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ABSTRACT

Evaluating domain generalization (DG) for foundational models like CLIP is chal-
lenging, as web-scale pretraining data potentially covers many existing benchmarks.
Consequently, current DG evaluation may neither be sufficiently challenging nor
adequately test genuinely unseen data scenarios. To better assess the performance
of CLIP on DG in-the-wild, a scenario where CLIP encounters challenging unseen
data, we consider two approaches: (1) evaluating on 33 diverse datasets with
quantified out-of-distribution (OOD) scores after fine-tuning CLIP on ImageNet,
and (2) using unlearning to make CLIP ‘forget’ some domains as an approxima-
tion. We observe that CLIP’s performance deteriorates significantly on more OOD
datasets. To address this, we present CLIP-DCA (Disentangling Classification
from enhanced domain Aware representations). Our approach is motivated by
the observation that while standard domain invariance losses aim to make repre-
sentations domain-invariant, this can be harmful to foundation models by forcing
the discarding of domain-aware representations beneficial for generalization. We
instead hypothesize that enhancing domain awareness is a prerequisite for effective
domain-invariant classification in foundation models. CLIP-DCA identifies and
enhances domain awareness within CLIP’s encoders using a separate domain head
and synthetically generated diverse domain data. Simultaneously, it encourages
domain-invariant classification through disentanglement from the domain features.
CLIP-DCA shows significant improvements within this challenging evaluation
compared to existing methods, particularly on datasets that are more OOD.

1 INTRODUCTION
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Figure 1: Improvement over zeroshot af-
ter finetuning on ImageNet (in %). Each
dot represents a target dataset. OOD
scores are quantified relative to Ima-
geNet (source dataset), illustrating the
challenge of DG in-the-wild.

Domain generalization (DG) aims to train models that
maintain robust performance when encountering out-of-
distribution (OOD) data (Zhou et al., 2022a). A key as-
sumption of DG is that the target domains represent novel
data distributions for evaluation. However, this assump-
tion is challenged when evaluating pretrained foundation
models like CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021). These models have been trained on compre-
hensive web-scale datasets, thus have likely been exposed
to most existing domains, contributing to its impressive
zero-shot capabilities. Consequently, much research has
focused on adapting CLIP through parameter-efficient fine-
tuning (Zhou et al., 2022c;b; Gao et al., 2024; Zhang et al.,
2022), regularization using the original weights (Worts-
man et al., 2022; Nam et al., 2024; Oh et al., 2024; Shu
et al., 2023), and even transductive methods (Wallingford
et al., 2023; Martin et al., 2024), largely preserving its pre-
trained knowledge. However, this reliance on pretrained
knowledge is predicated on an assumption of true OOD robustness that is now being challenged.
Recent studies show that evaluating foundation models for DG is often compromised by data leakage
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from web-scale pre-training (Teterwak et al., 2024; Yu et al., 2024). Teterwak et al. (2024) addresses
this by analyzing generalization from learned to unlearned samples within the pre-training data, while
Yu et al. (2024) proposes training models from scratch to avoid contamination entirely. These studies,
along with findings that retraining CLIP on cleaner data degrades OOD performance, suggest that
current DG evaluations may overestimate true OOD robustness (Mayilvahanan et al., 2024). While
these studies provide critical insight, they do not offer a tractable setting to test the generalization
performance of CLIP after specific, contaminating knowledge has been selectively removed.

To address this gap, we propose that DG evaluation for foundation models, such as CLIP, should be
more challenging, to approximate “domain generalization in-the-wild," where CLIP might encounter
diverse and challenging new data in the real-world. We evaluate CLIP on 33 target datasets spanning
a diverse range of OODness. To systematically approach evaluation, we quantify a multi-modal OOD
score (Sec. 3.2), using ImageNet as both an anchor and a source dataset owing to its inclusion of
many classes and concepts. We find that after finetuning on ImageNet, CLIP’s DG performance
degrades on datasets with higher OOD scores with respect to ImageNet (Figure 1), consistent with
the domain contamination findings (Mayilvahanan et al., 2024). In addition, to further simulate
truly unseen domains, we use an unlearning technique (Sepahvand et al., 2025) to make CLIP forget
some domains (Sec. 3.3), and find significant performance degradation for existing robust finetuning
methods.

Our results (Figure 9), alongside findings on domain contamination (Mayilvahanan et al., 2024),
suggest that for DG in-the-wild, different robust finetuning algorithms are needed for genuinely
unseen data. In light of this, we present CLIP-DCA (Disentangling Classification from enhanced
domain Aware representations), an end-to-end finetuning method to improve the robustness of CLIP
on truly OOD data. A key idea in DG is that learning domain-invariant features is beneficial for robust
generalization (Zhou et al., 2022a; Ganin et al., 2016). However, naively enforcing domain invariance
for a pretrained foundation model could cause catastrophic forgetting of useful features learned
from diverse domains during pretraining as the model is forced to make its representations entirely
domain-invariant. We hypothesize that to learn effective domain invariance, domain awareness
is a prerequisite. This awareness is critical to maintain CLIP’s vast knowledge, which includes
generalizable features that support capabilities like zero-shot classification. By enhancing domain
awareness, CLIP can also selectively disentangle classification from domain-specific aspects, thereby
achieving robust generalization without forgetting valuable information.

We combine the idea of domain awareness and domain invariance by encouraging them simultaneously
within CLIP-DCA (Figure 2). Specifically, we encourage domain awareness within CLIP’s image
and text encoders, while promoting domain invariance specifically at the final classification layer
through disentanglement. Our premise is that while domain awareness is a requirement to maintain
pre-existing knowledge, this awareness can be disentangled for domain-invariant classification and
robust generalization. To achieve this, we add a new head to the CLIP image encoder, called the
domain head, which is trained to understand domains. The original classification head is then
disentangled from the domain head, effectively learning domain awareness within its encoders and
achieving domain invariance at the classification stage. Additionally, since many datasets lack distinct
domains or textual descriptions, and the definition of ‘domain’ is often vague in DG in-the-wild,
we address this by using diffusion models to create images of artificial domains and Multimodal
LLMs (MLLMs) to generate descriptions for these artificial domains (Sec. 2.2). Our contributions
are summarized as follows:

• We demonstrate potential limitations in current DG evaluations of foundation models, supported
by our results and recent studies. Existing benchmarks may overestimate true OOD robustness,
potentially leading finetuning strategies towards in-distribution improvement rather than OOD.

• We propose more challenging and holistic evaluations for DG in-the-wild. We use an expanded
cross-dataset evaluation setting spanning 33 datasets from diverse domains, indexed by multi-
modal OOD scores. We also use an unlearned model to further approximate unseen domains.

• We introduce CLIP-DCA, a novel finetuning method that improves OOD robustness by disen-
tangling classification from enhanced domain-aware representations. We find that on more OOD
target datasets, CLIP-DCA performs significantly better compared to existing robust finetuning
methods, while performance is similar across all methods on less OOD target datasets.

Related Work. A comprehensive review is in Appendix A. Domain generalization (DG) has
traditionally focused on learning domain-invariant representations (Ganin et al., 2016; Zhou et al.,
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Figure 2: CLIP-DCA applies different sets of losses to source data images and diffusion images.
For source images, accurate classification is encouraged through the classification loss between
class head and text encoder (C1). Invariance is encouraged through the disentanglement between
domain and class heads (C2). With diffusion images, domain invariance is encouraged through the
disentanglement between the domain and class heads (C3), and disentanglement between class head
and text encoder (C4). Domain awareness is encouraged through the agreement between the domain
head and the text encoder (C5), and the agreement between the text encoder and the MLLM hidden
states (C6). During inference, only the class head and text projector are used for classification.

2022a), but naively applying these methods to foundation models like CLIP can cause catastrophic
forgetting. Consequently, most robust CLIP finetuning methods aim to preserve pretrained knowledge
through parameter-efficient finetuning (PEFT) (Zhou et al., 2022c; Gao et al., 2024) or regularization
towards the original weights (Wortsman et al., 2022; Shu et al., 2023). However, this reliance on
pretrained knowledge is being questioned by recent findings of domain contamination in web-scale
datasets (Teterwak et al., 2024; Yu et al., 2024; Mayilvahanan et al., 2024), which suggest current
evaluations may overestimate true OOD robustness. Our work addresses this by proposing a more
challenging evaluation framework and a method that learns targeted invariance without sacrificing
pretrained knowledge.

2 CLIP-DCA: DISENTANGLING CLASSIFICATION FROM ENHANCED
DOMAIN-AWARE REPRESENTATIONS

To address the challenges of DG in-the-wild, we introduce CLIP-DCA (Disentangling Classification
from enhanced domain Aware representations), a finetuning method designed to improve robustness
on genuinely unseen data.

2.1 ENCOURAGING DOMAIN AWARENESS AND INVARIANCE SIMULTANEOUSLY

Our key hypothesis is that domain invariance at the decision-making stage is beneficial for generalizing
to unseen domains. At the same time, domain awareness is required for retaining the vast pretrained
knowledge of CLIP. We achieve them simultaneously by encouraging domain awareness in the
encoders, while enforcing domain invariance only in the classifier of CLIP through disentanglement.
The intuition is that if a model understands what constitutes as domain-specific features, then it
can learn to disregard it appropriately during classification on unseen domains.

Enforcing domain invariance in the encoder through conventional domain adversarial learning, for
instance, can be harmful. Our experiments show that applying invariance directly leads to worse
performance compared to standard finetuning (Figure 8). Forcing the entire model to become domain-
invariant can lead to the forgetting of valuable, fine-grained features learned during the pretraining on
a large dataset. Conversely, existing CLIP robust finetuning methods discourage divergence from
the original pretrained model, and rely on the assumption that CLIP is inherently robust to OOD
data. This assumption is challenged by our results (Figure 9) and evidence for domain contamination
(Teterwak et al., 2024; Yu et al., 2024; Mayilvahanan et al., 2024).

Instead, we focus on enforcing domain invariance only at the final classification layer, while simultane-
ously encouraging the image encoder to become domain-aware. Our intuition is that a comprehensive
understanding of various domains enables the model to more effectively disregard domain-specific
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influences during inference. The diverse set of generated diffusion images and their descriptions
(detailed in Section 2.2) provides the necessary signals for enhancing this domain awareness.

Image 
encoder

Text 
encoder

[“dog”, “cat”, “turtle”]

Class head ProjectorT

I1 I2

T1 T2 T3

I1⋅T1

I1⋅T2

I1⋅T3

I2⋅T1

I2⋅T2

I2⋅T3

Figure 3: Standard CLIP
inference pipeline using
a dot product between im-
age and text embeddings
for classification.

To implement this, we introduce an architectural addition to the CLIP
image encoder. We add an additional linear projection head, termed
the image domain head (ID), which has the same dimensionality as the
original image projection head, referred to as the image class head (IC ), as
shown in Figure 2. We do not add a corresponding domain head to the text
encoder for two reasons. First, in most downstream classification datasets,
only class names are available as text inputs, without domain descriptions.
Second, textual information inherently allows for easier separation of
domain and class attributes. For instance, a prompt like "a sketch of a
dog" clearly distinguishes class ("dog") from domain ("sketch"). Note
that for inference, the standard pipeline is used as shown in Figure 3. The
domain head and other losses are not used.

During training, we use two distinct loss functions for the two types of
data we use - the source dataset and generated diffusion images. We use
ℓa to refer to agreement loss (the standard CLIP contrastive loss (Radford
et al., 2021) or finetuning (Goyal et al., 2023)). We use ℓd to refer to
disentanglement, which enforces statistical independence between two
sets of representations. Inspired by the simplicity of self-supervised
methods (Zbontar et al., 2021; Bardes et al., 2021), we achieve this by minimizing the correlation
between the class and domain embeddings. The loss is formulated as the squared sum of the
diagonal of the cross-correlation matrix between the batch-normalized class embeddings and domain
embeddings. This penalizes any shared information, encouraging the class head to find predictive
representations that are independent of features useful for domain prediction.

The role of the disentanglement loss is to enforce this separation. The underlying assumption is that
if the two representations are truly disentangled, the features from the class head for a given sample
should be statistically independent from the features learned by the domain head for that same sample.
By minimizing the correlation between the class and domain embeddings, this loss encourages the
class head to find representations that are predictive of the class label without using features that are
also useful for predicting the domain. Conversely, it encourages the domain head to focus only on
domain-specific information, as any shared information with the class head is penalized.

We simultaneously encourage accurate classification, domain awareness in both text and image
encoders, and domain invariance at the classification stage with the following loss terms:

1. For the source dataset images (e.g., ImageNet, with only class labels):
• A classification loss (i.e., the standard CLIP contrastive loss (Goyal et al., 2023)) between

the output of the image class head and the text embedding of the class name, C1 :=
ℓa(IC , PT ).

• A disentanglement loss between the class and domain heads, C2 := ℓd(IC , ID).
• For source dataset images, we minimize the loss function Lsource = C1 + C2.

2. For the diffusion images and their MLLM-generated style descriptions:
• A disentanglement loss between the class head and domain head, C3 := ℓd(IC , ID).
• A disentanglement loss between the text embedding of style descriptions and the image class

head to further encourage the class head to learn domain invariance, C4 := ℓd(PT , IC).
• An agreement loss between the output of the image domain head and the text embedding

of the style description, enhancing domain head’s domain awareness, C5 := ℓa(PT , ID).
• An agreement loss between the text embedding and the corresponding projected MLLM

hidden state, enhancing the text encoder’s domain awareness, C6 := ℓa(PT , PH).
• For diffusion images, we minimize the loss function Ldiffusion = C3 + C4 + C5 + C6.

For a detailed implementation, pseudocode for the main training loop is provided in Appendix B.

2.2 GENERATING DIVERSE DOMAINS

Traditional DG benchmarks provide multi-domain datasets, enabling the learning of domain in-
variance. However, our evaluation setup, which involves finetuning on a single source dataset like
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ImageNet, lacks explicit multiple source domains, especially as the boundary for different domains
becomes more vague for DG in-the-wild. Additionally, we hypothesize that to understand what
constitutes as domain-specific features, a diverse number of domains are required.

“provide ideas for image styles”

MLLM
Llava (Llama-8B)

Stable Diffusion 3

“describe style of image”

MLLM
Llava (Llama-8B)

“… reminiscent of pixel art …”

Hidden states

Figure 4: Pipeline for
generating synthetic do-
main images and descrip-
tions.

To address this, we construct a small dataset with a diverse number of
domains. As illustrated in Figure 4, we prompt a MLLM, specifically
LLaVA (Liu et al., 2023), to generate ideas of 512 distinct styles for im-
ages (e.g. "pixel art"). The complete list of styles is available in Table G.1
in the Appendix. A text-to-image diffusion model (Stable Diffusion 3
(Esser et al., 2024)) then generates images from these stylistic prompts.
We intentionally omit any class labels during image generation to ensure
the styles are not biased towards specific classes. We generate 8 images
per style, creating a dataset of 4096 images. Finally, the same MLLM
generates textual domain descriptions (captions) for each style. We also
store the hidden state representations from the MLLM that were used
to generate these style descriptions, as these will be used to encourage
domain awareness in the text encoder. The exact prompts used for style
and description generation are detailed in Appendix F.

3 EXPERIMENTAL SETUP

3.1 EVALUATING DG IN-THE-WILD PERFORMANCE

Digits-DG

Terra Incognita

PACS

Office-Home

Camyleon-Wilds

FMOW-Wilds

ImageNets

Figure 5: PCA visualization
of domains from different do-
main generalization datasets

We first analyze standard Domain Generalization (DG) benchmarks
and find their domains are not well-separated. Using a Spectral-
normalized Neural Gaussian Process (SNGP) (Liu et al., 2020) to
compute pairwise OOD scores, we observe strong intra-benchmark
clustering, as visualized in Figure 5. This clustering, along with
CLIP’s high zero-shot accuracy and the success of transductive
methods on these datasets (Wallingford et al., 2023; Martin et al.,
2024), suggests that current DG evaluations are not sufficiently
challenging for large-scale models, possibly due to pre-training data
contamination.

To address this, we finetune CLIP on ImageNet-1K (Deng et al.,
2009) and evaluate its generalization capabilities across a more di-
verse benchmark of 33 target datasets spanning standard DG bench-
marks and other challenging classification tasks (full list provided in Table E.1). A cross-dataset
evaluation is significantly more challenging compared to traditional DG setups, as it involves larger
visual distribution shifts and also shifts in class labels. This evaluation also aligns with the methodolo-
gies of prior studies investigating robust CLIP finetuning (Zhou et al., 2022c;b; Gao et al., 2024; Shu
et al., 2023), while adding a broader coverage of domains. We use the CLIP ViT-B/32 model for all ex-
periments. Further implementation details, including optimizer settings and specific hyperparameters
for our method, are provided in Appendix C and D.

3.2 MEASURING OODNESS OF THE TARGET DATASETS
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Figure 6: OOD score of 33 target
datasets against ImageNet and clas-
sification accuracy improvement
over zeroshot

Given that our DG in-the-wild evaluation includes many target
datasets with varying degrees of OODness compared to Im-
ageNet, establishing a quantitative OOD metric is beneficial
for a more holistic assessment of OOD robustness. A unique
consideration for CLIP is its dual-encoder architecture. To pro-
vide a comprehensive score, we utilize OOD measures for both
the image and text modalities. For the image encoder, we use
SNGP (Liu et al., 2020) calibrated on the ImageNet validation
data to compute an OOD score for all 33 target datasets. In
addition, we use a text-based OOD measure (Fort et al., 2021)
to measure OODness of class labels. This involves calculating
classification probabilities on a combined label set of target
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dataset class names and ImageNet class names using the target domain image embeddings. The text
OOD score is the summed probability assigned to the target-specific class names.

We verify that our OOD score shows a strong negative correlation (r=-0.756, p<0.001) with perfor-
mance on target datasets after finetuning, as shown in Figure 6. Notably, we find that averaging the
image and text OOD scores is important for accurately predicting post-finetuning accuracy. Relying
solely on the image OOD score (r=-0.099) or the text OOD score (r=-0.608) yields weaker corre-
lations, providing evidence that OOD scores in both modalities are necessary for a comprehensive
understanding of OOD challenges in the context of CLIP. A detailed breakdown of the OOD scores
for all 33 target datasets is provided in Appendix J.

3.3 SIMULATING UNSEEN DOMAINS VIA UNLEARNING

Table 1: Unlearning effectiveness. ZS:
Original zero-shot performance. FT:
Baseline fine-tuning on the GCC reten-
tion set. Unlearn: Full unlearning com-
bining retention on GCC with adversar-
ial unlearning on DomainNet.

Metric/Data ZS FT Unlearn
Imagenet
IN 1 54.2 52.0 48.8
IN 2 48.4 45.5 41.8
IN Sketch 32.3 31.5 30.7
IN A 26.2 19.0 18.2
IN R 59.7 56.8 52.7

DomainNet
Clipart 64.3 67.0 53.0
Infograph 41.6 41.0 34.0
Painting 54.4 53.9 47.0
Real 80.5 80.7 73.3
Sketch 57.9 57.2 45.5
Quickdraw 12.1 8.2 0.3

Avg. on 33 51.1 49.7 45.5

Retraining a foundation model like CLIP from scratch to
omitting specific domains is computationally prohibitive.
To overcome this, we use an unlearning method as a proxy
to approximate a model that is not contaminated with
domains relevant to our evaluation. This controlled experi-
ment allows us to answer a critical research question: How
do robust fine-tuning methods perform on genuinely un-
seen domains? Our results expose weaknesses in existing
approaches that rely on pretrained weights.

Specifically, we adapt the adversarial learning-based un-
learning method (Sepahvand et al., 2025) for domain for-
getting. We finetune CLIP (Goyal et al., 2023) using a dual
objective. First, to retain general knowledge, we train on a
595,000-image subset of the CC3M dataset (Sharma et al.,
2018), referred to as GCC, previously used in LLaVA pre-
training (Liu et al., 2023), serving as a manageable proxy
for CLIP’s original training data. Second, to approximate
a scenario where domains similar to DomainNet are re-
moved, we apply domain adversarial training (Ganin et al.,
2016) on the DomainNet dataset, which we exclude from
our target datasets. We attach a binary classifier to the
penultimate layer of the image encoder. During training
batches, this classifier is fed representations of random
noise (assigned label 0) and images from DomainNet (as-
signed label 1). The gradient reversal layer (Ganin et al.,
2016) forces the image encoder to learn representations that confuse this classifier, making embed-
dings of DomainNet images and random noise indistinguishable, thereby encouraging the model to
unlearn domain-specific features from DomainNet. The unlearning occurs concurrently with standard
training on the GCC dataset to preserve CLIP’s core capabilities. A pseudocode of the unlearning
process is in Appendix B.

We deliberately unlearn on DomainNet, a dataset we do not use for final evaluation. Unlearning
our target evaluation datasets directly would unfairly penalize baseline methods. Many methods
are designed to regularize against large deviations from the original pretrained weights. By using
DomainNet as a proxy for domain contamination, we ensure a fairer comparison. The effectiveness
of our unlearning is confirmed by a performance drop on DomainNet while performance on many
other datasets is largely retained (Table 1).

This experimental setup is distinct from other recent proposals. While Teterwak et al. (2024) separate
samples based on whether they were learned during pre-training, their focus is on generalization
from well-learned to seen-but-unlearned concepts. In contrast, Yu et al. (2024) evaluate domain
generalization by training models from scratch without web-scale pre-training. Our approach is a
unique and practical middle ground. We measure the performance of a model that benefits from
web-scale pre-training but has had specific domain knowledge removed. This allows us to more
directly isolate the effect of domain contamination on robust fine-tuning.

6
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4 RESULTS AND DISCUSSION

4.1 FINETUNING ORIGINAL PRETRAINED CLIP
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Figure 7: Performance comparison of
CLIP-DCA against regular finetuning.
Best-fit lines, determined by linear re-
gression, illustrate performance trends.

We first evaluate CLIP-DCA in the context of our domain
generalization in-the-wild setup, using the original pre-
trained CLIP weights as the starting point. As shown in
Figure 7, CLIP-DCA consistently improves performance
over standard finetuning across target datasets. Impor-
tantly, the best-fit line for CLIP-DCA shows a flatter slope,
indicating that it is more robust to more severe OOD data
compared to regular finetuning. This observation aligns
with our hypothesis that encouraging domain invariance at
the decision-making layer, while simultaneously encour-
aging domain awareness within the encoders, is crucial for
robust classification on unseen distributions.

Figure 8 provides a broader comparison against additional
baselines. We observe that conventional domain adver-
sarial learning (DANN (Ganin et al., 2016)), is harmful
for CLIP, showing inferior performance compared to reg-
ular finetuning. This shows the potential disadvantage
of enforcing domain invariance across the entire image
encoder, which can lead to excessive forgetting of features
learned during pretraining. This suggests the importance
of approaches such as our proposed learning of targeted invariance through disentanglement.

40 60 80

OOD Score Against ImageNet

−40

−30

−20

−10

0

10

A
cc

u
ra

cy
 I

m
p
ro

v
em

en
t 

ov
er

 Z
er

o
sh

o
t

Regular finetune (FLYP)

Domain adversarial (DANN)

CLIP-Adapter

CoOp

CLIP-OOD

CLIP-DCA (Ours)

Figure 8: Comparison against more base-
lines.

Interestingly, on the most extremely OOD datasets,
parameter-efficient finetuning (PEFT) techniques like
CoOp (Zhou et al., 2022c) and CLIP-Adapter (Gao et al.,
2024) perform best. PEFT methods minimally change a
small subset of the original CLIP weights. Consequently,
their performance shows much lower variance across the
datasets, with improvements (around 1-2%). It is impor-
tant to note that on extreme OOD datasets, all end-to-end
finetuning methods exhibit lower performance than the
zero-shot CLIP baseline. While CLIP-DCA mitigates this performance drop compared to standard
finetuning, it does not entirely overcome it.

This strong zero-shot performance has often been attributed to CLIP’s inherent OOD generalization
capability. However, the study by (Mayilvahanan et al., 2024) challenges this assumption and shows
that this generalization could be attributed to domain contamination. They show that when CLIP is
retrained solely on natural images, its OOD performance drops to similar levels as models trained
exclusively on ImageNet. This drop could offer a plausible explanation for observations like those
motivating Wise-FT (Wortsman et al., 2022), where standard finetuning was found to degrade OOD
performance.

4.2 FINETUNING AFTER UNLEARNING

To further investigate the impact of potential domain contamination and to establish a more rigorously
"unseen" evaluation, we applied the unlearning procedure detailed in Section 3.3 to the pretrained
CLIP model. We then finetuned this "unlearned" model on ImageNet-1K and evaluated its perfor-
mance. Table 2 shows the accuracies on the ImageNet variant datasets. Full per-dataset accuracy
details for all methods, both before and after unlearning, are provided in Appendix I. For this analysis,
we also include several end-to-end robust finetuning methods that add a linear classifier to CLIP. Due
to their architecture, these specific baselines are evaluated only on the ImageNet variants as they
cannot be adapted to datasets with different class labels.

Our results show that robust end-to-end finetuning methods remain effective for datasets that are
less OOD even after unlearning. For instance, MIRO (Cha et al., 2022) and Wise-FT (Wortsman
et al., 2022) outperform regular finetuning on ImageNet-V1, ImageNet-V2, and ImageNet-Sketch. To
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Table 2: Accuracy on ImageNet variants

Method V1 V2 Sketch A R

Zeroshot (unlearned) 48.8 41.8 30.7 18.2 52.7
Regular Finetune 69.8 58.4 34.7 15.0 52.6
DANN 70.0 58.2 33.2 16.5 52.0
CLIP Adapter 52.9 45.7 28.4 15.0 51.6
CoOp 53.3 46.2 29.1 16.1 52.8
MMA 71.7 60.0 36.1 7.8 37.0
LwEIB 53.8 46.7 30.4 16.3 54.1
Wise-FT 72.9 61.3 40.0 9.4 43.0
MIRO 74.1 62.7 35.7 7.3 33.2
CLIP-OOD 69.0 58.2 35.3 15.0 45.8
CLIP-DCA (Ours) 75.1 63.9 42.2 22.9 62.2
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Figure 9: Comparison against base-
lines after unlearning.

broaden our comparison, we also include other recent CLIP-based DG methods such as MMA (Yang
et al., 2024) and LwEIB (Yang et al., 2025), which similarly demonstrate that performance does not
consistently generalize to more OOD datasets. However, consistent with the trends seen with the
non-unlearned model, performance significantly drops on datasets with larger OOD scores, such as
ImageNet-A and ImageNet-R. Similarly, PEFT methods show slight improvements over zero-shot on
ImageNet-V1, V2, and Sketch, but their performance drops on ImageNet-A and R.

Figure 9 shows that the performance of all methods, even PEFT methods, further drops as OODness
increases across target datasets when finetuning the unlearned model. If the unlearning process
successfully reduced the knowledge of target-like domains, existing robust finetuning methods, which
rely on the pretrained weights, would struggle on genuinely OOD data. These results suggest that our
unlearning approach was effective in simulating a less contaminated starting point.

With the unlearned model, CLIP-DCA shows high performance. For datasets with moderate OOD
scores relative to ImageNet, CLIP-DCA achieves larger performance improvements compared to
other methods. More importantly, on the extremely OOD datasets, the performance of our method
remains close to the zero-shot model, without significant performance drops. This suggests that our
mechanism of encouraging domain awareness while selectively enforcing invariance at the decision
layer is particularly beneficial when starting from a model with reduced prior exposure to target-like
domains.

4.3 ABLATIONS

Table 3: Ablations on GCC inclusion. Accuracy
on ImageNet variants (V1, V2, Sketch, A, R)
and Avg. accuracy on 33 datasets.

Setting V1 V2 Sketch A R Avg.

Zeroshot 46.0 40.4 27.4 15.1 51.6 45.5

ImageNet only
FLYP 69.8 58.4 34.7 15.0 52.6 43.6
DANN 70.0 58.2 33.2 16.5 52.0 42.5
CLIP-DCA 75.3 64.1 40.3 22.3 60.3 48.6

ImageNet+GCC
FLYP 70.6 59.7 38.5 17.6 57.5 49.0
DANN 70.5 59.4 38.6 17.4 57.2 47.5
CLIP-DCA 75.1 63.9 42.2 22.9 62.2 52.1

Including GCC data. When finetuning CLIP-
DCA, we also use the GCC dataset – the dataset with
595,000 image-caption pairs used to prevent CLIP
from collapsing during the unlearning procedure (Sec.
3.3). While the dataset is smaller than ImageNet-1K,
it serves as a manageable proxy for the data CLIP was
originally pretrained on. The image-caption pairs pro-
vide valuable supervision particularly for training the
text encoder and possibly preventing catastrophic for-
getting during finetuning on a classification datasets
like ImageNet.

We study the contribution of the GCC data as shown
in Table 3. A key observation is that the inclusion
of GCC provides a notable benefit even for standard
finetuning (FLYP) (Goyal et al., 2023). This shows the general benefit of incorporating diverse,
captioned data during finetuning. Given these benefits, an alternative or complementary approach
could involve using MLLMs to generate rich textual descriptions for classes or images within the
primary source dataset, similar to strategies explored in (Pratt et al., 2023; Maniparambil et al.,
2023), which use an LLM to describe class names. Despite the general improvements, our method
consistently shows higher performance even when the GCC dataset was not included.
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Table 4: Ablation of CLIP-DCA components:
Domain descriptions (Domain), Disentangle-
ment (Disent.), MLLM Hidden States (MLLM
HS), and Avg. accuracy on 33 datasets.

Method / Config. Domain Disent. MLLM HS Avg.

MLLM (LLaVA) - - - 24.2

FLYP X X X 49.0
Ours O X X 49.1

O O X 50.8
O X O 49.0

Our full O O O 52.1

Different components of CLIP-DCA. We study
the effect of the different components of CLIP-DCA,
as shown in Table 4. We isolate the use of domain
descriptions from diffusion images to train the image
domain head, the disentanglement loss between the
class and domain heads to encourage invariance at
the classifier, and the use of MLLM hidden states
to encourage domain awareness in the text encoder.
Simply introducing domain descriptions to make the
image encoder aware of styles, without enforcing dis-
entanglement at the classifier, shows only a marginal
improvement over the FLYP baseline, suggesting that
domain awareness alone is insufficient without a mechanism to disentangle classification from it, as
CLIP may otherwise struggle to disregard domain-specific features irrelevant to classification. When
we incorporate the disentanglement loss to encourage domain invariance at the decision-making layer,
even without explicit domain awareness in the text encoder, performance slightly improves. This is
further evidence for our core hypothesis that enabling the model to disregard domain-specific features
during classification is important. Attempting to make both encoders domain-aware without the
disentanglement loss results in no improvement over the baseline, indicating that awareness without
a mechanism for invariance can be ineffective for OOD data. To study the effect of the MLLM’s
scale, we replaced LLaVA-8B with Gemini-2.5-Pro and observed a marginal performance difference
(see Table H.1 in the Appendix), suggesting our method’s efficacy is not primarily dependent on the
MLLM’s size but rather on the disentanglement framework itself. These results strongly support
our central hypothesis: the significant performance gain of our full method demonstrates that the
balance between domain awareness and disentangled invariance is the critical factor for robust
generalization in this challenging setting.

Limitations. One concern might be the reliance on synthetically generated diffusion images and
MLLM-extracted features for domain awareness. However, this is mitigated by: (1) the small size
of the diffusion dataset (4096 samples), (2) images synthesized using generic, class-agnostic style
prompts, and (3) the MLLM processing multiple style-consistent images, which focuses it on style
over objects. Furthermore, DANN (Ganin et al., 2016) and our ablations without disentanglement
(Table 4), even with such data, fails to improve CLIP’s OOD performance (Table 3).

The role of the MLLM may also be questionable, as LLaVA internally uses a CLIP-L encoder.
However, LLaVA’s poor zero-shot image classification performance (Table 4), a known issue attributed
to MLLMs’ improper alignment for classification (Zhang et al., 2024), justifies not using it as a
direct classifier. Instead, we use an MLLM because CLIP captures global information from images,
which prioritizes overall style (Tong et al., 2024), making its representations suitable for domain-level
information. The MLLM, with its language capabilities, is then able to explain the perceived domain
styles into textual descriptions and provide informative hidden state representations.

Lastly, our unlearning strategy involves making DomainNet images and random noise indistinguish-
able, differing from Sepahvand et al. (2025) where samples are typically mapped to known OOD
data. This adaptation was necessary as CLIP’s extensive web-scale pretraining makes finding truly
unseen data challenging. Future work could explore more sophisticated unlearning methods for DG
in-the-wild evaluation. Nevertheless, the significant degradation observed in zero-shot performance
post-unlearning, and the fact that PEFT methods showed improvements on less OOD data but poorer
performance on more OOD data, is evidence that our unlearning procedure functioned as intended.

5 CONCLUSION

In this work, we highlighted the potential limitations of current DG evaluation settings for foundation
models like CLIP, which may not adequately test unseen data scenarios. We instead used a more
challenging and comprehensive evaluation to simulate DG in-the-wild, with quantified OOD scores
for target datasets, and an unlearning approach to further simulate unseen data. To address the
challenges of DG in-the-wild, we introduced CLIP-DCA. Our method disentangles classification from
domain-aware representations, motivated by the idea that while domain invariance is important for
performance on unseen data, domain awareness is important to retain the vast pretrained knowledge
of CLIP. Overall, our method significantly improves OOD robustness over existing baselines.
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A EXTENDED RELATED WORK

Domain Generalization. Learning domain-invariant representations has historically been a central
idea in domain generalization (Blanchard et al., 2011; Zhou et al., 2022a). The intuition is that when
classifying images from entirely new distributions, learning abstract features common across source
domains should provide better robustness for classification in new domains (Blanchard et al., 2011;
Muandet et al., 2013). Among these, domain-adversarial learning methods have become a relatively
standard approach within the DG field due to its conceptual simplicity and effectiveness (Zhou et al.,
2022a). For instance, Domain Adversarial Neural Networks (DANN) (Ganin et al., 2016) uses an
auxiliary domain classifier trained adversarially against the encoder, encouraging the encoder to
produce features indistinguishable across source domains. Given the focus of DANN on the central

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

idea of domain invariance, we focus on DANN and its adaptation to CLIP in our analysis. Notably,
despite the prevalence of such DG methods, the direct application for CLIP is not well-established
and remains underexplored. Naively enforcing domain invariance on foundation models like CLIP,
with large pretrained knowledge, risks catastrophic forgetting.

Robust Finetuning of CLIP. The introduction of CLIP marked a significant shift in DG research. The
original study (Radford et al., 2021) demonstrated impressive zero-shot classification performance
across diverse benchmarks, including OOD datasets. The authors attributed this capability to CLIP
learning representations that are less reliant on spurious correlations specific to downstream target
datasets, as CLIP was not trained on these specific datasets during its initial pretraining.

The assumption of the inherent OOD robustness in CLIP motivated numerous methods aimed at
finetuning CLIP for downstream tasks while enhancing its perceived robustness. A common approach
is parameter-efficient finetuning (PEFT) strategies. An early influential study, CoOp (Zhou et al.,
2022c), introduced learnable textual prompts, motivated by observations that manually crafted prompt
ensembles improved CLIP’s zero-shot accuracy. Building on this, CoCoOp (Zhou et al., 2022b) made
these prompts dynamic by conditioning them on individual image features through a cross-attention
mechanism. Similarly, CLIP-Adapter (Gao et al., 2024) proposed adding lightweight, learnable MLP
layers (adapters) to the CLIP encoders, finetuning only these small adapters instead of the entire
network. Many more subsequent PEFT methods have also been explored (Cho et al., 2023; Chi et al.,
2024; Lee et al., 2025; Addepalli et al., 2024; Bai et al., 2024; Li et al., 2022; Khattak et al., 2025;
Cheng et al., 2024; Lafon et al., 2024).

End-to-end finetuning methods have also been explored, yet many still depend on the original
pretrained CLIP weights for regularization or guidance. Wise-FT (Wortsman et al., 2022), motivated
by observing that standard finetuning often degraded zero-shot OOD performance, ensembles the
weights of the finetuned model with the original CLIP weights. CLIP-OOD (Shu et al., 2023) used
a beta-moving average of the weights during finetuning alongside a regularization term to enhance
semantic relationships learned during pretraining. MIRO (Cha et al., 2022) used mutual information
regularization between the finetuning model and the frozen pretrained CLIP model to retain pretrained
features.

While many other methods show strong performance on OOD benchmarks, this overview highlights
representative approaches, their trends, and assumptions in robust CLIP finetuning. Our work,
however, questions whether current evaluation protocols are sufficiently challenging, and suggests
the reliance on the pretrained weights may be suboptimal for true OOD generalization, a concern
supported by evidence of domain contamination during pretraining (Mayilvahanan et al., 2024).
Consequently, we explore more challenging evaluations and alternative strategies for training CLIP
grounded in DG principles.

B PSEUDOCODE

B.1 MAIN TRAINING LOOP (CLIP-DCA)

1 # Note: logit scales (temperature term) were omitted for simplicity
2 def classification_loss(image, text):
3 logits_per_image = image @ text.T
4 logits_per_text = text @ image.T
5 labels = torch.arange(len(image), device=device)
6 return (F.cross_entropy(logits_per_image, labels) +
7 F.cross_entropy(logits_per_text, labels)) / 2
8

9 def disentangle_loss(x, y):
10 x = (x - x.mean(0)) / (x.std(0) + 1e-8)
11 y = (y - y.mean(0)) / (y.std(0) + 1e-8)
12 cross_cor_mat = (x @ y.T) / len(x)
13 return torch.diagonal(cross_cor_mat).pow(2).sum()
14

15 # Architectural additions (training only)
16 domain_head = nn.Linear(...)
17 mllm_projector = nn.Linear(...)
18
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19 # 1. Diffusion data batch
20 d_images, d_hidden, d_text = d_batch
21 penultimate_img_emb, class_img_emb, text_emb = clip_model(d_images,

d_text)
22 domain_img_emb = domain_head(penultimate_img_emb.clone())
23 domain_mllm_emb = mllm_projector(d_hidden)
24

25 C5 = classification_loss(domain_img_emb, text_emb) # Domain Agreement
26 C6 = classification_loss(domain_mllm_emb, text_emb) # MLLM Agreement
27 C3 = disentangle_loss(class_img_emb, domain_img_emb)
28 C4 = disentangle_loss(class_img_emb, text_emb)
29

30 loss_diffusion = C3 + C4 + C5 + C6
31

32 # 2. Source data batch
33 s_images, s_text = s_batch
34 penultimate_img_emb, class_img_emb, text_emb = clip_model(s_images,

s_text)
35 domain_img_emb = domain_head(penultimate_img_emb.clone())
36

37 C1 = classification_loss(class_img_emb, text_emb) # Classification Loss
38 C2 = disentangle_loss(class_img_emb, domain_img_emb)
39

40 loss_source = C1 + C2
41

42 # 3. Final loss
43 loss = loss_diffusion + loss_source

Listing 1: Main training loop for CLIP-DCA.

B.2 UNLEARNING LOOP

1 # Note: logit scales (temperature term) were omitted for simplicity
2 discriminator = nn.Linear(...)
3

4 # Following Ganin et al. (2016)
5 p = float(batch_idx + start_steps) / total_steps
6 alpha = 2. / (1. + np.exp(-10 * p)) - 1
7

8 def classification_loss(image, text):
9 # ... (same as in Algorithm 1)

10

11 # 1. Retention on GCC dataset
12 gcc_images, gcc_captions = gcc_batch
13 _, image_emb, text_emb = clip_model(gcc_images, gcc_captions)
14 retention_loss = classification_loss(image_emb, text_emb)
15

16 # 2. Unlearning on DomainNet
17 dn_images, _ = dn_batch
18 noise = torch.randn_like(dn_images, requires_grad=True)
19

20 # Pass both through encoder; apply gradient reversal to discriminator
21 features_dn, _ = clip_model.encode_image(dn_images)
22 features_noise, _ = clip_model.encode_image(noise)
23

24 combined_features = torch.cat((features_dn, features_noise), dim=0)
25 reversed_features = GradientReversalFunction.apply(combined_features,

alpha)
26

27 domain_logits = discriminator(reversed_features)
28 domain_targets = torch.cat((torch.ones(len(dn_images)),
29 torch.zeros(len(noise))), dim=0).long()
30 unlearning_loss = F.cross_entropy(domain_logits, domain_targets)
31

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

32 # 3. Final loss
33 loss = retention_loss + unlearning_loss

Listing 2: Unlearning loop with gradient reversal.

C TRAINING DETAILS

For all experiments, we used the CLIP ViT-B/32 model. Models were finetuned on the ImageNet-1k
training set for 5 epochs. The official ImageNet validation set was used. We used the AdamW
optimizer with a learning rate of 1e-5, with a cosine learning rate scheduler. Due to computational
constraints, a consistent batch size of 128 was maintained across all methods. For baseline methods,
any additional method-specific hyperparameters were adopted from the default configurations pro-
vided in their publicly available codebases. All experiments were conducted with a single NVIDIA
RTX A5000 GPU and an AMD EPYC 7763 CPU.

D HYPERPARAMETER TUNING

This section provides details for hyperparameter tuning. In the main manuscript, we report 6
different losses for the distinction between source data and diffusion generated data (C1 - C6). For
hyperparameter tuning, we group these losses into four terms. C2 and C3 are grouped together as
the image disentangle term, while C1 and C4 are grouped together as the text disentangle term. We
report our hyperparameter tuning in Table . Due to computation limitation, the tuning was limited to
single term increments.

Table D.1: Average accuracy across 33 datasets for specific hyperparameter combinations.

MLLM hidden
state

MLLM
description

Text disentangle Image disentangle Avg. Acc. (%)

1× 10−4 1× 10−4 1× 10−4 1× 10−4 50.8
1× 10−3 1× 10−4 1× 10−4 1× 10−4 49.6
1× 10−2 1× 10−4 1× 10−4 1× 10−4 49.0
1× 10−1 1× 10−4 1× 10−4 1× 10−4 50.2

1× 10−4 1× 10−3 1× 10−4 1× 10−4 51.3
1× 10−4 1× 10−2 1× 10−4 1× 10−4 50.4
1× 10−4 1× 10−1 1× 10−4 1× 10−4 49.6

1× 10−4 1× 10−4 1× 10−3 1× 10−4 52.1
1× 10−4 1× 10−4 1× 10−2 1× 10−4 51.4
1× 10−4 1× 10−4 1× 10−1 1× 10−4 51.0

1× 10−4 1× 10−4 1× 10−4 1× 10−3 50.6
1× 10−4 1× 10−4 1× 10−4 1× 10−2 49.6
1× 10−4 1× 10−4 1× 10−4 1× 10−1 49.1

1× 10−4 1× 10−4 1× 10−3 1× 10−4 52.1 (Best)

E DATASETS

We report all target datasets used for our experiments. Note that for training, the ImageNet-1K
training set was used.
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Table E.1: List of datasets used in experiments, including number of classes and images. DG
benchmarks are listed first. Each domain within a DG benchmark is treated as a distinct dataset. The
number of images represent the validation/test set.

Dataset Name Brief Description # Classes # Images
Domain Generalization (DG) Benchmarks
Digits DG Collection of digit recognition datasets. – –

MNIST Grayscale handwritten digits (28x28). 10 6,000

MNIST-M MNIST digits with color patches blended
from BSDS500. 10 6,000

SVHN Colored house numbers from Google Street
View images (32x32). 10 6,000

SYN Synthetically generated digit images
(32x32). 10 6,000

Terra Incognita Camera trap images of wild animals from
different locations. – –

Location 100 Animal images from Location 100. 10 4,741
Location 38 Animal images from Location 38. 10 9,736
Location 43 Animal images from Location 43. 10 3,970
Location 46 Animal images from Location 46. 10 5,883

PACS Object recognition with domain shifts. – –
Art Painting Artistic paintings of objects. 7 2,048
Cartoon Cartoon images of objects. 7 2,344
Photo Photographic images of objects. 7 1,670
Sketch Sketch drawings of objects. 7 3,929

Office-Home Object recognition in different settings. – –
Art Artistic depictions of everyday objects. 65 1,972
Clipart Clipart images of everyday objects. 65 3,910

Product Product images of everyday objects (typi-
cally clean backgrounds). 65 3,984

Real Real-world photographic images of every-
day objects. 65 3,902

Individual Benchmark Datasets
Caltech-101 101 object categories (+1 background). 101 8,677
Oxford-IIIT Pets Images of pet breeds. 37 3,669
Oxford Flowers 102 Images of flower categories. 102 6,149
Stanford Cars Images of car makes, models, and years. 196 8,041
Food-101 Images of food categories. 101 25,250
FGVC Aircraft Images of aircraft variants. 100 3,333

SUN397 Scene understanding dataset with scene
categories. 397 108,754

Describable Textures
Dataset (DTD)

Textures in the wild, organized by 47
human-perceivable attributes. 47 1,880

EuroSAT Satellite imagery of land use and land cover
classes. 10 27,000

UCF101 Action recognition dataset of human action
categories from videos. 101 13,320

ImageNet-1K 1.28M natural images in 1000 classes
(ILSVRC 2012). 1000 50,000

ImageNet-V2 New test set for ImageNet-1K. 1000 50,889

ImageNet-Sketch Sketch images corresponding to ImageNet-
1K. 1000 50,000

ImageNet-A "Natural adversarial examples" of 200
classes. 200 7,500

Continued on next page
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Table E.1 – continued from previous page
Dataset Name Brief Description # Classes # Images

ImageNet-R "Renditions" (art, cartoons, etc.) of 200
ImageNet classes. 200 30,000

WILDS Benchmark Datasets (Treated as Individual)

Camelyon17-Wilds Histopathological images for tumor detec-
tion with hospital-based shifts. 2 85,054

FMOW-Wilds Satellite imagery for land use classification
with temporal/regional shifts. 62 53,473

F PROMPTS USED FOR MULTI-MODAL LANGUAGE MODELS (MLLMS)

This section details the specific prompts provided to Multi-Modal Language Models (MLLMs) for
the generation tasks.

F.1 PROMPT TO MLLM TO GENERATE IDEAS FOR DIFFERENT STYLES OF IMAGES

The following prompt was used to instruct the MLLM to generate a diverse list of image style ideas:

Give me ideas of 512 different styles of images.
Each style should be less than 5 words. Do not overlap styles.
Make the styles diverse.
Be brief.

F.2 PROMPT TO MLLM TO GENERATE DESCRIPTIONS AND HIDDEN STATES

The following prompt was used to instruct the MLLM to generate detailed descriptions of image
styles (independent of object category) and to also extract corresponding hidden states. The following
prompt was input together with images in each style:

Attached are multiple images in the same style.
Describe the aspects of the style that applies regardless of category.
Provide a description.
Do not describe the object in the image, but the style of image.
Be as detailed, complete, and comprehensive as possible.
Explain every minute detail.

G LIST OF ALL SYNTHETIC STYLES

This section provides the list of all synthetic style dieas that were generated by the LLM.

Table G.1 shows the 512 distinct style prompts used for generating synthetic data. The styles are
listed alphabetically across the columns.

Table G.1: List of 512 synthetic data generation styles (alphabetical order).

3D rendered image 3D rendering, virtual
objects ASCII art text ASCII art, text charac-

ters

Aboriginal dot painting Abstract expressionism Abstract expressionism
art

Abstract symbolic repre-
sentation

Abstract, non-
representational

Abstract, non-
representational form

Achromatic grayscale
image Achromatic, no color

Acrylic paint vibrant Action painting, dy-
namic Aerial drone footage Afrofuturism cultural

sci-fi

Continued on next page
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Table G.1 – continued from previous page
Algorithmic art, code-
based

Ambient light, natural
tones American scene painting Analog film, imperfec-

tions
Analogous colors har-
mony

Anamorphic distorted
perspective

Ancient Egyptian hiero-
glyphs Animal at rest

Animal drinking, water
source Animal eye contact Animal fighting, intense

conflict
Animal grooming, self-
care

Animal hiding, partially
obscured

Animal hunting, focused
gaze Animal looking away Animal marking territory

Animal mid-stride Animal playing, ener-
getic

Animal sleeping, peace-
ful

Animal tracks, fore-
ground focus

Animal vocalizing,
mouth open

Anime Japanese anima-
tion

Anime, Japanese anima-
tion

Architectural, building
structures

Art Deco geometry Art Nouveau curves Artificial light controlled Arts and Crafts
Assemblage found ob-
jects Assemblage, 3D collage Astrophotography star

trails
Asymmetrical dynamic
balance

Asymmetry, unbalanced
design

Augmented reality, over-
laid

Autumn leaves, warm
palette Available light natural

Avant-garde, experimen-
tal

Backlit silhouette light-
ing

Backlit subject, glowing
outline

Baroque dramatic light-
ing

Bio art, living organisms Biopunk organic technol-
ogy

Biopunk, genetic engi-
neering Bird’s-eye view elevated

Bird’s-eye view, distant Black and white film Blacklight fluorescent
colors

Blooming flowers, vi-
brant colors

Blue hour twilight Blueprint architectural
plan Body art, human canvas Bokeh light effect

Bold geometric patterns Boomerang, looping
video

Botanical art, plant sub-
jects Bright cheerful aesthetic

Broad lighting face Butterfly lighting beauty Byzantine mosaic icons Calligraphy elegant
lettering

Calligraphy, elegant
handwriting Camera flash, harsh light Camouflaged animal,

hidden
Candid street photogra-
phy

Candid, unposed mo-
ment

Caricature exaggerated
features

Cartoon simplified draw-
ing

Cartoon, exaggerated
features

Cave entrance, dark
frame Cave painting prehistoric Charcoal sketch drawing Charcoal sketch, rough

lines

Chibi cute style Chromatic aberration,
color fringing

Cinemagraph, subtle
movement

Claymation stop-motion
animation

Clear sky, bright blue Close up macro Close-up, animal portrait Close-up, feather detail

Close-up, fur texture Close-up, scale pattern Cloudscape art, sky
scenes Collage mixed media

Collage, mixed media Color contrast, comple-
mentary Color field painting Color grading cinematic

Color splash accent Color temperature cool Color temperature warm Comic book style

Comic book, panel style Complementary colors
contrast Conceptual, idea-driven Cross polarization, vi-

brant colors

Cross-hatching line work Cross-processed film Cross-processed, altered
colors

Cubism, geometric
shapes

Cubist geometric forms Cyanotype process print Cyanotype, blue print Cyberpunk cityscape
night

Cyberpunk style,
dystopian future

Daguerreotype antique
look

Dark ominous under-
tones Data bending corrupted

Data visualization, infor-
mation art

Decorative, ornamental
style

Decoupage, glued paper
cutouts Deep focus sharp

Delicate fine details Dense jungle, lush green Depth of field Depth of field,
blurred/sharp

Desaturated muted col-
ors

Desaturated, almost
monochrome

Dieselpunk retro-
futuristic

Different species to-
gether

Diffuse reflection matte Digital art, computer-
generated Digital glitchy aesthetic Digital noise, grain ef-

fect

Continued on next page
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Table G.1 – continued from previous page

Digital painting software Digital print, inkjet/laser Distortion, warped per-
spective

Documentary style, real-
istic

Doodle art casual Double exposure overlay Double exposure, ghost
image

Dramatic low-key light-
ing

Dramatic sky, storm
clouds

Dramatic spotlight, sin-
gle source

Dreamy ethereal soft
focus Duotone color scheme

Duotone, two-color
palette

Dusty trail, arid environ-
ment Dutch angle tilted Dynamic energetic com-

position
Earth art, natural materi-
als

Embroidery thread tex-
ture Engraving detailed metal Engraving, incised lines

Environmental art,
nature-focused

Environmental portrait,
surroundings Establishing shot context Etching fine lines

Etching, acid-etched
lines Expressionist bold colors Extreme close-up detail Extreme close-up, eye

detail
Fantasy art, mythical
creatures

Fashion illustration
stylish Fashion, clothing focus Fast motion, sped-up

action

Fauvist wild beasts Feeding animals, close
action Film noir style Fine art, aesthetic focus

Fish-eye lens view Fish-eye lens, distorted Flat lay top-down Flowing river, blurred
water

Focus stacking, all sharp Foggy morning, atmo-
spheric haze Folk art naive Folk art, traditional craft

Forced perspective trick Forced perspective, size
illusion Formal, posed shot Found object art

Fractal art mathematical Fractal art, mathematical Frontlit subject, clear
view Frozen lake, icy surface

Full shot composition Futuristic sci-fi vision Futuristic style, ad-
vanced

Generative art algorith-
mic

Generative art, algo-
rithms

Geometric abstract pat-
tern

Glamour, idealized
beauty

Glassblowing molten
glass

Glitch art digital Glitch art distortion Glitch art, corrupted data Glitch art, digital errors

Golden hour sunlight Golden ratio composi-
tion Golden ratio, proportions Gothic art, dark, roman-

tic

Gothic dark shadows Gouache opaque matte Graffiti art, street tagging Graffiti wildstyle letter-
ing

Graffiti, tagged look Grainy film texture Grainy film, retro style Graphic design, visual
communication

Gritty black and white Gritty urban decay Group of animals, social Group portraiture, multi-
ple people

HDR photo rendering HDR, high dynamic
range

Halation, glowing high-
lights Hand-drawn sketchy feel

Hard light defined Hard light shadows Heavily textured impasto High contrast, dramatic
lighting

High saturation, vivid
colors High-angle shot looking High-key bright lighting High-speed photography

Holographic iridescent
effect

Horror art, scary im-
agery Hudson River School Hyperlapse, moving

time-lapse
Hyperrealism, beyond
realism

Illuminated manuscript
gold

Illustrative, narrative
imagery

Impressionism, loose
brushstrokes

Impressionist brush-
strokes

Industrial mechanical
elements

Infographic data visual-
ization

Infrared luminescence,
glowing foliage

Infrared photography Infrared, false color Infrared, heat signature Ink wash fluid
Installation art, three-
dimensional

Interactive art, participa-
tion

Isometric projection
view Jewelry intricate design

Kinetic art movement Kinetic art, movement Land art earthworks Landscape art, natural
scenery

Leading lines perspec-
tive Leading lines, guide eye Lens flare sunlight Lens flare, bright streaks

Light art, illumination Light leak, color streaks Light painting trails Line art contour

Continued on next page
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Table G.1 – continued from previous page
Line drawing, simple
outline Linocut bold lines Lithograph stone print Lithography, plano-

graphic print

Lomography film look Long exposure shot Long exposure, light
trails Long shot distance

Loop lighting portrait Low angle, animal tower-
ing Low poly geometric Low saturation, muted

tones

Low-angle shot upwards Low-key dark lighting Lowbrow art, under-
ground Lowbrow pop surrealism

Luminism glowing light Macro lens close-up Macro shot, tiny details Mandala circular symme-
try

Manga graphic novel Map cartographic repre-
sentation

Maximalist busy compo-
sition

Maximalist, elaborate
design

Medium shot framing Metalwork shaped metal Migrating herd, vast
landscape Miniature diorama world

Miniature effect, tilt-
shift

Minimalism, essential
elements Minimalist simple lines Minimalist, simplified

design

Mixed lighting combined Monochrome single
color

Monochrome, single
color Monotype, unique print

Moody atmospheric
lighting

Moonlit night, stark
shadows Mosaic tile pieces Mosaic, small piece

patterns

Motion blur capture Motion blur, animal
running Motion blur, speed lines Mountain range,

panoramic view
Multiple exposure, lay-
ered images

Mural art, large-scale
painting

Mural large-scale paint-
ing

Naive art, childlike sim-
plicity

Natural organic forms Negative space drawing Negative space framing Negative space, empty
area

Neoclassical refined
style Neon light glowing Nesting birds, detailed

feathers
Night photography
cityscape

Night vision, green tint Night vision, red tint Oil painting texture Oil painting, thick tex-
ture

Op Art optical Op art, visual illusions Optical illusion, trickery Origami, paper folding

Ornate intricate design Orthochromatic film
effect Outrun style neon Outsider art raw

Outsider art, untrained Over-the-shoulder per-
spective shot Overcast sky diffusion Overexposed, bright

white
Overgrown, vegetation
focus Panning motion blur Panning, blurred back-

ground Panoramic stitched view

Panoramic, wide environ-
ment Paper cut layered Paper marbling, swirling

patterns Parent and offspring

Pastel drawing, blended
colors Pastel soft blending Pattern repetition, visual

rhythm Pen and ink

Pencil shading detailed Performance art, live
action

Photojournalism, story-
telling

Photorealism hyper-
detailed

Photorealism, lifelike
detail Pinhole camera image Pixel art retro Pixel art, retro game

Pixelated low resolution Pixelated, low resolution Point-of-view subjective
shot Pointillism, tiny dots

Pointillist dot technique Polaroid transfer, image
manipulation

Polychrome, many col-
ors Pop art bright

Pop art, bold colors Portraiture, individual
likeness

Positive space, subject
focus Pottery ceramic art

Pre-Raphaelite detailed
beauty Predator-prey interaction Psychedelic art, mind-

altering Quilling, paper filigree

Quilting patchwork de-
sign Rack focus shift Radial balance, circular

focus Rainy day, blurred drops

Realist everyday life Rembrandt lighting
portrait

Renaissance classical
style Retro style, vintage look

Rocky terrain, jagged
edges Rococo ornate details Romantic emotional

landscape Rule of thirds

Continued on next page
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Table G.1 – continued from previous page
Rule of thirds, composi-
tion Rustic textured surface Sandy desert, dunes

stretch Saturated vibrant colors

Schematic diagram lay-
out

Sci-fi art, space, technol-
ogy Screen printing bold Screen printing, stencil

print
Sculpture three-
dimensional form

Seascape art, ocean
views Selective color isolation Selective focus, sharp

animal
Self-portraiture, artist’s
image Sepia tone, vintage look Sepia toned photograph Serene calming atmo-

sphere

Shallow focus blur Sharp contrasting lines Sharp focus, crisp details Short exposure, frozen
motion

Short lighting slimming Sidelit subject, defined
features Silhouette backlit subject Silhouette black shape

Silhouette, dark shape Single-point lighting
setup Sleek modern minimalist Slow motion, extended

time

Smooth airbrushed finish Smooth digital, clean
look

Snowy scene, whiteout
effect

Social realism commen-
tary

Soft focus, dreamy effect Soft light diffused Soft pastel hues Softbox diffused light

Solar punk green Solitary animal, minimal-
ist Sound art, auditory Sparse woodland, bare

trees
Specular highlights re-
flections Split lighting dramatic Split toning effect Split toning, colored

highlights/shadows
Spring growth, fresh
shoots Square color scheme Staged photography Stained glass colorful

Steampunk Victorian
sci-fi

Steampunk style, Victo-
rian sci-fi Stencil art spray Stencil art, cut-out

shapes

Stippling dot shading Stop motion, frame-by-
frame Street art graffiti Street art, urban style

Studio portrait lighting Sumi-e ink painting Summer heat, shimmer-
ing air

Sunlit glade, dappled
light

Sunrise glow, warm
tones

Sunset silhouette, golden
hour

Surreal, bizarre, dream-
like

Surrealism, dreamlike
imagery

Surrealist dreamlike
scene

Symmetrical balanced
framing

Symmetry, balanced
image

Technical drawing pre-
cise

Telephoto, compressed
perspective

Tessellated repeating
design Tetradic color rectangle Textile art fabric

Texture contrast, rough/s-
mooth

Thermal imaging, body
heat

Three-point lighting
classic Tilt-shift effect

Time-lapse sequence
frame

Time-lapse, motion
sequence Time-lapse, star trails Tintype vintage photo

Tonal contrast, light/dark Tonalism muted colors Triadic color scheme Tritone, three-color
scheme

Trompe-l’oeil illusionis-
tic Two animals, interaction Two-point lighting setup Two-shot composition

framing
Typography, letterforms
art

Ukiyo-e Japanese wood-
block

Ultraviolet, unseen spec-
trum

Underexposed, deep
shadows

Underwater photography
scene Underwater, murky view Urban art, cityscapes Vanishing point perspec-

tive
Vaporwave aesthetic
photo Vector graphic, stylized Vector graphics scalable Vibrant color explosion

Vignette, darkened edges Vignetting, dark corners Vintage Polaroid picture Vintage retro charm
Virtual reality, immer-
sive Visionary art, spiritual Water reflection, mir-

rored image
Watercolor painting, soft
edges

Watercolor wash effect Waterfall cascade, misty
spray

Wet collodion, antique
photography Wet plate collodion

Wheatpaste poster art Whimsical playful style Wide shot, animal small Wide-angle perspective

Wide-angle, forest scene Wildlife art, animal
subjects

Winter frost, intricate
patterns Wood carving relief

Woodcut print rustic Woodcut, relief print Worm’s-eye view low X-ray skeletal view

Continued on next page
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Table G.1 – continued from previous page
X-ray vision, skeletal
structure

Zentangle intricate pat-
terns Zoom burst effect Zoom burst, radial blur

H ABLATION STUDY ON MLLM SCALE

To investigate the impact of the Multimodal Large Language Model’s (MLLM) scale on our method’s
performance, we conducted an ablation study where we replaced the LLaVA-8B model used in
our main experiments with the significantly larger Gemini-2.5-Pro. As shown in Table H.1, the
performance difference is marginal. The results from Gemini-2.5-Pro show a slight improvement
on less OOD datasets but are nearly identical on more challenging ones. This suggests that the
effectiveness of CLIP-DCA are a result of the proposed disentanglement framework rather than being
dependent on the scale or capacity of the MLLM used for generating domain-aware signals. All
experiments were run with the default hyperparameters reported in the main paper.

Table H.1: Ablation on MLLM Scale: Comparison between LLaVA-8B and Gemini-2.5-Pro. Per-
formance is reported on ImageNet variants and the average across all 33 target datasets. The results
show only a marginal difference, highlighting that our framework is not primarily dependent on the
MLLM’s scale.

Method / Setting INet V1 -V2 -Sketch -A -R Avg. on 33
Zeroshot 4.60 4.04 2.74 1.51 5.16 4.55
Regular Finetune 6.98 5.84 3.47 1.50 5.26 4.36

CLIP-DCA (LLaVA-8B) 75.1 63.9 42.2 22.9 62.2 52.1
CLIP-DCA (Gemini-2.5-Pro) 7.61 6.49 4.27 2.29 6.19 5.25

I ACCURACY DETAILS

This section provides accuracy details for all target datasets. We report accuracies for both the original
weights (before unlearning) and the unlearned weights. The average value across all datasets were
reported in the main manuscript.

I.1 USING ORIGINAL WEIGHTS (BEFORE UNLEARNING)

Table I.1: Model performance on each dataset for all baselines using the original weights

Dataset Name Zeroshot FLYP DANN Adapter CoOp OOD Ours
Digits DG

MNIST 22.4 26.7 27.6 24.2 23.6 15.4 27.8
MNIST-M 16.8 18.4 22.7 11.9 14.9 17.3 16.2
SVHN 16.1 13.1 15.1 11.6 13.1 12.8 12.8
SYN 24.5 21.1 28.0 15.4 16.0 18.3 23.7

Terra Incognita
Location 100 4.7 21.9 12.3 18.6 18.9 15.2 42.2
Location 38 4.8 32.3 34.7 20.6 20.4 11.4 35.6
Location 43 31.9 30.4 26.1 27.7 27.0 12.5 32.4
Location 46 23.1 32.1 24.3 23.0 22.4 7.2 36.4

PACS
Art Painting 95.2 91.4 89.3 96.2 96.0 74.5 95.1
Cartoon 96.7 87.4 90.4 96.8 96.5 72.4 95.9
Photo 99.5 99.3 99.3 99.6 99.7 86.7 99.7
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Table I.1 – continued from previous page
Dataset Name Zeroshot FLYP DANN Adapter CoOp OOD Ours

Sketch 83.3 75.9 58.7 84.1 84.0 68.8 88.3

Office-Home
Art 77.5 73.8 72.2 78.3 77.4 63.5 77.6
Clipart 61.4 56.8 56.3 64.1 63.9 58.7 62.2
Product 85.9 78.0 77.2 87.3 86.8 70.0 84.8
Real 86.7 80.3 79.4 88.3 87.6 70.6 86.9

Caltech-101 83.4 84.5 83.0 83.2 83.4 63.1 88.9
Oxford-IIIT Pets 83.9 73.2 74.6 85.9 83.8 64.3 84.6
Oxford Flowers 102 60.1 30.8 31.4 64.6 64.9 9.2 53.2
Stanford Cars 52.2 20.0 21.2 56.4 55.7 1.6 40.6
Food-101 80.2 50.3 51.5 83.6 83.1 19.0 74.9
FGVC Aircraft 16.1 4.4 4.6 17.6 17.5 2.4 12.5
SUN397 60.2 51.8 51.0 57.8 58.3 30.6 63.8
Describable Textures Dataset 40.7 28.8 28.7 40.1 39.6 11.7 39.5
EuroSAT 30.3 26.0 23.9 38.1 38.2 16.2 39.2
UCF101 61.1 48.4 48.8 63.6 63.1 29.4 62.3
ImageNet-1K 54.2 69.1 69.0 59.5 59.9 71.0 75.0
ImageNet-V2 48.4 58.1 58.0 52.9 52.7 60.2 64.1
ImageNet-Sketch 32.3 35.3 33.1 32.3 32.8 40.5 42.9
ImageNet-A 26.2 18.1 18.3 28.5 27.9 13.6 26.2
ImageNet-R 59.7 55.8 53.7 58.9 58.8 45.2 65.0

Camelyon-Wilds 50.2 50.0 51.0 50.1 50.1 50.0 56.9
FMOW-V2 Wilds 16.5 7.9 9.8 13.2 12.8 11.3 12.9

I.2 USING UNLEARNED WEIGHTS (AFTER UNLEARNING)

Table I.2: Model performance on each dataset for all baselines using the unlearned weights

Dataset Name Zeroshot FLYP DANN Adapter CoOp OOD Ours
Digits DG

MNIST 33.5 22.4 28.4 29.3 28.9 18.9 40.6
MNIST-M 25.4 16.7 17.1 23.4 24.8 15.8 24.7
SVHN 13.8 13.5 12.0 15.7 16.7 12.0 16.5
SYN 24.6 22.8 18.1 17.4 19.7 13.0 29.0

Terra Incognita – – –
Location 100 27.8 13.6 22.9 23.2 22.5 9.1 21.5
Location 38 5.8 31.8 27.0 4.7 6.1 2.5 40.4
Location 43 26.5 27.6 25.9 22.2 23.4 9.2 28.1
Location 46 28.4 25.8 30.9 30.0 32.4 5.1 32.0

PACS – – –
Art Painting 93.8 87.0 86.3 93.9 92.9 65.2 92.1
Cartoon 94.6 82.8 87.8 92.1 94.1 63.4 92.8
Photo 99.5 99.5 99.0 99.0 98.0 80.0 99.6
Sketch 30.0 71.1 32.5 31.2 32.2 58.5 79.7

Office-Home – – –
Art 68.2 68.1 67.1 68.7 68.7 62.7 76.8
Clipart 50.7 53.7 53.3 47.0 46.7 50.9 61.3
Product 77.2 73.7 73.6 73.2 73.9 61.7 81.3
Real 80.4 76.9 76.9 78.9 78.1 66.6 83.4
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Table I.2 – continued from previous page
Dataset Name Zeroshot FLYP DANN Adapter CoOp OOD Ours

Caltech-101 83.1 81.4 80.2 83.2 82.3 69.9 86.5
Oxford-IIIT Pets 74.9 71.0 69.3 74.2 76.4 67.5 81.0
Oxford Flowers 102 43.5 19.3 16.7 43.5 42.6 8.3 45.7
Stanford Cars 30.6 11.1 10.8 30.6 31.8 5.6 39.6
Food-101 66.3 34.3 33.6 65.9 63.4 17.4 62.4
FGVC Aircraft 8.0 2.7 2.2 8.0 7.1 1.1 9.4
SUN397 56.7 44.7 44.9 56.1 54.3 30.8 59.9
Describable Textures Dataset 30.7 25.6 24.9 31.1 30.2 9.8 35.0
EuroSAT 30.5 27.7 28.8 30.0 31.5 14.3 29.0
UCF101 55.5 42.1 41.8 55.1 56.6 36.7 56.9
ImageNet-1K 46.0 69.8 70.0 52.9 53.3 69.0 75.1
ImageNet-V2 40.4 58.4 58.2 45.7 46.2 58.2 63.9
ImageNet-Sketch 27.4 34.7 33.2 28.4 29.1 35.3 42.2
ImageNet-A 15.1 15.0 16.5 15.0 16.1 15.0 22.9
ImageNet-R 51.6 52.6 52.0 51.6 52.8 45.8 62.2

Camelyon-Wilds 50.2 53.0 51.9 60.0 59.7 50.5 55.0
FMOW-V2 Wilds 10.1 8.2 8.7 10.3 9.7 4.7 12.4

J OOD SCORES

This section provides the OOD scores for all target datasets. We report the OOD scores for both the
original weights (before unlearning) and the unlearned weights. The average value was used to create
the graphs in the main manuscript.

J.1 USING ORIGINAL WEIGHTS (BEFORE UNLEARNING)

Table J.1: Out-of-Distribution (OOD) detection scores using original weights.

Dataset Name SNGP Label Average
Digits DG – – –

MNIST 12.4 97.3 54.9
MNIST-M 8.1 97.8 52.9
SVHN 8.8 97.1 52.9
SYN 20.1 95.3 57.7

Terra Incognita – – –
Location 100 10.0 92.5 51.2
Location 38 8.9 95.7 52.3
Location 43 9.5 94.1 51.8
Location 46 7.9 95.5 51.7

PACS – – –
Art Painting 20.4 93.4 56.9
Cartoon 33.6 92.9 63.2
Photo 29.6 80.0 54.8
Sketch 35.1 92.3 63.7

Office-Home – – –
Art 34.8 77.6 56.2
Clipart 28.8 83.2 56.0
Product 45.1 72.0 58.5
Real 43.1 69.6 56.3
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Table J.1 – continued from previous page
Dataset Name SNGP Label Average

Caltech-101 39.3 76.5 57.9
Oxford-IIIT Pets 57.2 62.6 59.9
Oxford Flowers 102 96.8 83.9 90.3
Stanford Cars 98.7 76.2 87.5
Food-101 93.4 77.7 85.6
FGVC Aircraft 97.9 33.7 65.8
SUN397 71.6 76.7 74.2
Describable Textures Dataset 32.3 86.7 59.5
EuroSAT 50.5 98.2 74.3
UCF101 74.4 84.4 79.4
ImageNet-1K 51.6 0.0 25.8
ImageNet-V2 66.3 0.0 33.1
ImageNet-Sketch 85.5 0.0 42.8
ImageNet-A 87.7 0.0 43.9
ImageNet-R 87.8 0.0 43.9

WILDS Benchmark Datasets
Camelyon-Wilds 0.8 79.2 40.0
FMOW-V2 Wilds 60.5 95.7 78.1

J.2 USING UNLEARNED WEIGHTS (AFTER UNLEARNING)

Table J.2: Out-of-Distribution (OOD) detection scores for unlearned model.

Dataset Name SNGP Label Average
Digits DG – – –

MNIST 93.2 40.2 66.7
MNIST-M 97.4 26.4 61.9
SVHN 97.5 2.5 50.0
SYN 98.8 16.4 57.6

Terra Incognita – – –
Location 100 95.1 6.9 51.0
Location 38 95.7 4.6 50.1
Location 43 94.5 15.8 55.1
Location 46 96.7 12.3 54.5

PACS – – –
Art Painting 93.5 32.7 63.1
Cartoon 93.2 39.0 66.1
Photo 79.4 48.0 63.7
Sketch 97.3 19.3 58.3

Office-Home – – –
Art 81.6 43.6 62.6
Clipart 87.0 40.9 64.0
Product 77.9 52.0 65.0
Real 94.7 55.0 74.8

Caltech-101 76.6 55.8 66.2
Oxford-IIIT Pets 68.0 46.4 57.2
Oxford Flowers 102 81.7 98.4 90.1
Stanford Cars 74.7 95.2 85.0
Food-101 78.5 89.6 84.0
FGVC Aircraft 38.5 92.8 65.7
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Table J.2 – continued from previous page
Dataset Name SNGP Label Average
SUN397 77.6 83.4 80.5
Describable Textures Dataset 87.9 53.2 70.6
EuroSAT 98.1 26.3 62.2
UCF101 86.1 81.0 83.5
ImageNet-1K 59.7 0.0 29.9
ImageNet-V2 71.8 0.0 35.9
ImageNet-Sketch 89.6 0.0 44.8
ImageNet-A 88.8 0.0 44.4
ImageNet-R 89.4 0.0 44.7

WILDS Benchmark Datasets
Camelyon-Wilds 92.9 24.3 58.6
FMOW-V2 Wilds 95.8 63.0 79.4
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