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Abstract001

Retrieval-Augmented Generation (RAG) en-002
hances large language models (LLMs) by in-003
tegrating external knowledge into the gener-004
ation process. However, existing RAG sys-005
tems face limitations in processing long-form006
documents, primarily due to their reliance on007
fragmented, chunk-based retrieval mechanisms,008
which often fail to capture complex interde-009
pendencies. To address these limitations, we010
propose a GoT-perspective Graph Retrieval-011
Augmented Generation Paradigm (G2RAG).012
G2RAG introduces three key innovations: (1)013
a dynamic graph construction algorithm that014
adapts to document structure, (2) a dual-level015
retrieval framework, and (3) a context-aware016
retrieval scoring function. These components017
collectively improve retrieval diversity, seman-018
tic completeness, and preservation of contex-019
tual relationships. Experimental results demon-020
strate that G2 RAG achieves an 80% reduc-021
tion in inference time compared to LightRAG022
while maintaining competitive performance on023
standard query-focused summarization bench-024
marks. Additionally, we evaluate Graph-Based025
RAG on multi-hop reasoning tasks, revealing026
the limitations in handling complex tasks.027

1 Introduction028

Retrieval-Augmented Generation (RAG) has029

emerged as a key framework in natural language030

processing (NLP), improving the capabilities of031

large language models (LLM) by seamlessly in-032

tegrating external knowledge into the generation033

process (Lewis et al., 2020; Gao et al., 2023a). De-034

spite its widespread adoption, the existing RAG035

paradigm faces two critical limitations. First, pro-036

cessing long texts remains a significant challenge,037

as information from long contexts can be "lost-038

in-the-middle" (Liu et al., 2024). Second, the039

paradigm struggles with complex information re-040

trieval tasks (Chen et al., 2024b), especially when041

applied to large-scale corpora (Zhao et al., 2024),042

Figure 1: Comparison of QFS task performance: LLM
and Naive RAG exhibit hallucination issues, while G2

RAG effectively addresses them.

primarily due to its dependence on flat data repre- 043

sentations and chunk-based retrieval mechanisms, 044

which fail to capture the nuanced relationships 045

within the data. To address these limitations, Graph- 046

Based RAG has recently gained traction as an inno- 047

vative paradigm, leveraging graph-structured data 048

representations to enhance retrieval and generation 049

(Edge et al., 2024; Guo et al., 2024). Recent ad- 050

vances have explored the structured retrieval and 051

traversal capabilities of graph indexes, capitalizing 052

on the inherent modularity and relational nature 053

of graphs. Although Graph-Based RAG methods 054

perform well in query-focused summarization tasks 055

(QFS) (Dang, 2006) due to rich textual annotations 056

and hierarchical structural information, they are not 057
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without drawbacks. Notably, the prolonged index058

construction times associated with these methods059

can introduce significant computational overhead,060

particularly when scaling to large corpora. Further-061

more, the generalization of Graph-Based RAG062

across diverse NLP tasks remains understudied and063

more work is needed to understand how perfor-064

mance varies across different ranges of question065

types and dataset sizes. Specifically, its efficacy066

in knowledge-intensive applications beyond sum-067

marization, such as multihop question answering068

(MHQA)(Mavi et al., 2022) remains an open re-069

search question, which warrants systematic investi-070

gation to investigate its performance.071

To address the limitations of existing Graph-072

Based RAG methods, we propose G2RAG: a GoT-073

perspective Graph Retrieval-Augmented Genera-074

tion Paradigm to enhance retrieval efficiency and075

relevance. Our method integrates two key inno-076

vations: (1) latent domain-aware entity-relation077

extraction using HDBSCAN clustering (Schubert078

et al., 2017) with Graph of Thoughts (GoT) (Besta079

et al., 2024a) for noise-resistant document merg-080

ing, and (2) graph structural optimization through081

k-nearest neighbor graph construction and LLM-082

guided entity resolution. The latter involves con-083

structing entity embeddings, identifying weakly084

connected components, and applying word distance085

filtering, with an LLM dynamically determining en-086

tity merging based on contextual coherence. This087

dual optimization achieves 80% faster indexing088

while maintaining competitive QFS task perfor-089

mance through embedding-based entity and com-090

munity retrieval.091

We further evaluate Graph-Based RAG meth-092

ods on MHQA, a challenging task that requires093

synthesizing information from multiple documents.094

We construct a large-scale corpus tailored to each095

MHQA task to rigorously validate the framework’s096

feasibility. However, initial results indicate that097

Graph-Based RAG underperforms compared to098

naive rag and advanced RAG approaches. Analy-099

sis reveals that noisy index construction—caused100

by irrelevant data—remains a critical bottleneck,101

despite our optimizations. This underscores the102

need for further refinement in handling complex,103

knowledge-intensive tasks such as MHQA, where104

retrieval precision and contextual understanding105

are paramount. In summary, our contributions can106

be summarized as follows:107

• We propose a novel framework that leverages108

graph modularity to enhance retrieval effi- 109

ciency and relevance. By integrating latent 110

domain-aware entity-relation extraction (via 111

DBSCAN clustering and Graph of Thoughts) 112

with graph structural optimization (including 113

k-nearest neighbor graph construction and 114

LLM-guided entity resolution), our method 115

significantly reduces indexing time while im- 116

proving coherence in retrieved information. 117

• We demonstrate that our framework achieves 118

an 80% reduction in indexing time with- 119

out compromising performance on query- 120

focused summarization tasks, establishing 121

a new benchmark for balancing computa- 122

tional efficiency and retrieval quality in Graph- 123

Based systems. 124

• We reveal the persistent challenge of noisy in- 125

dex construction in complex knowledge tasks 126

through systematic evaluation on multi-hop 127

question answering. Our analysis provides 128

critical insights into the limitations of current 129

Graph-Based retrieval paradigms and under- 130

scores the need for context-aware optimiza- 131

tion in knowledge-intensive applications. 132

2 Problem Formulation 133

2.1 Task Definition 134

Let D = {d1, d2, . . . , dN} be the initial set of doc- 135

uments (or chunks), where each di contains text 136

or any knowledge component. Given a query q, 137

and the goal of RAG is to retrieve a subset of D 138

which is most relevant to q and use it with a LLM 139

to generate the optimal answer a∗. Formally: 140

a∗ = LLM
(
q,R(D, q)

)
, (1) 141

where the retrieval function R(D, q) selects docu- 142

ments from D based on relevance: 143

R(D, q) =
{
d ∈ D

∣∣∣Relevance(q, d) ≥ τ
}
. (2) 144

Here, Relevance(q, d) is a scoring function (e.g., 145

similarity), and τ is a threshold. While existing 146

Graph-Based RAG methods view D as nodes in a 147

graph, our approach refines this process to improve 148

both retrieval efficiency and coherence. 149

2.2 Module and Operation Definition 150

Clustering via HDBSCAN & GoT. Apply HDB- 151

SCAN to the set of embeddings {vi} using param- 152

eters ϵ (the neighborhood radius) and minPts (the 153
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minimum points for a cluster). The initial clus-154

tering result is C = {C1, C2, . . . , CK}, where each155

Ck ⊆ D is one cluster (some points may be out-156

liers). To refine clusters based on latent domain-157

specific keywords or relationships, we introduce158

GoT. Denote GoT(Ck) as an iterative refinement159

operator on cluster Ck, which can split or merge160

clusters based on domain knowledge. The updated161

set of clusters is:162

C′ = {C′
1, C′

2, . . . , C′
K′} =

K⋃
k=1

GoT
(
Ck

)
. (3)163

Extract Entity-Relation Pairs. For each cluster164

Ck (or refined sub-cluster C′
k), use a LLM to extract165

entity-relation pairs {(e, r)} that are relevant to the166

domain. Define the function LLMER(C′
k) to return167

the set of entity-relation pairs from the text in C′
k:168

E ′
k = LLMER(C

′
k) = {(e, r) | e ∈ C′

k, r ∈ R}. (4)169

where R represents the set of possible relations.170

These entity-relation pairs are crucial for building171

a more structured representation of the knowledge172

in each cluster and will later be used for graph173

construction and optimization.174

K-Nearest Neighbor & Weakly Connected Com-175

ponents. For each cluster C′
k (Vk = C′

k), let its176

embedding set be {vj}j∈C′
k
. We build a k-NN177

graph Gk = (Vk, Ek) by linking each node vj to178

its k most similar neighbors (using cosine similar-179

ity or another distance measure). Formally:180

Ek =
{
(di, dj)

∣∣∣ dj ∈ KNN
(
vi, k

)}
. (5)181

We detect the weakly connected components of Gk,182

yielding:183

Ωk = {ωk1, ωk2, . . . , ωkMk}, (6)184

where each ωkm is a subgraph in Gk.185

Distance Filtering and LLM-Guided Merging.186

Within each connected component ωkm, we apply187

a distance threshold δ to partition it further:188

ωkm =

R⋃
r=1

ω
(r)
km, (7)189

where {ω(r)
km}r are groups formed by threshold-190

based filtering. Then, we use a LLM-based merge191

function to decide whether two subgroups should192

be unified:193

MLLM

(
ω

(r)
km, ω

(s)
km

)
=

{
1, if merge
0, otherwise.

(8)194

All subgroups flagged for merging are com-195

bined to yield refined sub-communities Ω̃k =196

{ω̃k1, ω̃k2, . . .}.197

3 Method: G2RAG 198

3.1 Dynamic Graph Index Construction 199

Index construction is crucial for the performance 200

of retrieval-augmented generation (RAG) systems. 201

In large corpora, noise from irrelevant data can 202

degrade indexing efficiency and retrieval accuracy. 203

To address this, we enhance the process with chunk- 204

level merging and compression. Merging groups 205

related data into larger, coherent chunks, while 206

compression reduces graph size without losing key 207

details. These strategies improve indexing quality, 208

reduce memory usage, and speed up traversal. 209

A critical component of this process is the ap- 210

plication of HDBSCAN, which clusters similar 211

data points while isolating noisy or outlier points. 212

This step ensures that only coherent, high-quality 213

data enters the subsequent stages of the indexing 214

pipeline, significantly enhancing the index’s over- 215

all integrity and relevance. Once the data D has 216

been clustered to C, the GoT method GoT(Ck) is 217

employed for dynamic, application-specific noise 218

filtering. By tailoring filtering strategies to the re- 219

quirements of each specific task, GoT effectively 220

excludes irrelevant data, preserving only the most 221

pertinent information. This two-step process of 222

clustering and targeted noise removal optimizes 223

the indexing pipeline, reducing unnecessary data 224

and resource consumption while maintaining task- 225

specific relevance. 226

After noise information has been filtered, we 227

leverage LLMs to extract entity-relation pairs E ′
k 228

within the clusters C′. LLMs identify meaning- 229

ful entities and their interrelationships, ensuring 230

that the graph structure accurately reflects the un- 231

derlying knowledge. K-Nearest Neighbors (KNN) 232

and Weakly Connected Components (WCC) are 233

then applied to refine the graph: KNN connects 234

nodes based on their proximity, reinforcing the 235

graph’s relevance, while WCC isolates discon- 236

nected or weakly connected components Ωk, im- 237

proving retrieval efficiency. Finally, LLMs are used 238

to merge connected components ωkm which are 239

subsequently used to construct communities Ω̃k. 240

3.2 Dual-level Graph Retrieval 241

We propose Entity to Community retrieval which 242

allows LLMs to retrieve both detailed information 243

about specific entities and broader, contextual sum- 244

maries from relevant communities. 245

Entity represents a specific object, concept, or 246

individual, such as a person, place or event. The 247

3



0
Passage1: ...Joel the Lump of
Coal "Joel the Lump of Coal"
is a song by Las Vegas-based
rock band The Killers featuring
late night talk show host
Jimmy Kimmel. It was
released on December 1,
2014.
Passage2: ... "Jugband
Blues" is a song by the
English psychedelic rock band
Pink Floyd, released on their
second album, A Saucerful of
Secrets, in 1968. ...

Source Documents

Doc1: Pink Floyd, the legendary
English psychedelic rock band,
released "Jugband Blues" on their
1968 album A Saucerful of Secrets....
Doc2: The Killers features Jimmy
Kimmel in their Christmas song
"Joel the Lump of Coal" which was
released on December 1, 2014. This
marks the band's ...

Merge Documents

<"Joel the Lump of Coal" - released on -
December 1, 2014>
<"Jugband Blues" - release on - 1968 >

Entity-Relation Pairs

C
hu

nk
&

C
lu

st
er

Community Graph

KNN&WCC

Community
Dection

GoT

Entity Graph

Extraction Module

Graph Construction Module

Query: Which song came out first, Joel The Lump of Coal or Jugband Blues?

Candidate1: summary:\nPink Floyd, the legendary English psychedelic rock band, released "Jugband Blues" on
their 1968 album A Saucerful of Secrets....
......
Candidate 4: summary:\nThe Killers features Jimmy Kimmel in their Christmas song "Joel the Lump of Coal" which was
released on December 1, 2014. This marks the band's...
.....
Candidate 6: desciption\nJoel the Lump of Coal was released on December 1, 2014.
......
Candidate 8: desciption\nJugband Blues was relased on 1968.

Candidates 

Answer: Jugband Blues

Reports

Scorer

{"description":"Joel the Lump of Coal was released
on December 1, 2014", "score": 95}
{"description":"Jugband Blues" on Pink Floyod 1968
ablum, "score": 90}... Generator

Figure 2: Frame work of G2RAG. The pipeline consists of three main stages: Index Construction, where HDBSCAN
clusters data, GoT filters noise, and LLMs extract entity relations, followed by KNN-WCC-based redundant node
merging and community construction; Retrieval, where both entity-level and community-level information are
queried to enhance relevance; and Generation, where retrieved information is scored for relevance, structured into
context, and fed into the model to generate the final response.

information retrieved at the entity level typically in-248

cludes detailed attributes and relationships specific249

to that entity.250

Community encompasses a broader network of251

relationships and contextual connections. A com-252

munity includes not only the entity in question but253

also the other entities that are closely related to254

it, either through direct interactions or shared con-255

texts.256

3.3 Answer Generation257

Our framework employs a three-step process for258

knowledge-aware answer generation. We retrieve259

relevant graph communities by measuring seman-260

tic similarity between the user query embedding261

and community representations in the shared vec-262

tor space. For each candidate community, the263

model performs context-aware summarization, an-264

alyzing structural relationships and semantic con-265

tent to extract query-relevant information, which266

is then scored based on relevance and complete-267

ness. These summaries are aggregated in descend-268

ing order of their scores and progressively fed into269

the generation model. This hierarchical approach270

prioritizes salient information while maintaining271

supplementary context, enabling the model to syn-272

thesize coherent responses that effectively leverage273

the graph’s relational knowledge.274

4 Adversarial Evaluation of QFS Tasks275

Due to the current lack of benchmark datasets and276

gold-standard metrics for evaluating Graph-Based277

summarization methods, we follow the approach 278

of existing studies by constructing questions and 279

employing LLMs for multi-dimensional evaluation. 280

Question Construction To ensure a detailed and 281

accurate evaluation, we selected three datasets from 282

LongBench v2 (Bai et al., 2024). LongBench v2 283

consists of 503 challenging multiple-choice ques- 284

tions, with context lengths ranging from 8K to 285

2M tokens. Specifically, we extracted and utilized 286

the Academic, Governmental, and Legal datasets, 287

where the number of tokens per dataset ranges from 288

60K to 160K. 289

To evaluate our method for advanced QFS tasks, 290

we consolidated each dataset into a single con- 291

text and applied the question generation approach 292

(Edge et al., 2024). The LLM generated five QFS 293

users, each with five distinct tasks, accompanied by 294

detailed descriptions to contextualize their exper- 295

tise and intent. For each user-task pair, the LLM 296

produced five questions requiring a comprehensive 297

understanding of the dataset, totaling 125 questions 298

per dataset. 299

Assessment Details We compare G2RAG with 300

the following baselines: (1) Naive baselines: w/o 301

documents, where LLMs generate answers ac- 302

cording to their inherent knowledge, w/ docu- 303

ments, where LLMs generate answers with ex- 304

ternal retrieved knowledge (i.e., the NaiveRAG); 305

(2) LongRAG (Zhao et al., 2024). This is a 306

framework consisting of long retriever and long 307

reader; (3) RqRAG (Chan et al., 2024) where LLMs 308
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Figure 3: Win rate percentages of G2RAG and baseline methods (NaiveRAG, RqRAG, LightRAG, LongRAG) on
the Comprehensiveness, Diversity, Directness, and Empowerment metrics across the Academic, Governmental, and
Legal datasets. Overall, G2RAG demonstrates performance on par with, or exceeding, the fine-tuned LongRAG,
while outperforming non-fine-tuned baselines.

are trained to dynamically refine search queries309

through rewriting, decomposing, and clarifying310

ambiguities; (4) LightRAG (Guo et al., 2024) a311

dual-level retrieval architecture with knowledge312

graphs. Since LongRAG requires fine-tuning, we313

use Llama-3.1-8B (Touvron et al., 2023) as the314

backbone, while other methods adopt GPT-4o-mini315

(Achiam et al., 2023) as the generator. We assess316

model performance across the following four di-317

mensions:318

• Comprehensiveness. A comprehensive an-319

swer meticulously covers every facet and nu-320

ance of the question, leaving no critical detail321

unaddressed.322

• Diversity. A diverse answer incorporates a323

wide range of perspectives, insights, and ap-324

proaches, enriching the response with varied325

viewpoints.326

• Empowerment. An empowering answer327

equips the reader with the knowledge and 328

tools necessary to grasp the topic fully and 329

make well-informed decisions. 330

• Directness. A direct answer addresses the 331

question with precision and clarity, avoiding 332

ambiguity or unnecessary digressions. 333

Results As illustrated in Figure 3, G2RAG 334

achieves performance surpassing that of the fine- 335

tuned LongRAG across datasets. Moreover, it out- 336

performs several advanced methods that do not 337

require fine-tuning, including RqRAG, and Ligh- 338

tRAG. In the Academic and Governmental do- 339

mains, G2RAG attains coverage levels on par with 340

LightRAG while significantly exceeding those of 341

NaiveRAG, RqRAG, and LongRAG. Notably, in 342

the Legal domain, G2RAG demonstrates substan- 343

tially higher comprehensiveness scores than all 344

baseline methods, highlighting its effectiveness in 345

integrating and structuring large volumes of legal 346

texts. 347
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However, G2RAG may exhibit slight diversity348

limitations under specific conditions due to its re-349

trieval process, which prioritizes relevance through350

scoring and refinement. While this ensures precise351

and direct responses, it may reduce the inclusion352

of exploratory information. However, in the legal353

domain, this trait is advantageous, as legal texts de-354

mand accuracy, and ambiguity can lead to misinter-355

pretation. By focusing on relevance and structured356

integration, G2RAG effectively filters out extrane-357

ous content, ensuring precise and applicable legal358

information. Thus, despite its slightly constrained359

diversity, its ability to deliver highly accurate re-360

sponses makes it particularly well-suited for legal361

applications.362

5 A Comprehensive Study of363

Graph-Based RAG in MHQA364

Research on Graph-Based RAG remains limited. In365

this study, we compare the performance of Graph-366

Based methods with advanced RAG methods and367

the Naive RAG approach in the context of MHQA.368

Through experiments and case studies, we ana-369

lyze the effectiveness of these methods. Our find-370

ings provide valuable insights into the potential of371

Graph-Based RAG.372

Evaluation datasets. We measure all the meth-373

ods on three MHQA datasets, including (1) Hot-374

potQA (Yang et al., 2018), (2) 2WikiMQA (Ho375

et al., 2020), (3) MuSiQue (Trivedi et al., 2022).376

As evaluation metrics, we calculate the exact match377

(EM), F1 score and accuracy (Acc) for multi-hop378

reasoning datasets. We use the corresponding docu-379

ments of 3 datasets from the LongBench(Bai et al.,380

2023) benchmark for corpus construction.381

Implementation Details. In this study, we fol-382

low the baselines used in §4 and conduct experi-383

ments using multiple backbone models from the384

MHQA task benchmark, alongside our proposed385

method for comparison. We select include Llama-386

3.1-8B-Instruct (Touvron et al., 2023), Qwen2.5-387

7B-Instruct(Yang et al., 2024), and Ministral-8B-388

Instruct-2410 (Jiang et al., 2023) as the baseline389

models. For subsequent analysis experiments390

and graph index building, we use GPT-4o-mini391

(Achiam et al., 2023). To ensure the consistency of392

the experiments, all datasets are set to a block size393

of 500. For the retrieval process, we employ bge-394

m3 (Chen et al., 2024a) as the retriever and top-k is395

set to 5. In terms of data storage and management,396

our method uses Neo4j for data storage and access. 397

Results and Analysis As delineated in Table 398

1, our experimental results suggest that Graph- 399

Based RAG methods, including G2RAG and 400

LightRAG, perform suboptimally on MHQA 401

datasets compared to advanced RAG methods. In 402

fact, G2RAG demonstrates weaker performance 403

than the baseline Naive RAG across all the 404

datasets. On the HotpotQA dataset answered 405

by Llama-3.1-8B, G2RAG reaches an accuracy 406

score of 28.5 against parametric knowledge, 407

still underperforming 38.5 against naive rag (w/ 408

documents). The performance of LightRAG, 409

which is an other Graph-Based RAG method 410

shows a degradation in performance. On the 411

2WikiMultiHopQA dataset, LightRAG achieves 412

an accuracy score of just 23.5, even lower than 413

naive baseline (w/o documents) at 28.0, showing 414

that in some cases, Graph-Based methods can even 415

result in performance degradation. 416

417

Case Study We conduct a case study to investi- 418

gate the reason why Graph-Based RAG methods 419

underperform on MHQA tasks. Table 3 shows the 420

retrieval contents and final answers for questions on 421

HotpotQA dataset. It reveals two main reasons be- 422

hind the subpar performance of Graph-Based RAG 423

methods like G2RAG and LightRAG on multi-hop 424

QA datasets. First, the entity-relation node extrac- 425

tion is incomplete, especially for low-frequency 426

entities, which are often overlooked, leading to 427

gaps in the graph structure. This makes it difficult 428

to recognize and link entities during multi-hop rea- 429

soning. Second, Graph-Based methods fail to iden- 430

tify potential relationships between entities across 431

different documents during the indexing phase. As 432

a result, even if a graph index is built, it doesn’t 433

fully support multi-hop reasoning since it cannot 434

capture cross-document relationships. Modular 435

graph communities, to some extent, help identify 436

some cross-document connections to mitigate the 437

problem but still struggle to enable comprehen- 438

sive multi-hop reasoning. These limitations high- 439

light the need for improvements in entity extrac- 440

tion and cross-document relationship recognition 441

to enhance the effectiveness of Graph-Based RAG 442

methods in other tasks. 443

Effectiveness of GoT GoT significantly en- 444

hances graph index construction by leveraging 445

highly efficient compression techniques and per- 446
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Model HotPotQA 2WikiMultiHopQA MuSiQue

EM ACC F1 EM ACC F1 EM ACC F1

Llama-3.1-8B
w/ documents 31.0 38.5 43.2 26.0 31.5 33.3 10.5 12.5 16.0
w/o documents 16.5 21.5 24.1 19.0 28.0 26.5 5.5 7.5 10.5
LongRAG w/ finetune 47.0 51.5 61.6 55.0 62.5 64.0 27.0 32.5 37.5
LongRAG w/o finetune 41.0 48.0 54.3 48.5 60.0 57.3 24.0 31.0 33.0
RqRAG 36.5 40.0 47.0 24.0 30.5 32.4 20.5 21.5 28.0
LightRAG 16.5 21.5 23.1 11.0 23.5 19.4 2.0 2.5 5.1
Ours 20.0 28.5 28.5 17.0 30.5 24.9 8.5 11.0 13.7
Ministral-8B-Instruct
w/ documents 36.5 43.0 49.3 31.0 34.5 38.4 12.0 13.5 17.3
w/o documents 18.0 19.5 25.0 20.0 22.0 25.2 4.5 5.0 9.1
LongRAG w/ finetune 46.5 53.5 61.4 49.0 58.5 58.5 33.0 39.5 44.0
LongRAG w/o finetune 37.0 44.0 51.2 31.5 39.0 40.0 23.0 28.5 31.0
RqRAG 36.5 42.5 48.6 30.0 33.5 36.9 20.0 23.5 28.6
LightRAG 18.0 19.5 23.6 21.5 22.5 26.1 4.5 5.5 9.6
Ours 18.0 22.5 27.9 19.0 19.5 23.2 7.5 8.5 12.2
Qwen-2.5-7B
w/ documents 35.5 41.0 46.7 28.0 32.0 34.9 10.0 14.5 16.5
w/o documents 17.5 23.0 27.3 23.0 24.5 27.6 3.0 5.5 11.2
LongRAG w/ finetune 49.5 57.5 63.3 51.0 58.0 59.1 26.5 32.5 37.3
LongRAG w/o finetune 44.5 53.0 58.1 42.0 54.0 53.4 25.0 31.5 32.2
RqRAG 35.5 39.0 47.0 28.0 31.5 35.2 19.5 21.0 26.4
LightRAG 20.0 24.0 27.0 21.5 22.5 25.8 6.5 8.0 11.7
Ours 20.0 26.0 28.6 23.0 23.5 27.8 7.0 10.5 13.0

Table 1: Overall performance (%) of graph-based rag and traditional rag of the dev sets of multi-hop QA datasets.

formance optimizations. It achieves a remarkable447

compression rate exceeding 40%, substantially re-448

ducing document chunk size. This compression449

not only optimizes storage but also accelerates data450

access and processing, leading to a more efficient451

construction process. Additionally, GoT enhances452

LLMs’ ability to filter redundant information while453

preserving critical data, ensuring both speed and454

effectiveness in index construction. As shown in455

Table 2, merging chunks slightly improves LLM456

performance compared to using full chunks.457

Speed of Index Construction G2RAG achieves458

a remarkable speedup in index construction by effi-459

ciently extracting entity-relation pairs through clus-460

tering and GoT optimization, followed by node461

Method EM ACC F1 # Token

w/o GoT 26.5 33.5 36.5 362k
w/ GoT 27.0 36.0 38.4 202k

Table 2: Performance (%) of G2RAG under different
settings of chunking processing.
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Figure 4: Comparison of time consumption (s) for index
construction across different methods.

merging via KNN and WCC to form communi- 462

ties. This streamlined process enables our ap- 463

proach to attain indexing speeds comparable to 464

NaiveRAG, even when the latter employs FAISS- 465

based index construction. Compared to LightRAG, 466

our method accelerates graph index construction 467

by 80%, demonstrating its superior efficiency in 468

large-scale retrieval tasks. 469

6 Related Work 470

6.1 Retrieval-Augmented Generation. 471

Retrieval-Augmented generation (RAG) represents 472

a paradigm shift in knowledge-intensive NLP tasks, 473
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Question: Who starred in her final film role in
the 1964 film directed by the man who also did
Vera Cruz and Kiss Me Deadly?
NaiveRAG: Vera Cruz is a 1954 American West-
ern film directed by Robert Aldrich ... His most
notable credits include Vera Cruz (1954), Kiss
Me Deadly (1955)
Hush...Hush, Sweet Charlotte is a 1964 Amer-
ican psychological thriller film ... Mary Astor
in her final film role
Answer: Mary Astor.
LightRAG: None
Answer: Kathy Bates starred in her final film
role in the 1964 film directed by the man who
also did Vera Cruz and Kiss Me Deadly.
Ours: The provided information centers around
Robert Aldrich ... Aldrich’s filmography in-
cludes notable titles such as "Whatever Hap-
pened to Baby Jane?", "The Dirty Dozen," and
"Kiss Me Deadly."
Answer: Bette Davis.

Table 3: Case Study on HotPotQA dataset. Only key
information fragments retrieved are displayed. Failure
to retrieve the entity "Mary Astor" in LightRAG and
G2RAG leads to an incorrect answer.

where parametric knowledge in language models474

is augmented with non-parametric external mem-475

ory.(Gao et al., 2023b; Ram et al., 2023; Asai476

et al., 2023) Existing approaches of using embed-477

ded queries and vector retrieval libraries to access478

relevant information faces limitations due to infor-479

mation fragmentation caused by text chunking and480

restricted retrieval capacity imposed by language481

models’ context length, hindering the acquisition482

of coherent and comprehensive information (Gao483

et al., 2022; Günther et al., 2024) .484

Recent advancements(Guo et al., 2024; Besta485

et al., 2024a; Fan et al., 2025) attempt to address486

these limitations through graph-structured repre-487

sentations, where documents are modeled as inter-488

connected knowledge graphs. This Graph-Based489

RAG paradigm enables more sophisticated reason-490

ing over retrieved information by explicitly cap-491

turing entity relationships and document-level de-492

pendencies. However, most current knowledged493

Graph-Based RAG methods still face prohibitive494

indexing construction times and excessive API cost495

overhead. Driven by these limitations, we focus496

on developing efficient RAG systems for resource-497

constrained scenarios.498

6.2 Chain of Thoughts 499

The evolution of reasoning in language models has 500

progressed through several significant paradigms. 501

The chain-of-thought (CoT) approach (Wei et al., 502

2022)first demonstrated that explicit reasoning 503

chains could enhance model performance on com- 504

plex tasks. This was subsequently extended 505

through tree-of-thought frameworks(Yao et al., 506

2023), which introduced branching reasoning paths 507

to explore multiple solution trajectories. Other 508

work like PoT(Chen et al., 2022),CoT-SC(Wang 509

et al., 2022),AoT(Sel et al., 2023), likewise shows 510

great potential for the enhancement of LLMs. Al- 511

though these approaches have shown promise, they 512

often struggle with maintaining coherent reasoning 513

in extended contexts and do not integrate external 514

knowledge effectively. 515

The graph-of-thought (GoT) paradigm(Besta 516

et al., 2024b) addresses these limitations through its 517

unique capability to effectively compress multiple 518

information units into consolidated representations. 519

Our work advances this paradigm by developing a 520

novel indexing optimization framework that signif- 521

icantly reduces construction overhead. 522

7 Conclusion 523

In this paper, we introduce G2RAG, a novel Graph 524

Retrieval-Augmented Generation paradigm that 525

leverages graph modularity to enhance retrieval 526

efficiency and semantic relevance. By integrating 527

latent domain-aware entity-relation extraction us- 528

ing DBSCAN clustering with Graph of Thoughts- 529

based document merging, as well as optimizing 530

graph structures through k-nearest neighbor graph 531

construction and LLM-guided entity resolution, our 532

framework significantly improves retrieval perfor- 533

mance. Experimental results show that G2RAG 534

reduces indexing time by 80% while maintaining 535

competitive performance on query-focused summa- 536

rization (QFS) benchmarks. Additionally, we sys- 537

tematically evaluate Graph-Based RAG methods 538

on multi-hop question answering (MHQA), reveal- 539

ing key challenges in retrieval precision and contex- 540

tual integration. Our findings highlight the poten- 541

tial of graph-based retrieval in structured document 542

processing while exposing limitations that need 543

further refinement. Our study provides insights 544

into the trade-offs between retrieval efficiency and 545

generative quality, paving the way for future ad- 546

vancements in Graph-Based RAG frameworks. 547
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Limitations548

We find that G2RAG struggles to effectively iden-549

tify and extract low-frequency information, which550

may impact retrieval completeness. Its generaliza-551

tion to broader NLP tasks requires further valida-552

tion, and real-time efficiency in large-scale settings553

remains a challenge. While our approach mitigates554

computational overhead, scalable graph construc-555

tion techniques are needed to enhance adaptability556

for dynamic, large-scale corpora.557
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