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Abstract

Accurate subtype classification and outcome prediction in mesothelioma are essential for
guiding therapy and predicting patient outcomes. However, most computational pathology
models are trained exclusively on large tissue images from resection specimens, which limits
their relevance in real-world diagnostic settings where small biopsies are the primary tissue
source. Here, we assess the biopsy-level generalisability of a self-supervised encoder using a
large, multicentre French cohort. We identify 53 biopsy-specific histomorphological clusters,
quantify each patient’s proportional representation across these clusters, and use these
profiles as inputs to two downstream tasks: (i) survival prediction using a Cox proportional
hazards model and (ii) subtype classification (epithelioid vs. non-epithelioid) using logistic
regression. The survival model achieved a test C-index of 0.6 and robustly separated cohort
patients into high- and low-risk groups (p = 3.96 × 10−29). For subtype classification,
the logistic model reached an average AUC of 0.92. These results demonstrate that a
self-supervised encoder trained on resection tissue can be reliably transferred to biopsy
material despite significant domain shifts. The resulting biopsy-level morphological atlas
enables clinically meaningful survival stratification and subtype prediction, supporting the
translational integration of AI-driven decision tools in mesothelioma diagnostics.
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1. Introduction

Mesothelioma is a rare but aggressive cancer, most commonly associated with asbestos expo-
sure, and characterised by profound histological heterogeneity and poor prognosis (Wagner
et al., 1960; Molinari).

Accurate subtype classification, especially into epithelioid, non-epithelioid categories,
and reliable survival risk stratification are critical in guiding therapeutic decisions and pre-
dicting patient outcomes. However, conventional diagnosis based on histopathology remains
subjective and can suffer from high inter-observer variability, particularly in distinguishing
transitional morphological patterns (Travis et al., 2015; Salle et al., 2018; Scherpereel et al.,
2020).
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Recent advances in computational pathology have shown promise to address these chal-
lenges. For instance, deep-learning models such as MesoNet (Courtiol et al., 2019) have
been used to predict overall survival directly from whole-slide images, outperforming stan-
dard pathology practice while also uncovering region-level prognostic features rooted in
inflammation and stromal architecture. More recently, MesoGraph (Eastwood et al., 2023),
a graph neural network (GNN) framework, enabled cell-level scoring of sarcomatoid and
epithelioid phenotypes using a small subset of tissue microarrays (TMAs). The method
generates a continuous MesoScore that correlates with both subtype composition and pa-
tient survival. This work relied on core-level labels within a weakly supervised setup to
train the model.

Self-supervised learning has also become an important approach for reducing the high
inter-observer variability seen in mesothelioma diagnosis. In contrast to weakly supervised
methods that rely on slide/patient/core-level labels, self-supervised models use large unla-
beled datasets to learn stable and transferable features, lowering the need for detailed ex-
pert annotation. A recent work, Histomorphology Phenotype Learning (HPL) (Seyedshahi
et al., 2025), using a self-supervised learning (SSL) approach trained on resected mesothe-
lioma tissue, has produced a histomorphological atlas that captures recurrent phenotypes
across thousands of slides. This atlas has demonstrated clinically meaningful performance
for both prognostic stratification and subtype classification.

Additionally, diagnosis and prognostic assessment in mesothelioma rely mainly on small
tissue biopsies, however most computational pathology models are still trained on large
tissue samples. Larger resection specimens contain wide and mixed regions of tumour,
stroma, necrosis, and inflammation, whereas biopsies are much smaller, more uniform in
composition, and more prone to crush artefact, sampling limitations, and staining vari-
ability. These differences create a significant mismatch between the data used for model
development and the material used in routine diagnostic workflows, with direct implications
for model reliability and clinical applicability.

To address this gap, we evaluate a self-supervised model (Seyedshahi et al., 2025) that
was originally trained on UK surgical resection WSIs stained with hematoxylin and eosin
(H&E). We apply the trained encoder to a large, multicentre French biopsy cohort stained
with HPS (hematoxylin–phloxine–saffron) and HES (hematoxylin–eosin–saffron), thereby
introducing substantial differences in both tissue type and staining protocol. This setting
introduces two major domain shifts: (a) a change in tissue type and sampling depth (re-
section to biopsy) and (b) staining differences due to the presence of saffron-based collagen
highlighting and phloxine contrast. Additional variations in institution, country, and scan-
ning protocols further increase the clinical relevance of this evaluation.

The key open question is whether self-supervised encoders trained on large resections
can be reliably transferred to biopsy material while retaining diagnostic fidelity. Our aim
is to address this by evaluating how well the encoder preserves diagnostic and prognostic
signals when applied to real-world clinical biopsies. We then assess the utility of biopsy-
derived histomorphological clusters for patient-level survival prediction and for accurate
classification of epithelioid versus non-epithelioid disease subcategories.
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2. Methods

2.1. Datasets

For this study, we assembled a large multicentre cohort of HES- and HPS-stained biopsy
slides collected from pathology laboratories across several regions in France. All slides were
centrally reviewed at the Lyon diagnostic centre and digitised using Leica AT2 or Leica GT
scanners at 20× magnification. The final dataset includes 976 patients and 1,062 biopsy im-
ages. Of these patients, 77% were male (799) and 23% female (241). Ages ranged from 22 to
100 years, with a mean of 76.5 and a standard deviation of 8.7. Both age and mesothelioma
subtypes were significantly associated with survival (p < 0.05), with the cohort compris-
ing 657 epithelioid and 405 non-epithelioid cases. All images underwent extensive quality
control and preprocessing to ensure sufficient tissue content for downstream inference.

The feature encoder used in this work was trained with the Barlow Twins SSL framework
on the Leicester Archival Thoracic Tumour Investigation Cohort–Mesothelioma (LATTICe-
M), consisting of 512 patients and 3,446 resection WSIs (Seyedshahi et al., 2025). For bench-
marking, we additionally included the publicly available Cancer Genome Atlas (TCGA)-
mesothelioma cohort (Hmeljak et al., 2018) used previously in the HPL study, which, al-
though substantially smaller (75 patients, 84 images), provides another established external
validation set.

2.2. Model description

HPL mathematical formulation and validation setup

The HPL evaluation pipeline consists of three main stages: (i) tile-to-embedding extraction
using the Barlow Twins–pretrained encoder, (ii) graph-based Leiden clustering followed by
assignment of tiles to clusters, and (iii) construction of patient-level compositional represen-
tations with centred log-ratio (CLR) transformation for downstream predictive modelling.

Notation. Let S denote the set of WSIs in the biopsy cohort. For a WSI s ∈ S we extract
a set of non-overlapping tiles:

Ts = {ts,1, . . . , ts,ns},

where each tile t is a 224× 224 pixles patch at 5× (pixel size ≈ 1.8 µm).

Encoder and tile embeddings. Let fθ : I → RD be Barlow Twins encoder (Appendix
A) with D = 128. For each tile t, its embedding is z = fθ(t) ∈ RD, optionally ℓ2-normalised.
The encoder was trained on the LATTICe-M dataset, and the resulting pretrained weights
were directly used to embed all tiles in the biopsy cohort for inference and evaluation.

HPC discovery and assignation A set of histomorphological phenotype clusters (HPCs)
C = {hpc1, . . . , hpcc} was derived from the biopsy cohort by constructing a k-nearest-
neighbour graph on a 250,000-tile subsample of embeddings and applying Leiden com-

munity detection. Given embeddings {z(r)m }M=250,000
m=1 , pairwise distances are computed and

each node is connected to its k = 250 nearest neighbours, producing an adjacency matrix
W . The Leiden algorithm then identifies a partition P that maximises modularity with a
specific resolution γ (here we picked γ = 3.0). For the rest of the tiles in the cohort, its
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embedding z is assigned to the nearest cluster centroid µj using Euclidean distance:

C(t) = arg min
j∈{1,...,c}

∥z − µj∥2. (1)

This produces, for each WSI s, cluster counts ns,j = |{t ∈ Ts : C(t) = j}|. To ensure
a strictly inductive setting, Leiden clustering and the fitting of the cluster centroids were
performed exclusively on the feature vectors derived from the training set. The centroids
were then fixed and applied to transform the validation features.

Subtype classification (logistic regression). For epithelioid vs. non-epithelioid clas-
sification, we use the frequency of HPCs per WSI to form a slide-level compositional vector.
For each slide s, let x(s) = clr(a(s)) ∈ Rc, where a(s) is the HPC frequency vector and clr
denotes the centred log-ratio transform (Appendix B). A logistic regression model is then
fitted to predict the binary subtype label y(s) ∈ {0, 1}.

The predicted probability of the epithelioid subtype is:

Pr
(
y(s) = 1 | x(s)

)
= σ

(
β0 + β⊤x(s)

)
, (2)

where σ(u) = (1 + e−u)−1. The parameters (β0,β) are estimated by minimising the regu-
larised negative log-likelihood with an ℓ1 penalty weighted by λℓ1 .
We also benchmarked subtype classification using the CLAM (Clustering-constrained At-
tention Multiple Instance Learning) method (Lu et al., 2021). The method was applied
directly to tile embeddings (z), allowing us to assess performance without any clustering
step. Each WSI was treated as a bag of tile embeddings, and the model aggregated instance-
level features into a slide-level representation. A linear classifier was attached to the CLAM
output to predict epithelioid vs non-epithelioid subtype. CLAM was trained for 30 epochs
with early stopping, using Adam (lr = 10−3) and a binary loss function. The number of
attention clusters was fixed at 8. Slide-level subtype labels supervised the model, while
tile-level attention scores identified the most informative regions.

Survival modelling (Cox proportional hazards). For patient-level survival analysis,
we construct the CLR-transformed HPC composition vector x(i) for each patient. Let T (i)

denote the observed time and δ(i) the event indicator. A Cox proportional hazards model
is then fitted:

h
(
t | x(i)

)
= h0(t) exp

(
γ⊤x(i)

)
, (3)

where γ are the log-hazard coefficients. Parameters are estimated by maximising the partial
likelihood:

Lpartial(γ) =
∏

i:δ(i)=1

exp(γ⊤x(i))∑
j∈R(T (i)) exp(γ

⊤x(j))
, (4)

withR(t) the risk set at time t. Hazard ratios eγj with 95% confidence intervals are reported.
Patients are stratified into high and low-risk groups based on the cohort median risk, and
Kaplan–Meier plots illustrate the corresponding survival probabilities.
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Performance metrics and evaluation protocol. Validation used a patient-wise five-
fold cross-validation ensuring strict separation of patients between folds (no tile or WSI
from the same patient appears in both training and test splits). For classification we
report area under the ROC curve (AUC), accuracy, recall, precision, F1-score and the mean
± standard deviation across folds. For survival, we report Harrell’s concordance index
(c-index) with bootstrap 95% confidence intervals. Where applicable, we test coefficient
significance using Wald tests and perform permutation testing (shuffling labels) to evaluate
the null distribution of metrics.

Implementation details and reproducibility. Embeddings were computed using the
publicly available HPL Encoder (Claudio Quiros and Seyedshahi, 2025). We adopted the
ResNet backbone as the feature encoder. This encoder was originally trained and validated
on the LATTICe-M dataset and subsequently validated on the TCGA mesothelioma cohort
in a previous study (Seyedshahi et al., 2025). In the present work, we followed the same
validation strategy: we directly used the trained encoder weights to extract feature rep-
resentations from biopsy tiles, without performing any additional fine-tuning or retraining
(Figure 1a). Although, unlike the TCGA-Meso validation, which relied on a predefined
dictionary of histomorphological clusters derived from resection specimens, we re-clustered
the feature embeddings from scratch. This approach allowed us to identify biopsy-specific
phenotypic clusters that more accurately reflect the morphological landscape of the biopsy
domain. Final cluster count c is reported in the Results section. All experiments were run
with fixed random seeds and patient stratification to ensure reproducibility.

3. Results

Using the Leiden algorithm, we identified 53 distinct HPCs in the biopsy dataset. The
UMAP projection of tile embeddings is shown in Figure 1b, with points coloured by clus-
ter assignment. The feature encoder, trained exclusively on H&E images, proved robust to
colour variation, producing discriminative feature vectors that captured underlying morpho-
logical differences despite the presence of saffron staining. Representative tiles from different
clusters highlight clear morphological patterns. For instance, cluster 20 exhibits open, lung-
like architectures; clusters 44 and 29 display progressively denser cellular patterns; cluster
52 is enriched for adipose-like tissue; and cluster 47 corresponds to stroma-dominated re-
gions, with collagen highlighted by the characteristic orange saffron stain. The adjacent bar
plot shows the tile counts per cluster, illustrating the cluster distribution within a single
fold of the cross-validation.

Patient-level phenotypic profiles were constructed by computing the proportional repre-
sentation of each cluster within all patient’s slides, and a Cox proportional hazards model
was applied for survival prediction. The model achieved a C-index of 0.64 on the training
set and 0.60 on the test set of the biopsy cohort (Table 1). Performance across datasets
with varying exposure to the pretrained encoder is summarised in the benchmarking table.
The encoder, trained exclusively on LATTICe-M, explains why both the Cox model and
the epithelioid classifier perform best on this dataset. The TCGA-MESO cohort is substan-
tially smaller and was not used for encoder training; its tiles were mapped to LATTICe-M
clusters, resulting in lower classification performance. The final two rows correspond to
train and test splits of the biopsy dataset, using clusters derived entirely from biopsy tissue.
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Feature Encoding Leiden Clustering

a

b

Figure 1: (a) Overview of the analysis pipeline. From a dataset of 538,026 tiles, features
were extracted using a frozen, pretrained (frozen) encoder to obtain embeddings.
A random subsample of 250,000 embeddings was clustered using the Leiden al-
gorithm, yielding 53 clusters. (b) Each cluster exhibits a distinct and internally
consistent morphological pattern, illustrated by representative tile sets. The ac-
companying bar plot displays the number of tiles assigned to each cluster, high-
lighting the distribution of clusters within one fold of the cross-validation scheme.

6



Biopsy Validation

Despite this domain shift, the model generalises well, achieving a cross-validated AUC of
0.92 ± 0.03 with logistic regression and 0.90 ± 0.05 with the CLAM MIL approach on the
test set.

Table 1: Benchmarking the model’s performance across multiple datasets. The model
achieves performance on biopsy data comparable to its pretraining dataset
(LATTICe-M) while also identifying novel clusters. Reported metrics are averaged
across 5-fold cross-validation and are presented as mean ± standard deviation.

Dataset C-Index AUC (LR) AUC (CLAM)
LATTICe-M 0.65 ± 0.03 0.88 ± 0.04 0.87 ± 0.04
TCGA-Meso 0.65 ± 0.01 0.8 ± 0.03 0.74 ± 0.01
Biopsy (Train) 0.64 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
Biopsy (Test) 0.6 ± 0.03 0.92 ± 0.03 0.9 ± 0.05

Figure 2a presents the Kaplan–Meier survival curves for the full biopsy cohort (n =
1062), combining both training and test patients from fold 0 after cross-validation. Patients
were stratified into high- and low-risk groups based on their partial log-hazard values derived
from the Cox model. Using the median hazard value as the cutoff resulted in a highly
significant separation between the two groups (p = 3.96× 10−29).

Analysis of the Cox model coefficients highlights cluster 0 as the strongest positive
contributor to survival (p < 0.01). This cluster is enriched for adipose-associated inflamma-
tory regions, potentially reflecting a more active host inflammatory response. In contrast,
cluster 41 shows the most negative impact on survival, capturing aggressive, high-grade
sarcomatoid and desmoplastic morphological patterns, well-established lethal phenotypes
in mesothelioma.

The logistic regression classifier, based on slide-level cluster compositions, accurately dis-
tinguished epithelioid from non-epithelioid slides in the biopsy test set, with an AUC-ROC
of 0.92 ± 0.03, F1-score of 0.86 ± 0.06, recall of 0.82 ± 0.05, and precision of 0.92 ± 0.07.
Analysis of the logistic regression coefficients reveals a strong inverse relationship between
the predicted subtype and the morphological clusters. Cluster 12 serves as the strongest pos-
itive predictor for the non-epithelioid subtype, which is dominated by sarcomatoid-biphasic
morphologies. Conversely, Cluster 25 exhibits the most negative coefficient, corresponding
directly to the classic architecture of small infiltrative epithelioid cords and nests, as shown
in Figure 2b.

4. Discussion

In this study, we evaluated the HPL-Meso encoder originally trained on H&E surgical
resections from the University Hospitals of Leicester, UK (LATTICe-M) on a heterogeneous
cohort of HPS and HES biopsy slides collected across multiple histopathology centres in
France. Our goal was to derive a new dictionary of biopsy-specific histomorphological
phenotype clusters, and assess the utility of these features for downstream clinical tasks,
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Low-risk Non-epithelioid EpithelioidHigh-risk

ba

HPC:12 | p-value: 0.0 | CI: [0.367, 0.962] | Odds Ratio: 0.664 HPC:25 | p-value: 0.0 | CI: [-0.751, -0.254] | Odds Ratio: -0.503

Figure 2: Downstream WSI/Patient-level Tasks Performance. (a) Survival analysis results
across the full cohort. The Cox proportional hazards model identifies several
cluster-derived features with significant prognostic value (p < 0.01). Four repre-
sentative tiles are shown for both high-risk and low-risk features to illustrate their
underlying morphology. (b) Performance of the epithelioid vs. non-epithelioid
classifier. The model achieves robust 5-fold cross-validated ROC–AUC, F1, re-
call, and precision on both training and test sets. Representative tiles from the
clusters with the most negative and positive odds ratio and statistically significant
contributions (p < 0.05) are also displayed.
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including survival prediction and mesothelioma subtype classification, both of which have
direct diagnostic and therapeutic impact in this disease.

The decision to reuse a mesothelioma-trained encoder, rather than a foundation model,
was intentional. We aimed for a model specific enough to capture disease-relevant mor-
phology while remaining generalisable across institutions and staining protocols. Training
a bespoke model from scratch, particularly in clinical environments with limited computa-
tional resources, is rarely feasible, making pretrained encoders an essential component of
practical digital pathology pipelines.

The key focus of this evaluation is the presence of two concurrent domain shifts: the
application of a resection-trained model to biopsy material, and the transition from H&E to
HPS/HES staining; the latter introducing saffron to enhance collagen visualisation. Given
that saffron-based stains are routinely used in France and French-speaking Canada but re-
main uncommon elsewhere, this setting provides a rigorous context in which to examine
the model’s capacity to generalise across both tissue substrate and staining practice. Addi-
tionally, scanners and colour profiles differed substantially from those used to generate the
original resection dataset. Despite this, the self-supervised encoder demonstrated strong
colour invariance and successfully produced discriminative feature embeddings that organ-
ised biopsy tiles into well-separated phenotypic clusters. These clusters captured recognis-
able mesothelioma morphologies and were sufficiently stable to support downstream infer-
ence.

The clusters enabled meaningful survival modelling and delivered particularly strong
performance in subtype classification (Table 1). The superior performance in the subtyping
task (in compare to LATTICe-M) likely reflects the nature of biopsy tissue; biopsies con-
centrate on tumour-rich regions where possible, reducing morphological heterogeneity and
making cellular architecture more diagnostic. Survival prediction, however, proved more
difficult. Biopsies capture only a small portion of the tumour microenvironment, providing
a limited biological snapshot for each patient. This constrained context reduces the prog-
nostic information available to the model, which explains the lower performance compared
with survival prediction on the original resection dataset.

Overall, our results show that models trained on resection specimens can still achieve
clinically meaningful accuracy when applied to biopsy material. Notably, the biopsy vali-
dation also strengthens the evidence for the robustness of the HPL pipeline, even with a
smaller cohort than LATTICe-M.

A limitation of this study is the incomplete transparency around the provenance of the
external biopsy cohorts. Although we validated performance across two independent in-
stitutions and confirmed consistent results across the major scanner models used, we did
not have access to fine-grained, site-specific metadata such as detailed instrument main-
tenance logs, reagent batch information, or full IT infrastructure records. This limits our
ability to fully rule out subtle site-specific confounders and reflects an ongoing challenge in
multi-institutional translational research.

Another limitation is the subtype distribution within the external cohorts: our analysis
primarily focused on distinguishing epithelioid from non-epithelioid cases, and while the
model performed strongly, generalisation to the rarer biphasic and sarcomatoid subtypes
remains constrained by limited sample sizes. Larger, multi-centre collaborations will be
essential for rigorous evaluation of these rare entities. Furthermore, although we demon-
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strate that histology-derived phenotype features alone can support both diagnostic and
prognostic tasks, the current framework does not integrate multimodal data such as next-
generation sequencing or other genomic markers. Our survival analysis relied exclusively
on morphological signals, and incorporating genomic features (such as BAP1 status) will
be an important next step to quantify the added value of computational pathology features
over established clinical and molecular diagnostics. This multimodal extension is already
planned as a follow-up to the present work.

From a translational perspective, this validation framework offers a practical blueprint
for integrating self-supervised pathology models into clinical workflows. It shows that pre-
trained, disease-specific encoders can be effectively repurposed for diagnostic stratification
and risk assessment directly from routine biopsy slides, providing a scalable path toward
AI-assisted mesothelioma diagnosis and clinical decision-making. While domain-specific dif-
ferences inevitably introduce some uncertainty, systematic external validation on real-world
biopsy data remains essential before clinical deployment.

To promote transparency and enable full reproducibility, we commit to releasing the
biopsy-specific HPCs, upon request. The code for compositional feature extraction, and
the trained SSL encoder weights are on public repository (Claudio Quiros and Seyedshahi,
2025).
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Appendix A. Barlow Twins Training Formulation

During training, two stochastic augmentations (views) v and v′ are generated for each tile,
producing embeddings z = fθ(v) and z′ = fθ(v

′). For a mini-batch of size N , the empirical
cross-correlation matrix C ∈ RD×D is defined as:

Cij =
1

N

N∑
b=1

z̄b,i z̄
′
b,j , (5)

where z̄ and z̄′ are the per-dimension mean-centred, variance-normalised embeddings across
the batch. The Barlow Twins objective encourages invariance through diagonal alignment
and decorrelation through off-diagonal suppression:

LBT(θ) =
D∑
i=1

(1− Cii)
2 + λ

D∑
i=1

∑
j ̸=i

C2
ij , (6)

with λ > 0 controlling the off-diagonal penalty.

Inference. After training, each tile t is embedded via z = fθ(t) and used in the down-
stream HPL pipeline as described in the main text.

Appendix B. Compositional Vectors

We defined the raw HPC frequency vector for WSI s as

ã(s) =
(
ã
(s)
1 , . . . , ã(s)c

)
, ã

(s)
j =

ns,j∑c
u=1 ns,u

. (7)

By construction ã(s) is compositional: ã
(s)
j ≥ 0 and

∑
j ã

(s)
j = 1.

These vectors can contain zeros; we apply multiplicative replacement prior to log-ratio
transformations. We then transform each compositional vector a(s) into Euclidean space
via the centered log-ratio:

clr
(
a(s)
)

=

(
log

a
(s)
1

g(a(s))
, . . . , log

a
(s)
c

g(a(s))

)
(8)

where g(a) =
(∏c

j=1 aj
)1/c

is the geometric mean. The clr vector has a zero sum:
∑

j clr(a)j =
0.
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