DOMAIN GENERALIZATION IN-THE-WILD: DISENTANGLING CLASSIFICATION FROM DOMAIN-AWARE REPRESENTATIONS

Anonymous authors

000

001

002

004

006

008 009 010

011

013

014

015

016

017

018

019

021

025

026

028

029

031

033

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Evaluating domain generalization (DG) for foundational models like CLIP is challenging, as web-scale pretraining data potentially covers many existing benchmarks. Consequently, current DG evaluation may neither be sufficiently challenging nor adequately test genuinely unseen data scenarios. To better assess the performance of CLIP on DG in-the-wild, a scenario where CLIP encounters challenging unseen data, we consider two approaches: (1) evaluating on 33 diverse datasets with quantified out-of-distribution (OOD) scores after fine-tuning CLIP on ImageNet, and (2) using unlearning to make CLIP 'forget' some domains as an approximation. We observe that CLIP's performance deteriorates significantly on more OOD datasets. To address this, we present CLIP-DCA (Disentangling Classification from enhanced domain Aware representations). Our approach is motivated by the observation that while standard domain invariance losses aim to make representations domain-invariant, this can be harmful to foundation models by forcing the discarding of domain-aware representations beneficial for generalization. We instead hypothesize that enhancing domain awareness is a prerequisite for effective domain-invariant classification in foundation models. CLIP-DCA identifies and enhances domain awareness within CLIP's encoders using a separate domain head and synthetically generated diverse domain data. Simultaneously, it encourages domain-invariant classification through disentanglement from the domain features. CLIP-DCA shows significant improvements within this challenging evaluation compared to existing methods, particularly on datasets that are more OOD.

1 Introduction

Domain generalization (DG) aims to train models that maintain robust performance when encountering out-ofdistribution (OOD) data (Zhou et al., 2022a). A key assumption of DG is that the target domains represent novel data distributions for evaluation. However, this assumption is challenged when evaluating pretrained foundation models like CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021). These models have been trained on comprehensive web-scale datasets, thus have likely been exposed to most existing domains, contributing to its impressive zero-shot capabilities. Consequently, much research has focused on adapting CLIP through parameter-efficient finetuning (Zhou et al., 2022c;b; Gao et al., 2024; Zhang et al., 2022), regularization using the original weights (Wortsman et al., 2022; Nam et al., 2024; Oh et al., 2024; Shu et al., 2023), and even transductive methods (Wallingford et al., 2023; Martin et al., 2024), largely preserving its pretrained knowledge. However, this reliance on pretrained

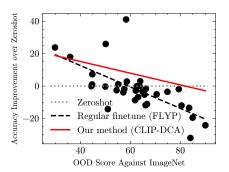


Figure 1: Improvement over zeroshot after finetuning on ImageNet (in %). Each dot represents a target dataset. OOD scores are quantified relative to ImageNet (source dataset), illustrating the challenge of DG in-the-wild.

knowledge is predicated on an assumption of true OOD robustness that is now being challenged. Recent studies show that evaluating foundation models for DG is often compromised by data leakage

from web-scale pre-training (Teterwak et al., 2024; Yu et al., 2024). Teterwak et al. (2024) addresses this by analyzing generalization from learned to unlearned samples within the pre-training data, while Yu et al. (2024) proposes training models from scratch to avoid contamination entirely. These studies, along with findings that retraining CLIP on cleaner data degrades OOD performance, suggest that current DG evaluations may overestimate true OOD robustness (Mayilvahanan et al., 2024). While these studies provide critical insight, they do not offer a tractable setting to test the generalization performance of CLIP after specific, contaminating knowledge has been selectively removed.

To address this gap, we propose that DG evaluation for foundation models, such as CLIP, should be more challenging, to approximate "domain generalization in-the-wild," where CLIP might encounter diverse and challenging new data in the real-world. We evaluate CLIP on 33 target datasets spanning a diverse range of OODness. To systematically approach evaluation, we quantify a multi-modal OOD score (Sec. 3.2), using ImageNet as both an anchor and a source dataset owing to its inclusion of many classes and concepts. We find that after finetuning on ImageNet, CLIP's DG performance degrades on datasets with higher OOD scores with respect to ImageNet (Figure 1), consistent with the domain contamination findings (Mayilvahanan et al., 2024). In addition, to further simulate truly unseen domains, we use an unlearning technique (Sepahvand et al., 2025) to make CLIP forget some domains (Sec. 3.3), and find significant performance degradation for existing robust finetuning methods.

Our results (Figure 9), alongside findings on domain contamination (Mayilvahanan et al., 2024), suggest that for DG in-the-wild, different robust finetuning algorithms are needed for genuinely unseen data. In light of this, we present CLIP-DCA (Disentangling Classification from enhanced domain Aware representations), an end-to-end finetuning method to improve the robustness of CLIP on truly OOD data. A key idea in DG is that learning domain-invariant features is beneficial for robust generalization (Zhou et al., 2022a; Ganin et al., 2016). However, naively enforcing domain invariance for a pretrained foundation model could cause catastrophic forgetting of useful features learned from diverse domains during pretraining as the model is forced to make its representations entirely domain-invariant. We hypothesize that to learn effective domain invariance, domain awareness is a prerequisite. This awareness is critical to maintain CLIP's vast knowledge, which includes generalizable features that support capabilities like zero-shot classification. By enhancing domain awareness, CLIP can also selectively disentangle classification from domain-specific aspects, thereby achieving robust generalization without forgetting valuable information.

We combine the idea of domain awareness and domain invariance by encouraging them simultaneously within CLIP-DCA (Figure 2). Specifically, we encourage domain awareness within CLIP's image and text encoders, while promoting domain invariance specifically at the final classification layer through disentanglement. Our premise is that while domain awareness is a requirement to maintain pre-existing knowledge, this awareness can be disentangled for domain-invariant classification and robust generalization. To achieve this, we add a new head to the CLIP image encoder, called the domain head, which is trained to understand domains. The original classification head is then disentangled from the domain head, effectively learning domain awareness within its encoders and achieving domain invariance at the classification stage. Additionally, since many datasets lack distinct domains or textual descriptions, and the definition of 'domain' is often vague in DG in-the-wild, we address this by using diffusion models to create images of artificial domains and Multimodal LLMs (MLLMs) to generate descriptions for these artificial domains (Sec. 2.2). Our contributions are summarized as follows:

- We demonstrate potential limitations in current DG evaluations of foundation models, supported
 by our results and recent studies. Existing benchmarks may overestimate true OOD robustness,
 potentially leading finetuning strategies towards in-distribution improvement rather than OOD.
- We propose more challenging and holistic evaluations for DG in-the-wild. We use an expanded cross-dataset evaluation setting spanning 33 datasets from diverse domains, indexed by multimodal OOD scores. We also use an unlearned model to further approximate unseen domains.
- We introduce CLIP-DCA, a novel finetuning method that improves OOD robustness by disentangling classification from enhanced domain-aware representations. We find that on more OOD target datasets, CLIP-DCA performs significantly better compared to existing robust finetuning methods, while performance is similar across all methods on less OOD target datasets.

Related Work. A comprehensive review is in Appendix A. Domain generalization (DG) has traditionally focused on learning domain-invariant representations (Ganin et al., 2016; Zhou et al.,

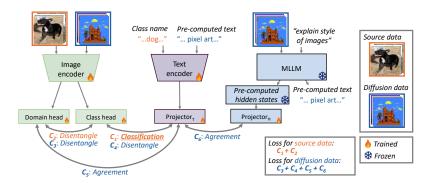


Figure 2: CLIP-DCA applies different sets of losses to source data images and diffusion images. For source images, accurate classification is encouraged through the classification loss between class head and text encoder (C_1) . Invariance is encouraged through the disentanglement between domain and class heads (C_2) . With diffusion images, domain invariance is encouraged through the disentanglement between the domain and class heads (C_3) , and disentanglement between class head and text encoder (C_4) . Domain awareness is encouraged through the agreement between the domain head and the text encoder (C_5) , and the agreement between the text encoder and the MLLM hidden states (C_6) . During inference, only the class head and text projector are used for classification.

2022a), but naively applying these methods to foundation models like CLIP can cause catastrophic forgetting. Consequently, most robust CLIP finetuning methods aim to preserve pretrained knowledge through parameter-efficient finetuning (PEFT) (Zhou et al., 2022c; Gao et al., 2024) or regularization towards the original weights (Wortsman et al., 2022; Shu et al., 2023). However, this reliance on pretrained knowledge is being questioned by recent findings of domain contamination in web-scale datasets (Teterwak et al., 2024; Yu et al., 2024; Mayilvahanan et al., 2024), which suggest current evaluations may overestimate true OOD robustness. Our work addresses this by proposing a more challenging evaluation framework and a method that learns targeted invariance without sacrificing pretrained knowledge.

2 CLIP-DCA: DISENTANGLING CLASSIFICATION FROM ENHANCED DOMAIN-AWARE REPRESENTATIONS

To address the challenges of DG in-the-wild, we introduce CLIP-DCA (**D**isentangling Classification from enhanced domain **A**ware representations), a finetuning method designed to improve robustness on genuinely unseen data.

2.1 Encouraging domain awareness and invariance simultaneously

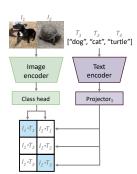
Our key hypothesis is that domain invariance at the decision-making stage is beneficial for generalizing to unseen domains. At the same time, domain awareness is required for retaining the vast pretrained knowledge of CLIP. We achieve them simultaneously by encouraging domain awareness in the encoders, while enforcing domain invariance only in the classifier of CLIP through disentanglement. The intuition is that **if a model understands what constitutes as domain-specific features, then it can learn to disregard it appropriately during classification on unseen domains**.

Enforcing domain invariance in the encoder through conventional domain adversarial learning, for instance, can be harmful. Our experiments show that applying invariance directly leads to worse performance compared to standard finetuning (Figure 8). Forcing the entire model to become domain-invariant can lead to the forgetting of valuable, fine-grained features learned during the pretraining on a large dataset. Conversely, existing CLIP robust finetuning methods discourage divergence from the original pretrained model, and rely on the assumption that CLIP is inherently robust to OOD data. This assumption is challenged by our results (Figure 9) and evidence for domain contamination (Teterwak et al., 2024; Yu et al., 2024; Mayilvahanan et al., 2024).

Instead, we focus on enforcing domain invariance only at the final classification layer, while simultaneously encouraging the image encoder to become domain-aware. Our intuition is that a comprehensive understanding of various domains enables the model to more effectively disregard domain-specific

influences during inference. The diverse set of generated diffusion images and their descriptions (detailed in Section 2.2) provides the necessary signals for enhancing this domain awareness.

To implement this, we introduce an architectural addition to the CLIP image encoder. We add an additional linear projection head, termed the image domain head (I_D) , which has the same dimensionality as the original image projection head, referred to as the image class head (I_C) , as shown in Figure 2. We do not add a corresponding domain head to the text encoder for two reasons. First, in most downstream classification datasets, only class names are available as text inputs, without domain descriptions. Second, textual information inherently allows for easier separation of domain and class attributes. For instance, a prompt like "a sketch of a dog" clearly distinguishes class ("dog") from domain ("sketch"). Note that for inference, the standard pipeline is used as shown in Figure 3. The domain head and other losses are not used.



During training, we use two distinct loss functions for the two types of data we use - the source dataset and generated diffusion images. We use ℓ_a to refer to agreement loss (the standard CLIP contrastive loss (Radford et al., 2021) or finetuning (Goyal et al., 2023)). We use ℓ_d to refer to disentanglement, which enforces statistical independence between two sets of representations. Inspired by the simplicity of self-supervised

Figure 3: Standard CLIP inference pipeline using a dot product between image and text embeddings for classification.

methods (Zbontar et al., 2021; Bardes et al., 2021), we achieve this by minimizing the correlation between the class and domain embeddings. The loss is formulated as the squared sum of the diagonal of the cross-correlation matrix between the batch-normalized class embeddings and domain embeddings. This penalizes any shared information, encouraging the class head to find predictive representations that are independent of features useful for domain prediction.

The role of the disentanglement loss is to enforce this separation. The underlying assumption is that if the two representations are truly disentangled, the features from the class head for a given sample should be statistically independent from the features learned by the domain head for that same sample. By minimizing the correlation between the class and domain embeddings, this loss encourages the class head to find representations that are predictive of the class label without using features that are also useful for predicting the domain. Conversely, it encourages the domain head to focus only on domain-specific information, as any shared information with the class head is penalized.

We simultaneously encourage accurate classification, domain awareness in both text and image encoders, and domain invariance at the classification stage with the following loss terms:

1. For the source dataset images (e.g., ImageNet, with only class labels):

- A classification loss (i.e., the standard CLIP contrastive loss (Goyal et al., 2023)) between the output of the image class head and the text embedding of the class name, $C_1 := \ell_a(I_C, P_T)$.
- A disentanglement loss between the class and domain heads, $C_2 := \ell_d(I_C, I_D)$.
- For source dataset images, we minimize the loss function $\mathcal{L}_{source} = C_1 + C_2$.

2. For the diffusion images and their MLLM-generated style descriptions:

- A disentanglement loss between the class head and domain head, $C_3 := \ell_d(I_C, I_D)$.
- A disentanglement loss between the text embedding of style descriptions and the image class head to further encourage the class head to learn domain invariance, $C_4 := \ell_d(P_T, I_C)$.
- An agreement loss between the output of the image domain head and the text embedding of the style description, enhancing domain head's domain awareness, $C_5 := \ell_a(P_T, I_D)$.
- An agreement loss between the text embedding and the corresponding projected MLLM hidden state, enhancing the text encoder's domain awareness, $C_6 := \ell_a(P_T, P_H)$.
- For diffusion images, we minimize the loss function $\mathcal{L}_{diffusion} = C_3 + C_4 + C_5 + C_6$.

For a detailed implementation, pseudocode for the main training loop is provided in Appendix B.

2.2 Generating diverse domains

Traditional DG benchmarks provide multi-domain datasets, enabling the learning of domain invariance. However, our evaluation setup, which involves finetuning on a single source dataset like

ImageNet, lacks explicit multiple source domains, especially as the boundary for different domains becomes more vague for DG in-the-wild. Additionally, we hypothesize that to understand what constitutes as domain-specific features, a diverse number of domains are required.

To address this, we construct a small dataset with a diverse number of domains. As illustrated in Figure 4, we prompt a MLLM, specifically LLaVA (Liu et al., 2023), to generate ideas of 512 distinct styles for images (e.g. "pixel art"). The complete list of styles is available in Table G.1 in the Appendix. A text-to-image diffusion model (Stable Diffusion 3 (Esser et al., 2024)) then generates images from these stylistic prompts. We intentionally omit any class labels during image generation to ensure the styles are not biased towards specific classes. We generate 8 images per style, creating a dataset of 4096 images. Finally, the same MLLM generates textual domain descriptions (captions) for each style. We also store the hidden state representations from the MLLM that were used to generate these style descriptions, as these will be used to encourage domain awareness in the text encoder. The exact prompts used for style and description generation are detailed in Appendix F.

"movide ideas for image styles" MLLM Llava (Llama-8B) Stable Diffusion 3 "describe style of image" Hidden states MLLM Llava (Llama-8B) "... reminiscent of pixel art ..."

Figure 4: Pipeline for generating synthetic domain images and descriptions.

3 EXPERIMENTAL SETUP

3.1 EVALUATING DG IN-THE-WILD PERFORMANCE

We first analyze standard Domain Generalization (DG) benchmarks and find their domains are not well-separated. Using a Spectral-normalized Neural Gaussian Process (SNGP) (Liu et al., 2020) to compute pairwise OOD scores, we observe strong intra-benchmark clustering, as visualized in Figure 5. This clustering, along with CLIP's high zero-shot accuracy and the success of transductive methods on these datasets (Wallingford et al., 2023; Martin et al., 2024), suggests that current DG evaluations are not sufficiently challenging for large-scale models, possibly due to pre-training data contamination.

challenging for large-scale models, possibly due to pre-training data contamination.

To address this, we finetune CLIP on ImageNet-1K (Deng et al., 2009) and evaluate its generalization capabilities across a more diverse benchmark of 33 target datasets spanning standard DG bench-

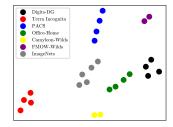


Figure 5: PCA visualization of domains from different domain generalization datasets

marks and other challenging classification tasks (full list provided in Table E.1). A cross-dataset evaluation is significantly more challenging compared to traditional DG setups, as it involves larger visual distribution shifts and also shifts in class labels. This evaluation also aligns with the methodologies of prior studies investigating robust CLIP finetuning (Zhou et al., 2022c;b; Gao et al., 2024; Shu et al., 2023), while adding a broader coverage of domains. We use the CLIP ViT-B/32 model for all experiments. Further implementation details, including optimizer settings and specific hyperparameters for our method, are provided in Appendix C and D.

3.2 Measuring OODNess of the target datasets

Given that our DG in-the-wild evaluation includes many target datasets with varying degrees of OODness compared to ImageNet, establishing a quantitative OOD metric is beneficial for a more holistic assessment of OOD robustness. A unique consideration for CLIP is its dual-encoder architecture. To provide a comprehensive score, we utilize OOD measures for both the image and text modalities. For the image encoder, we use SNGP (Liu et al., 2020) calibrated on the ImageNet validation data to compute an OOD score for all 33 target datasets. In addition, we use a text-based OOD measure (Fort et al., 2021) to measure OODness of class labels. This involves calculating classification probabilities on a combined label set of target

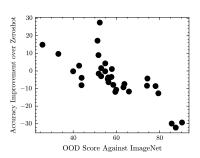


Figure 6: OOD score of 33 target datasets against ImageNet and classification accuracy improvement over zeroshot

dataset class names and ImageNet class names using the target domain image embeddings. The text OOD score is the summed probability assigned to the target-specific class names.

We verify that our OOD score shows a strong negative correlation (r=-0.756, p<0.001) with performance on target datasets after finetuning, as shown in Figure 6. Notably, we find that averaging the image and text OOD scores is important for accurately predicting post-finetuning accuracy. Relying solely on the image OOD score (r=-0.099) or the text OOD score (r=-0.608) yields weaker correlations, providing evidence that OOD scores in both modalities are necessary for a comprehensive understanding of OOD challenges in the context of CLIP. A detailed breakdown of the OOD scores for all 33 target datasets is provided in Appendix J.

3.3 SIMULATING UNSEEN DOMAINS VIA UNLEARNING

Retraining a foundation model like CLIP from scratch to omitting specific domains is computationally prohibitive. To overcome this, we use an unlearning method as a proxy to approximate a model that is not contaminated with domains relevant to our evaluation. This controlled experiment allows us to answer a critical research question: *How do robust fine-tuning methods perform on genuinely unseen domains?* Our results expose weaknesses in existing approaches that rely on pretrained weights.

Specifically, we adapt the adversarial learning-based unlearning method (Sepahvand et al., 2025) for domain forgetting. We finetune CLIP (Goyal et al., 2023) using a dual objective. First, to retain general knowledge, we train on a 595,000-image subset of the CC3M dataset (Sharma et al., 2018), referred to as GCC, previously used in LLaVA pretraining (Liu et al., 2023), serving as a manageable proxy for CLIP's original training data. Second, to approximate a scenario where domains similar to DomainNet are removed, we apply domain adversarial training (Ganin et al., 2016) on the DomainNet dataset, which we exclude from our target datasets. We attach a binary classifier to the penultimate layer of the image encoder. During training batches, this classifier is fed representations of random noise (assigned label 0) and images from DomainNet (assigned label 1). The gradient reversal layer (Ganin et al.,

Table 1: Unlearning effectiveness. ZS: Original zero-shot performance. FT: Baseline fine-tuning on the GCC retention set. Unlearn: Full unlearning combining retention on GCC with adversarial unlearning on DomainNet.

Metric/Data	ZS	FT	Unlearn
Imagenet			
IN 1	54.2	52.0	48.8
IN 2	48.4	45.5	41.8
IN Sketch	32.3	31.5	30.7
IN A	26.2	19.0	18.2
IN R	59.7	56.8	52.7
DomainNet			
Clipart	64.3	67.0	53.0
Infograph	41.6	41.0	34.0
Painting	54.4	53.9	47.0
Real	80.5	80.7	73.3
Sketch	57.9	57.2	45.5
Quickdraw	12.1	8.2	0.3
Avg. on 33	51.1	49.7	45.5

2016) forces the image encoder to learn representations that confuse this classifier, making embeddings of DomainNet images and random noise indistinguishable, thereby encouraging the model to unlearn domain-specific features from DomainNet. The unlearning occurs concurrently with standard training on the GCC dataset to preserve CLIP's core capabilities. A pseudocode of the unlearning process is in Appendix B.

We deliberately unlearn on DomainNet, a dataset we do not use for final evaluation. Unlearning our target evaluation datasets directly would unfairly penalize baseline methods. Many methods are designed to regularize against large deviations from the original pretrained weights. By using DomainNet as a proxy for domain contamination, we ensure a fairer comparison. The effectiveness of our unlearning is confirmed by a performance drop on DomainNet while performance on many other datasets is largely retained (Table 1).

This experimental setup is distinct from other recent proposals. While Teterwak et al. (2024) separate samples based on whether they were learned during pre-training, their focus is on generalization from well-learned to seen-but-unlearned concepts. In contrast, Yu et al. (2024) evaluate domain generalization by training models from scratch without web-scale pre-training. Our approach is a unique and practical middle ground. We measure the performance of a model that benefits from web-scale pre-training but has had specific domain knowledge removed. This allows us to more directly isolate the effect of domain contamination on robust fine-tuning.

4 RESULTS AND DISCUSSION

4.1 FINETUNING ORIGINAL PRETRAINED CLIP

We first evaluate CLIP-DCA in the context of our domain generalization in-the-wild setup, using the original pre-trained CLIP weights as the starting point. As shown in Figure 7, CLIP-DCA consistently improves performance over standard finetuning across target datasets. Importantly, the best-fit line for CLIP-DCA shows a flatter slope, indicating that it is more robust to more severe OOD data compared to regular finetuning. This observation aligns with our hypothesis that encouraging domain invariance at the decision-making layer, while simultaneously encouraging domain awareness within the encoders, is crucial for robust classification on unseen distributions.

Figure 8 provides a broader comparison against additional baselines. We observe that conventional domain adversarial learning (DANN (Ganin et al., 2016)), is harmful for CLIP, showing inferior performance compared to regular finetuning. This shows the potential disadvantage of enforcing domain invariance across the entire image encoder, which can lead to excessive forgetting of features learned during pretraining. This suggests the importance of approaches such as our proposed learning of targeted inv

Interestingly, on the most extremely OOD datasets, parameter-efficient finetuning (PEFT) techniques like CoOp (Zhou et al., 2022c) and CLIP-Adapter (Gao et al., 2024) perform best. PEFT methods minimally change a small subset of the original CLIP weights. Consequently, their performance shows much lower variance across the datasets, with improvements (around 1-2%). It is important to note that on extreme OOD datasets, all end-to-end finetuning methods exhibit lower performance than the zero-shot CLIP baseline. While CLIP-DCA mitirates this

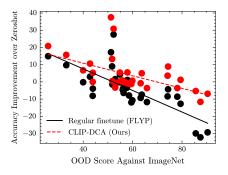


Figure 7: Performance comparison of CLIP-DCA against regular finetuning. Best-fit lines, determined by linear regression, illustrate performance trends.

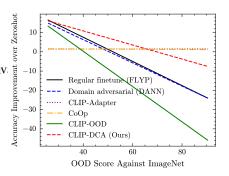


Figure 8: Comparison against more baselines.

zero-shot CLIP baseline. While CLIP-DCA mitigates this performance drop compared to standard finetuning, it does not entirely overcome it.

This strong zero-shot performance has often been attributed to CLIP's inherent OOD generalization capability. However, the study by (Mayilvahanan et al., 2024) challenges this assumption and shows that this generalization could be attributed to domain contamination. They show that when CLIP is retrained solely on natural images, its OOD performance drops to similar levels as models trained exclusively on ImageNet. This drop could offer a plausible explanation for observations like those motivating Wise-FT (Wortsman et al., 2022), where standard finetuning was found to degrade OOD performance.

4.2 FINETUNING AFTER UNLEARNING

To further investigate the impact of potential domain contamination and to establish a more rigorously "unseen" evaluation, we applied the unlearning procedure detailed in Section 3.3 to the pretrained CLIP model. We then finetuned this "unlearned" model on ImageNet-1K and evaluated its performance. Table 2 shows the accuracies on the ImageNet variant datasets. Full per-dataset accuracy details for all methods, both before and after unlearning, are provided in Appendix I. For this analysis, we also include several end-to-end robust finetuning methods that add a linear classifier to CLIP. Due to their architecture, these specific baselines are evaluated only on the ImageNet variants as they cannot be adapted to datasets with different class labels.

Our results show that robust end-to-end finetuning methods remain effective for datasets that are less OOD even after unlearning. For instance, MIRO (Cha et al., 2022) and Wise-FT (Wortsman et al., 2022) outperform regular finetuning on ImageNet-V1, ImageNet-V2, and ImageNet-Sketch. To

Table 2: Accuracy on ImageNet variants

Method	V1	V2	Sketch	A	R
Zeroshot (unlearned)	48.8	41.8	30.7	18.2	52.7
Regular Finetune	69.8	58.4	34.7	15.0	52.6
DANN	70.0	58.2	33.2	16.5	52.0
CLIP Adapter	52.9	45.7	28.4	15.0	51.6
CoOp	53.3	46.2	29.1	16.1	52.8
MMA	71.7	60.0	36.1	7.8	37.0
LwEIB	53.8	46.7	30.4	16.3	54.1
Wise-FT	72.9	61.3	40.0	9.4	43.0
MIRO	74.1	62.7	$\overline{35.7}$	7.3	33.2
CLIP-OOD	69.0	58.2	35.3	15.0	45.8
CLIP-DCA (Ours)	75.1	63.9	42.2	22.9	62.2



Figure 9: Comparison against baselines after unlearning.

broaden our comparison, we also include other recent CLIP-based DG methods such as MMA (Yang et al., 2024) and LwEIB (Yang et al., 2025), which similarly demonstrate that performance does not consistently generalize to more OOD datasets. However, consistent with the trends seen with the non-unlearned model, performance significantly drops on datasets with larger OOD scores, such as ImageNet-A and ImageNet-R. Similarly, PEFT methods show slight improvements over zero-shot on ImageNet-V1, V2, and Sketch, but their performance drops on ImageNet-A and R.

Figure 9 shows that the performance of all methods, even PEFT methods, further drops as OODness increases across target datasets when finetuning the unlearned model. If the unlearning process successfully reduced the knowledge of target-like domains, existing robust finetuning methods, which rely on the pretrained weights, would struggle on genuinely OOD data. These results suggest that our unlearning approach was effective in simulating a less contaminated starting point.

With the unlearned model, CLIP-DCA shows high performance. For datasets with moderate OOD scores relative to ImageNet, CLIP-DCA achieves larger performance improvements compared to other methods. More importantly, on the extremely OOD datasets, the performance of our method remains close to the zero-shot model, without significant performance drops. This suggests that our mechanism of encouraging domain awareness while selectively enforcing invariance at the decision layer is particularly beneficial when starting from a model with reduced prior exposure to target-like domains.

4.3 ABLATIONS

Including GCC data. When finetuning CLIP-DCA, we also use the GCC dataset – the dataset with 595,000 image-caption pairs used to prevent CLIP from collapsing during the unlearning procedure (Sec. 3.3). While the dataset is smaller than ImageNet-1K, it serves as a manageable proxy for the data CLIP was originally pretrained on. The image-caption pairs provide valuable supervision particularly for training the text encoder and possibly preventing catastrophic forgetting during finetuning on a classification datasets like ImageNet.

We study the contribution of the GCC data as shown in Table 3. A key observation is that the inclusion of GCC provides a notable benefit even for standard

Table 3: Ablations on GCC inclusion. Accuracy on ImageNet variants (V1, V2, Sketch, A, R) and Avg. accuracy on 33 datasets.

V1	V2	Sketch	A	R	Avg.
46.0	40.4	27.4	15.1	51.6	45.5
69.8	58.4	34.7	15.0	52.6	43.6
70.0	58.2	33.2	16.5	52.0	42.5
75.3	64.1	40.3	22.3	60.3	48.6
C					
70.6	59.7	38.5	17.6	57.5	49.0
70.5	59.4	38.6	17.4	57.2	47.5
75.1	63.9	42.2	22.9	62.2	52.1
	46.0 69.8 70.0 75.3 C 70.6 70.5	46.0 40.4 69.8 58.4 70.0 58.2 75.3 64.1 C 70.6 59.7 70.5 59.4	46.0 40.4 27.4 69.8 58.4 34.7 70.0 58.2 33.2 75.3 64.1 40.3 C 70.6 59.7 38.5 70.5 59.4 38.6	46.0 40.4 27.4 15.1 69.8 58.4 34.7 15.0 70.0 58.2 33.2 16.5 75.3 64.1 40.3 22.3 C 70.6 59.7 38.5 17.6 70.5 59.4 38.6 17.4	46.0 40.4 27.4 15.1 51.6 69.8 58.4 34.7 15.0 52.6 70.0 58.2 33.2 16.5 52.0 75.3 64.1 40.3 22.3 60.3 C 70.6 59.7 38.5 17.6 57.5 70.5 59.4 38.6 17.4 57.2

finetuning (FLYP) (Goyal et al., 2023). This shows the general benefit of incorporating diverse, captioned data during finetuning. Given these benefits, an alternative or complementary approach could involve using MLLMs to generate rich textual descriptions for classes or images within the primary source dataset, similar to strategies explored in (Pratt et al., 2023; Maniparambil et al., 2023), which use an LLM to describe class names. Despite the general improvements, our method consistently shows higher performance even when the GCC dataset was not included.

Different components of CLIP-DCA. We study the effect of the different components of CLIP-DCA, as shown in Table 4. We isolate the use of domain descriptions from diffusion images to train the image domain head, the disentanglement loss between the class and domain heads to encourage invariance at the classifier, and the use of MLLM hidden states to encourage domain awareness in the text encoder. Simply introducing domain descriptions to make the image encoder aware of styles, without enforcing disentanglement at the classifier, shows only a marginal improvement over the FLYP baseline, suggesting that

Table 4: Ablation of CLIP-DCA components: Domain descriptions (Domain), Disentanglement (Disent.), MLLM Hidden States (MLLM HS), and Avg. accuracy on 33 datasets.

Method / Config.	Domain	Disent.	MLLM HS	Avg.
MLLM (LLaVA)	-	-	-	24.2
FLYP	X	X	X	49.0
Ours	O	X	X	49.1
	O	O	X	50.8
	O	X	O	49.0
Our full	O	0	O	52.1

domain awareness alone is insufficient without a mechanism to disentangle classification from it, as CLIP may otherwise struggle to disregard domain-specific features irrelevant to classification. When we incorporate the disentanglement loss to encourage domain invariance at the decision-making layer, even without explicit domain awareness in the text encoder, performance slightly improves. This is further evidence for our core hypothesis that enabling the model to disregard domain-specific features during classification is important. Attempting to make both encoders domain-aware without the disentanglement loss results in no improvement over the baseline, indicating that awareness without a mechanism for invariance can be ineffective for OOD data. To study the effect of the MLLM's scale, we replaced LLaVA-8B with Gemini-2.5-Pro and observed a marginal performance difference (see Table H.1 in the Appendix), suggesting our method's efficacy is not primarily dependent on the MLLM's size but rather on the disentanglement framework itself. These results strongly support our central hypothesis: the significant performance gain of our full method demonstrates that the balance between domain awareness and disentangled invariance is the critical factor for robust generalization in this challenging setting.

Limitations. One concern might be the reliance on synthetically generated diffusion images and MLLM-extracted features for domain awareness. However, this is mitigated by: (1) the small size of the diffusion dataset (4096 samples), (2) images synthesized using generic, class-agnostic style prompts, and (3) the MLLM processing multiple style-consistent images, which focuses it on style over objects. Furthermore, DANN (Ganin et al., 2016) and our ablations without disentanglement (Table 4), even with such data, fails to improve CLIP's OOD performance (Table 3).

The role of the MLLM may also be questionable, as LLaVA internally uses a CLIP-L encoder. However, LLaVA's poor zero-shot image classification performance (Table 4), a known issue attributed to MLLMs' improper alignment for classification (Zhang et al., 2024), justifies not using it as a direct classifier. Instead, we use an MLLM because CLIP captures global information from images, which prioritizes overall style (Tong et al., 2024), making its representations suitable for domain-level information. The MLLM, with its language capabilities, is then able to explain the perceived domain styles into textual descriptions and provide informative hidden state representations.

Lastly, our unlearning strategy involves making DomainNet images and random noise indistinguishable, differing from Sepahvand et al. (2025) where samples are typically mapped to known OOD data. This adaptation was necessary as CLIP's extensive web-scale pretraining makes finding truly unseen data challenging. Future work could explore more sophisticated unlearning methods for DG in-the-wild evaluation. Nevertheless, the significant degradation observed in zero-shot performance post-unlearning, and the fact that PEFT methods showed improvements on less OOD data but poorer performance on more OOD data, is evidence that our unlearning procedure functioned as intended.

5 CONCLUSION

In this work, we highlighted the potential limitations of current DG evaluation settings for foundation models like CLIP, which may not adequately test unseen data scenarios. We instead used a more challenging and comprehensive evaluation to simulate DG in-the-wild, with quantified OOD scores for target datasets, and an unlearning approach to further simulate unseen data. To address the challenges of DG in-the-wild, we introduced CLIP-DCA. Our method disentangles classification from domain-aware representations, motivated by the idea that while domain invariance is important for performance on unseen data, domain awareness is important to retain the vast pretrained knowledge of CLIP. Overall, our method significantly improves OOD robustness over existing baselines.

REFERENCES

- Sravanti Addepalli, Ashish Ramayee Asokan, Lakshay Sharma, and R Venkatesh Babu. Leveraging vision-language models for improving domain generalization in image classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23922–23932, 2024.
- Shuanghao Bai, Yuedi Zhang, Wanqi Zhou, Zhirong Luan, and Badong Chen. Soft prompt generation for domain generalization. In *European Conference on Computer Vision*, pp. 434–450. Springer, 2024.
- Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization for self-supervised learning. *arXiv preprint arXiv:2105.04906*, 2021.
- Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classification tasks to a new unlabeled sample. *Advances in neural information processing systems*, 24, 2011.
- Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-information regularization with pre-trained models. In *European conference on computer vision*, pp. 440–457. Springer, 2022.
- De Cheng, Zhipeng Xu, Xinyang Jiang, Nannan Wang, Dongsheng Li, and Xinbo Gao. Disentangled prompt representation for domain generalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23595–23604, 2024.
- Zhixiang Chi, Li Gu, Tao Zhong, Huan Liu, Yuanhao Yu, Konstantinos N Plataniotis, and Yang Wang. Adapting to distribution shift by visual domain prompt generation. *arXiv* preprint *arXiv*:2405.02797, 2024.
- Junhyeong Cho, Gilhyun Nam, Sungyeon Kim, Hunmin Yang, and Suha Kwak. Promptstyler: Prompt-driven style generation for source-free domain generalization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15702–15712, 2023.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
- Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution detection. *Advances in neural information processing systems*, 34:7068–7081, 2021.
- Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. *Journal of machine learning research*, 17(59):1–35, 2016.
- Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. *International Journal of Computer Vision*, 132(2):581–595, 2024.
- Sachin Goyal, Ananya Kumar, Sankalp Garg, Zico Kolter, and Aditi Raghunathan. Finetune like you pretrain: Improved finetuning of zero-shot vision models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 19338–19347, 2023.
- Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In *International conference on machine learning*, pp. 4904–4916. PMLR, 2021.
- Muhammad Uzair Khattak, Muhammad Ferjad Naeem, Muzammal Naseer, Luc Van Gool, and Federico Tombari. Learning to prompt with text only supervision for vision-language models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 4230–4238, 2025.

- Marc Lafon, Elias Ramzi, Clément Rambour, Nicolas Audebert, and Nicolas Thome. Gallop: Learning global and local prompts for vision-language models. In *European Conference on Computer Vision*, pp. 264–282. Springer, 2024.
 - Gyuseong Lee, Wooseok Jang, Jinhyeon Kim, Jaewoo Jung, and Seungryong Kim. Domain generalization using large pretrained models with mixture-of-adapters. In 2025 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 8259–8269. IEEE, 2025.
 - Aodi Li, Liansheng Zhuang, Shuo Fan, and Shafei Wang. Learning common and specific visual prompts for domain generalization. In *Proceedings of the Asian conference on computer vision*, pp. 4260–4275, 2022.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023.
 - Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshminarayanan. Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. *Advances in neural information processing systems*, 33:7498–7512, 2020.
 - Mayug Maniparambil, Chris Vorster, Derek Molloy, Noel Murphy, Kevin McGuinness, and Noel E O'Connor. Enhancing clip with gpt-4: Harnessing visual descriptions as prompts. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 262–271, 2023.
 - Ségolène Martin, Yunshi Huang, Fereshteh Shakeri, Jean-Christophe Pesquet, and Ismail Ben Ayed. Transductive zero-shot and few-shot clip. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 28816–28826, 2024.
 - Prasanna Mayilvahanan, Roland S Zimmermann, Thaddäus Wiedemer, Evgenia Rusak, Attila Juhos, Matthias Bethge, and Wieland Brendel. In search of forgotten domain generalization. *arXiv* preprint arXiv:2410.08258, 2024.
 - Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant feature representation. In *International conference on machine learning*, pp. 10–18. PMLR, 2013.
 - Giung Nam, Byeongho Heo, and Juho Lee. Lipsum-ft: Robust fine-tuning of zero-shot models using random text guidance. *arXiv preprint arXiv:2404.00860*, 2024.
 - Changdae Oh, Hyesu Lim, Mijoo Kim, Dongyoon Han, Sangdoo Yun, Jaegul Choo, Alexander Hauptmann, Zhi-Qi Cheng, and Kyungwoo Song. Towards calibrated robust fine-tuning of vision-language models. *Advances in Neural Information Processing Systems*, 37:12677–12707, 2024.
 - Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? generating customized prompts for zero-shot image classification. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15691–15701, 2023.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021.
 - Nazanin Mohammadi Sepahvand, Eleni Triantafillou, Hugo Larochelle, Doina Precup, James J Clark, Daniel M Roy, and Gintare Karolina Dziugaite. Selective unlearning via representation erasure using domain adversarial training. In *The Thirteenth International Conference on Learning Representations*, 2025.
- Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2556–2565, 2018.
 - Yang Shu, Xingzhuo Guo, Jialong Wu, Ximei Wang, Jianmin Wang, and Mingsheng Long. Clipood: Generalizing clip to out-of-distributions. In *International Conference on Machine Learning*, pp. 31716–31731. PMLR, 2023.

- Piotr Teterwak, Kuniaki Saito, Theodoros Tsiligkaridis, Bryan A Plummer, and Kate Saenko. Is large-scale pretraining the secret to good domain generalization? *arXiv preprint arXiv:2412.02856*, 2024.
- Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024.
- Matthew Wallingford, Vivek Ramanujan, Alex Fang, Aditya Kusupati, Roozbeh Mottaghi, Aniruddha Kembhavi, Ludwig Schmidt, and Ali Farhadi. Neural priming for sample-efficient adaptation. *Advances in Neural Information Processing Systems*, 36:65566–65584, 2023.
- Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust fine-tuning of zero-shot models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7959–7971, 2022.
- Lingxiao Yang, Ru-Yuan Zhang, Yanchen Wang, and Xiaohua Xie. Mma: Multi-modal adapter for vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23826–23837, 2024.
- Lingxiao Yang, Ru-Yuan Zhang, Qi Chen, and Xiaohua Xie. Learning with enriched inductive biases for vision-language models. *International Journal of Computer Vision*, 133(6):3746–3761, 2025.
- Han Yu, Xingxuan Zhang, Renzhe Xu, Jiashuo Liu, Yue He, and Peng Cui. Rethinking the evaluation protocol of domain generalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 21897–21908, 2024.
- Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised learning via redundancy reduction. In *International conference on machine learning*, pp. 12310–12320. PMLR, 2021.
- Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In *European conference on computer vision*, pp. 493–510. Springer, 2022.
- Yuhui Zhang, Alyssa Unell, Xiaohan Wang, Dhruba Ghosh, Yuchang Su, Ludwig Schmidt, and Serena Yeung-Levy. Why are visually-grounded language models bad at image classification? arXiv preprint arXiv:2405.18415, 2024.
- Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A survey. *IEEE transactions on pattern analysis and machine intelligence*, 45(4):4396–4415, 2022a.
- Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for vision-language models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16816–16825, 2022b.
- Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022c.

A EXTENDED RELATED WORK

Domain Generalization. Learning domain-invariant representations has historically been a central idea in domain generalization (Blanchard et al., 2011; Zhou et al., 2022a). The intuition is that when classifying images from entirely new distributions, learning abstract features common across source domains should provide better robustness for classification in new domains (Blanchard et al., 2011; Muandet et al., 2013). Among these, domain-adversarial learning methods have become a relatively standard approach within the DG field due to its conceptual simplicity and effectiveness (Zhou et al., 2022a). For instance, Domain Adversarial Neural Networks (DANN) (Ganin et al., 2016) uses an auxiliary domain classifier trained adversarially against the encoder, encouraging the encoder to produce features indistinguishable across source domains. Given the focus of DANN on the central

idea of domain invariance, we focus on DANN and its adaptation to CLIP in our analysis. Notably, despite the prevalence of such DG methods, the direct application for CLIP is not well-established and remains underexplored. Naively enforcing domain invariance on foundation models like CLIP, with large pretrained knowledge, risks catastrophic forgetting.

Robust Finetuning of CLIP. The introduction of CLIP marked a significant shift in DG research. The original study (Radford et al., 2021) demonstrated impressive zero-shot classification performance across diverse benchmarks, including OOD datasets. The authors attributed this capability to CLIP learning representations that are less reliant on spurious correlations specific to downstream target datasets, as CLIP was not trained on these specific datasets during its initial pretraining.

The assumption of the inherent OOD robustness in CLIP motivated numerous methods aimed at finetuning CLIP for downstream tasks while enhancing its perceived robustness. A common approach is parameter-efficient finetuning (PEFT) strategies. An early influential study, CoOp (Zhou et al., 2022c), introduced learnable textual prompts, motivated by observations that manually crafted prompt ensembles improved CLIP's zero-shot accuracy. Building on this, CoCoOp (Zhou et al., 2022b) made these prompts dynamic by conditioning them on individual image features through a cross-attention mechanism. Similarly, CLIP-Adapter (Gao et al., 2024) proposed adding lightweight, learnable MLP layers (adapters) to the CLIP encoders, finetuning only these small adapters instead of the entire network. Many more subsequent PEFT methods have also been explored (Cho et al., 2023; Chi et al., 2024; Lee et al., 2025; Addepalli et al., 2024; Bai et al., 2024; Li et al., 2022; Khattak et al., 2025; Cheng et al., 2024; Lafon et al., 2024).

End-to-end finetuning methods have also been explored, yet many still depend on the original pretrained CLIP weights for regularization or guidance. Wise-FT (Wortsman et al., 2022), motivated by observing that standard finetuning often degraded zero-shot OOD performance, ensembles the weights of the finetuned model with the original CLIP weights. CLIP-OOD (Shu et al., 2023) used a beta-moving average of the weights during finetuning alongside a regularization term to enhance semantic relationships learned during pretraining. MIRO (Cha et al., 2022) used mutual information regularization between the finetuning model and the frozen pretrained CLIP model to retain pretrained features.

While many other methods show strong performance on OOD benchmarks, this overview highlights representative approaches, their trends, and assumptions in robust CLIP finetuning. Our work, however, questions whether current evaluation protocols are sufficiently challenging, and suggests the reliance on the pretrained weights may be suboptimal for true OOD generalization, a concern supported by evidence of domain contamination during pretraining (Mayilvahanan et al., 2024). Consequently, we explore more challenging evaluations and alternative strategies for training CLIP grounded in DG principles.

B PSEUDOCODE

B.1 MAIN TRAINING LOOP (CLIP-DCA)

```
687
      # Note: logit scales (temperature term) were omitted for simplicity
688
      def classification_loss(image, text):
689
          logits_per_image = image @ text.T
690
          logits_per_text = text @ image.T
          labels = torch.arange(len(image), device=device)
691
           return (F.cross_entropy(logits_per_image, labels) +
692
                   F.cross_entropy(logits_per_text, labels)) / 2
693
694
    9 def disentangle_loss(x, y):
          x = (x - x.mean(0)) / (x.std(0) + 1e-8)
    10
          y = (y - y.mean(0)) / (y.std(0) + 1e-8)
696
    11
          cross\_cor\_mat = (x @ y.T) / len(x)
697
          return torch.diagonal(cross_cor_mat).pow(2).sum()
    13
698
699
    # Architectural additions (training only)
700
    domain_head = nn.Linear(...)
701
    mllm_projector = nn.Linear(...)
```

```
702
    19 # 1. Diffusion data batch
703
    20 d_images, d_hidden, d_text = d_batch
    21 penultimate_img_emb, class_img_emb, text_emb = clip_model(d_images,
705
706 22 domain_img_emb = domain_head(penultimate_img_emb.clone())
    23 domain_mllm_emb = mllm_projector(d_hidden)
707
708
    25 C5 = classification_loss(domain_img_emb, text_emb)
                                                            # Domain Agreement
709
    26 C6 = classification_loss(domain_mllm_emb, text_emb) # MLLM Agreement
    27 C3 = disentangle_loss(class_img_emb, domain_img_emb)
    28 C4 = disentangle_loss(class_img_emb, text_emb)
711
712
    30 loss_diffusion = C3 + C4 + C5 + C6
713
714
    32 # 2. Source data batch
715 33 s_images, s_text = s_batch
716 34 penultimate_img_emb, class_img_emb, text_emb = clip_model(s_images,
          s_text)
717
    domain_img_emb = domain_head(penultimate_img_emb.clone())
718
719 37 C1 = classification_loss(class_img_emb, text_emb)
                                                             # Classification Loss
720 38 C2 = disentangle_loss(class_img_emb, domain_img_emb)
721 39
    40 \mid loss\_source = C1 + C2
722
    41
723
    42 # 3. Final loss
724
    43 loss = loss_diffusion + loss_source
725
```

Listing 1: Main training loop for CLIP-DCA.

B.2 UNLEARNING LOOP

```
729
730
    # Note: logit scales (temperature term) were omitted for simplicity
    discriminator = nn.Linear(...)
731
732
    4 # Following Ganin et al. (2016)
733
    5 p = float (batch_idx + start_steps) / total_steps
734
    6 alpha = 2. / (1. + np.exp(-10 * p)) - 1
735
    8 def classification_loss(image, text):
736
          # ... (same as in Algorithm 1)
737
    10
738
    # 1. Retention on GCC dataset
739
    gcc_images, gcc_captions = gcc_batch
740
    13 _, image_emb, text_emb = clip_model(gcc_images, gcc_captions)
    retention_loss = classification_loss(image_emb, text_emb)
741
742
    16 # 2. Unlearning on DomainNet
743
    dn_images, _ = dn_batch
744
   noise = torch.randn_like(dn_images, requires_grad=True)
745
   19
746 20 # Pass both through encoder; apply gradient reversal to discriminator
   features_dn, _ = clip_model.encode_image(dn_images)
747
    features_noise, _ = clip_model.encode_image(noise)
748
749 24 combined_features = torch.cat((features_dn, features_noise), dim=0)
750 25 reversed_features = GradientReversalFunction.apply(combined_features,
          alpha)
751
752
    27 domain_logits = discriminator(reversed_features)
753
    domain_targets = torch.cat((torch.ones(len(dn_images))),
754
                                   torch.zeros(len(noise))), dim=0).long()
755
    30 unlearning_loss = F.cross_entropy(domain_logits, domain_targets)
    31
```

```
# 3. Final loss
loss = retention_loss + unlearning_loss
```

Listing 2: Unlearning loop with gradient reversal.

C TRAINING DETAILS

For all experiments, we used the CLIP ViT-B/32 model. Models were finetuned on the ImageNet-1k training set for 5 epochs. The official ImageNet validation set was used. We used the AdamW optimizer with a learning rate of 1e-5, with a cosine learning rate scheduler. Due to computational constraints, a consistent batch size of 128 was maintained across all methods. For baseline methods, any additional method-specific hyperparameters were adopted from the default configurations provided in their publicly available codebases. All experiments were conducted with a single NVIDIA RTX A5000 GPU and an AMD EPYC 7763 CPU.

D HYPERPARAMETER TUNING

This section provides details for hyperparameter tuning. In the main manuscript, we report 6 different losses for the distinction between source data and diffusion generated data $(C_1 - C_6)$. For hyperparameter tuning, we group these losses into four terms. C_2 and C_3 are grouped together as the *image disentangle* term, while C_1 and C_4 are grouped together as the *text disentangle* term. We report our hyperparameter tuning in Table . Due to computation limitation, the tuning was limited to single term increments.

Table D.1: Average accuracy across 33 datasets for specific hyperparameter combinations.

MLLM hidden state	MLLM description	Text disentangle	Image disentangle	Avg. Acc. (%)
1×10^{-4}	1×10^{-4}	1×10^{-4}	1×10^{-4}	50.8
1×10^{-3}	1×10^{-4}	1×10^{-4}	1×10^{-4}	49.6
1×10^{-2}	1×10^{-4}	1×10^{-4}	1×10^{-4}	49.0
1×10^{-1}	1×10^{-4}	1×10^{-4}	1×10^{-4}	50.2
1×10^{-4}	1×10^{-3}	1×10^{-4}	1×10^{-4}	51.3
1×10^{-4}	1×10^{-2}	1×10^{-4}	1×10^{-4}	50.4
1×10^{-4}	1×10^{-1}	1×10^{-4}	1×10^{-4}	49.6
1×10^{-4}	1×10^{-4}	1×10^{-3}	1×10^{-4}	52.1
1×10^{-4}	1×10^{-4}	1×10^{-2}	1×10^{-4}	51.4
1×10^{-4}	1×10^{-4}	1×10^{-1}	1×10^{-4}	51.0
1×10^{-4}	1×10^{-4}	1×10^{-4}	1×10^{-3}	50.6
1×10^{-4}	1×10^{-4}	1×10^{-4}	1×10^{-2}	49.6
1×10^{-4}	1×10^{-4}	1×10^{-4}	1×10^{-1}	49.1
1×10^{-4}	1×10^{-4}	1×10^{-3}	1×10^{-4}	52.1 (Best)

E DATASETS

We report all target datasets used for our experiments. Note that for training, the ImageNet-1K training set was used.

Table E.1: List of datasets used in experiments, including number of classes and images. DG benchmarks are listed first. Each domain within a DG benchmark is treated as a distinct dataset. The number of images represent the validation/test set.

Dataset Name	Brief Description	# Classes	# Images
Domain Generalizatio	on (DG) Benchmarks		
Digits DG	Collection of digit recognition datasets.	_	_
MNIST	Grayscale handwritten digits (28x28).	10	6,000
MNIST-M	MNIST digits with color patches blended	10	6,000
1/11/11/11/11	from BSDS500.	10	0,000
SVHN	Colored house numbers from Google Street	10	6,000
	View images (32x32). Synthetically generated digit images		
SYN	(32x32).	10	6,000
Terra Incognita	Camera trap images of wild animals from		
_	different locations.	_	_
Location 100	Animal images from Location 100.	10	4,741
Location 38	Animal images from Location 38.	10	9,736
Location 43	Animal images from Location 43.	10	3,970
Location 46	Animal images from Location 46.	10	5,883
PACS	Object recognition with domain shifts.		
Art Painting	Artistic paintings of objects.	7	2,048
Cartoon	Cartoon images of objects.	7	2,344
Photo	Photographic images of objects.	7	1,670
Sketch	Sketch drawings of objects.	7	3,929
		/	3,929
Office-Home	Object recognition in different settings.	_	_
Art	Artistic depictions of everyday objects.	65	1,972
Clipart	Clipart images of everyday objects.	65	3,910
Product	Product images of everyday objects (typically clean backgrounds).	65	3,984
	Real-world photographic images of every-		
Real	day objects.	65	3,902
Individual Benchmar	k Datasets		
Caltech-101	101 object categories (+1 background).	101	8,677
Oxford-IIIT Pets	Images of pet breeds.	37	3,669
Oxford Flowers 102	Images of flower categories.	102	6,149
Stanford Cars	Images of car makes, models, and years.	196	8,041
Food-101	Images of food categories.	101	25,250
FGVC Aircraft	Images of aircraft variants.	100	3,333
	Scene understanding dataset with scene		
SUN397	categories.	397	108,754
Describable Textures	Textures in the wild, organized by 47	47	1 000
Dataset (DTD)	human-perceivable attributes.	47	1,880
	Satellite imagery of land use and land cover	10	27,000
EuroSAT	classes.	10	27,000
UCF101	Action recognition dataset of human action	101	13,320
001 101	categories from videos.	101	15,540
ImageNet-1K	1.28M natural images in 1000 classes	1000	50,000
•	(ILSVRC 2012).		
ImageNet-V2	New test set for ImageNet-1K.	1000	50,889
ImageNet-Sketch	Sketch images corresponding to ImageNet-	1000	50,000
IIII.gor (or Shoton	1K.	1000	20,000
ImageNet-A	"Natural adversarial examples" of 200	200	7,500
	classes.		. ,- 30

Table E.1 – continued from previous page

Dataset Name	Brief Description	# Classes	# Images	
ImageNet-R	"Renditions" (art, cartoons, etc.) of 200 ImageNet classes.	200	30,000	
WILDS Benchmark Datasets (Treated as Individual)				
Camelyon17-Wilds	Histopathological images for tumor detection with hospital-based shifts.	2	85,054	
FMOW-Wilds	Satellite imagery for land use classification with temporal/regional shifts.	62	53,473	

PROMPTS USED FOR MULTI-MODAL LANGUAGE MODELS (MLLMS)

This section details the specific prompts provided to Multi-Modal Language Models (MLLMs) for the generation tasks.

F.1 PROMPT TO MLLM TO GENERATE IDEAS FOR DIFFERENT STYLES OF IMAGES

The following prompt was used to instruct the MLLM to generate a diverse list of image style ideas:

```
Give me ideas of 512 different styles of images.
Each style should be less than 5 words. Do not overlap styles.
Make the styles diverse.
Be brief.
```

F.2 PROMPT TO MLLM TO GENERATE DESCRIPTIONS AND HIDDEN STATES

The following prompt was used to instruct the MLLM to generate detailed descriptions of image styles (independent of object category) and to also extract corresponding hidden states. The following prompt was input together with images in each style:

```
Attached are multiple images in the same style.
Describe the aspects of the style that applies regardless of category.
Provide a description.
Do not describe the object in the image, but the style of image.
Be as detailed, complete, and comprehensive as possible.
Explain every minute detail.
```

LIST OF ALL SYNTHETIC STYLES

This section provides the list of all synthetic style dieas that were generated by the LLM.

Table G.1 shows the 512 distinct style prompts used for generating synthetic data. The styles are listed alphabetically across the columns.

Table G.1: List of 512 synthetic data generation styles (alphabetical order).

3D rendered image	3D rendering, virtual objects	ASCII art text	ASCII art, text characters
Aboriginal dot painting	Abstract expressionism	Abstract expressionism art	Abstract symbolic representation
Abstract, non- representational	Abstract, non- representational form	Achromatic grayscale image	Achromatic, no color
Acrylic paint vibrant	Action painting, dynamic	Aerial drone footage	Afrofuturism cultural sci-fi

918 Table G.1 – continued from previous page 919 Algorithmic art, code-Ambient light, natural Analog film, imperfec-American scene painting 920 based tones tions 921 Analogous colors har-Anamorphic distorted Ancient Egyptian hiero-Animal at rest 922 mony perspective glyphs Animal drinking, water Animal fighting, intense Animal grooming, self-923 Animal eye contact source conflict care 924 Animal hiding, partially Animal hunting, focused 925 Animal looking away Animal marking territory obscured gaze 926 Animal sleeping, peace-Animal tracks, fore-Animal playing, ener-Animal mid-stride 927 getic ground focus 928 Animal vocalizing, Architectural, building Anime Japanese anima-Anime, Japanese anima-929 mouth open structures Artificial light controlled 930 Art Deco geometry Art Nouveau curves Arts and Crafts Assemblage found ob-Astrophotography star Asymmetrical dynamic 931 Assemblage, 3D collage balance 932 Asymmetry, unbalanced Augmented reality, over-Autumn leaves, warm 933 Available light natural design palette 934 Avant-garde, experimen-Backlit silhouette light-Backlit subject, glowing Baroque dramatic light-935 outline 936 Biopunk organic technol-Biopunk, genetic engi-Bird's-eye view elevated Bio art, living organisms 937 neering Blacklight fluorescent Blooming flowers, vi-938 Bird's-eye view, distant Black and white film colors brant colors 939 Blueprint architectural 940 Blue hour twilight Body art, human canvas Bokeh light effect plan 941 Boomerang, looping Botanical art, plant sub-Bright cheerful aesthetic Bold geometric patterns 942 video jects 943 Calligraphy elegant Broad lighting face Butterfly lighting beauty Byzantine mosaic icons 944 lettering Camouflaged animal, Calligraphy, elegant Candid street photogra-945 Camera flash, harsh light handwriting hidden phy 946 Candid, unposed mo-Caricature exaggerated Cartoon simplified draw-Cartoon, exaggerated 947 features features ment 948 Cave entrance, dark Charcoal sketch, rough Cave painting prehistoric Charcoal sketch drawing 949 frame lines 950 Chromatic aberration, Cinemagraph, subtle Claymation stop-motion Chibi cute style color fringing movement animation 951 Clear sky, bright blue Close up macro Close-up, animal portrait Close-up, feather detail 952 Cloudscape art, sky 953 Close-up, fur texture Close-up, scale pattern Collage mixed media scenes 954 Color contrast, comple-955 Collage, mixed media Color field painting Color grading cinematic mentary 956 Color splash accent Color temperature cool Color temperature warm Comic book style 957 Complementary colors Cross polarization, vi-Comic book, panel style Conceptual, idea-driven 958 contrast brant colors Cross-processed, altered Cubism, geometric 959 Cross-hatching line work Cross-processed film colors shapes 960 Cyberpunk cityscape 961 Cyanotype, blue print Cubist geometric forms Cyanotype process print night 962 Cyberpunk style, Daguerreotype antique Dark ominous under-Data bending corrupted 963 dystopian future 964 Data visualization, infor-Decorative, ornamental Decoupage, glued paper Deep focus sharp 965 mation art Depth of field, 966 Delicate fine details Dense jungle, lush green Depth of field blurred/sharp 967 Desaturated muted col-Desaturated, almost Dieselpunk retro-Different species to-968 monochrome futuristic gether 969 Digital art, computer-Digital noise, grain ef-Diffuse reflection matte Digital glitchy aesthetic 970 generated 971

972 Table G.1 – continued from previous page 973 Distortion, warped per-Documentary style, real-Digital painting software Digital print, inkjet/laser 974 spective istic 975 Double exposure, ghost Dramatic low-key light-Doodle art casual Double exposure overlay 976 image Dramatic sky, storm Dramatic spotlight, sin-Dreamy ethereal soft 977 Duotone color scheme clouds gle source focus 978 Duotone, two-color Dusty trail, arid environ-Dynamic energetic com-979 Dutch angle tilted palette ment position 980 Earth art, natural materi-Embroidery thread tex-Engraving detailed metal Engraving, incised lines 981 als 982 Environmental art, Environmental portrait, Establishing shot context Etching fine lines 983 nature-focused surroundings Etching, acid-etched Extreme close-up, eye 984 Expressionist bold colors Extreme close-up detail lines detail Fantasy art, mythical Fashion illustration Fast motion, sped-up 986 Fashion, clothing focus creatures stylish action 987 Feeding animals, close Fauvist wild beasts Film noir style Fine art, aesthetic focus 988 action 989 Flowing river, blurred Fish-eye lens view Fish-eye lens, distorted Flat lay top-down 990 water 991 Foggy morning, atmo-Folk art naive Folk art, traditional craft Focus stacking, all sharp spheric haze 992 Forced perspective, size 993 Forced perspective trick Formal, posed shot Found object art illusion 994 Frontlit subject, clear Fractal art mathematical Fractal art, mathematical Frozen lake, icy surface 995 view 996 Futuristic style, ad-Generative art algorith-Full shot composition Futuristic sci-fi vision 997 vanced mic Generative art, algo-Geometric abstract pat-Glamour, idealized Glassblowing molten 998 rithms beauty tern glass 999 Glitch art, corrupted data Glitch art digital Glitch art distortion Glitch art, digital errors 1000 Gothic art, dark, roman-Golden ratio composi-1001 Golden hour sunlight Golden ratio, proportions tion tic 1002 Graffiti wildstyle letter-Gothic dark shadows Gouache opaque matte Graffiti art, street tagging 1003 1004 Graphic design, visual Graffiti, tagged look Grainy film texture Grainy film, retro style communication 1005 Group portraiture, multi-1006 Gritty urban decay Group of animals, social Gritty black and white ple people 1007 HDR, high dynamic Halation, glowing high-1008 HDR photo rendering Hand-drawn sketchy feel range lights 1009 High contrast, dramatic Hard light defined Hard light shadows Heavily textured impasto 1010 lighting 1011 High saturation, vivid High-angle shot looking High-key bright lighting High-speed photography colors 1012 Holographic iridescent Horror art, scary im-Hyperlapse, moving 1013 **Hudson River School** effect time-lapse 1014 Hyperrealism, beyond Illuminated manuscript Illustrative, narrative Impressionism, loose 1015 brushstrokes realism gold imagery 1016 Impressionist brush-Industrial mechanical Infographic data visual-Infrared luminescence, 1017 strokes elements ization glowing foliage 1018 Ink wash fluid Infrared photography Infrared, false color Infrared, heat signature 1019 Installation art, three-Interactive art, participa-Isometric projection Jewelry intricate design dimensional tion view 1020 Landscape art, natural 1021 Kinetic art movement Land art earthworks Kinetic art, movement scenery 1022 Leading lines perspec-Leading lines, guide eye Lens flare sunlight Lens flare, bright streaks 1023 tive 1024 Light art, illumination Light leak, color streaks Light painting trails Line art contour 1025

	Table G.1 – continuo	ed from previous page	
Line drawing, simp outline	le Linocut bold lines	Lithograph stone print	Lithography, plano- graphic print
Lomography film lo	ook Long exposure shot	Long exposure, light trails	Long shot distance
Loop lighting portra	Low angle, animal towering	Low poly geometric	Low saturation, muted tones
Low-angle shot upv		Lowbrow art, underground	Lowbrow pop surrealism
Luminism glowing	light Macro lens close-up	Macro shot, tiny details	Mandala circular symm try
Manga graphic nov	el Map cartographic representation	Maximalist busy composition	Maximalist, elaborate design
Medium shot frami	ng Metalwork shaped metal	Migrating herd, vast landscape	Miniature diorama wor
Miniature effect, til	t- Minimalism, essential elements	Minimalist simple lines	Minimalist, simplified design
Mixed lighting com	Monochrome single	Monochrome, single color	Monotype, unique print
Moody atmospheric		Mosaic tile pieces	Mosaic, small piece patterns
Motion blur capture	Motion blur animal	Motion blur, speed lines	Mountain range, panoramic view
Multiple exposure, ered images	2	Mural large-scale paint- ing	Naive art, childlike sin
Natural organic for	1 &	Negative space framing	Negative space, empty area
Neoclassical refined style	d Neon light glowing	Nesting birds, detailed feathers	Night photography cityscape
Night vision, green	tint Night vision, red tint	Oil painting texture	Oil painting, thick tex-
Op Art optical	Op art, visual illusions	Optical illusion, trickery	Origami, paper folding
Ornate intricate des	Orthochromatic film effect	Outrun style neon	Outsider art raw
Outsider art, untrair	Over-the-shoulder per- spective shot	Overcast sky diffusion	Overexposed, bright white
Overgrown, vegetat	•	Panning, blurred back- ground	Panoramic stitched vie
Panoramic, wide en ment	viron- Paper cut layered	Paper marbling, swirling patterns	Parent and offspring
Pastel drawing, ble	nded Pastel soft blending	Pattern repetition, visual rhythm	Pen and ink
Pencil shading deta	Performance art, live action	Photojournalism, story- telling	Photorealism hyper- detailed
Photorealism, lifeli detail		Pixel art retro	Pixel art, retro game
Pixelated low resolu	ntion Pixelated, low resolution	Point-of-view subjective	Pointillism, tiny dots
Pointillist dot techn	Polaroid transfer, image	shot Polychrome, many col-	Pop art bright
Pop art, bold colors	Portraiture, individual	ors Positive space, subject	Pottery ceramic art
Pre-Raphaelite deta	likeness	focus Psychedelic art, mind-	Quilling, paper filigree
beauty Quilting patchwork		altering Radial balance, circular	Rainy day, blurred dro
sign Realist everyday life	Rembrandt lighting	focus Renaissance classical	Retro style, vintage loo
Rocky terrain, jagg	portrait	style Romantic emotional	Rule of thirds
edges		landscape	Continued on next p

	Table G.1 – continue	d from previous page	
Rule of thirds, composition	Rustic textured surface	Sandy desert, dunes stretch	Saturated vibrant color
Schematic diagram layout	Sci-fi art, space, technology	Screen printing bold	Screen printing, stenci print
Sculpture three- dimensional form	Seascape art, ocean views	Selective color isolation	Selective focus, sharp animal
Self-portraiture, artist's image	Sepia tone, vintage look	Sepia toned photograph	Serene calming atmo- sphere
Shallow focus blur	Sharp contrasting lines	Sharp focus, crisp details	Short exposure, frozer motion
Short lighting slimming	Sidelit subject, defined features	Silhouette backlit subject	Silhouette black shape
Silhouette, dark shape	Single-point lighting setup	Sleek modern minimalist	Slow motion, extended time
Smooth airbrushed finish	Smooth digital, clean look	Snowy scene, whiteout effect	Social realism comme tary
Soft focus, dreamy effect	Soft light diffused	Soft pastel hues	Softbox diffused light
Solar punk green	Solitary animal, minimalist	Sound art, auditory	Sparse woodland, bare trees
Specular highlights re- flections	Split lighting dramatic	Split toning effect	Split toning, colored highlights/shadows
Spring growth, fresh shoots	Square color scheme	Staged photography	Stained glass colorful
Steampunk Victorian sci-fi	Steampunk style, Victorian sci-fi	Stencil art spray	Stencil art, cut-out shapes
Stippling dot shading	Stop motion, frame-by-frame	Street art graffiti	Street art, urban style
Studio portrait lighting	Sumi-e ink painting	Summer heat, shimmering air	Sunlit glade, dappled light
Sunrise glow, warm tones	Sunset silhouette, golden hour	Surreal, bizarre, dream- like	Surrealism, dreamlike imagery
Surrealist dreamlike scene	Symmetrical balanced framing	Symmetry, balanced image	Technical drawing precise
Telephoto, compressed perspective	Tessellated repeating design	Tetradic color rectangle	Textile art fabric
Texture contrast, rough/s-mooth	Thermal imaging, body heat	Three-point lighting classic	Tilt-shift effect
Time-lapse sequence frame	Time-lapse, motion sequence	Time-lapse, star trails	Tintype vintage photo
Tonal contrast, light/dark	Tonalism muted colors	Triadic color scheme	Tritone, three-color scheme
Trompe-l'oeil illusionis- tic	Two animals, interaction	Two-point lighting setup	Two-shot composition framing
Typography, letterforms art	Ukiyo-e Japanese wood- block	Ultraviolet, unseen spectrum	Underexposed, deep shadows
Underwater photography scene	Underwater, murky view	Urban art, cityscapes	Vanishing point perspetive
Vaporwave aesthetic photo	Vector graphic, stylized	Vector graphics scalable	Vibrant color explosio
Vignette, darkened edges Virtual reality, immer-	Vignetting, dark corners	Vintage Polaroid picture Water reflection, mir-	Vintage retro charm Watercolor painting, s
sive	Visionary art, spiritual Waterfall cascade, misty	rored image Wet collodion, antique	edges
Watercolor wash effect Wheatpaste poster art	spray Whimsical playful style	photography Wide shot, animal small	Wet plate collodion Wide-angle perspectiv
Wide-angle, forest scene	Wildlife art, animal	Winter frost, intricate	Wood carving relief
Woodcut print rustic	subjects Woodcut, relief print	patterns Worm's-eye view low	X-ray skeletal view
Joacat print rustic	oodedt, feller print		Continued on next p

Table G.1 – continued from previous page

X-ray vision, skeletal Zentangle intricate pat- structure terns	Zoom burst effect	Zoom burst, radial blur
--	-------------------	-------------------------

H ABLATION STUDY ON MLLM SCALE

To investigate the impact of the Multimodal Large Language Model's (MLLM) scale on our method's performance, we conducted an ablation study where we replaced the LLaVA-8B model used in our main experiments with the significantly larger Gemini-2.5-Pro. As shown in Table H.1, the performance difference is marginal. The results from Gemini-2.5-Pro show a slight improvement on less OOD datasets but are nearly identical on more challenging ones. This suggests that the effectiveness of CLIP-DCA are a result of the proposed disentanglement framework rather than being dependent on the scale or capacity of the MLLM used for generating domain-aware signals. All experiments were run with the default hyperparameters reported in the main paper.

Table H.1: Ablation on MLLM Scale: Comparison between LLaVA-8B and Gemini-2.5-Pro. Performance is reported on ImageNet variants and the average across all 33 target datasets. The results show only a marginal difference, highlighting that our framework is not primarily dependent on the MLLM's scale.

Method / Setting	INet V1	-V2	-Sketch	-A	-R	Avg. on 33
Zeroshot	4.60	4.04	2.74	1.51	5.16	4.55
Regular Finetune	6.98	5.84	3.47	1.50	5.26	4.36
CLIP-DCA (LLaVA-8B) CLIP-DCA (Gemini-2.5-Pro)	75.1 7.61	63.9 6.49	42.2 4.27	22.9 2.29	62.2 6.19	52.1 5.25

I ACCURACY DETAILS

This section provides accuracy details for all target datasets. We report accuracies for both the original weights (before unlearning) and the unlearned weights. The average value across all datasets were reported in the main manuscript.

I.1 USING ORIGINAL WEIGHTS (BEFORE UNLEARNING)

Table I.1: Model performance on each dataset for all baselines using the original weights

Dataset Name	Zeroshot	FLYP	DANN	Adapter	CoOp	OOD	Ours
Digits DG							
MNIST	22.4	26.7	27.6	24.2	23.6	15.4	27.8
MNIST-M	16.8	18.4	22.7	11.9	14.9	17.3	16.2
SVHN	16.1	13.1	15.1	11.6	13.1	12.8	12.8
SYN	24.5	21.1	28.0	15.4	16.0	18.3	23.7
Terra Incognita							
Location 100	4.7	21.9	12.3	18.6	18.9	15.2	42.2
Location 38	4.8	32.3	34.7	20.6	20.4	11.4	35.6
Location 43	31.9	30.4	26.1	27.7	27.0	12.5	32.4
Location 46	23.1	32.1	24.3	23.0	22.4	7.2	36.4
PACS							
Art Painting	95.2	91.4	89.3	96.2	96.0	74.5	95.1
Cartoon	96.7	87.4	90.4	96.8	96.5	72.4	95.9
Photo	99.5	99.3	99.3	99.6	99.7	86.7	99.7

Table I.1 – continued from previous page

Dataset Name	Zeroshot	FLYP	DANN	Adapter	CoOp	OOD	Ours
Sketch	83.3	75.9	58.7	84.1	84.0	68.8	88.3
Office-Home							
Art	77.5	73.8	72.2	78.3	77.4	63.5	77.6
Clipart	61.4	56.8	56.3	64.1	63.9	58.7	62.2
Product	85.9	78.0	77.2	87.3	86.8	70.0	84.8
Real	86.7	80.3	79.4	88.3	87.6	70.6	86.9
Caltech-101	83.4	84.5	83.0	83.2	83.4	63.1	88.9
Oxford-IIIT Pets	83.9	73.2	74.6	85.9	83.8	64.3	84.6
Oxford Flowers 102	60.1	30.8	31.4	64.6	64.9	9.2	53.2
Stanford Cars	52.2	20.0	21.2	56.4	55.7	1.6	40.6
Food-101	80.2	50.3	51.5	83.6	83.1	19.0	74.9
FGVC Aircraft	16.1	4.4	4.6	17.6	17.5	2.4	12.5
SUN397	60.2	51.8	51.0	57.8	58.3	30.6	63.8
Describable Textures Dataset	40.7	28.8	28.7	40.1	39.6	11.7	39.5
EuroSAT	30.3	26.0	23.9	38.1	38.2	16.2	39.2
UCF101	61.1	48.4	48.8	63.6	63.1	29.4	62.3
ImageNet-1K	54.2	69.1	69.0	59.5	59.9	71.0	75.0
ImageNet-V2	48.4	58.1	58.0	52.9	52.7	60.2	64.1
ImageNet-Sketch	32.3	35.3	33.1	32.3	32.8	40.5	42.9
ImageNet-A	26.2	18.1	18.3	28.5	27.9	13.6	26.2
ImageNet-R	59.7	55.8	53.7	58.9	58.8	45.2	65.0
Camelyon-Wilds	50.2	50.0	51.0	50.1	50.1	50.0	56.9
FMOW-V2 Wilds	16.5	7.9	9.8	13.2	12.8	11.3	12.9

I.2 USING UNLEARNED WEIGHTS (AFTER UNLEARNING)

Table I.2: Model performance on each dataset for all baselines using the unlearned weights

Dataset Name	Zeroshot	FLYP	DANN	Adapter	CoOp	OOD	Ours
Digits DG							
MNIST	33.5	22.4	28.4	29.3	28.9	18.9	40.6
MNIST-M	25.4	16.7	17.1	23.4	24.8	15.8	24.7
SVHN	13.8	13.5	12.0	15.7	16.7	12.0	16.5
SYN	24.6	22.8	18.1	17.4	19.7	13.0	29.0
Terra Incognita	_	_	_				
Location 100	27.8	13.6	22.9	23.2	22.5	9.1	21.5
Location 38	5.8	31.8	27.0	4.7	6.1	2.5	40.4
Location 43	26.5	27.6	25.9	22.2	23.4	9.2	28.1
Location 46	28.4	25.8	30.9	30.0	32.4	5.1	32.0
PACS	_	_	_				
Art Painting	93.8	87.0	86.3	93.9	92.9	65.2	92.1
Cartoon	94.6	82.8	87.8	92.1	94.1	63.4	92.8
Photo	99.5	99.5	99.0	99.0	98.0	80.0	99.6
Sketch	30.0	71.1	32.5	31.2	32.2	58.5	79.7
Office-Home	_	_	_				
Art	68.2	68.1	67.1	68.7	68.7	62.7	76.8
Clipart	50.7	53.7	53.3	47.0	46.7	50.9	61.3
Product	77.2	73.7	73.6	73.2	73.9	61.7	81.3
Real	80.4	76.9	76.9	78.9	78.1	66.6	83.4

Table I.2 – continued from previous page

Dataset Name	Zeroshot	FLYP	DANN	Adapter	CoOp	OOD	Ours
Caltech-101	83.1	81.4	80.2	83.2	82.3	69.9	86.5
Oxford-IIIT Pets	74.9	71.0	69.3	74.2	76.4	67.5	81.0
Oxford Flowers 102	43.5	19.3	16.7	43.5	42.6	8.3	45.7
Stanford Cars	30.6	11.1	10.8	30.6	31.8	5.6	39.6
Food-101	66.3	34.3	33.6	65.9	63.4	17.4	62.4
FGVC Aircraft	8.0	2.7	2.2	8.0	7.1	1.1	9.4
SUN397	56.7	44.7	44.9	56.1	54.3	30.8	59.9
Describable Textures Dataset	30.7	25.6	24.9	31.1	30.2	9.8	35.0
EuroSAT	30.5	27.7	28.8	30.0	31.5	14.3	29.0
UCF101	55.5	42.1	41.8	55.1	56.6	36.7	56.9
ImageNet-1K	46.0	69.8	70.0	52.9	53.3	69.0	75.1
ImageNet-V2	40.4	58.4	58.2	45.7	46.2	58.2	63.9
ImageNet-Sketch	27.4	34.7	33.2	28.4	29.1	35.3	42.2
ImageNet-A	15.1	15.0	16.5	15.0	16.1	15.0	22.9
ImageNet-R	51.6	52.6	52.0	51.6	52.8	45.8	62.2
Camelyon-Wilds	50.2	53.0	51.9	60.0	59.7	50.5	55.0
FMOW-V2 Wilds	10.1	8.2	8.7	10.3	9.7	4.7	12.4

J OOD SCORES

This section provides the OOD scores for all target datasets. We report the OOD scores for both the original weights (before unlearning) and the unlearned weights. The average value was used to create the graphs in the main manuscript.

J.1 USING ORIGINAL WEIGHTS (BEFORE UNLEARNING)

Table J.1: Out-of-Distribution (OOD) detection scores using original weights.

Dataset Name	SNGP	Label	Average
Digits DG	_	_	_
MNIST	12.4	97.3	54.9
MNIST-M	8.1	97.8	52.9
SVHN	8.8	97.1	52.9
SYN	20.1	95.3	57.7
Terra Incognita	_	_	_
Location 100	10.0	92.5	51.2
Location 38	8.9	95.7	52.3
Location 43	9.5	94.1	51.8
Location 46	7.9	95.5	51.7
PACS	_	_	_
Art Painting	20.4	93.4	56.9
Cartoon	33.6	92.9	63.2
Photo	29.6	80.0	54.8
Sketch	35.1	92.3	63.7
Office-Home	_	_	_
Art	34.8	77.6	56.2
Clipart	28.8	83.2	56.0
Product	45.1	72.0	58.5
Real	43.1	69.6	56.3

Continued on next page

Table J.1 – continued from previous page

Dataset Name	SNGP	Label	Average
Caltech-101	39.3	76.5	57.9
Oxford-IIIT Pets	57.2	62.6	59.9
Oxford Flowers 102	96.8	83.9	90.3
Stanford Cars	98.7	76.2	87.5
Food-101	93.4	77.7	85.6
FGVC Aircraft	97.9	33.7	65.8
SUN397	71.6	76.7	74.2
Describable Textures Dataset	32.3	86.7	59.5
EuroSAT	50.5	98.2	74.3
UCF101	74.4	84.4	79.4
ImageNet-1K	51.6	0.0	25.8
ImageNet-V2	66.3	0.0	33.1
ImageNet-Sketch	85.5	0.0	42.8
ImageNet-A	87.7	0.0	43.9
ImageNet-R	87.8	0.0	43.9
WILDS Benchmark Datasets			
Camelyon-Wilds	0.8	79.2	40.0
FMOW-V2 Wilds	60.5	95.7	78.1

J.2 USING UNLEARNED WEIGHTS (AFTER UNLEARNING)

Table J.2: Out-of-Distribution (OOD) detection scores for unlearned model.

Dataset Name	SNGP	Label	Average
Digits DG	_	_	_
MNIST	93.2	40.2	66.7
MNIST-M	97.4	26.4	61.9
SVHN	97.5	2.5	50.0
SYN	98.8	16.4	57.6
Terra Incognita	_	_	_
Location 100	95.1	6.9	51.0
Location 38	95.7	4.6	50.1
Location 43	94.5	15.8	55.1
Location 46	96.7	12.3	54.5
PACS	_	_	_
Art Painting	93.5	32.7	63.1
Cartoon	93.2	39.0	66.1
Photo	79.4	48.0	63.7
Sketch	97.3	19.3	58.3
Office-Home	_	_	_
Art	81.6	43.6	62.6
Clipart	87.0	40.9	64.0
Product	77.9	52.0	65.0
Real	94.7	55.0	74.8
Caltech-101	76.6	55.8	66.2
Oxford-IIIT Pets	68.0	46.4	57.2
Oxford Flowers 102	81.7	98.4	90.1
Stanford Cars	74.7	95.2	85.0
Food-101	78.5	89.6	84.0
FGVC Aircraft	38.5	92.8	65.7

Table J.2 – continued from previous page						
Dataset Name	SNGP	Label	Average			
SUN397	77.6	83.4	80.5			
Describable Textures Dataset	87.9	53.2	70.6			
EuroSAT	98.1	26.3	62.2			
UCF101	86.1	81.0	83.5			
ImageNet-1K	59.7	0.0	29.9			
ImageNet-V2	71.8	0.0	35.9			
ImageNet-Sketch	89.6	0.0	44.8			
ImageNet-A	88.8	0.0	44.4			
ImageNet-R	89.4	0.0	44.7			
WILDS Benchmark Datasets						
Camelyon-Wilds	92.9	24.3	58.6			
FMOW-V2 Wilds	95.8	63.0	79.4			