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ABSTRACT

Evaluating domain generalization (DG) for foundational models like CLIP is chal-
lenging, as web-scale pretraining data potentially covers many existing benchmarks.
Consequently, current DG evaluation may neither be sufficiently challenging nor
adequately test genuinely unseen data scenarios. To better assess the performance
of CLIP on DG in-the-wild, a scenario where CLIP encounters challenging unseen
data, we consider two approaches: (1) evaluating on 33 diverse datasets with
quantified out-of-distribution (OOD) scores after fine-tuning CLIP on ImageNet,
and (2) using unlearning to make CLIP ‘forget’ some domains as an approxima-
tion. We observe that CLIP’s performance deteriorates significantly on more OOD
datasets. To address this, we present CLIP-DCA (Disentangling Classification
from enhanced domain Aware representations). Our approach is motivated by
the observation that while standard domain invariance losses aim to make repre-
sentations domain-invariant, this can be harmful to foundation models by forcing
the discarding of domain-aware representations beneficial for generalization. We
instead hypothesize that enhancing domain awareness is a prerequisite for effective
domain-invariant classification in foundation models. CLIP-DCA identifies and
enhances domain awareness within CLIP’s encoders using a separate domain head
and synthetically generated diverse domain data. Simultaneously, it encourages
domain-invariant classification through disentanglement from the domain features.
CLIP-DCA shows significant improvements within this challenging evaluation

compared to existing methods, particularly on datasets that are more OOD.

1 INTRODUCTION

Domain generalization (DG) aims to train models that
maintain robust performance when encountering out-of-
distribution (OOD) data (Zhou et al.| [2022a). A key as-
sumption of DG is that the target domains represent novel
data distributions for evaluation. However, this assump-
tion is challenged when evaluating pretrained foundation
models like CLIP (Radford et al., 2021) and ALIGN (Jia
et al.| 2021). These models have been trained on compre-
hensive web-scale datasets, thus have likely been exposed
to most existing domains, contributing to its impressive
zero-shot capabilities. Consequently, much research has
focused on adapting CLIP through parameter-efficient fine-
tuning (Zhou et al., 2022c;b; (Gao et al.||2024; [Zhang et al.
2022), regularization using the original weights (Wortst
man et al.l [2022; [Nam et al., 2024 |Oh et al., 2024 |Shu
et al.,[2023), and even transductive methods (Wallingford
et al.| 2023} Martin et al.| 2024]), largely preserving its pre-
trained knowledge. However, this reliance on pretrained
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Figure 1: Improvement over zeroshot af-
ter finetuning on ImageNet (in %). Each

dot represents a target dataset.

OOD

scores are quantified relative to Ima-
geNet (source dataset), illustrating the
challenge of DG in-the-wild.

knowledge is predicated on an assumption of true OOD robustness that is now being challenged.
Recent studies show that evaluating foundation models for DG is often compromised by data leakage
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from web-scale pre-training (Teterwak et al., 2024} Yu et al., 2024). Teterwak et al.|(2024)) addresses
this by analyzing generalization from learned to unlearned samples within the pre-training data, while
Yu et al.|(2024) proposes training models from scratch to avoid contamination entirely. These studies,
along with findings that retraining CLIP on cleaner data degrades OOD performance, suggest that
current DG evaluations may overestimate true OOD robustness (Mayilvahanan et al.,2024). While
these studies provide critical insight, they do not offer a tractable setting to test the generalization
performance of CLIP after specific, contaminating knowledge has been selectively removed.

To address this gap, we propose that DG evaluation for foundation models, such as CLIP, should be
more challenging, to approximate “domain generalization in-the-wild," where CLIP might encounter
diverse and challenging new data in the real-world. We evaluate CLIP on 33 target datasets spanning
a diverse range of OODness. To systematically approach evaluation, we quantify a multi-modal OOD
score (Sec. [3.2), using ImageNet as both an anchor and a source dataset owing to its inclusion of
many classes and concepts. We find that after finetuning on ImageNet, CLIP’s DG performance
degrades on datasets with higher OOD scores with respect to ImageNet (Figure[T)), consistent with
the domain contamination findings (Mayilvahanan et al., 2024). In addition, to further simulate
truly unseen domains, we use an unlearning technique (Sepahvand et al.l 2025) to make CLIP forget
some domains (Sec. [3.3)), and find significant performance degradation for existing robust finetuning
methods.

Our results (Figure EI), alongside findings on domain contamination (Mayilvahanan et al.| [2024),
suggest that for DG in-the-wild, different robust finetuning algorithms are needed for genuinely
unseen data. In light of this, we present CLIP-DCA (Disentangling Classification from enhanced
domain Aware representations), an end-to-end finetuning method to improve the robustness of CLIP
on truly OOD data. A key idea in DG is that learning domain-invariant features is beneficial for robust
generalization (Zhou et al.,2022a; |Ganin et al.||2016). However, naively enforcing domain invariance
for a pretrained foundation model could cause catastrophic forgetting of useful features learned
from diverse domains during pretraining as the model is forced to make its representations entirely
domain-invariant. We hypothesize that to learn effective domain invariance, domain awareness
is a prerequisite. This awareness is critical to maintain CLIP’s vast knowledge, which includes
generalizable features that support capabilities like zero-shot classification. By enhancing domain
awareness, CLIP can also selectively disentangle classification from domain-specific aspects, thereby
achieving robust generalization without forgetting valuable information.

We combine the idea of domain awareness and domain invariance by encouraging them simultaneously
within CLIP-DCA (Figure[2)). Specifically, we encourage domain awareness within CLIP’s image
and text encoders, while promoting domain invariance specifically at the final classification layer
through disentanglement. Our premise is that while domain awareness is a requirement to maintain
pre-existing knowledge, this awareness can be disentangled for domain-invariant classification and
robust generalization. To achieve this, we add a new head to the CLIP image encoder, called the
domain head, which is trained to understand domains. The original classification head is then
disentangled from the domain head, effectively learning domain awareness within its encoders and
achieving domain invariance at the classification stage. Additionally, since many datasets lack distinct
domains or textual descriptions, and the definition of ‘domain’ is often vague in DG in-the-wild,
we address this by using diffusion models to create images of artificial domains and Multimodal
LLMs (MLLMs) to generate descriptions for these artificial domains (Sec. [2.2)). Our contributions
are summarized as follows:

* We demonstrate potential limitations in current DG evaluations of foundation models, supported
by our results and recent studies. Existing benchmarks may overestimate true OOD robustness,
potentially leading finetuning strategies towards in-distribution improvement rather than OOD.

* We propose more challenging and holistic evaluations for DG in-the-wild. We use an expanded
cross-dataset evaluation setting spanning 33 datasets from diverse domains, indexed by multi-
modal OOD scores. We also use an unlearned model to further approximate unseen domains.

* We introduce CLIP-DCA, a novel finetuning method that improves OOD robustness by disen-
tangling classification from enhanced domain-aware representations. We find that on more OOD
target datasets, CLIP-DCA performs significantly better compared to existing robust finetuning
methods, while performance is similar across all methods on less OOD target datasets.

Related Work. A comprehensive review is in Appendix [Al Domain generalization (DG) has
traditionally focused on learning domain-invariant representations (Ganin et al., 2016; Zhou et al.|
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Figure 2: CLIP-DCA applies different sets of losses to source data images and diffusion images.
For source images, accurate classification is encouraged through the classification loss between
class head and text encoder (C). Invariance is encouraged through the disentanglement between
domain and class heads (C2). With diffusion images, domain invariance is encouraged through the
disentanglement between the domain and class heads (C's), and disentanglement between class head
and text encoder (Cy4). Domain awareness is encouraged through the agreement between the domain
head and the text encoder (C’5), and the agreement between the text encoder and the MLLM hidden
states (Cs). During inference, only the class head and text projector are used for classification.

20224)), but naively applying these methods to foundation models like CLIP can cause catastrophic
forgetting. Consequently, most robust CLIP finetuning methods aim to preserve pretrained knowledge
through parameter-efficient finetuning (PEFT) (Zhou et al.,2022c} |Gao et al., 2024) or regularization
towards the original weights (Wortsman et al., [2022; |Shu et al., [2023)). However, this reliance on
pretrained knowledge is being questioned by recent findings of domain contamination in web-scale
datasets (Teterwak et al.,|2024; Yu et al.,|2024; |Mayilvahanan et al.,|2024), which suggest current
evaluations may overestimate true OOD robustness. Our work addresses this by proposing a more
challenging evaluation framework and a method that learns targeted invariance without sacrificing
pretrained knowledge.

2 CLIP-DCA: DISENTANGLING CLASSIFICATION FROM ENHANCED
DOMAIN-AWARE REPRESENTATIONS

To address the challenges of DG in-the-wild, we introduce CLIP-DCA (Disentangling Classification
from enhanced domain Aware representations), a finetuning method designed to improve robustness
on genuinely unseen data.

2.1 ENCOURAGING DOMAIN AWARENESS AND INVARIANCE SIMULTANEOUSLY

Our key hypothesis is that domain invariance at the decision-making stage is beneficial for generalizing
to unseen domains. At the same time, domain awareness is required for retaining the vast pretrained
knowledge of CLIP. We achieve them simultaneously by encouraging domain awareness in the
encoders, while enforcing domain invariance only in the classifier of CLIP through disentanglement.
The intuition is that if a model understands what constitutes as domain-specific features, then it
can learn to disregard it appropriately during classification on unseen domains.

Enforcing domain invariance in the encoder through conventional domain adversarial learning, for
instance, can be harmful. Our experiments show that applying invariance directly leads to worse
performance compared to standard finetuning (Figure[8). Forcing the entire model to become domain-
invariant can lead to the forgetting of valuable, fine-grained features learned during the pretraining on
a large dataset. Conversely, existing CLIP robust finetuning methods discourage divergence from
the original pretrained model, and rely on the assumption that CLIP is inherently robust to OOD
data. This assumption is challenged by our results (Figure[9) and evidence for domain contamination
(Teterwak et al., |2024; |Yu et al., [2024} [Mayilvahanan et al., [2024)).

Instead, we focus on enforcing domain invariance only at the final classification layer, while simultane-
ously encouraging the image encoder to become domain-aware. Our intuition is that a comprehensive
understanding of various domains enables the model to more effectively disregard domain-specific
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influences during inference. The diverse set of generated diffusion images and their descriptions
(detailed in Section[2.2)) provides the necessary signals for enhancing this domain awareness.

To implement this, we introduce an architectural addition to the CLIP
image encoder. We add an additional linear projection head, termed
the image domain head (/p), which has the same dimensionality as the
original image projection head, referred to as the image class head (1), as
shown in Figure[2] We do not add a corresponding domain head to the text IR

P T, Ts
B (dog”, “cat”, “turtle”]

encoder

encoder for two reasons. First, in most downstream classification datasets, 1

only class names are available as text inputs, without domain descriptions. Class head Projectory
Second, textual information inherently allows for easier separation of —

domain and class attributes. For instance, a prompt like "a sketch of a LTy 17,

dog" clearly distinguishes class ("dog") from domain ("sketch"). Note A P

that for inference, the standard pipeline is used as shown in Figure[3] The e e

domain head and other losses are not used.

During training, we use two distinct loss functions for the two types of  Figure 3: Standard CLIP
data we use - the source dataset and generated diffusion images. We use inference pipeline using
{4 to refer to agreement loss (the standard CLIP contrastive loss (Radford  a dot product between im-
et al., 2021)) or finetuning (Goyal et al., [2023)). We use £, to refer to age and text embeddings
disentanglement, which enforces statistical independence between two  for classification.

sets of representations. Inspired by the simplicity of self-supervised

methods (Zbontar et al.| 2021; Bardes et al., [2021)), we achieve this by minimizing the correlation
between the class and domain embeddings. The loss is formulated as the squared sum of the
diagonal of the cross-correlation matrix between the batch-normalized class embeddings and domain
embeddings. This penalizes any shared information, encouraging the class head to find predictive
representations that are independent of features useful for domain prediction.

The role of the disentanglement loss is to enforce this separation. The underlying assumption is that
if the two representations are truly disentangled, the features from the class head for a given sample
should be statistically independent from the features learned by the domain head for that same sample.
By minimizing the correlation between the class and domain embeddings, this loss encourages the
class head to find representations that are predictive of the class label without using features that are
also useful for predicting the domain. Conversely, it encourages the domain head to focus only on
domain-specific information, as any shared information with the class head is penalized.

We simultaneously encourage accurate classification, domain awareness in both text and image
encoders, and domain invariance at the classification stage with the following loss terms:

1. For the source dataset images (e.g., ImageNet, with only class labels):

* A classification loss (i.e., the standard CLIP contrastive loss (Goyal et al.,|2023))) between
the output of the image class head and the text embedding of the class name, (' :=
lo(Ic, Pr).

* A disentanglement loss between the class and domain heads, Cs := £4(I¢c, Ip).

* For source dataset images, we minimize the loss function Lg,ypce = C1 + Co.

2. For the diffusion images and their MLLM-generated style descriptions:

* A disentanglement loss between the class head and domain head, C5 := ¢4(I¢, Ip).

* A disentanglement loss between the text embedding of style descriptions and the image class
head to further encourage the class head to learn domain invariance, Cy := £4(Pr, I¢).

* An agreement loss between the output of the image domain head and the text embedding
of the style description, enhancing domain head’s domain awareness, C5 := ¢, (Pr, Ip).

* An agreement loss between the text embedding and the corresponding projected MLLM
hidden state, enhancing the text encoder’s domain awareness, Cg := £, (Pr, P ).

* For diffusion images, we minimize the loss function Lg; ¢ fusion = Cs + Ca + C5 + Cs.

For a detailed implementation, pseudocode for the main training loop is provided in Appendix
2.2  GENERATING DIVERSE DOMAINS

Traditional DG benchmarks provide multi-domain datasets, enabling the learning of domain in-
variance. However, our evaluation setup, which involves finetuning on a single source dataset like
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ImageNet, lacks explicit multiple source domains, especially as the boundary for different domains
becomes more vague for DG in-the-wild. Additionally, we hypothesize that to understand what
constitutes as domain-specific features, a diverse number of domains are required.

To address this, we construct a small dataset with a diverse number of  “provide ideas forimage styles”
domains. As illustrated in Figure d}, we prompt a MLLM, specifically l

LLaVA (Liu et al.| [2023), to generate ideas of 512 distinct styles for im- uava'\(ﬁ:ma,gg,
ages (e.g. "pixel art"). The complete list of styles is available in Table [G.1] I
in the Appendix. A text-to-image diffusion model (Stable Diffusion 3 .
(Esser et al.,[2024)) then generates images from these stylistic prompts. T

We intentionally omit any class labels during image generation to ensure .

the styles are not biased towards specific classes. We generate 8 images I H

per style, creating a dataset of 4096 images. Finally, the same MLLM P
generates textual domain descriptions (captions) for each style. We also i —
store the hidden state representations from the MLLM that were used MLLM
to generate these style descriptions, as these will be used to encourage tavai{tlama;88}
domain awareness in the text encoder. The exact prompts used for style
and description generation are detailed in Appendix

“... reminiscent of pixel art ...”

Figure 4: Pipeline for
3 EXPERIMENTAL SETUP generating synthetic do-
main images and descrip-

3.1 EVALUATING DG IN-THE-WILD PERFORMANCE tions.

We first analyze standard Domain Generalization (DG) benchmarks

and find their domains are not well-separated. Using a Spectral- ®

normalized Neural Gaussian Process (SNGP) (Liu et al., 2020) to

compute pairwise OOD scores, we observe strong intra-benchmark

clustering, as visualized in Figure 5} This clustering, along with .°.
[}

CLIP’s high zero-shot accuracy and the success of transductive
methods on these datasets (Wallingford et al.l 2023} [Martin et al.|
2024)), suggests that current DG evaluations are not sufficiently
challenging for large-scale models, possibly due to pre-training data
contamination.

Figure 5: PCA visualization
To address this, we finetune CLIP on ImageNet-1K (Deng et al., of domains from different do-
2009) and evaluate its generalization capabilities across a more di- main generalization datasets
verse benchmark of 33 target datasets spanning standard DG bench-

marks and other challenging classification tasks (full list provided in Table [E.T). A cross-dataset
evaluation is significantly more challenging compared to traditional DG setups, as it involves larger
visual distribution shifts and also shifts in class labels. This evaluation also aligns with the methodolo-
gies of prior studies investigating robust CLIP finetuning (Zhou et al.,|2022c;b; |Gao et al.| 2024} [Shu
et al.,[2023), while adding a broader coverage of domains. We use the CLIP ViT-B/32 model for all ex-
periments. Further implementation details, including optimizer settings and specific hyperparameters
for our method, are provided in Appendix [C|and

w0
S
7

3.2 MEASURING OODNESS OF THE TARGET DATASETS

)
S
T

5
[ J

Given that our DG in-the-wild evaluation includes many target
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for a more holistic assessment of OOD robustness. A unique
consideration for CLIP is its dual-encoder architecture. To pro-
vide a comprehensive score, we utilize OOD measures for both
the image and text modalities. For the image encoder, we use
SNGP (Liu et al., 2020) calibrated on the ImageNet validation
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dataset class names and ImageNet class names using the target domain image embeddings. The text
OOD score is the summed probability assigned to the target-specific class names.

We verify that our OOD score shows a strong negative correlation (r=-0.756, p<0.001) with perfor-
mance on target datasets after finetuning, as shown in Figure[6] Notably, we find that averaging the
image and text OOD scores is important for accurately predicting post-finetuning accuracy. Relying
solely on the image OOD score (r=-0.099) or the text OOD score (r=-0.608) yields weaker corre-
lations, providing evidence that OOD scores in both modalities are necessary for a comprehensive
understanding of OOD challenges in the context of CLIP. A detailed breakdown of the OOD scores
for all 33 target datasets is provided in Appendix [J|

3.3 SIMULATING UNSEEN DOMAINS VIA UNLEARNING

Retraining a foundation model like CLIP from scratch to
omitting specific domains is computationally prohibitive.
To overcome this, we use an unlearning method as a proxy
to approximate a model that is not contaminated with
domains relevant to our evaluation. This controlled experi-
ment allows us to answer a critical research question: How
do robust fine-tuning methods perform on genuinely un-
seen domains? Our results expose weaknesses in existing

Table 1: Unlearning effectiveness. ZS:
Original zero-shot performance. FT:
Baseline fine-tuning on the GCC reten-
tion set. Unlearn: Full unlearning com-
bining retention on GCC with adversar-
ial unlearning on DomainNet.

approaches that rely on pretrained weights. Metric/Data ZS FT  Unlearn
Specifically, we adapt the adversarial learning-based un- Imagenet
. . IN1 54.2  52.0 48.8
learning method (Sepahvand et al., 2025) for domain for-
. . IN2 48.4 45.5 41.8
getting. We finetune CLIP (Goyal et al.||2023)) using a dual
I . . . IN Sketch 32.3 315 30.7
objective. First, to retain general knowledge, we train on a IN A 2.2 19.0 18.9
595,000-image subset of the CC3M dataset (Sharma et al., INR 59'7 56.8 52'7
2018)), referred to as GCC, previously used in LLaVA pre- ' ’ ’
training (Liu et al 2023), serving as a manageable proxy = DomainNet
for CLIP’s original training data. Second, to approximate  Clipart 64.3 67.0 53.0
a scenario where domains similar to DomainNet are re- Infograph 41.6 41.0 34.0
moved, we apply domain adversarial training (Ganin et al, Painting 54.4 53.9 47.0
2016) on the DomainNet dataset, which we exclude from  Real 80.5 80.7 73.3
our target datasets. We attach a binary classifier to the  Sketch 57.9 57.2 45.5
penultimate layer of the image encoder. During training  Quickdraw  12.1 8.2 0.3
batches, this classifier is fed representations of random Avg.on33 511 49.7 45.5

noise (assigned label 0) and images from DomainNet (as-
signed label 1). The gradient reversal layer (Ganin et al.|
2016) forces the image encoder to learn representations that confuse this classifier, making embed-
dings of DomainNet images and random noise indistinguishable, thereby encouraging the model to
unlearn domain-specific features from DomainNet. The unlearning occurs concurrently with standard
training on the GCC dataset to preserve CLIP’s core capabilities. A pseudocode of the unlearning
process is in Appendix

We deliberately unlearn on DomainNet, a dataset we do not use for final evaluation. Unlearning
our target evaluation datasets directly would unfairly penalize baseline methods. Many methods
are designed to regularize against large deviations from the original pretrained weights. By using
DomainNet as a proxy for domain contamination, we ensure a fairer comparison. The effectiveness
of our unlearning is confirmed by a performance drop on DomainNet while performance on many
other datasets is largely retained (Table [I).

This experimental setup is distinct from other recent proposals. While [Teterwak et al.| (2024) separate
samples based on whether they were learned during pre-training, their focus is on generalization
from well-learned to seen-but-unlearned concepts. In contrast, [Yu et al.| (2024) evaluate domain
generalization by training models from scratch without web-scale pre-training. Our approach is a
unique and practical middle ground. We measure the performance of a model that benefits from
web-scale pre-training but has had specific domain knowledge removed. This allows us to more
directly isolate the effect of domain contamination on robust fine-tuning.
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4 RESULTS AND DISCUSSION

4.1 FINETUNING ORIGINAL PRETRAINED CLIP

We first evaluate CLIP-DCA in the context of our domain
generalization in-the-wild setup, using the original pre-
trained CLIP weights as the starting point. As shown in
Figure[7, CLIP-DCA consistently improves performance
over standard finetuning across target datasets. Impor-
tantly, the best-fit line for CLIP-DCA shows a flatter slope,
indicating that it is more robust to more severe OOD data
compared to regular finetuning. This observation aligns
with our hypothesis that encouraging domain invariance at
the decision-making layer, while simultaneously encour- 10 60 80
aging domain awareness within the encoders, is crucial for OOD Score Against ImageNet
robust classification on unseen distributions.

f —— Regular finetune (FLYP)
—30 f === CLIP-DCA (Ours) ( B
‘ ‘ %

Accuracy Improvement over Zeroshot
<
T

) ) ) ) . Figure 7: Performance comparison of
Figure 8| provides a broader comparison against additional [ p.pCA against regular finetuning.
baselines. We observe that conventional domain adver- Best-fit lines, determined by linear re-

sarial learning (DANN (Ganin et al., 2016)), is harmful = gregsion, illustrate performance trends.
for CLIP, showing inferior performance compared to reg-
ular finetuning. This shows the potential disadvantage
of enforcing domain invariance across the entire image
encoder, which can lead to excessive forgetting of features
learned during pretraining. This suggests the importance
of approaches such as our proposed learning of targeted inv:

—20 | === Domain adversarial

""" CLIP-Adapter
CoOp

—— CLIP-OOD

--- CLIP-DCA (Ours)
. .

Interestingly, on the most extremely OOD datasets,
parameter-efficient finetuning (PEFT) techniques like
CoOp (Zhou et al.,[2022c)) and CLIP-Adapter (Gao et al.}
2024) perform best. PEFT methods minimally change a

small subset of the original CLIP weights. Consequently, 10 60 50
their performance shows much lower variance across the OOD Score Against ImageNet
datasets, with improvements (around 1-2%). It is impor- . )

tant to note that on extreme OOD datasets, all end-to-end Elgure 8: Comparison against more base-
finetuning methods exhibit lower performance than the lines.

zero-shot CLIP baseline. While CLIP-DCA mitigates this performance drop compared to standard
finetuning, it does not entirely overcome it.

—30 [

—40 F

Accuracy Improvement over Zeroshot

This strong zero-shot performance has often been attributed to CLIP’s inherent OOD generalization
capability. However, the study by (Mayilvahanan et al., [2024) challenges this assumption and shows
that this generalization could be attributed to domain contamination. They show that when CLIP is
retrained solely on natural images, its OOD performance drops to similar levels as models trained
exclusively on ImageNet. This drop could offer a plausible explanation for observations like those
motivating Wise-FT (Wortsman et al.||2022), where standard finetuning was found to degrade OOD
performance.

4.2 FINETUNING AFTER UNLEARNING

To further investigate the impact of potential domain contamination and to establish a more rigorously
"unseen" evaluation, we applied the unlearning procedure detailed in Section[3.3]to the pretrained
CLIP model. We then finetuned this "unlearned" model on ImageNet-1K and evaluated its perfor-
mance. Table 2] shows the accuracies on the ImageNet variant datasets. Full per-dataset accuracy
details for all methods, both before and after unlearning, are provided in Appendix I} For this analysis,
we also include several end-to-end robust finetuning methods that add a linear classifier to CLIP. Due
to their architecture, these specific baselines are evaluated only on the ImageNet variants as they
cannot be adapted to datasets with different class labels.

Our results show that robust end-to-end finetuning methods remain effective for datasets that are
less OOD even after unlearning. For instance, MIRO (Cha et al.| 2022) and Wise-FT (Wortsman
et al.| [2022) outperform regular finetuning on ImageNet-V 1, ImageNet-V2, and ImageNet-Sketch. To
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Table 2: Accuracy on ImageNet variants 3" 1
N w0f ]

Method Vil V2 Sketch A R R N N ]
Zeroshot (unlearned) 48.8 41.8 30.7 182 52.7 % ok ]
Regular Finetune 69.8 584 347 15.0 52.6 g Domain adversarial
DANN 70.0 582 332 165 520 L S v ]
CLIP Adapter 52.9 457 284 15.0 51.6 g —— CLIP-0OOD
CoOp 53.3 46.2 29.1 16.1 52.8 £ 30 -—- CLIP-DCA (Ours) ]
MMA 71.7 60.0 361 7.8 37.0 TR TR R T R w
LwEIB 53.8 46.7 30.4 16.3 54.1 OOD Score Against ImageNet
Wise-FT 72.9 61.3 400 9.4 43.0
MIRO 74.1 627 35.7 7.3 33.2 Figure 9: Comparison against base-
CLIP-OOD 69.0 582 353 15.0 45.8 lines after unlearning.
CLIP-DCA (Ours) 75.1 639 422 229 62.2

broaden our comparison, we also include other recent CLIP-based DG methods such as MMA (Yang
et al.| 2024) and LwEIB (Yang et al.,|2025)), which similarly demonstrate that performance does not
consistently generalize to more OOD datasets. However, consistent with the trends seen with the
non-unlearned model, performance significantly drops on datasets with larger OOD scores, such as
ImageNet-A and ImageNet-R. Similarly, PEFT methods show slight improvements over zero-shot on
ImageNet-V1, V2, and Sketch, but their performance drops on ImageNet-A and R.

Figure 0] shows that the performance of all methods, even PEFT methods, further drops as OODness
increases across target datasets when finetuning the unlearned model. If the unlearning process
successfully reduced the knowledge of target-like domains, existing robust finetuning methods, which
rely on the pretrained weights, would struggle on genuinely OOD data. These results suggest that our
unlearning approach was effective in simulating a less contaminated starting point.

With the unlearned model, CLIP-DCA shows high performance. For datasets with moderate OOD
scores relative to ImageNet, CLIP-DCA achieves larger performance improvements compared to
other methods. More importantly, on the extremely OOD datasets, the performance of our method
remains close to the zero-shot model, without significant performance drops. This suggests that our
mechanism of encouraging domain awareness while selectively enforcing invariance at the decision
layer is particularly beneficial when starting from a model with reduced prior exposure to target-like
domains.

4.3  ABLATIONS
Table 3: Ablations on GCC inclusion. Accuracy

on ImageNet variants (V1, V2, Sketch, A, R)
and Avg. accuracy on 33 datasets.

Including GCC data.  When finetuning CLIP-
DCA, we also use the GCC dataset — the dataset with
595,000 image-caption pairs used to prevent CLIP
from collapsing during the unlearning procedure (Sec.

¢ - Setting V1l V2 Sketch A R Avg.
[3.3). While the dataset is smaller than ImageNet-1K, E——— 160 104 274 151516 55
it serves as a manageable proxy for the data CLIP was erosho ’ ’ ’ ’ ’ :
originally pretrained on. The image-caption pairs pro- ~ [mageNet only
vide valuable supervision particularly for training the EI/J\S;\II)N gg'g ggé gg; }g-g gg-g g-g
text .encode.r and posmbly preventing cata§tr0phlc for- CLIP-DCA 753 641 403 223 60.3 48.6
getting during finetuning on a classification datasets
like ImageNet. ImageNet+GCC
FLYP 70.6 59.7 38.5 17.6 57.5 49.0
We study the contribution of the GCC data as shown DANN 70.5 59.4 38.6 17.4 57.2 47.5
CLIP-DCA 75.1 639 422 229 62.2 52.1

in Table[3] A key observation is that the inclusion
of GCC provides a notable benefit even for standard
finetuning (FLYP) (Goyal et al.l 2023)). This shows the general benefit of incorporating diverse,
captioned data during finetuning. Given these benefits, an alternative or complementary approach
could involve using MLLMs to generate rich textual descriptions for classes or images within the
primary source dataset, similar to strategies explored in (Pratt et al., 2023; Maniparambil et al.,
2023), which use an LLM to describe class names. Despite the general improvements, our method
consistently shows higher performance even when the GCC dataset was not included.




Under review as a conference paper at ICLR 2026

Different components of CLIP-DCA. We study  Table 4: Ablation of CLIP-DCA components:

the effect of the different components of CLIP-DCA, Domain descriptions (Domain), Disentangle-

as shown in Table @ We isolate the use of domain ~ ment (Disent.), MLLM Hidden States (MLLM

descriptions from diffusion images to train the image ~ 15) and Avg. accuracy on 33 datasets.

domain head, the disentanglement loss between the  nethod / Config. Domain Disent. MLLM HS Avg.
class and domain heads to encourage invariance at

. . MLLM (LLaVA - - - 24.2

the classifier, and the use of MLLM hidden states ( )

to encourage domain awareness in the text encoder. ~ F-YP X X X 490
. . . . o Ours 0 X X 49.1

Simply introducing domain descriptions to make the o o X 50.8

image encoder aware of styles, without enforcing dis- o X o 49.0

entanglement at the classifier, shows only a marginal Our full o o N 21

improvement over the FLYP baseline, suggesting that
domain awareness alone is insufficient without a mechanism to disentangle classification from it, as
CLIP may otherwise struggle to disregard domain-specific features irrelevant to classification. When
we incorporate the disentanglement loss to encourage domain invariance at the decision-making layer,
even without explicit domain awareness in the text encoder, performance slightly improves. This is
further evidence for our core hypothesis that enabling the model to disregard domain-specific features
during classification is important. Attempting to make both encoders domain-aware without the
disentanglement loss results in no improvement over the baseline, indicating that awareness without
a mechanism for invariance can be ineffective for OOD data. To study the effect of the MLLM’s
scale, we replaced LLaVA-8B with Gemini-2.5-Pro and observed a marginal performance difference
(see Table[H.T|in the Appendix), suggesting our method’s efficacy is not primarily dependent on the
MLLM’s size but rather on the disentanglement framework itself. These results strongly support
our central hypothesis: the significant performance gain of our full method demonstrates that the
balance between domain awareness and disentangled invariance is the critical factor for robust
generalization in this challenging setting.

Limitations. One concern might be the reliance on synthetically generated diffusion images and
MLLM-extracted features for domain awareness. However, this is mitigated by: (1) the small size
of the diffusion dataset (4096 samples), (2) images synthesized using generic, class-agnostic style
prompts, and (3) the MLLM processing multiple style-consistent images, which focuses it on style
over objects. Furthermore, DANN (Ganin et al.,|2016) and our ablations without disentanglement
(Table[d), even with such data, fails to improve CLIP’s OOD performance (Table 3).

The role of the MLLM may also be questionable, as LLaVA internally uses a CLIP-L encoder.
However, LLaVA’s poor zero-shot image classification performance (Table[)), a known issue attributed
to MLLMs’ improper alignment for classification (Zhang et al., 2024), justifies not using it as a
direct classifier. Instead, we use an MLLM because CLIP captures global information from images,
which prioritizes overall style (Tong et al.|[2024), making its representations suitable for domain-level
information. The MLLM, with its language capabilities, is then able to explain the perceived domain
styles into textual descriptions and provide informative hidden state representations.

Lastly, our unlearning strategy involves making DomainNet images and random noise indistinguish-
able, differing from [Sepahvand et al.|(2025) where samples are typically mapped to known OOD
data. This adaptation was necessary as CLIP’s extensive web-scale pretraining makes finding truly
unseen data challenging. Future work could explore more sophisticated unlearning methods for DG
in-the-wild evaluation. Nevertheless, the significant degradation observed in zero-shot performance
post-unlearning, and the fact that PEFT methods showed improvements on less OOD data but poorer
performance on more OOD data, is evidence that our unlearning procedure functioned as intended.

5 CONCLUSION

In this work, we highlighted the potential limitations of current DG evaluation settings for foundation
models like CLIP, which may not adequately test unseen data scenarios. We instead used a more
challenging and comprehensive evaluation to simulate DG in-the-wild, with quantified OOD scores
for target datasets, and an unlearning approach to further simulate unseen data. To address the
challenges of DG in-the-wild, we introduced CLIP-DCA. Our method disentangles classification from
domain-aware representations, motivated by the idea that while domain invariance is important for
performance on unseen data, domain awareness is important to retain the vast pretrained knowledge
of CLIP. Overall, our method significantly improves OOD robustness over existing baselines.
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A EXTENDED RELATED WORK

Domain Generalization. Learning domain-invariant representations has historically been a central
idea in domain generalization (Blanchard et al., 2011} [Zhou et al.| 2022a). The intuition is that when
classifying images from entirely new distributions, learning abstract features common across source
domains should provide better robustness for classification in new domains (Blanchard et al. 2011}
Muandet et al.| 2013). Among these, domain-adversarial learning methods have become a relatively
standard approach within the DG field due to its conceptual simplicity and effectiveness (Zhou et al.,
2022al). For instance, Domain Adversarial Neural Networks (DANN) (Ganin et al., 2016) uses an
auxiliary domain classifier trained adversarially against the encoder, encouraging the encoder to
produce features indistinguishable across source domains. Given the focus of DANN on the central

12
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idea of domain invariance, we focus on DANN and its adaptation to CLIP in our analysis. Notably,
despite the prevalence of such DG methods, the direct application for CLIP is not well-established
and remains underexplored. Naively enforcing domain invariance on foundation models like CLIP,
with large pretrained knowledge, risks catastrophic forgetting.

Robust Finetuning of CLIP. The introduction of CLIP marked a significant shift in DG research. The
original study (Radford et al.,[2021) demonstrated impressive zero-shot classification performance
across diverse benchmarks, including OOD datasets. The authors attributed this capability to CLIP
learning representations that are less reliant on spurious correlations specific to downstream target
datasets, as CLIP was not trained on these specific datasets during its initial pretraining.

The assumption of the inherent OOD robustness in CLIP motivated numerous methods aimed at
finetuning CLIP for downstream tasks while enhancing its perceived robustness. A common approach
is parameter-efficient finetuning (PEFT) strategies. An early influential study, CoOp (Zhou et al.|
2022c)), introduced learnable textual prompts, motivated by observations that manually crafted prompt
ensembles improved CLIP’s zero-shot accuracy. Building on this, CoCoOp (Zhou et al.,2022b) made
these prompts dynamic by conditioning them on individual image features through a cross-attention
mechanism. Similarly, CLIP-Adapter (Gao et al.||2024) proposed adding lightweight, learnable MLP
layers (adapters) to the CLIP encoders, finetuning only these small adapters instead of the entire
network. Many more subsequent PEFT methods have also been explored (Cho et al.| 2023} |Chi et al.|
2024} [Lee et al.,[2025; |/Addepalli et al.,[2024; Bai et al.| [2024; [Li et al., 2022} |Khattak et al., [2025};
Cheng et al., 2024; [Lafon et al., [2024)).

End-to-end finetuning methods have also been explored, yet many still depend on the original
pretrained CLIP weights for regularization or guidance. Wise-FT (Wortsman et al., [2022), motivated
by observing that standard finetuning often degraded zero-shot OOD performance, ensembles the
weights of the finetuned model with the original CLIP weights. CLIP-OOD (Shu et al.| 2023) used
a beta-moving average of the weights during finetuning alongside a regularization term to enhance
semantic relationships learned during pretraining. MIRO (Cha et al.,|2022)) used mutual information
regularization between the finetuning model and the frozen pretrained CLIP model to retain pretrained
features.

While many other methods show strong performance on OOD benchmarks, this overview highlights
representative approaches, their trends, and assumptions in robust CLIP finetuning. Our work,
however, questions whether current evaluation protocols are sufficiently challenging, and suggests
the reliance on the pretrained weights may be suboptimal for true OOD generalization, a concern
supported by evidence of domain contamination during pretraining (Mayilvahanan et al.l [2024).
Consequently, we explore more challenging evaluations and alternative strategies for training CLIP
grounded in DG principles.

B PSEUDOCODE

B.1 MAIN TRAINING LoopP (CLIP-DCA)

# Note: logit scales (temperature term) were omitted for simplicity

2/ def classification_loss (image, text):

9
0

D o —

1

1

1

1
14
1
16
1
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8

logits_per_image = image @ text.T
logits_per_text = text @ image.T
labels = torch.arange (len(image), device=device)

return (F.cross_entropy(logits_per_image, labels) +
F.cross_entropy (logits_per_text, labels)) / 2

def disentangle_loss(x, Vy):
X = (x — x.mean(0)) / (x.std(0) + 1le-8)
vy = (y — y.mean(0)) / (y.std(0) + 1le-8)

cross_cor_mat = (x @ y.T) / len(x)
return torch.diagonal (cross_cor_mat) .pow(2) .sum()

5| # Architectural additions (training only)

domain_head = nn.Linear(...)

/'mllm_projector = nn.Linear(...)
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# 1. Diffusion data batch

d_images, d_hidden, d_text = d_batch

penultimate_img_emb, class_img_emb, text_emb = clip_model (d_images,
d_text)

domain_img_emb = domain_head (penultimate_img_emb.clone ())

domain_mllm_emb = mllm_projector (d_hidden)

C5 = classification_loss (domain_img_emb, text_emb) # Domain Agreement
C6 = classification_loss(domain_mllm_emb, text_emb) # MLLM Agreement

C3 = disentangle_loss(class_img_emb, domain_img_emb)

C4 = disentangle_loss(class_img_emb, text_emb)

loss_diffusion = C3 + C4 + C5 + C6

# 2. Source data batch

s_images, s_text = s_batch
penultimate_img_emb, class_img_emb, text_emb = clip_model (s_images,
s_text)

domain_img_emb = domain_head (penultimate_img_emb.clone ())

7.Cl = classification_loss(class_img_emb, text_emb) # Classification Loss

C2 = disentangle_loss(class_img_emb, domain_img_emb)
loss_source = Cl + C2

# 3. Final loss

3 Joss = loss_diffusion + loss_source

Listing 1: Main training loop for CLIP-DCA.

B.2 UNLEARNING LooOP

# Note: logit scales (temperature term) were omitted for simplicity
discriminator = nn.Linear(...)

# Following Ganin et al. (2016)
p = float (batch_idx + start_steps) / total_steps
alpha = 2. / (1. + np.exp(-10 * p)) - 1

def classification_loss (image, text):
# ... (same as in Algorithm 1)

# 1. Retention on GCC dataset

gcc_images, gcc_captions = gcc_batch
_, 1lmage_emb, text_emb = clip_model (gcc_images, gcc_captions)
retention_loss = classification_loss (image_emb, text_emb)

# 2. Unlearning on DomainNet
dn_images, _ = dn_batch
noise = torch.randn_like (dn_images, requires_grad=True)

# Pass both through encoder; apply gradient reversal to discriminator

features_dn, _ = clip_model.encode_image (dn_images)

features_noise, _ = clip_model.encode_image (noise)

combined_features = torch.cat ((features_dn, features_noise), dim=0)

reversed_features = GradientReversalFunction.apply (combined_features,
alpha)

domain_logits = discriminator (reversed_features)

domain_targets = torch.cat ((torch.ones(len(dn_images)),

torch.zeros (len(noise))), dim=0) .long()
unlearning_loss = F.cross_entropy(domain_logits, domain_targets)
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2| # 3. Final loss

33 loss = retention_loss + unlearning_loss

Listing 2: Unlearning loop with gradient reversal.

C TRAINING DETAILS

For all experiments, we used the CLIP ViT-B/32 model. Models were finetuned on the ImageNet-1k
training set for 5 epochs. The official ImageNet validation set was used. We used the AdamW
optimizer with a learning rate of 1e-5, with a cosine learning rate scheduler. Due to computational
constraints, a consistent batch size of 128 was maintained across all methods. For baseline methods,
any additional method-specific hyperparameters were adopted from the default configurations pro-
vided in their publicly available codebases. All experiments were conducted with a single NVIDIA
RTX A5000 GPU and an AMD EPYC 7763 CPU.

D HYPERPARAMETER TUNING

This section provides details for hyperparameter tuning. In the main manuscript, we report 6
different losses for the distinction between source data and diffusion generated data (C; - C§). For
hyperparameter tuning, we group these losses into four terms. Cs and C'3 are grouped together as
the image disentangle term, while C7 and C} are grouped together as the text disentangle term. We
report our hyperparameter tuning in Table . Due to computation limitation, the tuning was limited to
single term increments.

Table D.1: Average accuracy across 33 datasets for specific hyperparameter combinations.

MLLM hidden MLLM Text disentangle Image disentangle Avg. Acc. (%)
state description
1x10% 1x10% 1x107% 1x 104 50.8
1x 1073 1x10* 1x10* 1x107* 49.6
1x 1072 1x10% 1x10°* 1x 10~ 49.0
1x 1071 1x 104 1x 104 1x10~* 50.2
1x10* 1x 1073 1x10~* 1x107* 51.3
1x 10~ 1x 1072 1x 10~ 1x107% 50.4
1x10* 1x 107! 1x10~* 1x107* 49.6
1x10°* 1x10* 1x 103 1x10~* 52.1
1x10~% 1x 104 1x 102 1x107* 51.4
1x10~* 1x10* 1x10°1! 1x10~* 51.0
1x10% 1x10% 1x10°* 1x1073 50.6
1x 104 1x 104 1x 104 1 x 1072 49.6
1x10* 1x10% 1x10°* 1x10°! 49.1
1x107% 1x 1074 1x1073 1x107% 52.1 (Best)

E DATASETS

We report all target datasets used for our experiments. Note that for training, the ImageNet-1K
training set was used.
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Table E.1: List of datasets used in experiments, including number of classes and images. DG
benchmarks are listed first. Each domain within a DG benchmark is treated as a distinct dataset. The

number of images represent the validation/test set.

Dataset Name Brief Description # Classes  # Images
Domain Generalization (DG) Benchmarks
Digits DG Collection of digit recognition datasets. - -
MNIST Grayscale handwritten digits (28x28). 10 6,000
MNIST digits with color patches blended
MNIST-M from BSDS500. 10 6,000
SVHN Cplor;d house numbers from Google Street 10 6.000
View images (32x32).
Synthetically generated digit images
SYN (32x32), 10 6,000
. Camera trap images of wild animals from
Terra Incognita . . - -
different locations.
Location 100 Animal images from Location 100. 10 4,741
Location 38 Animal images from Location 38. 10 9,736
Location 43 Animal images from Location 43. 10 3,970
Location 46 Animal images from Location 46. 10 5,883
PACS Object recognition with domain shifts. - -
Art Painting Artistic paintings of objects. 7 2,048
Cartoon Cartoon images of objects. 7 2,344
Photo Photographic images of objects. 7 1,670
Sketch Sketch drawings of objects. 7 3,929
Office-Home Object recognition in different settings. - -
Art Artistic depictions of everyday objects. 65 1,972
Clipart Clipart images of everyday objects. 65 3,910
Product Product images of everyday objects (typi- 65 3.984
cally clean backgrounds).
Real Real-\yorld photographic images of every- 65 3.902
day objects.
Individual Benchmark Datasets
Caltech-101 101 object categories (+1 background). 101 8,677
Oxford-IIIT Pets Images of pet breeds. 37 3,669
Oxford Flowers 102 Images of flower categories. 102 6,149
Stanford Cars Images of car makes, models, and years. 196 8,041
Food-101 Images of food categories. 101 25,250
FGVC Aircraft Images of aircraft variants. 100 3,333
SUN397 Scene qnderstandlng dataset with scene 397 108,754
categories.
Describable Textures  Textures in the wild, organized by 47 47 1.880
Dataset (DTD) human-perceivable attributes. ’
EuroSAT Satellite imagery of land use and land cover 10 27.000
classes.
UCF101 Action recognition dataset of human action 101 13,320
categories from videos.
1.28M natural images in 1000 classes
ImageNet-1K (ILSVRC 2012). 1000 50,000
ImageNet-V2 New test set for ImageNet-1K. 1000 50,889
ImageNet-Sketch 1Sllzetch images corresponding to ImageNet- 1000 50,000
ImageNet-A Natural adversarial examples" of 200 200 7,500

classes.
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Dataset Name Brief Description # Classes  # Images

"Renditions" (art, cartoons, etc.) of 200
200
ImageNet classes.

WILDS Benchmark Datasets (Treated as Individual)

ImageNet-R 30,000

Histopathological images for tumor detec- 2
tion with hospital-based shifts.

Satellite imagery for land use classification 62
with temporal/regional shifts.

Camelyon17-Wilds 85,054

FMOW-Wilds 53,473

F PrRoMPTS USED FOR MULTI-MODAL LANGUAGE MODELS (MLLMS)

This section details the specific prompts provided to Multi-Modal Language Models (MLLMs) for
the generation tasks.

F.1 PROMPT TO MLLM TO GENERATE IDEAS FOR DIFFERENT STYLES OF IMAGES

The following prompt was used to instruct the MLLM to generate a diverse list of image style ideas:

Give me ideas of 512 different styles of images.

Each style should be less than 5 words. Do not overlap styles.
Make the styles diverse.

Be brief.

F.2 PROMPT TO MLLM TO GENERATE DESCRIPTIONS AND HIDDEN STATES

The following prompt was used to instruct the MLLM to generate detailed descriptions of image
styles (independent of object category) and to also extract corresponding hidden states. The following
prompt was input together with images in each style:

Attached are multiple images in the same style.

Describe the aspects of the style that applies regardless of category.
Provide a description.

Do not describe the object in the image, but the style of image.

Be as detailed, complete, and comprehensive as possible.

Explain every minute detail.

G LIST OF ALL SYNTHETIC STYLES

This section provides the list of all synthetic style dieas that were generated by the LLM.

Table [G.T] shows the 512 distinct style prompts used for generating synthetic data. The styles are
listed alphabetically across the columns.

Table G.1: List of 512 synthetic data generation styles (alphabetical order).

3D rendering, virtual ASCII art, text charac-

3D rendered image ASCII art text

objects ters
. . . Abstract expressionism Abstract symbolic repre-
Aboriginal dot painting Abstract expressionism P act sy P
art sentation
Abstract, non- Abstract, non- Achromatic grayscale .
. . . Achromatic, no color
representational representational form image
Action painting, dy- Afrofuturism cultural

Acrylic paint vibrant . Aerial drone footage .
namic sci-fi

Continued on next page
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Algorithmic art, code-
based
Analogous colors har-
mony

Animal drinking, water
source

Animal hiding, partially
obscured

Animal mid-stride

Animal vocalizing,
mouth open

Art Deco geometry
Assemblage found ob-
jects

Asymmetry, unbalanced
design

Avant-garde, experimen-
tal

Bio art, living organisms
Bird’s-eye view, distant

Blue hour twilight

Bold geometric patterns

Broad lighting face

Calligraphy, elegant
handwriting

Candid, unposed mo-
ment

Cave entrance, dark
frame

Chibi cute style
Clear sky, bright blue

Close-up, fur texture

Collage, mixed media
Color splash accent

Comic book, panel style
Cross-hatching line work

Cubist geometric forms

Cyberpunk style,
dystopian future

Data visualization, infor-
mation art

Delicate fine details

Desaturated muted col-
ors

Diffuse reflection matte

Ambient light, natural
tones

Anamorphic distorted
perspective

Animal eye contact

Animal hunting, focused
gaze

Animal playing, ener-
getic

Anime Japanese anima-
tion

Art Nouveau curves

Assemblage, 3D collage

Augmented reality, over-
laid

Backlit silhouette light-
ing

Biopunk organic technol-
ogy

Black and white film

Blueprint architectural
plan

Boomerang, looping
video

Butterfly lighting beauty

Camera flash, harsh light

Caricature exaggerated
features

Cave painting prehistoric

Chromatic aberration,
color fringing
Close up macro

Close-up, scale pattern

Color contrast, comple-
mentary

Color temperature cool
Complementary colors
contrast

Cross-processed film

Cyanotype process print

Daguerreotype antique
look
Decorative, ornamental
style

Dense jungle, lush green

Desaturated, almost
monochrome

Digital art, computer-
generated

American scene painting

Ancient Egyptian hiero-
glyphs

Animal fighting, intense
conflict

Animal looking away

Animal sleeping, peace-
ful

Anime, Japanese anima-
tion

Artificial light controlled
Astrophotography star
trails

Autumn leaves, warm
palette

Backlit subject, glowing
outline

Biopunk, genetic engi-
neering

Blacklight fluorescent
colors

Body art, human canvas

Botanical art, plant sub-
jects

Byzantine mosaic icons

Camouflaged animal,
hidden

Cartoon simplified draw-
ing

Charcoal sketch drawing

Cinemagraph, subtle
movement

Close-up, animal portrait
Cloudscape art, sky
scenes

Color field painting
Color temperature warm
Conceptual, idea-driven

Cross-processed, altered
colors

Cyanotype, blue print

Dark ominous under-
tones

Decoupage, glued paper
cutouts

Depth of field

Dieselpunk retro-
futuristic

Digital glitchy aesthetic

Analog film, imperfec-
tions

Animal at rest

Animal grooming, self-
care

Animal marking territory

Animal tracks, fore-
ground focus
Architectural, building
structures

Arts and Crafts
Asymmetrical dynamic
balance

Available light natural

Baroque dramatic light-
ing

Bird’s-eye view elevated

Blooming flowers, vi-
brant colors

Bokeh light effect

Bright cheerful aesthetic

Calligraphy elegant
lettering

Candid street photogra-
phy

Cartoon, exaggerated
features

Charcoal sketch, rough
lines

Claymation stop-motion
animation

Close-up, feather detail

Collage mixed media

Color grading cinematic

Comic book style
Cross polarization, vi-
brant colors

Cubism, geometric
shapes

Cyberpunk cityscape
night

Data bending corrupted

Deep focus sharp

Depth of field,
blurred/sharp
Different species to-
gether

Digital noise, grain ef-
fect
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Digital painting software

Doodle art casual

Dramatic sky, storm
clouds

Duotone, two-color
palette

Earth art, natural materi-
als

Environmental art,
nature-focused
Etching, acid-etched
lines

Fantasy art, mythical
creatures

Fauvist wild beasts
Fish-eye lens view
Focus stacking, all sharp
Forced perspective trick
Fractal art mathematical

Full shot composition

Generative art, algo-
rithms
Glitch art digital

Golden hour sunlight
Gothic dark shadows
Graffiti, tagged look
Gritty black and white
HDR photo rendering

Hard light defined

High saturation, vivid
colors

Holographic iridescent
effect

Hyperrealism, beyond
realism

Impressionist brush-
strokes

Infrared photography
Installation art, three-
dimensional

Kinetic art movement

Leading lines perspec-
tive
Light art, illumination

Digital print, inkjet/laser

Double exposure overlay

Dramatic spotlight, sin-
gle source

Dusty trail, arid environ-
ment

Embroidery thread tex-
ture

Environmental portrait,
surroundings

Expressionist bold colors

Fashion illustration
stylish

Feeding animals, close
action

Fish-eye lens, distorted

Foggy morning, atmo-
spheric haze

Forced perspective, size
illusion

Fractal art, mathematical

Futuristic sci-fi vision

Geometric abstract pat-
tern

Glitch art distortion
Golden ratio composi-
tion

Gouache opaque matte
Grainy film texture

Gritty urban decay

HDR, high dynamic
range

Hard light shadows

High-angle shot looking

Horror art, scary im-
agery

Iluminated manuscript
gold

Industrial mechanical
elements

Infrared, false color
Interactive art, participa-
tion

Kinetic art, movement

Leading lines, guide eye

Light leak, color streaks

Distortion, warped per-
spective

Double exposure, ghost
image

Dreamy ethereal soft
focus

Dutch angle tilted
Engraving detailed metal
Establishing shot context
Extreme close-up detail
Fashion, clothing focus
Film noir style

Flat lay top-down

Folk art naive

Formal, posed shot

Frontlit subject, clear
view

Futuristic style, ad-
vanced

Glamour, idealized
beauty
Glitch art, corrupted data

Golden ratio, proportions
Graffiti art, street tagging
Grainy film, retro style

Group of animals, social

Halation, glowing high-
lights

Heavily textured impasto
High-key bright lighting

Hudson River School

Illustrative, narrative
imagery

Infographic data visual-
ization

Infrared, heat signature
Isometric projection
view

Land art earthworks

Lens flare sunlight

Light painting trails

Documentary style, real-
istic

Dramatic low-key light-
ing

Duotone color scheme

Dynamic energetic com-
position

Engraving, incised lines

Etching fine lines

Extreme close-up, eye
detail

Fast motion, sped-up
action

Fine art, aesthetic focus

Flowing river, blurred
water

Folk art, traditional craft
Found object art

Frozen lake, icy surface

Generative art algorith-
mic

Glassblowing molten
glass

Glitch art, digital errors
Gothic art, dark, roman-
tic

Graffiti wildstyle letter-
ing

Graphic design, visual
communication

Group portraiture, multi-
ple people

Hand-drawn sketchy feel

High contrast, dramatic
lighting

High-speed photography
Hyperlapse, moving
time-lapse
Impressionism, loose
brushstrokes

Infrared luminescence,
glowing foliage

Ink wash fluid

Jewelry intricate design

Landscape art, natural
scenery

Lens flare, bright streaks

Line art contour
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Line drawing, simple
outline

Lomography film look
Loop lighting portrait
Low-angle shot upwards
Luminism glowing light
Manga graphic novel

Medium shot framing

Miniature effect, tilt-
shift

Mixed lighting combined

Moody atmospheric
lighting

Motion blur capture

Multiple exposure, lay-
ered images

Natural organic forms

Neoclassical refined
style

Night vision, green tint
Op Art optical

Ornate intricate design

Outsider art, untrained

Overgrown, vegetation
focus

Panoramic, wide environ-
ment

Pastel drawing, blended
colors

Pencil shading detailed

Photorealism, lifelike
detail

Pixelated low resolution
Pointillist dot technique

Pop art, bold colors

Pre-Raphaelite detailed
beauty

Quilting patchwork de-
sign

Realist everyday life

Rocky terrain, jagged
edges

Linocut bold lines

Long exposure shot

Low angle, animal tower-
ing

Low-key dark lighting

Macro lens close-up

Map cartographic repre-
sentation

Metalwork shaped metal

Minimalism, essential
elements

Monochrome single
color

Moonlit night, stark
shadows

Motion blur, animal
running

Mural art, large-scale
painting

Negative space drawing
Neon light glowing

Night vision, red tint

Op art, visual illusions
Orthochromatic film
effect

Over-the-shoulder per-
spective shot

Panning motion blur
Paper cut layered

Pastel soft blending

Performance art, live
action

Pinhole camera image

Pixelated, low resolution

Polaroid transfer, image
manipulation
Portraiture, individual
likeness

Predator-prey interaction

Rack focus shift

Rembrandt lighting
portrait

Rococo ornate details

Lithograph stone print

Long exposure, light
trails

Low poly geometric

Lowbrow art, under-
ground

Macro shot, tiny details

Maximalist busy compo-
sition

Migrating herd, vast
landscape

Minimalist simple lines

Monochrome, single
color

Mosaic tile pieces

Motion blur, speed lines

Mural large-scale paint-
ing

Negative space framing

Nesting birds, detailed
feathers

Oil painting texture
Optical illusion, trickery

Outrun style neon

Overcast sky diffusion

Panning, blurred back-
ground

Paper marbling, swirling
patterns

Pattern repetition, visual
rhythm
Photojournalism, story-
telling

Pixel art retro

Point-of-view subjective
shot

Polychrome, many col-
ors

Positive space, subject
focus

Psychedelic art, mind-
altering

Radial balance, circular
focus

Renaissance classical
style

Romantic emotional
landscape

Lithography, plano-
graphic print

Long shot distance

Low saturation, muted
tones

Lowbrow pop surrealism

Mandala circular symme-
try

Maximalist, elaborate
design

Miniature diorama world

Minimalist, simplified
design

Monotype, unique print

Mosaic, small piece
patterns

Mountain range,
panoramic view

Naive art, childlike sim-
plicity

Negative space, empty
area

Night photography
cityscape

Oil painting, thick tex-
ture

Origami, paper folding

Outsider art raw

Overexposed, bright
white

Panoramic stitched view
Parent and offspring

Pen and ink

Photorealism hyper-
detailed

Pixel art, retro game
Pointillism, tiny dots
Pop art bright

Pottery ceramic art
Quilling, paper filigree
Rainy day, blurred drops
Retro style, vintage look

Rule of thirds

20

Continued on next page



Under review as a conference paper at ICLR 2026

Table G.1 - continued from previous page

Rule of thirds, composi-
tion

Schematic diagram lay-
out

Sculpture three-
dimensional form
Self-portraiture, artist’s
image

Shallow focus blur
Short lighting slimming
Silhouette, dark shape

Smooth airbrushed finish
Soft focus, dreamy effect
Solar punk green

Specular highlights re-
flections

Spring growth, fresh
shoots

Steampunk Victorian
sci-fi

Stippling dot shading

Studio portrait lighting

Sunrise glow, warm
tones

Surrealist dreamlike
scene

Telephoto, compressed
perspective

Texture contrast, rough/s-
mooth

Time-lapse sequence
frame

Tonal contrast, light/dark

Trompe-1’oeil illusionis-
tic

Typography, letterforms
art

Underwater photography
scene

Vaporwave aesthetic
photo

Vignette, darkened edges
Virtual reality, immer-
sive

Watercolor wash effect
Wheatpaste poster art
Wide-angle, forest scene

Woodcut print rustic

Rustic textured surface

Sci-fi art, space, technol-
ogy

Seascape art, ocean
views

Sepia tone, vintage look

Sharp contrasting lines

Sidelit subject, defined
features

Single-point lighting
setup

Smooth digital, clean
look

Soft light diffused
Solitary animal, minimal-
ist

Split lighting dramatic

Square color scheme

Steampunk style, Victo-
rian sci-fi

Stop motion, frame-by-
frame

Sumi-e ink painting

Sunset silhouette, golden
hour

Symmetrical balanced
framing

Tessellated repeating
design

Thermal imaging, body
heat

Time-lapse, motion
sequence

Tonalism muted colors

Two animals, interaction

Ukiyo-e Japanese wood-
block

Underwater, murky view

Vector graphic, stylized
Vignetting, dark corners
Visionary art, spiritual

Waterfall cascade, misty
spray

Whimsical playful style
Wildlife art, animal
subjects

Woodcut, relief print

Sandy desert, dunes
stretch

Screen printing bold
Selective color isolation
Sepia toned photograph
Sharp focus, crisp details
Silhouette backlit subject

Sleek modern minimalist

Snowy scene, whiteout
effect

Soft pastel hues

Sound art, auditory
Split toning effect
Staged photography
Stencil art spray

Street art graffiti

Summer heat, shimmer-
ing air

Surreal, bizarre, dream-
like

Symmetry, balanced
image

Tetradic color rectangle

Three-point lighting
classic

Time-lapse, star trails
Triadic color scheme

Two-point lighting setup

Ultraviolet, unseen spec-
trum

Urban art, cityscapes

Vector graphics scalable

Vintage Polaroid picture
Water reflection, mir-
rored image

Wet collodion, antique
photography

Wide shot, animal small
Winter frost, intricate
patterns

Worm’s-eye view low

Saturated vibrant colors

Screen printing, stencil
print

Selective focus, sharp
animal

Serene calming atmo-
sphere

Short exposure, frozen
motion

Silhouette black shape

Slow motion, extended
time

Social realism commen-
tary

Softbox diffused light
Sparse woodland, bare
trees

Split toning, colored
highlights/shadows

Stained glass colorful

Stencil art, cut-out
shapes

Street art, urban style

Sunlit glade, dappled
light

Surrealism, dreamlike
imagery

Technical drawing pre-
cise

Textile art fabric
Tilt-shift effect

Tintype vintage photo

Tritone, three-color
scheme

Two-shot composition
framing

Underexposed, deep
shadows

Vanishing point perspec-
tive

Vibrant color explosion

Vintage retro charm
Watercolor painting, soft
edges

Wet plate collodion
Wide-angle perspective
Wood carving relief

X-ray skeletal view
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X-ray vision, skeletal Zentangle intricate pat-

Zoom burst effect Zoom burst, radial blur
structure terns

H ABLATION STUDY ON MLLM SCALE

To investigate the impact of the Multimodal Large Language Model’s (MLLM) scale on our method’s
performance, we conducted an ablation study where we replaced the LLaVA-8B model used in
our main experiments with the significantly larger Gemini-2.5-Pro. As shown in Table [H.1] the
performance difference is marginal. The results from Gemini-2.5-Pro show a slight improvement
on less OOD datasets but are nearly identical on more challenging ones. This suggests that the
effectiveness of CLIP-DCA are a result of the proposed disentanglement framework rather than being
dependent on the scale or capacity of the MLLM used for generating domain-aware signals. All
experiments were run with the default hyperparameters reported in the main paper.

Table H.1: Ablation on MLLM Scale: Comparison between LLaVA-8B and Gemini-2.5-Pro. Per-
formance is reported on ImageNet variants and the average across all 33 target datasets. The results
show only a marginal difference, highlighting that our framework is not primarily dependent on the
MLLM’s scale.

Method / Setting INet V1 -V2 -Sketch -A -R  Avg.on 33
Zeroshot 4.60 4.04 2.74 1.51 5.16 4.55
Regular Finetune 6.98 5.84 3.47 1.50 5.26 4.36
CLIP-DCA (LLaVA-8B) 75.1 63.9 4.2 229 622 52.1

CLIP-DCA (Gemini-2.5-Pro) 7.61 6.49 4.27 229 6.19 5.25

I ACCURACY DETAILS

This section provides accuracy details for all target datasets. We report accuracies for both the original
weights (before unlearning) and the unlearned weights. The average value across all datasets were
reported in the main manuscript.

I.1 USING ORIGINAL WEIGHTS (BEFORE UNLEARNING)

Table I.1: Model performance on each dataset for all baselines using the original weights

Dataset Name Zeroshot FLYP DANN Adapter CoOp O0D Ours
Digits DG
MNIST 224 26.7 27.6 242 23.6 154 27.8
MNIST-M 16.8 18.4 22.7 11.9 14.9 17.3 16.2
SVHN 16.1 13.1 15.1 11.6 13.1 12.8 12.8
SYN 24.5 21.1 28.0 154 16.0 18.3 23.7
Terra Incognita
Location 100 4.7 21.9 12.3 18.6 18.9 15.2 42.2
Location 38 4.8 32.3 34.7 20.6 20.4 114 35.6
Location 43 319 304 26.1 27.7 27.0 12.5 324
Location 46 23.1 32.1 24.3 23.0 224 7.2 36.4
PACS
Art Painting 95.2 914 89.3 96.2 96.0 74.5 95.1
Cartoon 96.7 87.4 90.4 96.8 96.5 724 95.9
Photo 99.5 99.3 99.3 99.6 99.7 86.7 99.7

Continued on next page
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Dataset Name Zeroshot FLYP DANN Adapter CoOp (010))) Ours
Sketch 83.3 75.9 58.7 84.1 84.0 68.8 88.3
Office-Home
Art 77.5 73.8 72.2 78.3 77.4 63.5 77.6
Clipart 61.4 56.8 56.3 64.1 63.9 58.7 62.2
Product 85.9 78.0 77.2 87.3 86.8 70.0 84.8
Real 86.7 80.3 79.4 88.3 87.6 70.6 86.9
Caltech-101 83.4 84.5 83.0 83.2 83.4 63.1 88.9
Oxford-IIIT Pets 83.9 73.2 74.6 85.9 83.8 64.3 84.6
Oxford Flowers 102 60.1 30.8 314 64.6 64.9 9.2 53.2
Stanford Cars 52.2 20.0 21.2 56.4 55.7 1.6 40.6
Food-101 80.2 50.3 51.5 83.6 83.1 19.0 74.9
FGVC Aircraft 16.1 4.4 4.6 17.6 17.5 2.4 12.5
SUN397 60.2 51.8 51.0 57.8 58.3 30.6 63.8
Describable Textures Dataset 40.7 28.8 28.7 40.1 39.6 11.7 39.5
EuroSAT 30.3 26.0 23.9 38.1 38.2 16.2 39.2
UCF101 61.1 48.4 48.8 63.6 63.1 29.4 62.3
ImageNet-1K 54.2 69.1 69.0 59.5 59.9 71.0 75.0
ImageNet-V2 48.4 58.1 58.0 52.9 52.7 60.2 64.1
ImageNet-Sketch 32.3 35.3 33.1 32.3 32.8 40.5 42.9
ImageNet-A 26.2 18.1 18.3 28.5 27.9 13.6 26.2
ImageNet-R 59.7 55.8 53.7 58.9 58.8 45.2 65.0
Camelyon-Wilds 50.2 50.0 51.0 50.1 50.1 50.0 56.9
FMOW-V2 Wilds 16.5 7.9 9.8 13.2 12.8 11.3 12.9

1.2 USING UNLEARNED WEIGHTS (AFTER UNLEARNING)

Table 1.2: Model performance on each dataset for all baselines using the unlearned weights

Dataset Name Zeroshot FLYP DANN Adapter CoOp (010))) Ours
Digits DG
MNIST 33.5 224 28.4 29.3 28.9 18.9 40.6
MNIST-M 254 16.7 17.1 23.4 24.8 15.8 24.7
SVHN 13.8 13.5 12.0 15.7 16.7 12.0 16.5
SYN 24.6 22.8 18.1 17.4 19.7 13.0 29.0
Terra Incognita - - -
Location 100 27.8 13.6 22.9 23.2 22.5 9.1 21.5
Location 38 5.8 31.8 27.0 4.7 6.1 2.5 40.4
Location 43 26.5 27.6 25.9 22.2 23.4 9.2 28.1
Location 46 28.4 25.8 30.9 30.0 324 5.1 32.0
PACS - - -
Art Painting 93.8 87.0 86.3 93.9 92.9 65.2 92.1
Cartoon 94.6 82.8 87.8 92.1 94.1 63.4 92.8
Photo 99.5 99.5 99.0 99.0 98.0 80.0 99.6
Sketch 30.0 71.1 32.5 31.2 32.2 58.5 79.7
Office-Home - - -
Art 68.2 68.1 67.1 68.7 68.7 62.7 76.8
Clipart 50.7 53.7 533 47.0 46.7 50.9 61.3
Product 77.2 73.7 73.6 73.2 73.9 61.7 81.3
Real 80.4 76.9 76.9 78.9 78.1 66.6 83.4
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Dataset Name Zeroshot FLYP DANN Adapter CoOp (010))) Ours
Caltech-101 83.1 81.4 80.2 83.2 82.3 69.9 86.5
Oxford-IIIT Pets 74.9 71.0 69.3 74.2 76.4 67.5 81.0
Oxford Flowers 102 43.5 19.3 16.7 43.5 42.6 8.3 45.7
Stanford Cars 30.6 11.1 10.8 30.6 31.8 5.6 39.6
Food-101 66.3 34.3 33.6 65.9 63.4 17.4 62.4
FGVC Aircraft 8.0 2.7 2.2 8.0 7.1 1.1 94
SUN397 56.7 44.7 44.9 56.1 54.3 30.8 59.9
Describable Textures Dataset 30.7 25.6 24.9 31.1 30.2 9.8 35.0
EuroSAT 30.5 27.7 28.8 30.0 31.5 14.3 29.0
UCF101 55.5 42.1 41.8 55.1 56.6 36.7 56.9
ImageNet-1K 46.0 69.8 70.0 52.9 53.3 69.0 75.1
ImageNet-V2 40.4 58.4 58.2 45.7 46.2 58.2 63.9
ImageNet-Sketch 27.4 34.7 33.2 284 29.1 35.3 42.2
ImageNet-A 15.1 15.0 16.5 15.0 16.1 15.0 22.9
ImageNet-R 51.6 52.6 52.0 51.6 52.8 45.8 62.2
Camelyon-Wilds 50.2 53.0 51.9 60.0 59.7 50.5 55.0
FMOW-V2 Wilds 10.1 8.2 8.7 10.3 9.7 4.7 12.4

J OOD SCORES

This section provides the OOD scores for all target datasets. We report the OOD scores for both the
original weights (before unlearning) and the unlearned weights. The average value was used to create

the graphs in the main manuscript.

J.1 USING ORIGINAL WEIGHTS (BEFORE UNLEARNING)

Table J.1: Out-of-Distribution (OOD) detection scores using original weights.

Dataset Name SNGP Label Average
Digits DG - - -
MNIST 12.4 97.3 54.9
MNIST-M 8.1 97.8 52.9
SVHN 8.8 97.1 52.9
SYN 20.1 95.3 57.7
Terra Incognita - - -
Location 100 10.0 92.5 51.2
Location 38 8.9 95.7 523
Location 43 9.5 94.1 51.8
Location 46 7.9 95.5 51.7
PACS - - -
Art Painting 20.4 93.4 56.9
Cartoon 33.6 92.9 63.2
Photo 29.6 80.0 54.8
Sketch 35.1 92.3 63.7
Office-Home - - -
Art 34.8 77.6 56.2
Clipart 28.8 83.2 56.0
Product 45.1 72.0 58.5
Real 43.1 69.6 56.3
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Table J.1 — continued from previous page

Dataset Name SNGP Label Average
Caltech-101 39.3 76.5 57.9
Oxford-IIIT Pets 57.2 62.6 59.9
Oxford Flowers 102 96.8 83.9 90.3
Stanford Cars 98.7 76.2 87.5
Food-101 934 77.7 85.6
FGVC Aircraft 97.9 33.7 65.8
SUN397 71.6 76.7 74.2
Describable Textures Dataset 32.3 86.7 59.5
EuroSAT 50.5 98.2 74.3
UCF101 74.4 84.4 79.4
ImageNet-1K 51.6 0.0 25.8
ImageNet-V2 66.3 0.0 33.1
ImageNet-Sketch 85.5 0.0 42.8
ImageNet-A 87.7 0.0 43.9
ImageNet-R 87.8 0.0 43.9
WILDS Benchmark Datasets

Camelyon-Wilds 0.8 79.2 40.0
FMOW-V2 Wilds 60.5 95.7 78.1

J.2 USING UNLEARNED WEIGHTS (AFTER UNLEARNING)

Table J.2: Out-of-Distribution (OOD) detection scores for unlearned model.

Dataset Name SNGP Label Average
Digits DG - - -
MNIST 93.2 40.2 66.7
MNIST-M 97.4 26.4 61.9
SVHN 97.5 2.5 50.0
SYN 98.8 16.4 57.6
Terra Incognita - - -
Location 100 95.1 6.9 51.0
Location 38 95.7 4.6 50.1
Location 43 94.5 15.8 55.1
Location 46 96.7 12.3 54.5
PACS - - -
Art Painting 93.5 32.7 63.1
Cartoon 93.2 39.0 66.1
Photo 79.4 48.0 63.7
Sketch 97.3 19.3 58.3
Office-Home - - -
Art 81.6 43.6 62.6
Clipart 87.0 40.9 64.0
Product 77.9 52.0 65.0
Real 94.7 55.0 74.8
Caltech-101 76.6 55.8 66.2
Oxford-IIIT Pets 68.0 46.4 57.2
Oxford Flowers 102 81.7 98.4 90.1
Stanford Cars 74.7 95.2 85.0
Food-101 78.5 89.6 84.0
FGVC Aircraft 38.5 92.8 65.7

Continued on next page
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Table J.2 — continued from previous page

Dataset Name SNGP Label Average
SUN397 77.6 83.4 80.5
Describable Textures Dataset 87.9 53.2 70.6
EuroSAT 98.1 26.3 62.2
UCF101 86.1 81.0 83.5
ImageNet-1K 59.7 0.0 29.9
ImageNet-V2 71.8 0.0 35.9
ImageNet-Sketch 89.6 0.0 44.8
ImageNet-A 88.8 0.0 44.4
ImageNet-R 89.4 0.0 44.7
WILDS Benchmark Datasets

Camelyon-Wilds 92.9 24.3 58.6
FMOW-V2 Wilds 95.8 63.0 79.4
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