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Abstract

As foundation models (FMs) advance toward
artificial general intelligence with increasingly
complex training pipelines—involving pretrain-
ing, fine-tuning rounds, and subsequent adapta-
tion or alignment—ensuring their reliable and re-
sponsible development becomes critical. A key
challenge in this context is accountability: when
a deployed model exhibits concerning or benefi-
cial behaviors, which training stage is responsi-
ble, and to what extent? We pose the problem of
accountability attribution, which aims to trace
model behavior back to specific stages of the train-
ing process, enabling transparency and auditabil-
ity essential for responsible Al development. To
address this, we propose a general framework
that answers counterfactual questions about stage
effects: how would the model’s behavior have
changed if the updates from a training stage had
not been executed?. Within this framework, we
introduce estimators based on first-order approxi-
mations that efficiently quantify the stage effects
without retraining. Our estimators account for
both the training data and key aspects of optimiza-
tion dynamics, including learning rate schedules,
momentum, and weight decay. Through experi-
ments on high-stakes domains like medicine and
finance, we demonstrate that our approach identi-
fies training stages accountable for specific behav-
iors, offering a practical tool for ensuring reliable
and responsible foundation model development.

1. Introduction

Modern foundation models (FMs) are developed through
multiple training stages, including pretraining, domain-
specific fine-tuning, and subsequent downstream adapta-
tion or alignment, each encompassing numerous parameter
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update steps shaped by distinct data and optimization dy-
namics (Lopez-Paz & Ranzato, 2017; Kornblith et al., 2019;
Raghu et al., 2019; He et al., 2022; Chen et al., 2020; Rad-
ford et al., 2019; Ouyang et al., 2022; Hu et al., 2022).
While this modular structure has become central to achiev-
ing state-of-the-art performance and emergent capabilities,
it complicates a critical question of accountability: when a
foundation model exhibits harmful, beneficial, or surprising
behavior, which stage of the training process bears respon-
sibility? This question, lying at the intersection of explain-
ability, causality, and learning dynamics, remains largely
underexplored in current practice. As foundation models are
increasingly deployed in high-stakes settings like medicine
and finance, answering this question becomes essential for
model debugging, auditing, and enforcing accountability
to properly credit or blame the appropriate training stages -
a key requirement for reliable and responsible Al develop-
ment.

We formulate the accountability attribution problem to
address this challenge: tracing model behavior to stages of
the training process that shaped it. This problem relates to,
yet remains distinct from, three research directions. First,
causal responsibility analysis (Chockler & Halpern, 2004;
Halpern & Pearl, 2005; Triantafyllou et al., 2021) provides
formal definitions of blame and responsibility through struc-
tural causal models but has primarily focused on discrete
decision-making settings at small scales, such as two people
throwing rocks at a bottle (Halpern & Pearl, 2005), making
it challenging to apply to high-dimensional, sequential pro-
cesses like training foundation models. Second, research
on learning dynamics (Ren et al., 2022; Ren & Sutherland,
2025; Park et al., 2024) investigates how model parameters
evolve during training and their consequent impact on test
performance, revealing phenomena such as phase transitions
or representation formation (Park et al., 2024). However,
this research typically aims at descriptive understanding
rather than attributing credit or blame to specific training
stages. Third, data attribution methods (Koh & Liang, 2017;
Ghorbani & Zou, 2019; Ilyas et al., 2022; Pruthi et al., 2020;
Bae et al., 2024; Wang et al., 2025) trace model behavior
to individual data points. While these methods can assign
data-level accountability, they primarily study the “average
model” expected to be trained from a given dataset, often
overlooking the actual training process (Koh & Liang, 2017).



Their assumptions and simplifications (e.g., convexity, con-
vergence, permutation invariance) limit their applicability to
training stage-specific attribution. Although recent work has
extended to consider training processes (Bae et al., 2024,
Wang et al., 2025), these approaches remain fundamentally
data-centric and assume basic SGD optimizers, failing to
account for the impact of complex optimization dynamics
in practice.

To address these gaps, we propose a general framework
for accountability attribution that explicitly analyzes the
training process as a sequence of interventions. Our frame-
work builds on the potential outcomes formalism (Rubin,
1974; 2005), enabling counterfactual queries about the effect
of training stages: how would the model’s behavior have
changed if the updates from a specific training stage had not
been executed? The framework focuses on estimating the
causal effects of training stages, which are defined as sets of
model update steps determined by both training data and op-
timization dynamics, including influences from learning rate
schedules, momentum, and weight decay. This approach
provides model-specific attribution results by considering
the complete training process.

We instantiate this framework using first-order approxima-
tions that estimate the effect of training stages. Our esti-
mators are both efficient and flexible: they avoid retraining,
scale to deep foundation models, and yield reusable “stage
embeddings” that capture the essential influence patterns
of each training stage. These stage embeddings only need
to be computed once during training and can be applied
to analyze accountability for model behavior on any test
input or performance function. We refer to the estimated
performance effect as the Accountability Attribution Score
(AA-Score) of the training stage.

Through experiments on vision and language foundation
models, we show that our method reliably identifies train-
ing stages that are responsible for critical model behav-
iors—including the introduction of spurious correlations,
the learning of domain generalization, or the degradation
from noisy labels. These results position accountability at-
tribution as a practical and principled tool for ensuring the
reliable and responsible development of foundation mod-
els through enhanced transparency and auditability. Our
contributions are summarized as follows:

* We pose and formulate the accountability attribution
problem as tracing model behavior to stages of the train-
ing process, enabling responsible development of founda-
tion models.

* We propose a general framework for accountability at-
tribution based on the potential outcomes formalism, en-
abling counterfactual queries about the effect of training
stages.

e We derive efficient estimators within this framework that
quantify stage effects while accounting for optimization
dynamics including learning rate schedules, momentum,
and weight decay.

* We demonstrate the framework’s practical utility across
diverse foundation model settings, showing that it un-
covers influential stages responsible for beneficial and
harmful model behaviors.

2. Related work

Responsibility and causal analysis The assessment of
responsibility is a fundamental challenge in practice that of-
ten requires careful consideration of causality (Chockler &
Halpern, 2004). Structural causal models serve as powerful
tools for formalizing this concept (Halpern & Pearl, 2005;
Pearl, 2009), enabling precise definitions of blame and re-
sponsibility through counterfactual dependence (Halpern &
Kleiman-Weiner, 2018). In the context of Al, these frame-
works have been extended to analyze multi-agent settings
(Triantafyllou et al., 2021) and human-AlI collaboration (Qi
et al., 2024). While these formalisms provide valuable per-
spectives on responsibility attribution, they typically focus
on relatively simple problems in small settings with enumer-
able outcomes, e.g., two people throwing rocks at a bottle.
Applying them directly to the high-dimensional, sequential
process of training deep Al models presents significant chal-
lenges. For such complex processes of Al model training,
a notable related work by (Lesci et al., 2024) employs a
potential outcome causal framework to study memorization.
While our work shares their goal of using causal reasoning
and the potential outcome framework, we focus specifically
on attributing model behavior to training stages and deter-
mining their accountability.

Learning dynamics describes how AI models usually
learn new knowledge by updating their parameters via
gradient-based optimization. It links changes in the model’s
parameters or predictions over time, to the gradients gen-
erated by learning specific examples (Ren et al., 2022).
Through analyzing the learning dynamics, interesting phe-
nomena during training has been explained, such as the
"zig-zag" learning path (Ren et al., 2022), the “squeezing
effect” of LLM finetuning (Ren & Sutherland, 2025), and
the formation of compositional concept spaces (Park et al.,
2024). Our work complements these studies by providing
a method to quantify the contribution of training stages to
the final outcome, potentially helping to explain the mecha-
nisms behind observed dynamic phenomena. Our method
is also more quantitative and can be efficiently applied to
different test data or performance metrics through the use
of stage embeddings.



Data attribution aims to trace model behavior back to
the training data instances. Classical approaches like in-
fluence functions (Cook & Weisberg, 1980; Koh & Liang,
2017), Data Shapley (Ghorbani & Zou, 2019), and retrain-
ing methods like Datamodels (Ilyas et al., 2022) analyze
accountability from the data perspective. These methods
study an “average model” expected to be trained from a
given dataset and thus are limited to analyze single model
instances produced by a specific training process. Moreover,
they often rely on assumptions such as convergence, convex-
ity, or permutation invariance of traning data that limit their
applicability to non-convergent models, multi-stage train-
ing processes, and permutation of training data. There is a
line of data attribution research that specifically examines
the training process, including methods like TracIn (Pruthi
et al., 2020), approximate unrolled differentiation (Bae et al.,
2024), and Data Value Embedding (DVEmb) (Wang et al.,
2025). These process-based approaches better capture tem-
poral dependencies by tracing influence along the optimiza-
tion trajectory. The most closely related work to ours is
DVEmb, which traces training example influence along the
optimization trajectory using first-order approximations for
leave-one-out (LOO) counterfactuals. Our work differs by
analyzing the specific counterfactual of training stages in-
stead of only data points, and considering a more complete,
practical optimization process incorporating learning rate
schedules, momentum, and weight decay. Ours provides a
distinct perspective that incorporates the training data and
also the optimizer state for each update step.

3. Preliminaries: optimization dynamics and
causal analysis

3.1. Optimization dynamics

Let p(x; 0) be a model on instances € R parameter-
ized by 8 € RP. Training starts from an initial state
& = (6p,vp), where v is the velocity for momentum-
based optimizers, typically the zero vector when initialized.
Training proceeds for K steps using a dataset D, typically
partitioned into ordered batches By, By, ..., Bx_1. Ateach
step k (from O to K — 1), the parameters and velocity are
updated based on a batch By, a training loss function £, a
learning rate 7, a momentum factor p, and a weight decay
factor A\. This sequence of updates defines the observed
training state trajectory &, = (0, v;) for k =0,..., K in-
cluding the parameters 0 and velocity v. The specific update
rules considered in this paper is SGD with momentum and
weight decay (Sutskever et al., 2013), with the implemen-
tation closely following modern deep learning frameworks

like PyTorch (Paszke et al., 2017):
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3.2. Causal analysis framework: potential outcomes

To formally analyze accountability, we utilize the potential
outcomes framework (Rubin, 1974; 2005), which provides
a rigorous foundation for describing the causal effect of an
intervention (treatment) on a target quantity (outcome).

Let € {0,1} denote a binary treatment assignment
variable, representing the intervention to be studied, e.g.,
whether a training stage has happened during model training
(7"= 1) ornot (/"= 0)). The outcome variable Y represents
our quantity of interest affected by the treatment, such as
the model’s final performance. To properly define the causal
effect of 7 on Y, we must consider two scenarios: the out-
come when /" = () and when 7/ = |. For a deployed model,
only one of these scenarios will be observed, and the other
will be counterfactual. The potential outcomes framework
provides the formal notation to represent both scenarios.

Definition 3.1. The potential outcome Y (') represents
the value that the outcome variable Y would attain if the
treatment assignment were set to

Definition 3.2. The causal effect T of the treatment, also
known as the individual treatment effect (ITE), is defined as
the difference between the potential outcomes under treat-
ment and control: T =Y (1) — Y (0).

A fundamental challenge in causal inference is that we can
only observe one outcome Y —normally the one correspond-
ing to the treatment actually received (Holland, 1986). The
consistency property (Cole & Frangakis, 2009) establishes
the relationship between this observed outcome Y and the
potential outcome under the received treatment Y (7), i.e.,
Y (1) =Y. To estimate 7, we must develop methods to
estimate the unobserved counterfactual outcome Y (0)).

4. A framework for accountability attribution

4.1. Problem formalization: causal effect of a training
stage

We define the accountability attribution problem as the
causal effect of a training stage on the final model per-
formance. Building upon the general causal framework
in §3.2, we present our framework for accountability attri-
bution by specifying the treatment and outcomes for the
problem. We define the treatment as whether the training



stage has happened or not. Formally, for a model training
process that evolves from 0 to Oy, let 5 = {/1,...,/.}
be the time indices of a training stage involving training

steps 1, € {0,..., K — 1} foralli € {1,..., s}. The treat-
ment 7' € {0, 1} indicates whether the model updates at
steps in 5 are been executed ( = 1) or all steps in

are skipped (7' = 0). At each time step k, we define the
potential outcome of the model state under the treatment as

Er(15) = (0k(7 ), vi (7).

* The observed (treated) trajectory corresponds to =
&1(1 o) = & by the consistency property.

* The counterfactual (controlled) trajectory, where the stage
is skipped, is denoted &5 (0 ). This trajectory evolves

by executing the standard update for k& ¢ 5 and skipping
the update for k € 5. Thatis, if & € 5, then &1 (05) =

£r(00).

We use a performance function v(x,0) to quantify the
model’s performance on an instance x at a given state 0,
for example, the log-likelihood log p(x; €). For each time
k, we define the outcome variable under treatment as
Yi(7) = y(@, (7).

Finally, the accountability attributed to the training stage
is then the causal effect of the treatment on the performance
function -y at the final time step K:

) =Y (V) = (2, 0k (1)) — (2, O (

&)

TK’ = YK(

To solve the accountability attribution problem, any esti-
mator for the causal effect 7x < can be plugged in to our
framework. In the following sections, we present our esti-
mator using interpolation and a first-order Taylor expansion,
which results in the AA-Score of a training stage.

4.2. Estimating effects of training stages

To build towards the estimation of the effect of a training
stage, i.e., the AA-Score, we first consider the special case
of the treatment only including a single step 7, i.e., 5 = {/}.
We write as /" for simplicity to refer to the treatment of
step /. We introduce an interpolation parameter € € [0, 1]
that defines a continuous path between the observed state
&i(1) at e = 1 and the counterfactual state &5 (0) at € = 0.
Let &1 (¢) denote this interpolated state.

For step k up to /, & (e) = €. At step /, the state &, is the
same for both paths. The difference due to executing step
is €41 — &, for both 8 and v. We define the interpolated
state after step / as:

0t+1(6) =0 + 6(0t+1 -0 ) =60, — €N Vi1 (6)
’Ut+1(6) =v; + 6('Ut+1 % ) (7)

For step k after ¢ + 1, £;(¢) evolves from &;.1(€) using
standard optimization dynamics. This construction ensures

Ee(e=0) =&k (/ =0)and &p(e =1) = & (1 = 1).

Our main result is an estimator for the causal effect 75,
by first-order Taylor expansion at the observed path. To
derive that estimator, we first show an intermediate result
of estimating the causal effect on the state £, where we start
from the difference between the observed and counterfactual
states at step ¢ + 1 and propogate the difference step by step
to the final step K.

Estimator 4.1 (Single step effect on the training state). Let
Tf( = Ex (1) —Ex (0) be the causal effect on the final state
by Lvtep , 1 €{0,..., K — 1}. Define the initial statediffer-
ence at step t + 1 as:

_ 0,10 _ o TVt
Wi, = (’Ut+1 v ) T \opy —w 3
For all steps k. € {t +1,...,K — 1}, define the one-step

propagator matrix as:

(T =ne(Hp + AI)  —nppd
M, = < Hy + M mi ®)

where Hi, = Y .3 V?L(6i,x) is the Hessian of the
training loss L evaluated at the observed 0,. The matrix
M. connects the difference in state at step k and step k + 1
as wy11,, = Mpwy, . Define the overall propagator ma-

“trix PUHD =K g
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Then, a first-order estimator of Tf(, is:

~§ — plt+1)—=K)
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Now by plugging in the performance function ~y into the
estimator of effect on the training state, we can derive an
estimator for the causal effect on the performance.

Estimator 4.2 (Single step effect on the model perfor-
mance). Let 7x,; = Y (1) — Y (0) be the causal effect
of step | on a performance function y(x,0r) = Yi. Let
p(t+)—=K) — (Pll P12> be the overall propagator
Po1 Po

matrix defined in Estimator 4.1. Let E: = P11 (—nvi41) +
Pio(viy1 — v,) be the difference in parameters (first block
of the state difference vector w ;). A first-order estimator
0f’7’](7 is:

7, =Ver(x,0x) B (1D

where the gradient V g7y is evaluated at the observed final
parameters 0.



The detailed derivation of Estimators 4.1 and 4.2 is deferred
to App. A.1. Importantly, we see that eq. (11) is the product
of two parts. The second part E;, depends on training dy-
namics and the treatment step  but is independent of the test
instance « or the performance function . This allows E, to
be computed during training and reused as an “embedding”
to efficiently estimate the performance effect on any new
data instance by doing a dot product. The computational
considerations and efficient implementation strategies for
computing F, are discussed in §4.3.

Once we establish the estimator of the causal effect of a
single step, we can extend it to estimate the effect of an
entire training stage. We show in the following that the
first-order estimator of the total effect of a training stage is
the sum of the effects calculated individually for each step
in the stage.

Estimator 4.3 (Effect of a training stage). Let =
{t1,..., .} be atraining stage with steps |, € {0,..., K —
1} foralli € {1,...,s}. Let Té and Tk 5 denote the
causal effects of stage 5 on the tr&ining state and perfor-
mance, respectively. Let 7‘15{7 and T, be the effect esti-
mators of step |, as defined in Estimators 4.1 and 4.2. A
first-order estimator of T}, . and Tk < are given by the sum
of the effect estimators fo/ each step in

o= . fre= ) Fk, (12)
S S

The proof, based on the linearity of the first-order approx-
imation derived from a multi-parameter Taylor expansion,
is provided in App. A.2. The estimated performance effect
TK,s ineq. (12) will be the AA-Score of the training stage

4.3. Computational considerations

To estimate the effect of a training stage, we need to compute
E, for each step in the stage as outlined in Estimators 4.1
and 4.2. Althought we only need to do this computation
once along the training process, the direct computation of
E, presents significant computational challenges. These
primarily arise from the manipulation of the propagator
matrices M, and P((+1)=5) "which have size 2p x 2p,
and the Hessian computation which is O(p?), where p is the
dimension of the parameter vector 6.

Complexity of full propagation The propagation matrix
M, is of size 2p x 2p. Computing the overall propagator
P((+1)=K) jnvolves approximately X — / matrix-matrix
multiplications. If each M, is explicitly formed, each such
multiplication costs O((2p)?) = O(p®). Thus, forming
P (D=5 for a single step / can be O((K — /)p?). Anit-
erative algorithm can be used to compute all E, by updating
a backward product, e.g., first computes P((X—1)—=K) and

then uses it to compute E . Then, update P((KX—1)—K)
to P((5K=2)=K) by multiplying it with M x_ and uses it
to compute E;- ., etc. The per-step cost in the backward
pass involves a matrix-matrix product, leading to an over-
all complexity that can be roughly O(Kp?) or O(K|B|p?)
if Hessian-vector products are used efficiently within the
matrix multiplication. The storage for P((‘+ 1=K jtself is

o(p?).

Hessian approximation The computation of M, requires
the Hessian of the training loss Hy = Y_, .5 V2L(0y, ).
Forming this p X p matrix is typically intractable. In practice,
we approximate Hj, using the Generalized Gauss-Newton
(GGN) matrix: Hy, ~ 35 VoL(0k, x)VoL (O}, x)',
which is common in the literature (Martens, 2020). The
advantage of the GGN (and other outer-product approx-
imations) is that its product with a vector z (i.e., Hy2)
can be computed efficiently without explicitly forming Hy:
(>99") z=>"g(g"z). This reduces the cost of apply-
ing H, from O(p?) to O(|B|p). This efficiency is crucial
when computing the action of M, on a vector.

Layer-wise computation (approximation) A common
heuristic to reduce dimensionality is to restrict the com-
putation of effect to the parameters of each layer [ (with
dimension p;) separately and then aggregate the effects.
This effectively assuming the independence between effects
of different layers, and it is common in the literature with
influence analysis of large models (Grosse et al., 2023).
This will reduce to the computation of per-layer effects em-
beddings E', and the overall complexity will also become
O(K|B|Y",p}). A more aggressive approximation is to
only consider the effect of a subset of layers or even a single
layer, e.g., the last layer for prediction. This will reduce
the complexity to O(K|B|p?). Our empirical observations
(and those in related literature (Koh & Liang, 2017; Barshan
et al., 2020)) suggest that often only computations focused
on the last layer yield reasonably stable or interpretable
results when such drastic approximations are made.

5. Experiments
5.1. Datasets and experiment settings

We consider four datasets: MNIST (lec), CELEBA (Liu
et al., 2015), for image classification, and CIVILCOM-
MENTS (Borkan et al., 2019) for text toxicity classifica-
tion. We use the Wilds benchmark (Koh et al., 2021) for
the CELEBA and CIVILCOMMENTS datasets. For each
dataset, we employ model architectures appropriate to the
task. We start with simple Multi-Layer Perceptrons (MLPs)
on MNIST to facilitate detailed analysis and direct com-
parison with retraining. For CELEBA, we employ stan-
dard ResNets (He et al., 2016) to assess our method on
more complex image recognition tasks. For the CIVIL-



COMMENTS dataset, we fine-tune a pre-trained Transformer
model, specifically a GPT-2 (Radford et al., 2019) from the
Huggingface library (Wolf et al., 2019), to evaluate the influ-
ence of training steps in the context of fine-tuning language
models. In our experiments, we use the log-likelihood as
the performance function v and estimate the performance
effect 7, i as the AA-Score of the stage. Therefore, a pos-
itive 7, i indicates that the training stage contributes to a
higher log-likelihood, i.e., the stage is beneficial to the
model’s performance. We train these models and implement
our estimators on a server with 64 cores and one NVIDIA
A100 GPU with 40G memory. Details of datasets, model
architectures, and hyperparameters are deferred to App. B.1.

5.2. Accountability attribution on MNIST

We start with accountability attribution for MLPs trained
on MNIST. Since the setting is simple, we can perform
model retraining without certain training stages to get the
counterfactual effect of that stage as the gold-standard. We
then use our estimators to estimate that stage’s effect and
compare the results. We consider several semi-synthetic
settings to demonstrate the utility of our method. Major
results are shown in Fig. 1, with experiment details and
additional results in App. C.

Capture influence of optimization parameters We start
by showing our AA-Score considers the effect of training
stages based on the optimization parameters that affect the
training process, including the learning rate (Ir), momentum,
and weight decay (wd). We consider cases where we vary
these parameters to separate the training into two stages with
different optimization parameters, and analyze the stage
effects and observe their influence. When we vary each
parameter, we keep the other parameters the same across
the two stages. We show the results in Fig. 1 (a-d). In (a),
we show the baseline case of one stage, all three parameters
stay the same, with 1r=0.01, momentum=0.9, and wd=1e-
5. These are the common settings for training MLPs on
MNIST and the parameters for the first stage for all other
settings. In (b), we set the Ir to 0.001 in stage 2. In (c), we
set the momentum to 0.1 in stage 2. In (d), we set the weight
decay to 0.1 in stage 2. We see that as the Ir decreases, the
AA-Score decreases as well. This is as expected because the
second stage with smaller Ir have less impact on the model’s
parameters. We also see that as the momentum decreases,
the AA-Score shows similar behavior to the Ir. We also
see that as the weight decay increases, steps scores in the
second stage become closer to zero, for both positive and
negative scores. This is because the meaningful learning
signals come from the data are less significant with larger
weight decay. These results work as sanity checks for our
method, as they show that our method can capture the effect
of optimization parameters on the model’s performance
quantitatively.

Detect an influential stage Next, we consider the case of
detecting an influential training stage, for simplicity, we
consider a stage with one update step and apply our Esti-
mator 4.2 to estimate the effect of the stage. Specifically,
we exclude all instances of a specific digit (e.g., digit ‘4’)
from the training set. Then, during a single training step,
we insert a data point of the digit ‘4’ (an influential stage
with one update step). We estimate the effect of all training
steps, and show that the inserted step will have a high score
on the model’s performance on the digit ‘4’ (tested on the
same image and similar ‘4’s), demonstrating AA-Score can
identify stages processing influential updates to the model.
We show the results in Fig. 1 (e).

Capture a negative stage caused by mislabeled data We
then consider the case of capturing a stage that have negative
effect on the model’s performance, e.g., due to mislabeled
data. Specifically, we modify labels of a small percentage
of data points in the training set. We then estimate the effect
of all training steps, and show that the stage with steps pro-
cessing mislabeled data will have negative scores regarding
the model’s final performance on a test set, demonstrating
AA-Score can capture negative effects of training stages.
We show the results in Fig. 1 (f).

Multi-stage training with distributional shifts Multi-stage
training with distributional shifts can occur naturally in
scenarios like continual learning, domain adaptation, and
model fine-tuning. Understanding how each stage with a
different data distribution affects the final model is crucial
for diagnosing issues like catastrophic forgetting or iden-
tifying when spurious correlations are learned. To mimic
multi-stage training and distributional shifts, we will train
on MNIST in three stages. Stage 1: standard MNIST. Stage
2: MNIST images rotated by a degree (e.g., 45 degrees).
Stage 3: MNIST images rotated by another degree (e.g.,
90 degrees). We will then evaluate the effect of training
steps from each stage on the model’s performance on test
sets corresponding to each of these three distributions (orig-
inal, 45-degree rotated, 90-degree rotated). This will help
understand how and when the model adapts to or forgets
information from different training phases. We observe that
the effect of each stage is the highest on the test set with the
same distribution as the stage, as expected. We show the
results in Fig. 1 (g-i).

For the cases of insertion, mislabeled data, and distributional
shifts above, we also retrain the model to get the counter-
factual effect of skipping that stage as the gold-standard,
e.g., no inserted stage or no mislabeled stage, or skipping
one of the shifted stages. We then compare the estimated
effects with the gold-standard results as in Table 1. We show
the correlation between the estimated effects and the gold-
standard results on a test set of randomly sampled MNIST
data points. We see the average correlation is 0.7314, in-
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Figure 1. Performance effect of training steps on MNIST. A positive 7 (AA-Score) indicates that the training stage leads to a higher
log-likelihood, i.c., the stage is beneficial. (a) Baseline case for optimization parameters. (b) Higher/lower Ir leads to higher/lower
performance effect. (c) Higher momentum leads to increased effect and more distributed effect across steps. (d) Stronger weight decay
leads to oscillatory effect with some steps having negative effect. (e) Detect an influential stage of a data point inserted into the training
process to be the inserted stage itself. (f) Capture a stage processing mislabeled data, demonstrating their negative effect on the test
performance. (g-i) The stage with the highest effect on the test set is the In distribution (ID) training stage. (g) original test set. (h)

45-degree rotated test set. (i) 90-degree rotated test set.

Table 1. The correlation of AA-Score and the gold-standard results
obtained by retraining the model on a test set of randomly sampled
MNIST data points. The high average correlation indicates that
AA-Score successfully captures the effect of the training stage on
the different test data.

Mislabel
0.3381

Setting  Insertion

Corr 0.9712

Shift 1~ Shift2  Shift 3 ‘ Average
0.8430 0.7773  0.7276 ‘ 0.7314

dicating that our method can capture the effect of training
stages on the model’s performance quantitatively. The only
exception is the case of mislabeled data, where the correla-
tion is only 0.3381, which we hypothesize is because the
mislabeled data is less natural compared to the other cases,
making the estimated effect less reliable.

5.3. Detect spurious correlations on CELEBA and
CIVILCOMMENTS

We investigate whether our accountability attribution
method can identify and mitigate spurious correla-
tions—features that are predictive during training but not

causally related to the target label. We examine two
benchmark datasets with documented spurious attributes:
CELEBA and CIVILCOMMENTS. In CELEBA, we study
the binary classification task of predicting whether a person
is blonde, where hair color is spuriously correlated with
gender (Koh et al., 2021). In CIVILCOMMENTS, we an-
alyze toxicity detection, where the demographic identity
terms like race and religion in the comments are spuriously
correlated with toxic labels (Borkan et al., 2019).

For each dataset, we designate the ground-truth label
(blonde or toxicity) as the real target and the correlated
attribute (gender or demographic identity) as the confound-
ing attribute. We then:

1. Compute AA-Score for each training step on model
performance with respect to the confounding attribute,
identifying a training stage that most contribute to
learning spurious correlations.

2. Select the top-k steps with strongest positive effect on
the confounding attribute and strongest negative effect
on the real target label.



Table 2. The model performance after retraining the model by skipping the stage with top AA-Score on the confounding attribute.

Dataset Real (original)  Real (retrained)  Confound (original)  Confound (retrained)
CELEBA 0.9172 0.9385 0.5501 0.5187
CIVILCOMMENTS 0.6570 0.6660 0.4780 0.4690

3. Retrain the model while removing the selected steps
and evaluate the retrained model on both the real target
label and the confounding attribute.

We hypothesize that spurious correlations emerge during
specific training stages, and removing these stages should
reduce the model’s reliance on confounding attributes. This
should manifest as improved generalization on the real label
while reducing performance on the confounding label. Our
results in Table 2 confirm this hypothesis. For CELEBA,
removing stages most responsible for gender correlation
improves hair color classification while reducing gender
prediction accuracy. Similarly for CIVILCOMMENTS, elim-
inating steps associated with geographic bias enhances toxi-
city classification while decreasing correlation with identity
terms. These findings demonstrate our method’s ability to
both detect and mitigate the training-time origins of shortcut
learning. We note that the performance change before and
after retraining is not significant for language models, which
is because we only tune the prediction head and keep the
pre-trained model backbone fixed due to computational con-
straints. We hypothesize that the performance change will
be more significant if the estimation is based on the entire
model. We put experiment details and additional results in
App. C.2.

6. Discussion
6.1. Limitations

While our framework enables general estimation of training
stage effects, it has several limitations that suggest direc-
tions for future work. First, although our framework is
general, the current estimators rely on a first-order Tay-
lor approximation of the training dynamics, which may
lead to reduced accuracy when higher-order effects play
a significant role. Future work could extend our method
to incorporate higher-order approximations or learned sur-
rogates of the propagator to improve estimation accuracy.
Second, while our estimators are more efficient than produc-
ing counterfactual situations through retraining, they remain
computationally expensive for large-scale models due to
the high dimensionality of propagator matrices and Hessian
matrix computations, as discussed in §4.3. Future work
could address this limitation by scaling the framework to
foundation models through structured approximations (e.g.,
low-rank methods) and efficient distributed computation.
Third, we have primarily conducted experiments on small to

medium-sized models and datasets, using pretrained model
checkpoints from the literature to study fine-tuning effects.
The generalizability of our approach to pretraining-scale
language models or foundation models remains an open
question for future research. Finally, our framework as-
sumes that the training pipeline and optimization history
are faithfully recorded and observable. In real-world scenar-
ios with incomplete or inaccessible training logs, applying
our method may require additional assumptions or approxi-
mations, such as using stored major model checkpoints to
approximate the complete training process.

6.2. Broader Impacts

Our work advances Al accountability by providing tools
that trace and quantify how specific training stages influ-
ence model behavior. By localizing responsibility within the
training process, these tools enhance model transparency, fa-
cilitate debugging, and enable responsible deployment. For
instance, developers can identify harmful training phases
that encode bias or memorize toxic data, allowing for tar-
geted interventions and retraining. However, this framework
carries potential risks. Attribution scores may be misinter-
preted or misused to unfairly assign blame in collaborative
model development. Malicious actors could exploit the
framework to obscure training provenance or evade regula-
tory oversight. Like other interpretability tools, users may
place excessive trust in the method’s precision, particularly
beyond its intended scope. We advise using accountability
attribution cautiously and alongside other auditing practices.
Future work should explore integrating accountability attri-
bution into secure training pipelines to prevent misuse.

7. Conclusion

In this paper, we introduced the problem of accountability
attribution, which traces model behavior to specific stages
of the training process. Our key contributions include: for-
mulating this novel accountability attribution problem; de-
veloping a general framework based on potential outcomes
and counterfactual queries about training stage effects; de-
riving efficient estimators that account for complex opti-
mization dynamics like learning rate schedules, momentum,
and weight decay; and demonstrating practical utility by
uncovering influential stages responsible for both beneficial
and harmful model behaviors across diverse settings. Em-
pirically, we showed how our framework enables attributing
model behavior to training stages in a principled way. We



hope this work takes a step toward more transparent, in-
terpretable, and accountable Al development by providing
tools to analyze and assign responsibility within complex
training pipelines.
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Accountability Attribution Appendix

A. Derivation of Estimators 4.1 to 4.3

Here we provide the detailed steps to derive the results stated in Estimators 4.1 to 4.3.

A.1. Estimators 4.1 and 4.2

We first consider the simple case of treatment on a single step / as in Estimators 4.1 and 4.2. Recall that the treatment
variable 7" € {0, |} is defined such that 7' = () means step / is skipped (counterfactual), and 7" = | means step / is executed

(observed). The causal effect of 7" on the final state is Tf(’ = €k (1) — Ex(0), and the causal effect on a performance
function y(z, 0) is i, = Y (1) — Y (0) = (2, 0k (1)) — v(z, Ok (0)).

An interpolated path &, (¢) = (0 (€), vi(€)) is defined in §4.2 such that &.(e = 0) = &, (7 = 0) (step ! skipped) and
(e = 1) = &(7 = 1) (step ! executed, observed path). We restate the interpolation here for convenience and add
(observed) to indicate the observed values:

o Fork < 1: & (e) = &,(0) = & (observed).
o Atstep /: Let AG, = 6, (observed) — 0, (observed) and Av, = v;;1(observed) — v, (observed).

0.11(e) = 6, (observed) + eAO, = 0, + e(—nv441) (13)
vi41(€) = v, (observed) + eAv, = v, + e(vi41 — v)) (14)

o For k >t 4 1: &k (e€) evolves from &; ;1 (€) using standard dynamics linearized around the observed trajectory.

The first-order Taylor expansion of £ (¢) around € = 1 (the observed path) is':

8£K(e)

() ~ Ex (1) + =

(e—1) (15)

e=1

Get £ (0) with the approximation and plug it into the effect on the state:

0€ K (€ 0€ K (€
$ = (1)~ €x(0) = &) - () - E50D| ) 0EMT) (16)
Letwg = 6%%'6(6) L Then 7'57 R WK
For the effect on the performance function, we similarly have
0
~ — 0 17
TK, 867(% x(€)) o (17)
Then, apply the chain rule:
0€ k(e
i, ~ Voy(m, 0 (1)) %(e( : -1 Vov(z,0x) " [wik o (18)

where [w K, Jo is the first block of the estimated difference in states, i.e., the estimated effect of difference in parameters 6.

The difference in states wy ; is estimated recursively from the initial perturbation w; 1 ;.

'In the literature of data attribution, e.g., influence functions (Koh & Liang, 2017), similar Taylor expansions are usually used around

€ = 0. Here we use € = 1 because we intend to have e = 1 match /' = 1. We highlight that our expansion is equivalent to the influence
function expansion, as both is around the observed outcome. The difference is that the influence function defines € = 0 to be the observed
outcome, and it is counter-intuitive to have /' = () as the observed outcome in causal inference.
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Base Case (at £ = / + 1): Differentiating eqs. (13) and (14) w.r.t. € (the derivative is constant):

00,1 (e
71;61( ) = TNV
ov €
255761() oy — v

Thus, the initial perturbation w1 ; (evaluated at ¢ = 1, though it’s constant) is:

Wi, = (v—tflv_w;) ®)
Recursive Step (for £ > / + 1): Differentiating the SGD update rules (egs. (1) to (4)) for the interpolated path w.r.t € at
e=1:
0G(€) g 00y (€)
66 e=1 o F 86 e=1
G (e) 965 (e)
e = (Hp+ M\
86 e=1 ( ket ) 86 e=1
8vk+1(e) 80k (6) (’)vk (6)
—_— = (Hp + M\
86 e=1 ( k + ) 86 e=1 86 e=1
0011 (e€) 00y (¢€) Ovy(e€)
— (I = n(Hy + NI ]
Oe e=1 ( m(Hye + AQ)) de  le= de  le=1
This leads to the matrix recurrence wy41,; = Mjwy,, ,, where
~(T—ne(Hp + A1) —nppl
My = < Hy, + AT I ©)

Unrolling the recurrence:

t+1
WK, = ( H Mk) Wi41, (]9)

k=K1
Letting P((H1D—=FK) — Hff:lel M, we have 72( ) — wy = PUFD=K)q, ., . This establishes Estimator 4.1.

Py P12>

The estimator of the performance effect is 7, = Vo7y(z, 01()—'—[wa |o asin eq. (18). Let p(t+H—=K) — (P P
21 22

The top block of wi  is:

[wr o =Prifwiri o + Profwiyr ]
=P11(—nvep1) + Pra(vip — o))

def

=F

Substituting this gives the explicit form in Estimator 4.2 (eq. (11)).

A.2. Estimator 4.3

Let 5 = {¢,...,.} be the set of distinct steps. The treatment = | means all steps in 5 are executed, and =
means all steps in 5 are skipped. The state effect is Tf(, =& (Ts=1)—€&x(T5=0).

We introduce a vector of interpolation parameters € = (¢, ,...,€, ), where ¢, € [0, 1]. Let &4 (€) denote the state on an
interpolated path. For each /; € 5, ¢,, = 1 means step /, is executed, and ¢, = 0 means step /, is skipped. For steps k ¢ 5,

the standard dynamics apply (i.e., they are executed). The state where all steps in 5 are executed is £ (1). The state where
all steps in 5 are skipped is £k (0).
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The multivariate first-order Taylor expansion of £ (€) around € = 1 is:

8£K(e)

Excle) ~Ex(1)+ ) 5 (. = 1) +ollell)

e=1

Get £ (0) with the approximation and plug it into the effect on the state:

85 K\€
Tho=E&k(1)—Ex(0) & > ae( ) (20)
S e=1
The term 6%‘7;(6) is the first-order effect of step /,, given that all other steps in 5 are skipped, and all steps not in 5 are

e=1

executed. This is precisely the definition of %fﬂ = wy,, from Estimator 4.1 if we consider the “base” for that single-step
effect to be the trajectory where /; is skipped but all other steps (including those in S\ {/,}) are executed. The linearity of
the Taylor expansion allows this summation.

Thus,

o= N = 3,
€ €
This proves the state effect in eq. (12). The proof for the performance effect 7x < follows directly as in App. A.1.

B. Datasets and models
B.1. Dataset details

MNIST (lec): A standard benchmark dataset of handwritten digits. Due to its simplicity, it will allow for thorough case
studies, including direct comparison with retraining to assess the accuracy of our approximation under various conditions
(e.g., different inserted stages, different optimizers).

CELEBA (Liu et al., 2015): A large-scale face attributes dataset. This dataset is known to contain potential spurious
correlations (e.g., gender with hair color). We aim to use our method to identify training stages where such spurious
correlations might be predominantly learned by the model.

CIVILCOMMENTS (Borkan et al., 2019): A dataset of public comments labeled for toxicity and whether they contain words
corresponding to demographic information like race, gender, and religion. This text dataset is often used for studying
fairness and bias. We investigate if our method can identify training stages that disproportionately contribute to the model
learning biases or relying on spurious correlations between certain identity terms and toxicity labels.

B.2. Model details
For each dataset, we employ model architectures appropriate to the task.

For MNIST, we implement a three-layer MLP architecture with 128 hidden dimensions in each layer. This relatively simple
architecture allows us to perform detailed analysis of training dynamics and enables direct comparison with retraining
experiments, while still providing sufficient capacity to learn meaningful digit representations.

For CELEBA, we utilize a ResNet-18 (He et al., 2016) model pre-trained on ImageNet as our backbone architecture. We
augment this model with an additional final classification layer specifically trained to predict whether a celebrity has blonde
hair.

For the CIVILCOMMENTS dataset, we employ a pre-trained GPT-2 model (Radford et al., 2019) from the Huggingface
library (Wolf et al., 2019) as our base architecture. We extend this model with a classification head trained to predict
comment toxicity.

The training hyperparameters are different for each experiment, which we specify in the following sections.
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C. Detailed experiment settings and additional results
C.1. Accountability attribution on MNIST
C.1.1. EFFECT OF OPTIMIZATION PARAMETERS

For this experiment, we train a 2-layer MLP with hidden dimension 128 on a subset of MNIST of the first 10,000 samples
for 1 epoch with batch size 100 and learning rate 0.01. We investigate three key parameters: learning rate (Ir), momentum
(mom), and weight decay (wd). When studying each parameter, we keep the others constant across stages.

First, we show the baseline case of one stage, all three parameters stay the same, with 1Ir=0.01, momentum=0.9, and wd=1e-5.
These are the common settings for training MLPs on MNIST and the parameters for the first stage for all other settings. As
shown in Fig. 1 (a), the effects are getting larger as the training goes on, which is expected as the model will forget earlier
stages so the effect of the later stages will be larger.

For learning rate experiments, we train with Ir=0.01 in stage 1 and Ir=0.001 in stage 2. As shown in Fig. 1 (b), our method
captures how lower learning rates lead to decreased stage effects, matching the intuition that smaller updates have less
impact on model parameters.

For momentum experiments, we set stage 1 momentum to 0.9 and vary stage 2’s momentum to 0.1. Fig. 1 (c) shows that
lower momentum leads to decreased effect magnitude similar to the learning rate experiment, and broader distribution of
effects across steps, reflecting how momentum accumulates and propagates update impacts from earlier stages.

For weight decay experiments, we use wd=1e-5 in stage 1 and vary stage 2’s wd to 0.01. In Fig. 1 (d), we observe that larger
weight decay leads to scores in the second stage become smaller in magnitude, for both positive and negative scores. This is
because the meaningful learning signals come from the data are less significant with larger weight decay.

We also show additional experiments with different parameter settings in Fig. 2.

C.1.2. DETECT AN INFLUENTIAL TRAINING STAGE

For this experiment, we train a 2-layer MLP with hidden dimension 128 on a small subset of MNIST of the first 100 samples,
excluding digit ‘4’. We train for 1 epoch with batch size 1 using a learning rate of 0.001. We use a small subset and batch
size 1 so we can insert a single instance of digit ‘4’ at any training step. At training step 30, we insert a single instance of
digit ‘4’ from the test set to study its effect on itself, other images of digit ‘4’, and other digits.

In Fig. 1 (e), we show the effect of the training stages estimated by AA-Score. We can see that our attribution scores
correctly identify the inserted step as having the highest positive effect on the model’s performance on the same digit ‘4’
classification. In Fig. 3, we further analyze the effect of inserting a test digit ‘4’ during training on the model’s ability to
classify other digits, with Fig. 3 (a) being the same case as Fig. 1 (e) for effect on the same digit ‘4’ that is inserted. For the
other three plots, we pick another digit ‘4’ from the test set different from the one inserted in Fig. 3 (b), a digit ‘9’ which is
easily confusable as the digit ‘4’ in Fig. 3 (c), and a digit 2’ which is visually distinct from ‘4’ in Fig. 3 (d). We observe that
the inserted step has the strongest positive effect on classifying other digit ‘4’s, showing that the model learns generalizable
features. The effect is slightly negative for digit ‘9’, which shares some visual features with ‘4’, suggesting learning the
inserted digit ‘4’ has negative effect on digit ‘9’s classification. For digit “2°, which is visually distinct from ‘4’, the effect is
close to neutral, slightly negative but not as large as the effect on ‘9’, indicating that the learning is specific to relevant digit
features.

C.1.3. CAPTURE A NEGATIVE STAGE CAUSED BY MISLABELED DATA

For this experiment, we train a 2-layer MLP with hidden dimension 128 on a subset of MNIST of the first 10,000 samples
for 1 epoch with batch size 100 and learning rate 0.01. We introduce label noise by flipping labels for 5% of the training
samples. Specifically, starting from the 30th step, we modify labels of five consecutive batches (500 samples total) through a
cyclic shift (digit 0—1, 1—2, etc.).

In Fig. 1 (f), we analyze the effect of these mislabeled training stages. Our method successfully identifies these stages as
having significant negative effects on the model’s test performance. The magnitude of negative effects correlates with the
degree of label shift. This demonstrates our method’s ability to quantify the harmful impact of noisy training data.
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Figure 2. Additional experiments on the effect of different parameters on the model’s performance. (a) is the effect of different learning
rates. (b) is the effect of different momentums. (c) is the effect of different weight decays.

C.1.4. MULTI-STAGE TRAINING WITH DISTRIBUTIONAL SHIFTS

For this experiment, we train a 2-layer MLP with hidden dimension 128 on a subset of MNIST of the first 2,000 samples
with batch size 100 and learning rate 0.01. We introduce a distributional shift by rotating the images by 45 degrees in stage
2, and by 90 degrees in stage 3. We train for 3 epochs for stage 1, 1 epoch for stage 2, and 1 epoch for stage 3.

In Fig. 1 (g-i), we evaluate each stage’s effect on three test sets: original orientation, 45-degree rotated, and 90-degree
rotated. The results show clear specialization - each stage has maximum effect on its corresponding test distribution. For
example, stage 2 (45-degree training) shows the highest positive effect on 45-degree rotated test images.

We also observe some transfer effects between stages. Training on 45-degree rotated images (stage 2) shows moderate
positive effects on both 0-degree and 90-degree test sets, suggesting the model learns some rotation-invariant features.
However, the 90-degree stage shows minimal positive effect on 0-degree test performance, indicating potential catastrophic
forgetting of the original orientation when the distributional shift is too large.

C.2. Accountability attribution on CELEBA and CIVILCOMMENTS

C.2.1. EXPERIMENT DETAILS AND ADDITIONAL RESULTS ON CELEBA

For CELEBA experiments, we train the model on a subset of 1628 images from the dataset for 10 epochs with batch size
1 and learning rate 0.0003, momentum 0.9, and weight decay 0.00001. To investigate potential spurious correlations, we
simultaneously evaluate the model’s implicit learning of gender information. This dual evaluation setup allows us to assess
whether the model truly learns to classify hair color or if it relies on gender as a confounding variable in its decision-making
process.

For evaluation, we partition the test set into four demographic categories: blonde-haired males, non-blonde-haired males,
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Figure 3. The effect of inserting a test digit 4’ during training on the model’s ability to classify four different digits. (a) is the same case
as Fig. 1 (e) for effect on the same digit ‘4’ that is inserted. (b) is the effect on another digit ‘4’ from the test set. (c) is the effect on digit
‘9’, which is easily confusable as ‘4’. (d) is the effect on a neutral digit 2°, which is visually distinct from ‘4’.

blonde-haired females, and non-blonde-haired females. We compute the average AA-Score for each category to analyze
learning dynamics across groups and epochs. The results show that AA-Score effectively capture variations in learning
trajectories, particularly distinguishing patterns between blonde and non-blonde groups. As shown in Fig. 4, the final
epoch yields the highest AA-Score, whereas mid-training epochs produce the lowest. The initial stage yields slightly
higher magnitude of effects than the middle stages. We hypothesize that this happens due to continue learning catastrophic
forgetting for early stages, the initial stage has more effect because they correspond to the initial representation learning.
When we observe the test loss for each training epoch in Fig. 5, in the 10" epoch, both Male Blonde and Female Blonde
categories exhibit a clear performance drop, while loss increases for non-blonde groups. These trends are reflected in the
AA-Score: the sign of the score indicates a positive effect for blonde categories and a negative impact for non-blonde
categories.

Our method also surfaces mislabeled training examples. In the CELEBA dataset, we discovered a striking case: a data point
corresponding to a blonde-haired man that was incorrectly labeled as not blonde. Our accountability attribution framework
identified this instance as having the most negative contribution to the model’s prediction performance on the true blonde
label—it was ranked at the bottom when sorted by causal effect on the target performance. Upon inspection, we verified that
the image was indeed mislabeled. This example highlights the diagnostic capability of our method: by tracing the impact
of individual training steps or data points, it can surface outliers or label noise that would be difficult to detect through
aggregate metrics alone.

C.2.2. EXPERIMENT DETAILS ON CIVILCOMMENTS

For CIVILCOMMENTS experiments, we train the model on a subset of 2000 comments from the dataset for 5 epochs with
batch size 100 and learning rate 0.00001, momentum 0.9, and weight decay 0.00001. We also set the maximum gradient
norm to 10.0 to stabilize the training. To investigate potential biases, we specifically analyze the model’s behavior regarding
the confounding variable, e.g., the identity terms “Christian” in the comments. This allows us to evaluate whether the model
genuinely learns to classify toxicity or if it develops undesirable associations with specific demographic identifiers.
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Figure 4. Effect of different training stages on the model’s ability to classify hair color (grouped by four demographic categories within
each epoch).
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Figure 5. Test accuracy of the model for each training epoch.
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Label: male_not_blonde

Figure 6. A mislabeled training example that is identified by our method as having the most negative contribution to the model’s prediction
performance on the true blonde label.
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