a tailored evaluation approach. We address640

this by proposing three key questions, each leading to specific evaluation metrics:641

• Q1: Evaluation of the syntax of generated GQLs.642

• Q2: Assessment of the model’s semantic understanding.643

• Q3: Determination of query information accuracy.644

For Q1, we introduce the Syntax Accuracy (SA) metric, assessing if the generated GQL can be645

executed without syntax errors by the graph database:646

SA =
Number of error-free GQLs
Total number of test dataset

(7)647

To tackle Q2, the Comprehension Accuracy (CA) metric measures the similarity between model-648

generated and gold standard GQLs, employing the text-embedding-ada-002 model for code similarity649

comparisons via cosine similarity.650

12

Algorithm 1: Combined Similarity
Input: gold_result, gql_result, alpha, beta
Output: Combined similarity combinedSim

1 (tokens1, tokens2)← tokenize(gold_result, gql_result); jaccardSim← |tokens1∩tokens2|
|tokens1| ;

2 tfidfV ectors← computeTFIDF ([sentence1, sentence2]);
3 bm25Sim← computeBM25(tfidfV ectors);
4 jaccardSim← jaccardSim/1.0;
5 bm25Sim← (bm25Sim+ 1)/2.0;
6 bert_score← cal_bert_score(gold_result, gql_result);
7 combinedSim←

beta ∗ [(alpha ∗ jaccardSim) + ((1− alpha) ∗ bm25Sim)] + (1− beta) ∗ bert_score;
8 return combinedSim;

For Q3, we propose Execution Accuracy (EA) and Intra Execution Accuracy (IEA) metrics. EA 651

evaluates global execution accuracy, while IEA assesses accuracy among syntactically correct GQLs. 652

Considering GQL’s diverse result formats, we adopt an enhanced Jaccard algorithm and BM25 for content 653

completeness, and BertScore for semantic similarity, averaging the scores for a comprehensive evaluation. 654

IEA, detailed in algorithm 1, focuses on the accuracy of query results from correctly generated GQLs. 655

E Examples of Generation ERROR 656

We have categorized the errors into three major categories and six minor categories. The major categories 657

are: Ranker Error, Rewriter Error, and Refiner Error. These are further subdivided into Schema Selection 658

Error, Skeleton Selection Error, No Related Information, Syntax Error, Query Misunderstanding, and 659

Other. Specific details can be found in Table 5, and an analysis of the error statistics is provided in the 660

main text of the paper. 661

13

Table 5: Error Types and Examples

Error Type Detail Type Query Gold GQL Result GQL

Ranker Error Schema Selection Error Who is Theseus Scamander’s fi-
ancee?

MATCH (n: character {name:
’Theseus Scamander’}) -
[e: kindred rel_type: ’fiancee’]

- (n1) return n1

MATCH (v: character {name:
"Theseus Scamander"}) –
(v2: character) WHERE
v2.marital=="fiancee" RE-

TURN v2.name;

Skeleton Selection Error Find the first entity that Tim
Duncan likes

GO FROM "Tim Duncan"
OVER like LIMIT 1

FETCH PROP ON player "Tim
Duncan" -> var1 return var1

Rewriter Error No Related Information May I ask if you can help
me find all the entities that
Porzingis likes and give me
their IDs

GO FROM
"Kristaps Porzingis" OVER

like YIELD id($$) AS vid |
RETURN -.vid AS dst

GO FROM "Porzingis"
OVER like YIELD dst(edge)
AS id

Refiner Error Syntax Error May I ask if you can help me
find players who are 29.5 years
old or older? I need their ID
and age information

LOOKUP ON player WHERE
player.age >= 29.5 YIELD

id(vertex) as name, player.age
AS Age

LOOKUP ON player WHERE
age >= 29.5 YIELD id(vertex)

as ID, player.age as Age

Query Misunderstanding Which department should I go
to if I have hepatitis C virus in-
fection and glomerulonephritis?

GO FROM
"hepatitis C virus infection

and glomerulonephritis"
OVER cure_department
YIELD dst(edge)

MATCH (v1:disease{name:
"hepatitis C virus infection" })-

[:cure_department]-
>(v2:department),
(v3:disease {name:
"glomerulonephritis" })-

[:cure_department]-
>(v4:department) RETURN
v2.name, v4.name

Other Identify the entities that indi-
rectly like Kobe Bryant com-
munication, and then return the
names of these entities

GO 2 STEPS FROM
’Kobe Bryant’ OVER
like REVERSELY YIELD

$$.player.name

GO 2 STEPS FROM "Kobe
Bryant" OVER like YIELD
$$.player.name AS Name

14

	Introduction
	Task Formulation
	Code-Structured Graph Schema Description
	Code-Structured Skeleton for GQL
	NL2GQL Task

	R3-NL2GQL Framework
	Smaller Foundation Model as Ranker
	Smaller Foundation Model as Rewriter
	Aligning Data in Graph Databases
	Graph Database Storage Principles
	Data Retrieval

	Larger Foundation Model as Refiner

	Data Design
	Pair Design
	Data Refinement
	Incorporating Schema, Skeleton, and Reasoning
	Data Setting

	Experiment
	Settings
	Main Results
	Ablation experiment

	Discussions
	Error Analysis
	Optimal Schema and Skeleton Format for GQL Generation

	Conclusion
	Difference Between SQL and GQL
	Details of GQL Skeleton
	Core Storage of Graph Databases
	Evaluation Metrics Definition
	Examples of Generation ERROR

