
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CLIQUEFORMER: MODEL-BASED OPTIMIZATION
WITH STRUCTURED TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Expressive large-scale neural networks enable training powerful models for pre-
diction tasks. However, in many engineering and science domains, such models
are intended to be used not just for prediction, but for design—e.g., creating new
proteins that serve as effective therapeutics, or creating new materials or chemi-
cals that maximize a downstream performance measure. Thus, researchers have
recently grown an interest in building deep learning methods that solve offline
model-based optimization (MBO) problems, in which design candidates are op-
timized with respect to surrogate models learned from offline data. However,
straightforward application of predictive models that are effective at predicting
in-distribution properties of a design are not necessarily the best suited for use in
creating new designs. Thus, the most successful algorithms that tackle MBO draw
inspiration from reinforcement learning and generative modeling to meet the in-
distribution constraints. Meanwhile, recent theoretical works have observed that
exploiting the structure of the target black-box function is an effective strategy for
solving MBO from offline data. Unfortunately, discovering such structure remains
an open problem. In this paper, following first principles, we develop a model that
learns the structure of an MBO task and empirically leads to improved designs.
To this end, we introduce Cliqueformer—a scalable transformer-based architec-
ture that learns the black-box function’s structure in the form of its functional
graphical model (FGM), thus bypassing the problem of distribution shift, previ-
ously tackled by conservative approaches. We evaluate Cliqueformer on various
tasks, ranging from high-dimensional black-box functions from MBO literature
to real-world tasks of chemical and genetic design, consistently outperforming
the baselines.

1 INTRODUCTION

Most of the common use cases of deep learning (DL) so far have taken the form of prediction tasks
(Hochreiter & Schmidhuber, 1997; He et al., 2016; Krizhevsky et al., 2017; Vaswani et al., 2017).
However, in many applications, e.g. protein synthesis or chip design, we might want to use powerful
models to instead solve optimization problems. Clearly, accurate predictions of a target score of an
object could be used to find a design of the object that maximizes that score. Such a methodology
is particularly useful in engineering problems in which evaluating solution candidates comes with
big risk. For example, synthesizing a proposed protein requires a series of wet lab experiments and
induces extra cost and human effort (Gómez-Bombarelli et al., 2018; Brookes et al., 2019). Thus,
to enable proposing de-novo generation of strong solution candidates, researchers have drawn their
attention to offline black-box optimization (BBO), often referred to as model-based optimization
(MBO). In this paradigm, first, a surrogate model of the score is learned from offline data. Next,
a collection of designs is trained to maximize the surrogate, and then proposed as candidates for
maximizers of the target score (Gómez-Bombarelli et al., 2018; Kumar et al., 2021).

Unfortunately, model-based optimization (MBO) introduces unique challenges not encountered in
classical prediction tasks. The most significant issue arises from the incomplete coverage of the
design space by the data distribution. This limitation leads to a phenomenon known as distribu-
tion shift, where optimized designs drift away from the original data distribution. Consequently,
this results in poor proposals with significantly overestimated scores (Trabucco et al., 2022; Geng,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2023). To address it, popular MBO algorithms have been employing techniques from offline rein-
forcement learning (Kumar et al., 2020; Trabucco et al., 2021) and generative modeling (Kumar &
Levine, 2020; Mashkaria et al., 2023) to enforce the in-distribution constraint. Meanwhile, much
of the recent success of DL has been driven by domain-specific neural networks that, when scaled
together with the amount of data, lead to increasingly better performance. While researchers have
managed to establish such models in several fields, it is not immediately clear how to do it in MBO.
Recent theoretical work, however, has shown that MBO methods can benefit from information about
the target function’s structure, which can be implemented as a decomposition of the surrogate over
the target’s functional graphical model (Grudzien et al., 2024, FGM). This insight opens up new
possibilities for developing more effective MBO models by injecting such structure into their archi-
tecture. However, how to integrate such decompositions into scalable neural networks remains an
open question, and addressing this challenge is the focus of this work.

XaxisYaxis

Z
axis

(a) Contour curves in XY-planes (b) Chain of traingles FGM

11 31 41 61
Dimension

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
co

re

Score vs RBF Dimension

COMs
Cliqueformer

(c) Score vs Dimension

Figure 1: The first building block of the LRBF tasks are 3D radial-basis functions (left). These functions are
applied to triplets arranged in a chain of triangles FGM (center) and linearly mixed. Then, an observable designs
are produced with non-linear transformations of the chain and, together with their values, form a dataset.
We show the score (right) of our structure-learning Cliqueformer and structure-oblivious COMs (Trabucco
et al., 2021), against the dimension of LRBF functions, modulated only by varying the number of triangles.
Cliqueformer, unlike COMs, sustains strong performance across all dimensions. More results in Section 5.

In contrast to previous works, in our paper, we develop a scalable model that tackles MBO by learn-
ing the structure of the black-box function through the formalism of functional graphical models.
Our architecture aims to solve MBO by 1) decomposing the predictions over the cliques of the func-
tion’s FGM, and 2) enforcing the cliques’ marginals to have wide coverage with our novel form of
the variational bottleneck (Kingma & Welling, 2013; Alemi et al., 2016). However, building upon
our Theorem 2, we do not follow Grudzien et al. (2024) during the FGM discovery step, and instead
subsume it in the learning algorithm. To enable scaling to high-dimensional problems and large
datasets, we employ the transformer backbone (Vaswani et al., 2017). Empirically, we demonstrate
that our model, Cliqueformer, inherits the scalability guarantees of MBO with FGM (see Figure
1). We further demonstrate its superiority to baselines in a suite of tasks with latent radial-basis
functions (Grudzien et al., 2024) and real-world chemical (Hamidieh, 2018) and DNA design tasks
(Trabucco et al., 2022; Uehara et al., 2024).

2 PRELIMINARIES

In this section, we provide the necessary background on model-based optimization. Additionally,
we cover the basics of functional graphical models on top of which we build Cliqueformer.

2.1 MODEL-BASED OPTIMIZATION

We consider a model-based optimization problem, where we are given a dataset D = {xi, yi}Ni=1
of examples x ∈ X , following distribution p(x), and their values y = f(x) ∈ R under an unkown
(black-box) function f : X → R. Our goal is to optimize this function offline—to find its maximizer

x⋆ = argmax
x∈X

f(x) (1)

by only using information provided in D (Kumar & Levine, 2020). Sometimes, a more general
objective in terms of a policy over π(x) is also used, η(x) = Ex∼π[f(x)]. In either form, unlike in

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Bayesian optimization, we cannot make additional queries to the black-box function (Brochu et al.,
2010; Kumar & Levine, 2020). This formulation represents settings in which obtaining such queries
is prohibitively costly, such as tests of new chemical molecules or of new hardware architectures
(Kim et al., 2016; Kumar et al., 2021).

To solve MBO, it is typical to learn a model fθ(x) of f(x) parameterized by a vector θ with a
regression method and data from D,

L(θ) = E(x,y)∼D
[(
fθ(x)− y

)2]
+ Reg(θ) (2)

where Reg(θ) is an optional regularizer. Classical methods choose Reg(θ) to be identically zero,
while conservative methos use the regularizer to bring the values of examples out of D down. For
example, the regularizer of Conservative Objective Model’s (Trabucco et al., 2021, COMs) is

Regcom(θ) = α
(
Ex∼µθ⊥

[fθ(x)]− Ex∼D[fθ(x)]
)
, α > 0,

where (·)⊥ is the stop-gradient operator and µθ⊥(x) is the distribution obtained with a few gra-
dient ascent steps on x initialized from D. This distribution depends on the value of θ but is not
differentiated through while computing the loss’s gradient, and thus we denote it by θ⊥. Un-
fortunately, in addition to the extra computational cost that the inner-loop gradient ascent in-
duces, COMs’s regularizer limits the amount of improvement that it allows its designs to make.

𝒙1

𝒙2

𝒙3

𝒙4

𝒙5

ƒ(𝒙) = ƒ-5(𝒙-5) + ƒ-1(𝒙-1)

Figure 2: An FGM of a 5D
function which decomposes as
f(x) = f−5(x−5) + f−1(x−1).
By Definition 1, nodes x1 and x5

are not linked.

This is particularly frustrating since recent work on functional
graphical models (Grudzien et al., 2024, FGM) delivered a premise
of large improvements in the case when the black-box function’s
graph can be discovered, as we explain in the next subsection.

2.2 FUNCTIONAL GRAPHICAL MODELS

An FGM of a high-dimensional function f(x) is a graph over in-
dividual components of x that separates xi, xj ∈ x if their con-
tributions to f(x) are independent of each other. Knowing such a
structure of f one can eliminate interactions between independent
variables from a model that approximates it, and thus prevent an
MBO algorithm from exploiting them. We summarize basic prop-
erties of FGMs below. In what follows, we denoteX−i as the design
(input) space without the ith subspace, and x−i as its element 1. We
also write [K] to denote the set {1, . . . ,K}.
Definition 1. Let x = (xv | v ∈ V) be a joint variable with index set V , and f(x) be a real-valued
function. An FGM G = (V, E) of f(x) is a graph where the edge set E ⊂ X 2 is such that,

∃ f−i : X−i → R and f−j : X−j → R, with f(x) = f−i(x−i) + f−j(x−j), implies (i, j) /∈ E .

See Figure 2 for illustration.

The basic result about FGMs is that they allow for decomposition of the target function into sub-
functions with smaller, partially-overlapping inputs, from the FGM’s set of maximal cliques C,

f(x) =
∑
C∈C

fC(xC). (3)

Intuitively, the decomposition enables more efficient learning of the target function since it can be
constructed by adding together functions defined on smaller inputs, which are easier to learn. This,
in turn, allows for more efficient MBO since the joint solution x⋆ can be recovered by stitching
individual solutions x⋆

C to smaller problems. This intuition is formalized by the following theorem.

Theorem 1 (Grudzien et al. (2024)). Let f(x) be a real-valued function, C be the set of maximal
cliques of its FGM, and Π be a policy class. Let Cstat and Ccpx be constants that depend on the
probability distribution of x and function approximator class’s complexity, respectively, defined in
Appendix A. Then, the regret of MBO with the FGM information is given by,

1For example, if X = X1 ×X2 ×X3 and x = (x1, x2, x3), then X−2 = X1 ×X3, and x−2 = (x1, x3).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

η(π⋆)− η(π̂FGM) ≤ CstatCcpx max
π∈Π,x∈X ,C∈C

π(xC)
pC(xC) .

The implication of this theorem is that the FGM-equipped function approximator does not require
the dataset to cover the entire design space. Rather, it only requires that the individual cliques of
the space be covered, which is a much milder requirement, especially when the cliques are small.
In the next section, we show how these results can be combined with a transformer, mitigate the
distribution shift problem, and enable efficient MBO.

3 CLIQUEFORMER

This section introduces a neural network model designed to solve MBO problems through standard
end-to-end training on offline datasets. We present a new theoretical result, outline the key desiderata
for such a model, and propose an architecture—Cliqueformer—that addresses these requirements.

3.1 NON-UNIQUENESS OF STRUCTURE DISCOVERY

1.0 0.5 0.0 0.5 1.0
z1

1.0

0.5

0.0

0.5

1.0

z2

Contour Plot of f(z1, z2) = exp((z1 + z2)/sqrt(2)) with Gaussian Distribution

0.3

0.6

0.9

1.2

1.5

1.8 2.1

2.4

2.7 3.0

3.3

3.6

3.9
4.2

4.5
4.8

5.1

z
v

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

f(z
1,

 z2
)

Figure 3: Illustration of con-
struction in the proof of Theo-
rem 2 for d = 2. Red axes
represent z and blue axes rep-
resent v. When considered
a function of z, the contour
curves (straight lines) of f are
a function of both z1 and z2,
but as a function of v, they
only depend on v1. The den-
sity of the Gaussian distribu-
tion (green curves) are identi-
cal circles for both variables.

The regret bound from Theorem 1 applies to methods that use the
target function’s FGM in their function approximation. It implies
that such methods can solve even very high-dimensional problems
if their underlying FGMs have low-dimensional cliques or, simply
speaking, are sparse. Since, in general, no assumptions about the
input can be made, this motivates learning a representation of the
input for which one can make distributional assumptions and infer
the FGM with statistical tests. Following this reasoning, Grudzien
et al. (2024) offer a heuristic technique for discovering an FGM
over learned, latent, normally-distributed variables. However, as
we formalize with the following theorem, even such attempts are
futile in dealing with black-box functions.

Theorem 2. Let d ≥ 2 be an integer and x ∈ Rd be a random
variable with positive density in Rd. There exists a function f(x)
and two different reparameterizations, z = z(x) and v = v(x), of
x, that both follow a standard-normal distribution, but the FGM of
f with respect to z is a complete graph (has all possible edges), and
with respect to v it is an empty graph (has no edges).

Proof Sketch. The proof is a construction. We first map x to
a standard-normal variable z with tools from high-dimensional
statistics. We then introduce scalar variable y that is a function
of z and has a complete FGM. We then show that we can rotate z
onto another normal variable v with respect to which y is a func-
tion with an empty FGM (see Figure 3 for illustration). We complete the proof by showing how to
express y as a function of x. The full proof can be found in Appendix A.

The theorem implies that FGM is not a fixed attribute of a function that can be estimated from the
data, but instead should be viewed as a property of the input’s reparameterization. Furthermore,
different reparameterizations feature different FGMs with varied levels of decomposability, some
of which may not significantly simplify the target function. This motivates a reverse approach that
starts by defining a desired FGM and learning representations of the input that align with the graph.
In the next subsection, we introduce Cliqueformer, where the FGM is specified as a hyperparameter
of the model and a representation of the data that follows its structure is learned.

3.2 ARCHITECTURE

The goal of this subsection is to derive an MBO model that can simultaneously learn the target
function as well as its structure, and thus be readily applied to MBO. First, we would like the model
to decompose its prediction into a sum of models defined over small subsets of the input variables
in the manner of Equation (3). As discussed in the previous subsection, efforts to discover such a
structure are impractical since there exists a plethora of reparameterizations of the data and their

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

corresponding FGMs of varied decomposabilities. Thus, instead, we propose that the FGM be
defined first, and a representation of the data be learned to align with the chosen structure.
Desideratum 1. The model should follow a pre-defined FGM decomposition in a learned space.

Accomplishing this desideratum is simple. A model that we train should, after some transformations,
split the input’s representations, denoted as z, into partially-overlapping cliques, (zC1

, . . . , zCNclique
),

and process them independently, followed by a summation. To implement this, we specify how many
cliques we want to decompose the function into, Nclique, as well as their dimensionality, dclique, and
the size of their knots—dimensions at which two consecutive cliques overlap, dknot = |zCi

∩ zCi+1
|.

Then, we pass each clique through an MLP network that is also equipped with a trigonometric clique
embedding, similar to Vaswani et al. (2017) to express a different function for each clique,

fθ(z) =
1

Nclique

∑Nclique
i=1 fθ(zCi , ci), where

[
ci,2j ci,2j+1

]
=

[
sin(i · ωj) cos(i · ωj)

]
,

and ωj = 10−8j/dmodel . Here, we use the arithmetic mean over cliques rather than summation be-
cause, while being functionally equivalent, it provides more stability when Nclique → ∞. Pre-
defining the cliques over the representations allows us to avoid the problem of discovering arbitrarily
dense graphs, as explained in Subsection 3.1. This architectural choice implies that the regret from
Theorem 1 will depend on the coverage of such representations’ cliques, maxi∈[Nclique] 1/eθ(zCi

),
where eθ(z) = Ex∼D[eθ(z|x)] is the marginal distribution of the representations learned by an
encoder eθ. This term can become dangerously large if individual distributions eθ(zC) put dispro-
portionally more density to some regions of the latent space than to others, Thus, to prevent that, we
propose to train the latent space so that the distribution of cliques attain wide coverage.
Desideratum 2. The model should learn representations whose cliques have dsirtibutions featured
by wide coverage.

To meet this requirement, we leverage tools from representation learning, but in a novel way.
Namely, we put a variational bottleneck (Kingma & Welling, 2013; Higgins et al., 2016; Alemi
et al., 2016, VIB) on individual cliques of our representations that brings their distribution closer
to a prior with wide coverage, which we choose to be the standard-normal prior. To implement it,
when computing the loss for a single example, we sample a single clique to compute the VIB for at
random, as opposed to computing it for the joint latent variable like in the classical VIB,

VIB(x, θ) = Ei∼U [Nclique]

[
KL

(
eθ(zCi

|x), pCi
(zCi

)
)]
, (4)

where eθ(zC |x) is the density of clique C produced by our learnable encoder eθ(z|x), and pC(zC) is
the density of zC under the standard-normal distrituion. Note that it is not equivalent to the classical,
down-weighted VIB in expectation either since our cliques overlap, meaning that knots contribute
to the VIB more often than regular dimensions. Together with the model fθ and the encoder eθ, we
train a decoder dθ(x|z) that reconstructs the designs from the latent variables. Putting it all together,
the training objective of our model is a VIB-style likelihood objective with a regression term,

Lclique(θ) = E(x,y)∼D,z∼eθ(·|z),i∼U [Nclique]

[
VIB(x, θ)− log dθ(x|z) + τ ·

(
y− fθ(z)

)2]
, (5)

where τ is a positive coefficient that we set to 10 in our experiments.

Since in our neural network we impose the FGM decomposition of the predictive module in the latent
space, we need to endow our model with high expressivity to learn representations that meet such
demands. Thus, we model our encoder eθ and decoder dθ with transformer networks (Vaswani et al.,
2017). To leverage such an architecture, the encoder begins by mapping the input vector x ∈ Rd

into d vectors of dimensionality dmodel, which it then processes as if they were a sequence of token
embeddings. After a series of transformer blocks, the network then maps the sequence into a normal
distribution over representations, eθ(z|x). A vector z can then be sampled from that distribution and
arranged into Nclique cliques with dimensionality dclique and knot size of dknot. The new sequence
can then be fed into the predictive model fθ and to the decoder dθ, which is a transformer too. For
illustration of the information flow in Cliqueformer’s training consult Figure 4.

3.3 OPTIMIZING DESIGNS WITH CLIQUEFORMER

Once Cliqueformer is trained, we use it to optimize new designs. Typically, MBO methods initialize
this step at a sample of designs (xib)Bb=1 drawn from the dataset (Trabucco et al., 2021). Since in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Transformer
Encoder

Transformer
Decoder

MLP

Input x Representation ẑ
Prediction ŷ Target y

Reconstruction
Loss

Prediction
Loss

VIB
Loss

Reconstruction x̂

𝚺MLP

MLP

MLP

Figure 4: Illustration of information flow in Cliqueformer’s training. Data are shown in navy, learnable vari-
ables in blue, neural modules in pink, and loss functions in green. The input x is passed to a transformer
encoder to compute representation z which is decomposed into cliques with small overlapping knots (high-
lighted in colors on the figure). The representation goes to the parallel MLPs whose outputs, added together,
predict target y. The representation z is also fed to a transformer decoder that tries to recover the original input
x. Additionally, the representation goes through an information bottleneck from Equation (4) during training.

Algorithm 1 MBO with Cliquefrormer

1: Initialize the encoder, decoder, and predictive model (eθ, dθ, fθ).
2: for t = 1, . . . , Tmodel do
3: Take a gradient step on the parameter θ with respect to Lclique(θ) from Equation (5).
4: end for
5: Sample B examples x(ib) ∼ D, b ∈ [B], from the dataset.
6: Encode the examples with the encoder z(ib) ∼ eθ(z|x(ib)), for b ∈ [B].
7: for t = 1, . . . , Tdesign do
8: Decay the representation z of the design, z(ib) ← (1− λ)z(ib), ∀b ∈ [B].
9: Take a gradient ascent step on the parameter z with respect to η̂(z) from Equation (6).

10: end for
11: Propose solution candidates by decoding the representations, x⋆ ∼ dθ(x|z⋆).

our algorithm the optimization takes place in the latent space Z , we perform this step by encod-
ing the sample of designs with Cliqueformer’s encoder, zib ∼ eθ(z|xib). We then optimize the
representation zib of design xib to maximize our model’s value,

Lmbo
(
(zib)Bb=1

)
=

1

B

B∑
b=1

fθ(z
ib), (6)

at the same time minding the enumerator of the regret bound from Theorem 1. That is, we don’t want
the optimizer to explore regions under which the marginal densities eθ(zC) = Ex∼D[eθ(zC |x)]
are small. Fortunately, since the encoder was trained with standard-normal prior on the cliques,
p(zC) = N(0dclique , Idclique), we know that values of z closer to the origin have unilaterally higher
marginals. This simple property of standard-normal distribution allows us to confine the optimizer’s
exploration to designs with in-distribution cliques by exponentially decaying the design at every
optimization step. Thus, we use AdamW as our optimizer (Loshchilov et al., 2017). We provide the
pseudocode of the whole procedure of designign with Cliqueformer in Algorithm 1.

4 RELATED WORK

The idea of using machine learning models in optimization problems has existed for a long time,
and has been mainly cultivated in the literature on Bayesian optimization (Williams & Rasmussen,
2006; Brochu et al., 2010; Snoek et al., 2012, BO). The BO paradigm relies on two core assump-
tions: availability of data of examples paired with their target function values, as well as access to
an oracle that allows a learning algorithm to query values of proposed examples. Thus, similarly to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

reinforcement learning, the challenge of BO is to balance exploitation and exploration of the black-
box function modeled by a Gaussian process. Recently, to help BO tackle very high-dimensional
problems, techniques of decomposing the target function have become more popular (Kandasamy
et al., 2015; Rolland et al., 2018). Most commonly, these methods decompose the target function
into functions defined on the input’s partitions. While such models are likely to deviate far from the
functions’ ground-truth structure, one can derive theoretical guarantees for a range of such decom-
positions under the BO’s query budget assumptions (Ziomek & Bou-Ammar, 2023). However, these
results do not apply to our setting of offline MBO, where no additional queries are available and the
immediate reliability on the model is essential. Furthermore, instead of partitioning the input, we
decompose our prediction over a latent variable that is learned by a transformer, enabling the model
to acquire an expressive structure over which the decomposition is valid.

Offline model-based optimization (MBO) has been recently attracting attention of researchers and
practitioners from domains where BO assumptions cannot be easily met, offering an attractive
premise of producing solutions directly after training on static datasets, without the need for ad-
ditional queries. One of the first tasks tackled by MBO was molecule design (Gómez-Bombarelli
et al., 2018), where a variational auto-encoder (Kingma & Welling, 2013, VAE) was used to learn
continuous representations of molecular data. In contrast to our work, however, this work does
not study learning structural properties of the target function, but rather is a proof of concept of
applying deep learning to molecular design. A data type-agnostic algorithm was introduced by
Brookes et al. (2019), dubbed Conditioning by Adaptive Sampling (CBaS), that iteratively refines
its design proposals in response to predictions of a non-differentiable oracle. While one can use
this refinement procedure in combination with trainable models by means of auto-focusing (Fan-
njiang & Listgarten, 2020), this setting is different than ours since we assume the ability to model
the black-box function with a neural network. Since such a model is differentiable, we can simply
rely on automatic differentiation (Paszke et al., 2019) to refine our designs. Trabucco et al. (2021)
introduced a neural network-based method, exactly for our setting, dubbed Conservative Objective
Models (COMs), where a surrogate model is trained to both predict values of examples that can be
found in the dataset, and penalize those that are not. COMs differs from our work fundamentally,
since its contribution lies in the formulation of the conservative regularizer applied to arbitrary neu-
ral networks, while we focus on scalable model architectures that facilitate computational design.
Another recent line of work proposes to tackle the design problem through means of generative
modeling. BONET (Mashkaria et al., 2023) and DDOM (Krishnamoorthy et al., 2023) are exam-
ples of works that bring the most recent novelties of the field to address design tasks. BONET
does so by training a transformer to generate sequences of designs that monotonically improve in
their value, and DDOM by training a value-conditioned diffusion model. That is, these methods at-
tempt to generate high-value designs through novel conditional generation mechanisms. Instead, we
model MBO as a maximization problem, and propose a scalable model that acquires the structure
of the black-box function through standard gradient-based learning. To this end, we bring powerful
techniques from deep learning and generative modeling, like transformers (Vaswani et al., 2017) and
variational-information bottlenecks (Kingma & Welling, 2013; Alemi et al., 2016).

The work of Grudzien et al. (2024) introduced the theoretical foundations of functional graphical
models (FGMs), including Theorem 1. However, as we have shown in Theorem 2, their graph
discovery heuristic for neural networks renders learning the black-box function’s structure an open
problem. Our work addresses this issue by subsuming the graph discovery step in the architecture of
our Cliqueformer that learns to abide by a pre-defined FGM. As such, the model learns the structure
of the target function, as well as learns to predict its value, in synergy within an end-to-end training.2

5 EXPERIMENTS

In this section, we provide the empirical evaluation of Cliqueformer. We begin by benchmarking
Cliqueformer against prior methods on tasks from the MBO literature. Then, we finish by evaluating
the benefit of the novel FGM decomposition layer in Cliqueformer through an ablation study.

5.1 BENCHMARKING

We compare our model to three classes of algorithms, each represented by a proven prior method.
As a naı̈ve baseline, we employ gradient ascent on a learned model (Grad. Asc.). To compare to

2For more related work, please see Appendix D.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Task Grad.Asc. RWR COMs DDOM Transformer Cliqueformer
LRBF 11 −∞ ± 0.00 0.08 ± 0.08 0.66 ± 0.04 −∞ ± 0.00 0.47 ± 0.05 0.65 ± 0.07

0% 1% 72% 0% 60% 74%

LRBF 31 −∞ ± 0.00 0.31 ± 0.10 0.50 ± 0.05 −∞ ± 0.00 −∞ ± 0.00 0.64 ± 0.05

0% 3% 32% 0% 0% 76%

LRBF 41 −∞ ± 0.00 0.35 ± 0.08 0.45 ± 0.06 −∞ ± 0.00 0.20 ± 0.01 0.66 ± 0.05

0% 3% 16% 0% 75% 72%

LRBF 61 −∞ ± 0.00 0.29 ± 0.10 0.25 ± 0.04 −∞ ± 0.00 0.16 ± 0.03 0.66 ± 0.05

0% 4% 7% 0% 64% 68%

Superconductor 1.13 ± 0.08 1.03 ± 0.07 0.97 ± 0.08 1.22 ± 0.08 0.96 ± 0.05 1.43 ± 0.04

TF-Bind-8 0.99 ± 0.00 1.58 ± 0.03 1.57 ± 0.02 1.55 ± 0.03 1.48 ± 0.03 1.58 ± 0.01

DNA HEPG2 2.16 ± 0.07 1.91 ± 0.12 1.20 ± 0.09 1.82 ± 0.10 2.13 ± 0.06 2.10 ± 0.07

DNA k562 2.11 ± 0.06 1.91 ± 0.11 1.80 ± 0.12 2.61 ± 0.21 2.60 ± 0.19 3.15 ± 0.07

Ave.score ↑ 0.80 0.93 0.93 0.90 1.00 1.36
Ave.rank ↓ 4.75 3.88 3.63 4.50 4.25 1.38

Table 1: Experimental results of Cliqueformer and the baselines. Each score is the mean of values of
TopK=10 of B=1000 designs, averaged over 5 runs. The values were normalized with the min-max scheme,
where the minimum and the maximum are taken from the dataset, so that the scores of the designs in the dataset
are in range [0, 1]. We note that, unlike Trabucco et al. (2022), we take the maximum from the data available for
the MBO model training (the union of the train and test data), and not from the oracle training data, to make the
results more interpretable (see Appendix C). We also provide the standard deviation estimates as the standard
deviation for each of the TopK samples, averaged over the runs. Additionally, for LRBF tasks, we provide the
average validity in blue, calculated as the percentage of valid designs from the B produced candidates, averaged
across the runs. We provide average score (the higher the better) and the average rank for each method. For the
average score −∞ was taken into calculation as zero.

exploratory methods, we use Reward-Weighted Regression (Peters & Schaal, 2007, RWR) which
learns by regressing the policy against its most promising perturbations. To represent the recently
proposed conservative algorithms, we compare to state-of-the-art Conservative Objective Models
(Trabucco et al., 2021; Kumar et al., 2021, COMs). For COMs, we use the recommended hyper-
parameter setting from (Trabucco et al., 2021). While Cliqueformer can be tuned for each specific
task, we keep most of the hyperparameters the same: refer to Appendix C for more details.

For every method, we report an empirical estimate of its 100th percentile, similarly to Trabucco
et al. (2021). We estimate it by averaging the values of the top 10 designs out of 1000 candidates,
averaged across 5 seeds. In the following paragraphs, we introduce benchmark tasks, from MBO
literature, that we use in our experiments.

Latent Radial-Basis Functions (LRBF). This is a suite of tasks designed to expose vulnerabil-
ity of MBO models (Grudzien et al., 2024). The data pairs (x, y) are generated by first drawing a
standard normal vector z ∼ N(0dz , Idz), then computing y as a sum of radial-basis functions of dC-
dimensional cliques of a pre-defined FGM. The observed vector x is a non-linear transformation of
z, i.e., x = T (z) ∈ T ⊂ Rd, where d > dz , while z itself is hidden from the data. Such tasks allow
us to study whether an MBO method learns to produce valid designs by verifying that ground-truth
inputs z can be recovered from them. That is, a design x̂ for which the map T−1(x̂) is ill-defined
is considered invalid. In our experiments, an invalid design receives a value of −∞. We report the
average validity of designs produced by the methods in blue. The results in Table 1 show that the
most able method at keeping its proposals at the manifold of valid designs is Cliqueformer. Impor-
tantly, this ability does not diminish even in higher-dimensional tasks, while the second-best such
method, COMs, gradually loses this ability. We also use these tasks to study if a model is capable
of exploiting the RBF’s structure in the optimization step by varying the effective dimensionality dz
of the data while keeping dC fixed. While the naive and the exploratory baseline perform poorly on
these tasks overall, COMs’s performance clearly drops as the task dimension increases. Meanwhile,
as predicted by Theorem 1, Cliqueformer attains similar, strong performance across all tasks.

Superconductor. This task poses a challenge of designing a superconducting material, represented
by an 81-dimensional vector, with as high critical temperature as possible (Hamidieh, 2018). It tests

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

abilities of MBO models in real-world continuous problems. As the very high score of gradient
ascent shows, in contrast to LRBF, this task rewards greedy optimizer updates. While we developed
Cliqueformer paying attention to distribution shift, its ability to compose individual in-distribution
cliques into a joint solution (stitching) allows for large improvements that outperform all baselines.

TFBind-8 & DNA Enhancers. In these discrete tasks we optimize DNA sequences of length 8
and 200, respectively. In TFBind-8 the target is the sequence’s binding affinity with a particular
transcription factor, while in DNA Enhancers we maximize HEPG2 and k562 activity levels. Be-
ing low-dimensional, TFBind-8 (Trabucco et al., 2022) is a testbed that allows us to verify MBO
models’ ability to solve discrete tasks. Cliqueformer solves this problem very efficiently, largely
improving upon the dataset, but it is worth noting that most baselines, with the exception of gradient
ascent, performed similarly. Thus, while the TFBind-8 task does not favor greedy design optimiza-
tion, Cliqueformer is still able to leverage its other strengths to achieve great performance. Then,
we use the DNA Enhancers tasks (Uehara et al., 2024) to study the scalability of our method to
very high-dimensional problems and large datasets (approximately 2 × 105 examples in this case).
The results in Table 1 and the high score of gradient ascent show that these tasks favor direct,
greedy optimization of designs more than they benefit from conservatism of COMs. Nevertheless,
Cliqueformer is able to greatly exceed the quality of observed designs, and performs on par with
gradient ascent in HEPG2, and greatly outperforms all baselines in k562, confirming its ability to
learn structure within discrete and very high-dimensional data. Overall, averaging across all tested
tasks, Cliqueformer achieves the best overall performance.

5.2 ABLATIONS

While the decomposing elements of Cliqueformer are novel, other components, such as transformer
blocks (Vaswani et al., 2017) and variational information bottlenecks (Kingma & Welling, 2013;
Alemi et al., 2016), are components proposed in prior work (albeit for a different purpose). In this
subsection, we verify the utility of the decomposing component with an ablation study, in which
we sweep over the number of cliques of Cliqueformer for a few representative tasks. In each of
the tested tasks we fix the size of the latent variable z and sweep over the number of cliques Nclique
into which it can be decomposed. We cover the case Nclique = 1 to compare Cliqueformer to an
FGM-oblivious VAE with transformer backbone and AdamW design optimizer.

1 2 4 8
Number of Cliques

0.60

0.80

1.00

1.20

1.40

1.60

Sc
or

es

Scores vs. No. Cliques (TFBind-8)

(a) TFBind-8

1 2 4 10 20 40
Number of Cliques

0.90

1.00

1.10

1.20

1.30

1.40

Sc
or

es

Scores vs. No. Cliques (Supercond.)

(b) Superconductor

1 2 4 10 20
Number of Cliques

0.63

0.64

0.64

0.65

0.65

0.66

0.66

0.67

0.67

Sc
or

es

Scores vs. No. Cliques (RBF 41)

(c) Lat. RBF 41

Figure 5: Ablation experiments on the number of cliques used in the FGM decomposition of Cliqueformer.
For each task, we fix the size of the latent variable and the overlap size, and sweep over possible Nclique values.
We use TFBind-8 (left), Superconductor (center), and Lat. RBF 41 (right) tasks. The x-ais (log-scale) denotes
the number of cliques, and the y-axis is the final score of the model.

Results in Figure 5 show that Cliqueformer does benefit from the FGM decomposition in all tested
tasks. However, the results suggest that the optimal number of cliques varies between tasks – e.g., 4
for TFBind-8 and Superconductor, but 2 for LRBF 41. In our experiments, we consistently obtained
good performance by setting the clique size to dclique = 3 and choosing the number of cliques so
that the total latent dimension approximately matches that of the design. For DNA Enhancers, we
doubled the clique size and halved the number of cliques to decrease the computational cost of
attention. More details of hyperparameters can be found in Appendix C. An in-depth analysis of the
relation between hyperparameters and the performance is an exciting avenue of future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

In this work, we proposed Cliqueformer, a scalable architecture for model-based optimization. We
derived its building blocks following recent advances in MBO theory centered in functional graph-
ical models, equipping it with an ability to acquire structure of the black-box target function. This
ability sets the model free from requiring explicit conservative regularization or iterative retraining
to propose in-distribution designs. Empirically, Cliqueformer outperforms all baselines across all
tested tasks. Cliqueformer opens an exciting avenue of research in MBO focused on scaling design
datasets and large neural networks.

REPRODUCIBILITY STATEMENT

We provide our code base, implemented in Pytorch, in the supplementary material. It contains
files with default hyper-parameters for both Cliqueformer and the baselines. We also set default
random seeds in the training script (training.py) that can be used to reproduce some of our
runs exactly. This script saves a pre-trained model that one can use to optimize designs with by
running optimize.py. To enable reproducing Cliqueformer’s performance, we provide a table
with hyper-parameters in Appendix C. We ran most of our experiments on a machine with an Nvidia
Titan X GPU, with the exception of DNA Enhancers tasks which we ran on a Google TPU v3-8.

Due to lack of the off-the-shelf availability of Design Bench, we scraped the data of the benchmark
tasks from prior works’ repositories. We adopted the implementation of LRBF tasks from Grudzien
et al. (2024)’s code at

https://colab.research.google.com/drive/
1qt4M3C35bvjRHPIpBxE3zPc5zvX6AAU4?usp=sharing

We used Superconductor data from Fannjiang & Listgarten (2020)’s code on

https://github.com/clarafy/autofocused-oracles.

Following the authors, we train a boosted tree model to serve as an oracle for new designs. We used
TFBind-8 from

https://huggingface.co/datasets/beckhamc/design_bench_data/tree/
main/tf_bind_8-SIX6_REF_R1,

which comes with values for all possible designs that can be looked up at evaluation. We obtained
the DNA Enhancers data from the recent tutorial on offline fine-tuning of generative models at

https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/tree/
master/tutorials/Human-enhancer,

whose pre-trained oracle we used for evaluation.

We will release publically our code on github upon the paper’s publication.

10

https://colab.research.google.com/drive/1qt4M3C35bvjRHPIpBxE3zPc5zvX6AAU4?usp=sharing
https://colab.research.google.com/drive/1qt4M3C35bvjRHPIpBxE3zPc5zvX6AAU4?usp=sharing
https://github.com/clarafy/autofocused-oracles
https://huggingface.co/datasets/beckhamc/design_bench_data/tree/main/tf_bind_8-SIX6_REF_R1
https://huggingface.co/datasets/beckhamc/design_bench_data/tree/main/tf_bind_8-SIX6_REF_R1
https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/tree/master/tutorials/Human-enhancer
https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/tree/master/tutorials/Human-enhancer

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
bottleneck. arXiv preprint arXiv:1612.00410, 2016.

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy, and Lucy
Colwell. Model-based reinforcement learning for biological sequence design. In International
conference on learning representations, 2019.

Frances H Arnold. Design by directed evolution. Accounts of chemical research, 31(3):125–131,
1998.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In International conference on machine learning, pp. 773–782. PMLR, 2019.

Bin Dai and David Wipf. Diagnosing and enhancing vae models. arXiv preprint arXiv:1903.05789,
2019.

Clara Fannjiang and Jennifer Listgarten. Autofocused oracles for model-based design. Advances in
Neural Information Processing Systems, 33:12945–12956, 2020.

Xinyang Geng. Offline Data-Driven Optimization: Benchmarks, Algorithms and Applications. Uni-
versity of California, Berkeley, 2023.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven contin-
uous representation of molecules. ACS central science, 4(2):268–276, 2018.

Kuba Grudzien, Masatoshi Uehara, Sergey Levine, and Pieter Abbeel. Functional graphical mod-
els: Structure enables offline data-driven optimization. In International Conference on Artificial
Intelligence and Statistics, pp. 2449–2457. PMLR, 2024.

Anvita Gupta and James Zou. Feedback gan (fbgan) for dna: a novel feedback-loop architecture for
optimizing protein functions. arXiv preprint arXiv:1804.01694, 2018.

Kam Hamidieh. A data-driven statistical model for predicting the critical temperature of a super-
conductor. Computational Materials Science, 154:346–354, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional bayesian opti-
misation and bandits via additive models. In International conference on machine learning, pp.
295–304. PMLR, 2015.

Sunghwan Kim, Paul A Thiessen, Evan E Bolton, Jie Chen, Gang Fu, Asta Gindulyte, Lianyi Han,
Jane He, Siqian He, Benjamin A Shoemaker, et al. Pubchem substance and compound databases.
Nucleic acids research, 44(D1):D1202–D1213, 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for black-
box optimization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 17842–17857.
PMLR, 23–29 Jul 2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. Ad-
vances in Neural Information Processing Systems, 33:5126–5137, 2020.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Aviral Kumar, Amir Yazdanbakhsh, Milad Hashemi, Kevin Swersky, and Sergey Levine.
Data-driven offline optimization for architecting hardware accelerators. arXiv preprint
arXiv:2110.11346, 2021.

Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. arXiv preprint
arXiv:1711.05101, 5, 2017.

Satvik Mehul Mashkaria, Siddarth Krishnamoorthy, and Aditya Grover. Generative pretraining for
black-box optimization. In International Conference on Machine Learning, pp. 24173–24197.
PMLR, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in Neural Information Processing Systems, 32:
8026–8037, 2019.

Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
space control. In Proceedings of the 24th international conference on Machine learning, pp. 745–
750, 2007.

Zhizhou Ren, Jiahan Li, Fan Ding, Yuan Zhou, Jianzhu Ma, and Jian Peng. Proximal exploration
for model-guided protein sequence design. In International Conference on Machine Learning,
pp. 18520–18536. PMLR, 2022.

Paul Rolland, Jonathan Scarlett, Ilija Bogunovic, and Volkan Cevher. High-dimensional bayesian
optimization via additive models with overlapping groups. In International conference on artifi-
cial intelligence and statistics, pp. 298–307. PMLR, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Brandon Trabucco, Aviral Kumar, Xinyang Geng, and Sergey Levine. Conservative objective mod-
els for effective offline model-based optimization. In International Conference on Machine Learn-
ing, pp. 10358–10368. PMLR, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
for data-driven offline model-based optimization. In International Conference on Machine Learn-
ing, pp. 21658–21676. PMLR, 2022.

Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
forcement learning-based fine-tuning of diffusion models: A tutorial and review. arXiv preprint
arXiv:2407.13734, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA, 2006.

Juliusz Ziomek and Haitham Bou-Ammar. Are random decompositions all we need in high dimen-
sional bayesian optimisation? arXiv preprint arXiv:2301.12844, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A THEORETICAL DETAILS

The full statement of the following theorem considers an MBO algorithm with function clas F =
FC1
⊕ ...⊕FCNclique

, so that every of its element has form

f(x) =
∑Nclique

i=1 fCi
(xCi

).

As described in Section 3, Cliqueformer’s architecture forms such a function class on top of the
learned latent space. We define the statistical constant as

Cstat =
√

1
1−σ , where σ = max

Ci ̸=Cj ,f̂Ci
,f̂Cj

Corrx∼p[f̂Ci(xCi), f̂Cj]

and the function approximation complexity constant as

Ccpx =

√
Nclique

∑Nclique
i=1 log(|FCi

|/δ)
N ,

where δ is the PAC error probability (Shalev-Shwartz & Ben-David, 2014).
Theorem 1 (Grudzien et al. (2024)). Let f(x) be a real-valued function, C be the set of maximal
cliques of its FGM, and Π be a policy class. Let Cstat and Ccpx be constants that depend on the
probability distribution of x and function approximator class’s complexity, respectively, defined in
Appendix A. Then, the regret of MBO with the FGM information is given by,

η(π⋆)− η(π̂FGM) ≤ CstatCcpx max
π∈Π,x∈X ,C∈C

π(xC)
pC(xC) .

Theorem 2. Let d ≥ 2 be an integer and x ∈ Rd be a random variable with positive density in Rd.
There exists a function f(x) and two different reparameterizations, z = z(x) and v = v(x), of x,
that both follow a standard-normal distribution, but the FGM of f with respect to z is a complete
graph (has all possible edges), and with respect to v it is an empty graph (has no edges).

Proof. Since the density of x is positive and continuous, we can form a bijection that maps x to
another random variable z ∈ Rl, where l ≤ d, that follows the standard-normal distribution (Dai &
Wipf, 2019, Appendix E). We denote this bijection as Z(x). Let us define

y = fz(z) = exp
(

1√
l

∑l
i=1 zi

)
.

Then, the FGM of fz has an edge between every two variables since each variable’s partial derivative

∂fz

∂zi = 1√
l
exp

(
1√
l

∑d
i=1 zi

)
is also a function of all others (Grudzien et al., 2024, Lemma 1). Consider now a rotation ρ : z 7→
v = (v1, . . . , vl) such that v1 = 1√

l

∑l
i=1 zi. Then, v ∼ N(0l, Il), and y can be expressed in terms

of v as y = fv(v) = exp(v1). Then, the FGM of fv has no edges, since it depends on only one
variable, inducing no interactions between any two variables. Recall that x = Z−1(z). Then, x be
represented by standard-normal z and v, obtainable by

z = Z(x) and v = ρ(z) = ρ
(
Z(x)

)
.

Furthermore, we can define

f(x) = fz
(
Z(x)

)
which is identically equal to fz(z) and fv(v), which have a complete and an empty FGM, respec-
tively, thus fulfilling the theorem’s claim.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B REPRESENTATION DISTRIBUTION

In this section, we study the distribution of the latent representations z that were trained with Equa-
tion (5). The loss regulates the cliques of the latent, although not the joint variable, to have marginals
close to the normal N(0dclique

, Idclique
) distribution. We examine the latents in TFBind-8 and

LRBF41, where dclique = 3, to see if their distributions display standard normal-like properties
(low-magnitude mean and off-diagonal covariances).

Namely, in each task, we take a trained Cliqueformer, sample a batch of 1000 designs x ∼ D from
the dataset, and encode it with the model’s encoder, z ∼ eθ(z|x). We then compute the sample
mean and the sample covariance matrix. We scatter-plot the mean values against the coordinates,
and plot the heat-map of the sample covariance whose diagonal is zeroed-out (we are interested
in covariances more than in variances), and whose entries are passed through the absolute value
function (we are interested in the magnitude of covariance). Additionally, for LRBF 41, we plot the
average-smoothed (with the 11x11 kernel) version of the covariance matrix to suppress the effect of
outliers. The results for TFBind-8 can be found in Figure 6, and for LRBF 41 in Figure 7.

Figure 6: TFBind-8

In TFBind-8, the mean values of all coordinates are within the [−0.01, 0.01] interval, and all co-
variance values are within [0, 0.07], indicating standard normal-like behavior of the latents, beyond
what was required - standard normality of individual cliques.

Figure 7: LRBF 41

In the higher-dimensional LRBF 41, the means are low-magnitude too, but the strength of this
property is much lower: there are three coordinates whose sample mean exceeds 0.3. The entries of
the covariance matrix are still quite low - up to 0.20 in rare cases, and they get lowered down to 0.07
after average-smoothing due to the prevelance of near-zero entries. The smoothing also reveals that
the highest covariance, the bright-yellow regions, occur in the lowest row of the smoothed matrix.
These entries correspond to covariances between the last coordinate z40 and all other coordinates.
This is expected because of the clique-based VIB that does not regulate the covariance between z40
and other entries often.

C EXPERIMENTAL DETAILS

Datasets. We use the implementation of Grudzien et al. (2024) to generate data with latent radial-
basis functions. Also, we initially wanted to use Design Bench (Trabucco et al., 2022) for experi-
ments with practical tasks. However, at the time of this writing, the benchmark suite was suffering

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

a data loss and was not readily available. To overcome it, we manually found the data and im-
plemented dataset classes. TFBind-8 (Trabucco et al., 2022) could be fully downloaded since the
number of possible pairs (x, y) is quite small. Hence, a design can be evaluated by looking up its
score in the dataset. For Superconductor (Hamidieh, 2018), we pre-trained an XGBoost oracle on
the full dataset, and trained our model and the baselines to predict the labels produced by the oracle.
The proposed designs of the tested models are evaluated by calling the oracle as well. We obtained
DNA Enhancers dataset from the code of Uehara et al. (2024), available at

https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/tree/master.

Following the procedure in

https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/blob/master/
tutorials/Human-enhancer/1-Enhancer_data.ipynb.

we additionally filter the dataset to keep only sequences featured by chromosomes from 1 to 4. We
use their pre-trained oracle for generating labels and evaluation of proposed designs. Following
Fannjiang & Listgarten (2020) and Trabucco et al. (2022), we train our models on the portions of
the datasets with values below their corresponding 80th. Upon evaluation, we obtain the ground-
truth/oracle value of the proposed design y, and normalize it as

ȳ =
y− ymin

ymax − ymin

,

and report ȳ. ymin and ymax are the minimum and the maximum of the training data. This normal-
ization scheme is different than, for example, the one in the work by Trabucco et al. (2022). We
choose this scheme due to its easy interpretability—a score of ȳ > 1 implies improvement over
the given dataset, which is the ultimate objective of MBO methods. However, we note that a score
of less than 1 does not imply failute of the algorithm, since we initialize our designs at a random
sample from the dataset, which can be arbitrarily low-value or far from the optimum. For some
functions, like in latent RBFs, the optima are very narrow spikes in a very high-dimensional space,
being nearly impossible to find (see Figure 1a). We choose such an evaluation scheme due to its
robustness that allows us to see how good ut improving any design our algorithms are overall.

Hyper-parameters. For baselines, we use hyper-parameters suggested by Trabucco et al. (2021).
We decreased the hidden layer sizes (at no harm to performance) for LRBF 31 and DNA Enhancers
tasks where the performance was unstable with larger sizes. Also, we haven’t tuned most of the Cliq-
ueformer’s hyper-parameters per-task. We found, however, as set of hyper-parameters that works
reasonably well on all tasks.

On all tasks, we use 2 transformer blocks in both the encoder and the decoder, with transformer
dimension of 64, and 2-head attention. The predictive model fθ(z) is a multi-layer perceptron
with 2 hidden layers of dimension 256. We change it to 512 only for DNA Enhancers. The best
activation function we tested was GELU (Hendrycks & Gimpel, 2016), and LeakyReLU(0.3) gives
similar results. We use dropout of rate 0.5 (Srivastava et al., 2014). In all tasks, weight of the MSE
term to τ =10 (recall Equation (5)). Additionally, we warm up our VIB term linearly for 1000 steps
(with maximal coefficient of 1). We train the model with AdamW (Loshchilov et al., 2017) with the
default weight decay of Pytorch (Paszke et al., 2019). We set the model learning rate to 1e-4 and
the design learning rate to 3e-4 in all tasks. We train the design with AdamW with high rates of
weight decay (ranging from 0.1 to 0.5).

In all tasks, we wanted to keep the dimension of the latent variable z more-less similar to the di-
mension of the input variable x, and would decrease it, if possible without harming performance,
to limit the computational cost of the experiments. The dimension of z can be calculated from the
clique and knot sizes as

dim(z) = dknot +Nclique · (dclique − dknot).

In most tasks, we used the clique dimension dclique = 3 with knot size of dknot = 1. We made
an exception for Superconductor, where we found a great improvement by setting dclique = 21 and
Nclique = 4 (setting dclique = 3 and Nclique = 40 gives score of 0.99); and DNA Enhancers, where we

16

https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/tree/master
https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/blob/master/tutorials/Human-enhancer/1-Enhancer_data.ipynb
https://github.com/masa-ue/RLfinetuning_Diffusion_Bioseq/blob/master/tutorials/Human-enhancer/1-Enhancer_data.ipynb

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

doubled the clique size (to 6) and halved the number of cliques to (40), to lower the computational
cost of attention. In DNA Enhancers tasks, we additionally increased the MLP hidden dimension to
512 due to greater difficulty of modeling high-dimensional tasks. We summarize the task-specific
hyper-parameters in Table 2.

We want to note that these hyper-parameters are not optimal per-task. Rather, we chose schemes
that work uniformly well enough on all tasks. However, each task can benefit from further alteration
of hyper-parameters. For example, we observed that LRBF tasks benefit from different numbers of
design steps; for LRBF 41, we found the optimal number to be 400; for Superconductor, it seems
to be 200. Due to time constraints, we have not exploited scalability of Cliqueformer in DNA
Enhancers tasks, but observed pre-training losses to decrease more with increased parameter count
and training duration.

Task N clique d clique MLP dim design steps Weight decay
LRBF 11 10 3 256 50 0.5
LRBF 31 18 3 256 50 0.5
LRBF 41 20 3 256 50 0.5
LRBF 61 28 3 256 50 0.5
TFBind-8 4 3 256 1000 0.5
Superconductor 4 21 256 1000 0.5
Dna Enhancers 40 6 512 1000 0.1

Table 2: Hyper-parameter configuration for different benchmark tasks.

Below, we list the computational complexities, as the order of the number of FLOPs, for each
method’s training step and design optimization phase, as a function of batch size B, number of
model layers L, model’s hidden dimension H , number of exploratory perturbations P , number of
adversarial training sub-steps A, number of design optimization steps T , and the number of cliques
in an FGM-based model C. Note that the majority of quadratic terms, such as H2 and C2 do not
influence runtime much if parallelized on a GPU/TPU. We print in bold terms, such as T, that
contribute to the complexity with sequential operations, thus inevitably affecting the runtime.

Method Training step Design
Grad Asc. O(BLH2) O(TLH2)

RWR O(BLH2) O(TPLH2)

COMs O((A+B)LH2) O(TLH2)

DDOM O(BLH2) O(TLH2)

Transformer O(BLHD(H +D)) O(TLHD(H +D))

Cliqueformer O(BLH(D(H +D) + C(H + C))) O(TLH(D(H +D) + C(H + C)))

Table 3: Computational complexities (in terms of FLOPs) of methods from Section 5.

D MORE RELATED WORK

Several reinforcement learning (RL) approaches have been explored extensively for biological se-
quence design. DyNA-PPO (Angermueller et al., 2019) leverages proximal policy optimization
(Schulman et al., 2017) with a model-based variant to improve sample efficiency in the low-round
setting typical of wet lab experiments. PEX, also resembling the PPO (Schulman et al., 2017)
learning style, (Ren et al., 2022) prioritizes local search through directed evolution (Arnold, 1998)
while using a specialized architecture for modeling fitness landscapes. FBGAN (Gupta & Zou,
2018) introduces a feedback loop mechanism to optimize synthetic gene sequences using an exter-
nal analyzer. However, these methods fundamentally rely on active learning and iterative refinement
through oracle queries - DyNA-PPO requires simulator fitting on new measurements, PEX conducts
proximal exploration, and FBGAN uses feedback loops with an external analyzer. This makes them
unsuitable for offline MBO settings where no additional queries are allowed. Furthermore, while

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

these approaches are specialized for biological sequences, offline MBO aims to tackle a broader
class of design problems through static dataset learning.

18

	Introduction
	Preliminaries
	Model-based Optimization
	Functional Graphical Models

	Cliqueformer
	Non-Uniqueness of Structure Discovery
	Architecture
	Optimizing Designs With Cliqueformer

	Related Work
	Experiments
	Benchmarking
	Ablations

	Conclusion
	Theoretical details
	Representation distribution
	Experimental details
	More Related Work

