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Abstract

Robotic manipulation in 3D requires learning an N degree-001
of-freedom joint space trajectory of a robot manipulator.002
Robots must possess semantic and visual perception abil-003
ities to transform real-world mappings of their workspace004
into the low-level control necessary for object manipula-005
tion. Recent work has demonstrated the capabilities of006
fine-tuning large Vision-Language Models (VLMs) to learn007
the mapping between RGB images, language instructions,008
and joint space control. These models typically take as in-009
put RGB images of the workspace and language instruc-010
tions, and are trained on large datasets of teleoperated011
robot demonstrations. In this work, we explore methods012
to improve the scene context awareness of a popular re-013
cent Vision-Language-Action model by integrating chain-014
of-thought reasoning, depth perception, and task-oriented015
region of interest detection. Our experiments in the LIBERO016
simulation environment show that our proposed model, 3D-017
CAVLA, improves the success rate across various LIBERO018
task suites, achieving an average success rate of 98.1%.019
We also evaluate the zero-shot capabilities of our method,020
demonstrating that 3D scene awareness leads to robust021
learning and adaptation for completely unseen tasks. 3D-022
CAVLA achieves an absolute improvement of 8.8% on un-023
seen tasks. We will open-source our code and the unseen024
tasks dataset to promote community-driven research.025

1. Introduction026

The ability to perceive the environment, respond dynam-027
ically, and manipulate objects effectively remains a chal-028
lenging task in robotics. Humans demonstrate this capabil-029
ity effortlessly, emerging from extensive experiential learn-030
ing during adolescence, where individuals develop visual,031
reasoning and manipulation skills necessary for interacting032
with both familiar and novel scenarios. Replicating this033
robust adaptability in robots is inherently difficult, though034
recent advancements in artificial intelligence, particularly035

in vision and language understanding, have shown promis- 036
ing progress. Vision-Language Models (VLMs), such as 037
ChatGPT, leverage extensive pre-training on internet-scale 038
data, enabling them to interpret real-world images, compre- 039
hend conversations, and generate contextually relevant re- 040
sponses. These models have since been used in tasks such as 041
visual question answering [37, 42], visual grounding [51], 042
and task planning [20, 44]—applications that are directly 043
relevant to the field of robotics. 044

Recent works have explored Vision-Language-Action 045
models (VLAs) which modify VLMs to output robot joint 046
space parameters instead of text tokens [4, 5]. When pre- 047
trained on diverse real-world datasets and fine-tuned on 048
high-quality teleoperated demonstrations, VLAs demon- 049
strate high success rates (≈95%) on in-distribution tasks 050
such as “scoop pretzels into bowl.” VLAs typically use 051
RGB images and text instructions as inputs and learn a pol- 052
icy to predict N DOF joint angles at each step required for 053
task execution. A notable recent advancement, OpenVLA- 054
OFT [23], further integrates proprioceptive robot joint-state 055
parameters, concatenating it with visual and textual features 056
from the current timestep. While the performance is impres- 057
sive for in-distribution tasks, a detailed analysis into the be- 058
haviour of these models on unseen tasks has been lacking. 059
Additional sensor modalities have the potential to further 060
improve spatial and logical reasoning of VLAs necessary to 061
generalize to unseen tasks. 062

In this work, we enhance the architecture introduced 063
by OpenVLA-OFT by exploring effective modifications to 064
existing modalities boosting spatial and contextual under- 065
standing. Specifically, we introduce chain-of-thought style 066
narrative prompts to enrich task context, 3D features de- 067
rived from workspace point clouds to enhance spatial per- 068
ception, and task-oriented region of interest pooling to ef- 069
fectively focus on visually pertinent patches for each task. 070
Our proposed network, 3D-CAVLA is benchmarked against 071
popular VLAs in the LIBERO benchmark tasks as well as 072
evaluated on unseen tasks to demonstrate improved gener- 073
alization. Our contributions include: 074

1. Integrating chain-of-thought prompts and region-of- 075
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interest pooling to learn effective vision-language em-076
beddings for task execution. We introduce 3D point077
cloud derived depth features into policy training to boost078
LIBERO in-distribution success rate to 98.1%079

2. Benchmarking against existing state-of-the-art ap-080
proaches for zero-shot language guided object manipu-081
lation. Our proposed model, 3D-CAVLA, shows an ab-082
solute improvement of 8.8% on 10 novel tasks designed083
within the LIBERO simulation environment.084

2. Related Works085

Foundational Models in Robotics. LLMs can gener-086
ate high-level robotic execution plans based on task inputs087
and environmental context [19, 45]. However, a recur-088
ring challenge with LLMs is their tendency to hallucinate,089
generating plans that are not physically feasible [40]. To090
enhance robustness, LLMs require real-world grounding,091
which can be achieved through feedback from the environ-092
ment [2, 20, 44], integration with visual perception sys-093
tems [11, 27, 62], or human-in-the-loop interventions such094
as question-answering [32, 60]. VLMs, trained on vast095
image-text datasets, excel at visual reasoning tasks [56]096
and have been applied to a range of robotics grounding097
problems such as encoding 3D semantic memory [13, 39],098
vision-based robot pose estimation [12], guiding object ma-099
nipulation based on language instructions [43], and en-100
abling robotic navigation [14, 16].101
Vision-Language Action Models. VLMs pretrained on102
internet-scale real-world data possess a vast knowledge103
base. They can be fine-tuned using robot demonstration104
datasets, which include images and language instructions,105
to directly predict robotic joint parameters in the action106
space [1, 4]. An N degree of freedom robot requires N vari-107
ables to define its position at any given time step. VLAs are108
trained on large datasets of robotic demonstration videos109
and language instructions to predict these N variables at110
each time step during robot manipulation. Early VLAs111
demonstrated strong performance in simulation and single112
robot manipulation [18, 25]. However, many of these mod-113
els are limited by their closed-source nature or extremely114
large parameter sizes [5, 10]. Modular systems that inte-115
grate planning, grounding, control, and feedback mecha-116
nisms are emerging as promising strategies for more robust117
and adaptable robotic automation [30, 31]. OpenVLA [22],118
a representative open-source autoregressive VLA, stands119
out as one of the first approaches to release a compute ef-120
ficient and scalable VLA with a moderate parameter size121
(≈7B), specifically fine-tuned on robot demonstration data122
from the Open-X Embodiment corpus [34]. Building on top123
of OpenVLA, OpenVLA-OFT [23] further improves infer-124
ence efficiency and task performance by incorporating par-125
allel decoding, action chunking, continuous action repre-126
sentations, with an L1 regression objective.127

Improving Generalization of VLAs. Recent studies 128
highlight the scaling challenges of directly translating vi- 129
sual frames and language instructions into robot joint 130
states, particularly as the volume of task demonstrations 131
increases [9]. To address these limitations, various ap- 132
proaches have been proposed to enhance the generalization 133
capabilities of Vision-Language Actions (VLAs) for out-of- 134
domain tasks. One prominent direction involves a dual- 135
stage pipeline: an initial pre-training phase where multi- 136
modal encoders are trained with self-supervision using un- 137
labeled human task demonstrations and diverse video plan- 138
ning datasets [26, 29, 55]. This stage aims to learn ro- 139
bust representations without relying on explicit action la- 140
bels. Complementing this, some works employ teacher- 141
student frameworks to refine action policies. Here, a teacher 142
model leverages reinforcement learning to learn robotic tra- 143
jectories, which are subsequently distilled into a student 144
model for pose prediction [47]. Other approaches inte- 145
grate pre-trained models such as CLIP [38]. For instance, 146
[21] uses CLIP’s visual and textual encoders to associate 147
RGB frames with instructions and textual actions during 148
pre-training. Fine-tuning then focuses on selecting actions 149
from a fixed set of classes at each timestep. Similarly, Dy- 150
naMo [7] adopts a self-supervised strategy, employing both 151
forward and inverse dynamics models to train visual en- 152
coders for future observation prediction, enabling robust ac- 153
tion forecasting. To improve task execution success rates, 154
researchers have explored integrating proprioception and 155
feedback mechanisms to dynamically correct erroneous ac- 156
tions [28, 49]. Depth information has also proven valuable 157
for robotic manipulation, as it enhances the model’s geo- 158
metric understanding and spatial reasoning [46]. However, 159
a key limitation in the generalization of VLAs is their re- 160
liance on direct input-output mappings without intermedi- 161
ate reasoning. To enhance reasoning capabilities, recent 162
works adopt chain-of-thought prompting, encouraging step- 163
by-step thinking grounded in language, visual observations, 164
and physical actions. Progress has been made by incorpo- 165
rating intermediate reasoning steps such as textual descrip- 166
tions [58], keypoints [52], or subgoal images [61], which 167
provide structured guidance for planning and action predic- 168
tion. 169

3. Methodology 170

Recent VLAs endow robots with free-form 171
language-following capabilities. We build our model 172
based on the OpenVLA-OFT [23], which reports impres- 173
sive performance on the LIBERO simulation environment. 174
We first summarize this baseline architecture before de- 175
tailing our additions, which yields the 3D Context Aware 176
Vision-Language Action model (3D-CAVLA). 177
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Figure 1. Our proposed model, 3D-CAVLA, integrates chain-of-thought style narrative task descriptions, depth embeddings and Region
Of Interest (ROI) pooling to improve the scene awareness of vision-language-action modeling. While GPT4 and ROI Detection are frozen
components, our depth encoder is a lightweight PointNet [36] inspired trainable network with spatial invariance transformation, convolution
blocks and linear projections to project the embeddings to match the input dimensions of LLaMA 2 7B [50]

3.1. OpenVLA-OFT178

OpenVLA-OFT [23] builds on top of OpenVLA [22] and179
consists of vision, language and robot joint state encoders180
with optional feature-wise linear modulation (FiLM) lay-181
ers [35] to improve vision-language feature extraction. The182
model can be trained on video demonstrations of tele-183
operated robots completing a task described by a text in-184
struction. Authors use a combination of SigLIP [59] and185
DinoV2 [33] vision encoders to obtain patch level image186
embeddings for images captured through the robot’s end187
effector camera and a stationary 3rd person camera. The188
task instruction is tokenized and transformed into text em-189
beddings using the LLM’s tokenizer. Robot proprioception,190
which consists of 8 dimensional joint and gripper states pass191
through MLP layers. The vision, language and joint em-192
beddings are projected to match the input dimension of the193
LLM to be fine-tuned. For efficient training, the authors194
implement LoRA [15] based finetuning which only modi-195
fies a small fraction of the trainable parameters by learn-196
ing trainable projection matrices of larger dimensional inner197
layers of the LLM. OpenVLA-OFT demonstrates high suc-198
cess rate on seen tasks due to three key features: (i) parallel199
decoding in place of autoregressive prediction for faster in-200
ference, (ii) action chunking that predicts the next K actions201
jointly, and (iii) continuous, rather than discretized, outputs202
optimized with an ℓ1 loss. LLaMA 2 7B [50] serves as the203
backend LLM for fine-tuning.204

3.2. Our Approach: 3D-CAVLA205

Motivated to improve generalizability beyond seen tasks,206
our proposed model adopts the base architecture of207
OpenVLA-OFT and incorporates modifications to improve208

task relevant context capture and spatial information. Our 209
architecture is shown in Figure 1. 210

Chain-of-Thought Narrative Instructions. Humans learn 211
object manipulation and environment perception through 212
expert guided demonstrations by other humans. However 213
we do not need a separate demonstration to handle each new 214
object. For example, when a child learns to grasp and ma- 215
nipulate a ball, it may not need another lesson on grasping 216
an orange. Similarly, a robot deployed in an unknown en- 217
vironment can benefit with chain-of-thought steps instead 218
of plain task instructions which may not capture the gener- 219
alization it has learnt to solve the problem. For example, 220
consider a task the policy has trained for such as “Grab the 221
ball and place it in the basket” decomposed into steps - “Lo- 222
cate ball, grab it from the center, move over basket, drop 223
inside basket”. Now when the robot is deployed in an un- 224
seen environment to complete the task - “Move the orange 225
into the basket”, the policy may benefit by breaking down 226
the unseen task into steps - “Locate the orange, grab it from 227
the center, move over basket, drop inside basket”. When 228
these tasks are compared, the only difference lies in locating 229
the unseen target object, which can be handled by a power- 230
ful object detector or a vision encoder with robust general- 231
ization. We test this hypothesis by transforming plain task 232
instructions into task-relevant chain-of-thought steps using 233
GPT 4’s reasoning capabilities. The format of our prompt 234
is shown in Figure 2. 235

Integrating Depth Features. Majority VLAs learn poli- 236
cies that map language and 2D visual data captured through 237
images into real-world actions. However, depth perception 238
is a critical skill that is needed to robustly manipulate ob- 239
jects of different shapes and sizes. Modern cameras cap- 240
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Chain Of Thought Prompting with GPT4

You are in the command of a robot manipulator to
complete a task involving various objects in scene. Your
job is to break down the given instruction into smaller
steps based on your real-world intuition to ensure precise
object grasping and placement

Some examples are given below:

Task Instruction: Put both pots on the stove
Steps: Grasp first pot, place on stove leaving some space,
grasp second pot, place on stove next to first pot.

{more examples}

Use the information above to create step-by-step plan for
given task instruction. Remember to only use the given
objects and standard grasping, moving and placement
actions that can be achieved with a parallel gripper.

Task Instruction: {task input}
Steps:

Figure 2. LLM prompt to decompose task instructions into exe-
cutable steps that can be generalized across seen and unseen tasks.

ture RGB-D images and thus an effective depth encoder241
can improve spatial and geometric awareness of VLAs. We242
introduce a small but efficient trainable depth encoder to243
transform depth maps into embeddings that are concate-244
nated with vision, language and proprioception information.245
Given a batch depth map D ∈ RB×H×W , camera intrinsics246
(fx, fy, cx, cy), and integer pixel grids U ∈ RH×W and247
V ∈ RH×W , we recover metric 3-D coordinates for every248
pixel (h,w) in every image b as249

Zb,h,w = Db,h,w,

Xb,h,w =
Uh,w − cx

fx
Zb,h,w,

Yb,h,w =
Vh,w − cy

fy
Zb,h,w.

250

Stacking (X,Y, Z) along the last axis yields a point cloud251
P ∈ RB×H×W×3, which is fed to the subsequent train-252
able layers. As shown on the right side of Figure 1, the253
point clouds pass through a spatial transformer network254
composed of MLP layers, converting the embeddings into255
a spatially invariant representation. Following a residual256
batch matrix product, the embeddings pass through 3 blocks257
of Conv2D, BatchNorm and ReLU and finally a linear258
layer to project the embeddings to match the dimension of259
other modalities. Our depth encoder draws inspiration from260
PointNet [36], which has shown remarkable performance in261

depth perception related tasks. Since our depth encoder is 262
lightweight (≈1M), we use separate encoders for each cam- 263
era view. 264

Task Aware Region of Interest Detection. VLAs learn 265
motion trajectories for the end effector during training. The 266
visual embeddings which pass through the LLM contain 267
representations of every patch of the image, however not all 268
patches are relevant for a given task. By choosing the ap- 269
propriate patches and thus the region of manipulation for the 270
robot, we can constrain the motion to be within that region. 271
This capability can be extremely useful especially in unseen 272
tasks where the robot encounters many out-of-distribution 273
objects and thus can benefit with a region of importance to 274
focus on. During training, we use ground truth demonstra- 275
tions to approximate such a region for pooling the visual 276
features. Given a task instruction, we apply named entity 277
recognition [57] to identify target objects and locations im- 278
portant for the task. This passes through a powerful object 279
detector, Molmo [8], to generate bounding boxes for the 280
extracted entities. Then we leverage object tracking capa- 281
bilities of SAMURAI [54] to estimate the image regions in 282
which the entity bounding boxes move. This determines 283
the region of motion for the task, and the resulting binary 284
mask is used to pool visual features. Our overall region of 285
interest detection pipeline is shown in Figure 3. A down- 286
fall of such a method may be the removal of background 287
context and distractors that are necessary for the task. To 288
prevent over-dependence on such masks, we randomly per- 289
turb this pipeline to only use pooling 25% during training. 290
We empirically observed that ROI detection deteriorates the 291
performance slightly when tested with in-distribution tasks 292
(see Table 2) while it strongly contributes to better results 293
on out-of-distribution tasks. 294

Figure 3. Our framework for task aware region of interest detec-
tion using entity recognition, object detection and tracking.

Experimental Setup. We use a single Nvidia A100 GPU 295
with a batch size of 8 for all our experiments. Chain-of- 296
thought steps and binary masks for region pooling are com- 297
puted offline for efficient fine-tuning. We follow data load- 298
ing and LoRA pipelines from OpenVLA-OFT [23]. 299

4. Results 300

Our experiments are divided into two phases. First, we eval- 301
uate our method on the LIBERO benchmark, which con- 302
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tains four task suites with ten tasks each, and compare 3D-303
CAVLA against established baselines under in-distribution304
settings. Second, we assess generalization by comparing305
3D-CAVLA with OpenVLA and OpenVLA-OFT on ten un-306
seen tasks. To enable this zero-shot evaluation, we create307
the LIBERO-Unseen benchmark by modifying the Behav-308
ior Domain Definition Language (BDDL) files of the orig-309
inal LIBERO-90 dataset. We release this benchmark pub-310
licly to encourage community-driven zero-shot testing.311

4.1. Comparisons on LIBERO Benchmarks312

The LIBERO benchmark comprises four task suites, each313
testing a unique capability of a trained policy -314

1. LIBERO-Spatial: Tasks that manipulate the same ob-315
ject but require placing it in different locations.316
Example: Pick up the black bowl between the plate and317
the ramekin and place it on the plate.318

2. LIBERO-Object: Tasks with a fixed target location but319
a different object to manipulate each time.320
Example: Pick up the milk and place it in the basket.321

3. LIBERO-Goal: Tasks in which the robot must achieve322
a higher-level goal beyond simple pick-and-place.323
Example: Open the top drawer and put the bowl inside.324

4. LIBERO-Long: Long-horizon tasks that sequentially325
manipulate multiple objects, testing extended reasoning.326
Example: Turn on the stove and put the moka pot on it.327

As in prior works [22, 24], we fine-tune our model inde-328
pendently on each of the task suites and deploy it in simula-329
tion. Each task is trained with 50 demonstrations and eval-330
uated with 50 trials per task. The results are shown in Table331
1. The first six rows of the table compare our method with332
policies that only use a third person image and language in-333
struction as input modalities. Under this setting, our model334
improves success rate on the Spatial and Long task suites,335
and slightly outperforms Diffusion Transformers policy [6]336
on average. Qualitative analysis highlights that our pol-337
icy results in improved precision due to related chain-of-338
thought instructions across different tasks under the same339
task suite. This helps the model learn a more robust policy340
by sharing semantic and logical perception across related341
tasks. The last four rows show our results when adding342
an additional camera and robot states. 3D-CAVLA con-343
sistently outperforms competitive baselines in the four task344
suites, highlighting the significance of adding an additional345
sensor modality to the VLA policy through depth maps. We346
observed that the resulting policy performs better in pre-347
cise object manipulation such as cases where target object348
is situated at a crowded location. Addition of depth maps349
transforms the input modalities from 2D to 3D, and our re-350
sults motivate the exploration of more sophesticated depth351
information extraction pipelines such as 3D meshes [53].352

Ablation Studies. 3D-CAVLA builds upon the base archi-353
tecture of OpenVLA-OFT [24] by adding three key mod-354

ules: chain-of-thought style narrative instructions, a depth 355
encoder to learn robust point cloud derived features and task 356
aware ROI detection to constrict the motion to relevant parts 357
of the scene. We ablate over each of these components and 358
provide results across the four LIBERO task suites in Table 359
2. Removing depth maps causes the highest performance 360
drop, underscoring the importance of 3-D features for pol- 361
icy learning. Eliminating chain-of-thought instructions low- 362
ers scores on LIBERO-Long by 1.3%, confirming that this 363
module is beneficial for long-horizon tasks. We also ob- 364
serve a slight decline on seen tasks when using the region- 365
of-interest (TA-ROI) module. TA-ROI can exclude contex- 366
tual cues, such as nearby obstacles or distractors, essential 367
for effective learning. For instance, in the task “open the 368
drawer and move the bowl inside,” our ROI-pooling mod- 369
ule correctly highlights the robot, bowl, and drawer handle, 370
but its binary mask omits the stationary parts of the drawer. 371
As a result, at test time the policy cannot locate the drawer 372
itself because it is absent from the input. 373

4.2. Zero-Shot Evaluation 374

While the LIBERO task suites test the spatial, goal- 375
awareness, semantic and long-horizon capabilities of 376
VLAs, we suspect a significant overfitting especially since 377
the task instructions and demonstrations are quite small 378
compared to the number of trainable parameters of some 379
of the larger models we test. Some of these observations 380
were confirmed when we tried evaluating fine-tuned mod- 381
els on LIBERO-Object with LIBERO-Goal, where all base- 382
lines fail to successfully complete any task. To evaluate the 383
zero-shot capabilities of finetuned VLAs, we follow the fol- 384
lowing pipeline: 1) First we finetune the VLAs on Libero- 385
90, which is a larger collection of tasks spanning all four 386
LIBERO suites, 2) We design 10 tasks which the model 387
has not seen during training, and specify the end goals for 388
success using the BDDL format and 3) We evaluate the 389
LIBERO-90 fine-tuned models on these 10 tasks and inter- 390
pret the performance both qualitatively and quantitatively 391
using task success rates. While [17] also follow a similiar 392
framework for zero-shot evaluations, we are unable to use 393
their tasks since they have not been released publicly yet. 394

We designed ten unseen tasks after analyzing the limi- 395
tations of fine-tuned VLAs. Preliminary tests showed that 396
when a task introduces entirely new objects, distractors, or 397
motions, both OpenVLA-OFT and our 3D-CAVLA fail to 398
generalize. Consequently, we adopted a milder protocol: 399
task instructions are novel, yet every object still appears in 400
training data and demonstrations cover related skills. For 401
example, in the unseen task “Grab the white bowl and place 402
it on the stove,” the model has learnt to grasp the white bowl 403
and, separately, placing items on the stove, but never both 404
actions together. Even under this relaxed setting, OpenVLA 405
and 3D-CAVLA trained and evaluated with a single cam- 406
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Policy Setup: Single stationary third person camera + Language Instruction

Spatial Object Goal Long Average

Diffusion Policy [6] 78.3 92.5 68.3 50.5 72.4
Octo [48] 78.9 85.7 84.6 51.1 75.1
Diffusion Transformers [41] 84.2 96.3 85.4 63.8 82.4
OpenVLA [22] 84.7 88.4 79.2 53.7 76.5
OTTER [17] 84.0 89.0 82.0 - -
Ours: 3D-CAVLA (with depth maps) 86.1 94.7 82.9 66.8 82.6

Policy Setup: Third person camera + Wrist camera + Robot states + Language Instruction

Spatial Object Goal Long Average

Multimodal Diffusion Transformer [41] 78.5 87.5 73.5 64.8 76.1
π0 [3] 96.8 98.8 95.8 85.2 94.2
OpenVLA-OFT [24] 97.6 98.4 97.9 94.5 97.1
Ours: 3D-CAVLA (with depth maps) 98.2 99.8 98.2 96.1 98.1

Table 1. Results on the LIBERO Benchmark. 3D-CAVLA shows consistent improvement across all task suites in the dual camera setup.
Most baselines overfit to the tasks and thus the margins are quite narrow. The strongest improvements are shown in long-horizon tasks
(column 5) where chain-of-thought instructions helps the policy focus on one sub-task at a time. All scores are reported in success rate (%)

Method Spatial Object Goal Long

3D-CAVLA 98.2 99.8 98.2 96.1

w/o CoT 97.8 99.4 97.9 94.8
w/o Depth 97.6 99.0 98.0 95.2
w TA-ROI 98.0 99.4 97.4 94.2

Table 2. Ablation Studies. Row 2 shows the results of removing
LLM prompted CoT instructions from our method, row 3 shows
results of removing the depth projector while row 4 shows the
small dip in scores we observe when we add TA-ROI detection
when evaluated on seen tasks.

era fail on all tasks. Their greatly reduced training accu-407
racy on the original 90 tasks also indicates poor scalabil-408
ity. We therefore restrict our LIBERO-Unseen comparison409
to OpenVLA-OFT and 3D-CAVLA using two cameras; re-410
sults are shown in Table 3.411

3D-CAVLA with two cameras outperforms OpenVLA-412
OFT by 8.8% absolute improvement when considering 50413
trials per task. With chain-of-thought reasoning, the model414
is able to break down the unseen task into sub-steps, some415
of which may be seen during training. Additionally, the416
task aware region pooling module provides an approximate417
binary mask over the input region to constrain the model418
to generate motion confined to this region. This combined419
with depth information allows the model to transfer knowl-420
edge learnt during training to unseen situations. Our results421
clearly show an improvement in zero-shot settings as our422
proposed method 3D-CAVLA (with 2 camera views) is able423
to generalize better, significantly improving performance.424

We showcase some success and failure cases of OpenVLA- 425
OFT and 3D-CAVLA on unseen tasks in Table 4. 426

5. Conclusion and Future Work 427

In this paper, we propose a novel method for vision- 428
language action modeling which builds upon a popular 429
open-sourced method OpenVLA-OFT, transforming the 430
problem from 2D to 3D. Our key changes improve the rea- 431
soning, geometric and zero-shot capabilities over competi- 432
tive baselines while maintaining strong performance on in- 433
domain LIBERO simulation software. Our experiments re- 434
veal the significant performance gap of VLAs on unseen 435
tasks, motivating further research into efficient input feature 436
extraction, real-time error correction, and the development 437
of generalizable learning strategies that avoid overfitting to 438
training tasks. 439

Future work will proceed in two directions. First, we 440
will add a VLM-guided, closed-loop feedback module that 441
supplies real-time environment cues to the policy, reduc- 442
ing erroneous motions and boosting performance on unseen 443
tasks; an efficient retrieval mechanism will further exploit 444
prior knowledge acquired during fine-tuning. Second, be- 445
cause LIBERO’s tasks are relatively simple and prone to 446
model saturation, we plan to perform extensive real-world 447
experiments and benchmark the results against other open- 448
source VLAs, aiming for methods that can be deployed 449
zero-shot on truly novel tasks. 450
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Task Instruction OpenVLA-OFT 3D-CAVLA

Place the white and yellow mug on the plate 32 60
Put the ketchup on top of the cabinet 74 82
Pick up the chocolate pudding at the back and put it in the top drawer of the cabinet 58 52
Stack the right bowl on the left bowl and put the chocolate pudding in the tray 0 0
Put the chocolate pudding on the plate 78 80
Place the cream cheese and soup inside the basket 66 74
Grab the white bowl and keep it on the stove 12 10
Grab the chocolate pudding and place it on the bowl. Then place both items on the tray 6 24
Turn on the stove and put the bowl on it 14 38
Place the mug inside the right compartment of the caddy 24 32

Average 36.4 45.2 (+8.8)

Table 3. Success-rate (in %) of OpenVLA-OFT and 3D-CAVLA on 10 unseen tasks. Both models do not replicate the performance
observed on seen tasks. 3D-CAVLA decomposes unseen tasks into seen steps and applies task-aware region-of-interest detection, enabling
better generalization.

Task Instruction OpenVLA-OFT 3D-CAVLA

Put the chocolate pudding on
the plate

Place the white and yellow
mug on the plate

Turn on the stove and put the
bowl on it

Pick up the chocolate
pudding at the back and put it

in the top drawer of the
cabinet

Grab the white bowl and keep
it on the stove

Table 4. Qualitative comparisons of OpenVLA-OFT and 3D-CAVLA on unseen LIBERO tasks. We show first, middle, and last frames of
each inference. The final two rows depict failures where both models misidentify target object or get distracted by previously seen objects.
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