
RESOURCE-EFFICIENT FEDERATED HYPERDIMENSIONAL COMPUTING

Nikita Zeulin 1 Olga Galinina 1 2 Nageen Himayat 3 Sergey Andreev 1

ABSTRACT
In conventional federated hyperdimensional computing (HDC), training larger models usually results in higher
predictive performance but also requires more computational, communication, and energy resources. If the system
resources are limited, one may have to sacrifice the predictive performance by reducing the size of the HDC
model. The proposed resource-efficient federated hyperdimensional computing (RE-FHDC) framework alleviates
such constraints by training multiple smaller independent HDC sub-models and refining the concatenated HDC
model using the proposed dropout-inspired procedure. Our numerical comparison demonstrates that the proposed
framework achieves a comparable or higher predictive performance while consuming less computational and
wireless resources than the baseline federated HDC implementation.

1 INTRODUCTION

1.1 Motivation

Developing efficient frameworks that mitigate the effects of
computational, communication, and data heterogeneity in
mobile edge networks remains an open challenge in feder-
ated learning research (Kairouz et al., 2021). The superior
performance of artificial neural networks (ANNs) in many
machine learning (ML)-aided applications motivates the
development of more efficient federated methods that may
decrease computational, communications, and energy costs
induced by the overparametrization of ANNs. Some of
these methods include binary ANNs (Kim & Smaragdis,
2016), gradient compression (Bernstein et al., 2018), or user
subsampling (Nguyen et al., 2020).

Recently, the research community has shown increasing
interest in hyperdimensional computing (HDC) (Kanerva,
2009), a hardware-efficient ML approach that promises to
become a compact and low-complexity alternative to ANN-
based models. The key difference between HDC and the
conventional ML models is in more hardware-efficient im-
plementation of the training and inference procedures. In
HDC, all the data are mapped to randomized, very large, hy-
perdimensional (HD) binary, bipolar, or real-valued vectors.
Operations over HD vectors can be efficiently implemented
in hardware using low-cost bitshifts and exclusive ORs. In

1Tampere University, Tampere, Finland 2Tampere Insti-
tute for Advanced Study, Tampere, Finland 3Intel Corpora-
tion, Santa Clara, CA, USA. Correspondence to: Nikita Zeulin
<nikita.zeulin@tuni.fi>.

Proceedings of the 6 th MLSys Conference Workshop on Federated
Learning Systems, Miami, FL, USA, 2023. Copyright 2023 by the
author(s).

high-dimensional spaces, the HD vectors of one class can be
aggregated or bundled into a so-called HD prototype preserv-
ing similarity with the bundled data. Owing to this property,
the inference procedure reduces to computing Hamming or
cosine distances between the HD prototypes, which signif-
icantly boosts the computational and energy efficiency as
compared to matrix-to-matrix multiplications employed in
ANNs. To date, HDC has been adapted to classification
of images (Dutta et al., 2022), time series (Schlegel et al.,
2022), graphs (Nunes et al., 2022), and text (Kanerva, 2009)
as well as to regression problems (Hernández-Cano et al.,
2021) and others. For a detailed discussion on HDC ar-
chitectures and their applications, we refer to Kleyko et al.
(2023a) and Kleyko et al. (2023b).

1.2 Related Work

There are several federated HDC implementations that have
been proposed recently. The work in Hsieh et al. (2021)
introduced a procedure for federated training of HDC mod-
els. The main idea of that method is to utilize bipolar HDC
encoding to reduce the amount of transmitted information
in the number of bits as compared to conventional ML mod-
els with real-valued parameters. A similar principle was
exploited in Chandrasekaran et al. (2022) with the main
difference that the considered HDC model adopted a con-
volutional neural network (CNN)-based feature extractor,
the use of which has been shown to considerably enhance
the performance of HDC in image classification problems
(Dutta et al., 2022). The discussion in Zhao et al. (2022)
highlighted that using a straightforward federated model av-
eraging can lead to performance degradation and, therefore,
it was suggested using a weighted average of the local and
global models to avoid a performance drop. A federated
decentralized HDC approach for training randomized neural

Resource-Efficient Federated Hyperdimensional Computing

Device i

...

Length D

 pi1
pi2

piC

Pi

Prototypes of
C classes

Baseline federated solution

Server

Device 1

P =
1
N

Pi

......

Device N

PN

Device i
Length D=D/M

Prototypes of
C classes

Device 1

......

Device N

Server
P =

1
N Pi

Proposed solution

...

Pi
(1)

...

Pi
(j) Pi

(M)

...
pi1(1)

pi1(1)

pi1(1)

pi1(j)

pi1(j)

pi1(j)

pi1(M)

pi1(M)

pi1(M)

(j)(j)

PN
(j)P1

(j)

Figure 1. Comparison of proposed RE-FHDC solution and baseline federated HDC.

networks was proposed in Diao et al. (2021), where HDC
was applied as a more computationally-efficient alternative
to optimizing the output layer using ordinary least squares.
In that method, the properties of HDC were also exploited
to compress the transmitted HDC model into a single HD
vector, thus reducing communication overheads.

In general, the existing federated HDC implementations
achieve computational and communication efficiency im-
provements by utilizing binary or bipolar HD representa-
tions. In this paper, we show that one can exploit the prop-
erties of HDC to further reduce the computational and com-
munication costs of federated training. Particularly, we
propose a resource-efficient federated HDC method named
RE-FHDC, which reduces computational and communica-
tion costs per a single federated learning round by partition-
ing a larger HDC model into independently trained HDC
sub-models and further concatenating them into a single
one after federated training. Below, we outline the adopted
HDC model and describe the principle of our RE-FHDC.

2 FEDERATED HDC
In the considered system model, N user devices collabora-
tively train a real-valued D-dimensional HDC model, which
has a set of prototypes {pi}Ci=1 corresponding to each of C
predicted classes. We further refer to the HDC model as a
real-valued C ×D matrix P = [p1, . . . ,pC] formed of the
HD prototypes.

The HDC model training includes three successive proce-
dures: (i) data transform, (ii) prototype initialization, and
(iii) prototype retraining. During the data transform proce-
dure, d-dimensional training data are mapped to HD vectors
using the selected HDC mapping θ : Rd → RD. Then, the
computed HD representations of the data are bundled (we
employ element-wise summation) into C HD prototypes
of the corresponding classes as pi =

∑
x∈Ci

θ(x), where
Ci is a subset of data corresponding to the i-th class. The
inference procedure in HDC includes computing a similarity
measure or distance dist(θ(x∗),pi) between the HD repre-

sentation θ(x∗) of the test data point x∗ and each prototype
pi and then selecting a class with the minimum distance.
The formed prototypes can be iteratively refined by running
several iterations of inference over the training data. If incor-
rect classifications occur, the prototypes are updated using a
method-specific update rule.

The existing HDC frameworks differ primarily in the spe-
cific implementation of the introduced procedures. Below,
we discuss the implementation of these procedures in our
RE-FHDC solution.

2.1 Random Projection-Based Data Transform

Any selected HDC mapping should have three essential
properties: representation distributiveness, similarity preser-
vation, and implementation efficiency. The first property
guarantees that an aggregate of the HD vectors, or the HD
prototype, is similar to each of the aggregated HD vectors,
which is most commonly achieved by employing random-
ized mappings and feature expansions. The second property
ensures that the HDC mapping preserves similarity of the
original d-dimensional data in the HD space, which im-
proves the robustness of inference over the transformed HD
data. The third property implies that the selected mapping θ
and the similarity measure can be efficiently implemented
in hardware.

In the RE-FHDC method, we adopt a random projection-
based mapping as proposed in the OnlineHD framework
(Hernandez-Cane et al., 2021):

θ(x) = cos(xW +φ) · sin(xW), (1)

where x is a d-dimensional data point, W ∼ N (0, I)
is a d × D-dimensional random projection matrix, and
φ ∼ Uni[0, 2π] is a D-dimensional random vector. The
generated random projection parameters W and φ are non-
learnable and remain fixed throughout the training proce-
dure. For the employed random projection-based mapping,
we use cosine distance dist(a,b) = 1− ⟨a,b⟩

∥a∥2∥b∥2
to mea-

sure the similarity between two HD vectors a and b.

Resource-Efficient Federated Hyperdimensional Computing

The employed random projection-based mapping has sev-
eral advantages over more conventional algebraic HDC im-
plementations, such as holographic reduced representations
(Plate, 1995) or multiply-accumulate-permute (Ge & Parhi,
2020; Kanerva, 2009). First, multiple data points can be
transformed in a single matrix-to-matrix multiplication op-
eration, which is parallelized using dedicated libraries, such
as OpenBLAS, OpenCL, and CUDA, with minimal user
intervention. In contrast, algebraic implementations require
individual processing of each data point, while its efficient
parallelization has tp be implemented separately (Kang et al.,
2022a;b). Second, matrix-to-matrix multiplications can be
efficiently performed on GPUs or dedicated AI chips of mo-
bile systems-on-chips with lower energy costs as compared
to the CPU-based processing. To achieve the promoted
reduction in energy costs and processing times, algebraic
HDC requires low-level hardware-specific manipulations, as
demonstrated for in-memory (Karunaratne et al., 2020) and
FPGA-based (Imani et al., 2021) HDC implementations.

Based on this discussion, we find the random projection-
based HDC transform to be a more convenient and universal
option for general-purpose mobile platforms, which is the
reason for preferring it in our federated HDC framework.

2.2 Prototype Construction and Retraining

In our RE-FHDC solution, the prototypes of each of C
classes are constructed by summing the HD representa-
tions of the corresponding data into a single prototype
pi =

∑
x∈Ci

α · θ(x), where α ∈ [0, 1] is the learning rate.
In the dataset, some data points may have high similarity
but belong to different classes, which makes the correspond-
ing class prototypes “fuzzy”. The goal of the subsequent
retraining procedure is to increase dissimilarity between
the prototypes by reinforcing the correct predictions and
penalizing the incorrect ones by using the iterative refining
procedure from the OnlineHD algorithm (Hernandez-Cane
et al., 2021). If the training data point x of class i is misclas-
sified into class j, then the corresponding HD prototypes pi

and pj are updated as:

pi=pi−α·(1−∆i)·θ(x), pj=pj+α·(1−∆j)·θ(x),
(2)

where ∆i and ∆j are the cosine distances between the trans-
formed data point θ(x) and the prototypes pi and pj , re-
spectively.

2.3 Federated Training

The employed federated training setup follows the FedAvg
algorithm (Konečnỳ et al., 2016) and includes G global
epochs. During each global epoch, the devices perform L
local epochs of HDC model retraining as in (2) and transmit
their updated local HDC models to the parameter server. At

the end of each global epoch, the parameter server aggre-
gates the prototypes and returns the averaged HDC model
to the user devices:

P̄ =
1

N

N∑
j=1

Pj , (3)

where Pj is a local HDC model of the j-th participant.
We explicitly note that the participants should use identical
HDC mapping θ, which can be achieved, for example, by
sharing a common seed for the random number generators.

As discussed in Zhao et al. (2022), adopting the model
averaging in (3) can experience performance degradation
and, therefore, the local HDC models of the participants
Pj should be weighed with the received average P̄. In
our results, we do not observe any noticeable reduction of
performance degradation after adopting the model update
rule from Zhao et al. (2022). Instead, reducing the number
of local iterations L and tuning the HDC retraining param-
eters can stabilize the federated training of HDC models,
especially for lower dimensionalities D. We note that a
performance degradation can be successfully avoided with
appropriate selection of the federated training hyperparame-
ters.

3 PROPOSED RE-FHDC METHOD

In the existing federated HDC solutions, the devices train
full-sized D-dimensional HDC models throughout the entire
federated training process. While opting for larger values
of D generally leads to higher predictive performance, it
also results in increased communication overheads and lo-
cal training times due to several reasons. First, the refining
procedure in (2) involves repeated similarity checks with a
complexity of O(CD), thus having longer processing times
for larger D. Second, simultaneous transmissions of large
model updates from multiple (in practice, thousands) de-
vices faces a communication bottleneck, where the time
required to receive all the model updates becomes consider-
ably higher than that needed to compute the model updates
themselves (Kairouz et al., 2021). Third, larger sizes D of
the HDC models require more available RAM/VRAM for
storing the HD representations and the results of intermedi-
ate computations. Even though batched data processing can
alleviate this limitation, it may introduce additional compu-
tational overheads by repeating the HDC mapping during
the retraining procedure.

3.1 Core Idea of Proposed Solution

The proposed RE-FHDC method overcomes the aforemen-
tioned limitations by collaboratively training M indepen-
dent HDC sub-models {P(1), . . . ,P(M)} of dimensionality
D̂ = D/M and performing inference with the concatenated

Resource-Efficient Federated Hyperdimensional Computing

HDC model PC = [P(1), . . . ,P(M)] (see Fig. 1). Our RE-
FHDC method comprises two successive stages: federated
training and federated refining, which have the duration of
GT and GR global epochs, respectively.

The federated training stage is divided into M sub-stages
of GT /M global epochs, where the participants sequen-
tially train M D̂-dimensional HDC sub-models as described
in Section 2.3. That is, by the end of the GT -th global
epoch, the participants have M collaboratively trained D̂-
dimensional HDC sub-models. Upon completion of the fed-
erated training procedure, the participants concatenate M D̂-
dimensional HDC sub-models into a single D-dimensional
HDC model PC = [P(1) . . .P(M)] and can then perform
the inference by using the concatenated HDC model PC .

During the federated refining stage that follows after GT

global epochs, the participants randomly select a subset of
D0 HD prototype positions and perform one global epoch
of federated training over these randomly selected positions.
That is, at each global epoch, the participants update only
a subset of positions of the concatenated HDC model PC .
While the hyperparameters (GT , GR) may be customized
for a particular task, we observe that the best practice is to set
GT = M , i.e., to perform a single global iteration for each
HDC sub-model and allocate the remaining global iterations
for federated refining. Even though the refining stage is
optional, we observe that it is the key feature of RE-FHDC
that considerably improves the predictive performance when
compared to the baseline while requiring lower training
costs, as demonstrated further in Section 4.

3.2 Complexity Analysis

Let us compare the computational and communication
complexities of the baseline federated HDC and the pro-
posed RE-FHDC solutions. We assume that the compu-
tational complexity of the random projection-based data
transform in (1) is determined by the matrix-to-matrix mul-
tiplication of C1(D) = |X| ·D · (2d+ 1) floating-point op-
erations, where |X| is the number of transformed original
data points. After the original data are projected onto the HD
space, the HD representations are summed element-wise
to construct the HD prototypes: the total computational
complexity of this operation is C2(D) = |X| ·D. The re-
training procedure involves computing pairwise distances
between the HD representations and C HD prototypes with
further refining of the prototypes over the misclassified data
points. We assume that the computational complexity of
one epoch of the retraining procedure is determined by
the complexity of computing pairwise distances and equals
C3(D) = |X| · C · 3(2D + 1).

Based on the above discussion, the computational
complexity of the baseline federated HDC is
CB(D) = C1(D) + C2(D) + L ·G · C3(D). In our

RE-FHDC method, each of M HDC sub-models of
dimensionality D̂ = D/M is independently trained during
GT /M global epochs. This procedure is followed by
the retraining over the subsets of D0 randomly selected
positions of the concatenated HDC model during GR global
epochs. Therefore, the total computational complexity of
our RE-FHDC method is

CR(D)= M [C1(D̂)+C2(D̂)]+L [GT C3(D̂)+GR C3(D0)]

= C1(D)+C2(D)+L [GT C3(D̂)+GR C3(D0)],

which is identical to that of the baseline federated HDC
for D̂ = D, GR = 0, and GT = G. That is, one can
reduce the total computational and communication costs
by selecting larger numbers of HDC sub-models M and
smaller values of D0. The resulting slower convergence in
terms of iterations can be compensated for by lower training
costs, as we demonstrate in Section 4.

3.3 Discussion

Below, we briefly describe the intuition behind the proposed
RE-FHDC method by leaving a rigorous theoretical anal-
ysis for future work. The introduced federated training
procedure leverages the independence of the elements of
the random projection matrix W and the random vector
φ. One can readily show that if x1 and x2 are arbitrary d-
dimensional vectors, while the distance dist(θ(x1), θ(x2))
and the random projection-based mapping θ(x) are defined
as given in Section 2.1, then dist(θ(x1), θ(x2)) is a Monte-
Carlo estimate of its expectation, and

lim
D→∞

dist(θ(x1), θ(x2)) = E(W,φ)[dist(θ(x1), θ(x2))].

(4)
Essentially, the size D̂ of the HDC sub-model determines
the variance of the distance estimate in (4). If D̂ is suffi-
ciently large, then the elements of the HDC sub-models
{P(1), . . . ,P(M)} have similar probability distributions,
and this similarity can be facilitated by fixing the order
of the training data during the local retraining procedure.
We also observe that there is a practical lower limit on the
value of D0, after which our RE-FHDC method fails to
converge. This discussion yields the following Proposition.

Proposition 3.1. If the size D̂ of the HDC sub-model
is sufficiently large, then the concatenation PC =
[P(1), . . . ,P(M)] of M independently trained HDC sub-
models has a comparable or higher performance to that of
the HDC model of size D = D̂M .

The underlying principle of the federated refining is similar
to the well-known dropout method (Srivastava et al., 2014)
for ANN training, where the inter-layer connections are
dropped randomly to reduce model overfitting. Using a
smaller subset of D0 randomly selected positions to estimate
the distance in (4) increases the estimation variance and,

Resource-Efficient Federated Hyperdimensional Computing

Table 1. Comparison of methods in terms of maximum achieved accuracy, i.i.d. setup.
Maximum achieved accuracy

RE-FHDC, D = 5K Baseline federated HDC
D̂ = 2.5K D̂ = 1K D̂ = 0.5K D = 5K D = 2.5K D = 1K D = 0.5K

MNIST 0.972 0.969 0.963 0.965 0.959 0.940 0.913
Fashion MNIST 0.883 0.873 0.862 0.877 0.867 0.852 0.840

CIFAR-10 0.492 0.484 0.447 0.499 0.477 0.440 0.417
UCI HAR 0.944 0.945 0.945 0.936 0.932 0.915 0.904

Size of trained HDC model 100KB 40KB 20KB 200KB 100KB 40KB 20KB

Table 2. Comparison of methods in terms of rounds to converge and total uplink traffic, i.i.d. setup.
Rounds to reach baseline D = 5K Total uplink traffic, MB

Baseline, RE-FHDC, D̂ Baseline, RE-FHDC, D̂
D = 5K 2.5K 1K 0.5K D = 5K 2.5K 1K 0.5K

MNIST 30 27 60 100+ 240 108 (−55%) 96 (−60%) 80+
Fashion MNIST 40 60 100 100+ 320 240 (−25%) 160 (−50%) 80+

CIFAR-10 5 18 26 100+ 40 72 (+80%) 41 (+2.5%) 80+
UCI HAR 20 22 35 50 160 88 (−45%) 56 (−65%) 40 (−75%)

therefore, the likelihood of incorrect classification, which
leads to changing the prototypes during the local retraining
procedure in (2). In this case, the HDC model can escape
a local minimum and continue its convergence to a better
solution. Therefore, one can consider this refining procedure
as a regularization method to mitigate overfitting in random
projection-based HDC.

4 NUMERICAL RESULTS

We compare our RE-FHDC method to the baseline federated
HDC implementation. The considered baseline differs from
the proposed method in two key aspects: (i) the participants
collaboratively train a full-sized D-dimensional HDC model
and (ii) the participants do not refine the global model as
proposed in our RE-FHDC solution. This approach is based
on the conventional federated learning principles, where the
participants upload the entire updated model, and has been
adopted by the existing HDC implementations (Hsieh et al.,
2021; Chandrasekaran et al., 2022; Zhao et al., 2022; Diao
et al., 2021).

4.1 Experimental Setup

We compare our RE-FHDC solution to the baseline feder-
ated HDC over several datasets: MNIST (LeCun, 1998),
Fashion MNIST (Xiao et al., 2017), UCI HAR (Anguita
et al., 2013), and CIFAR-10 (Krizhevsky et al., 2009) under
the i.i.d. and non-i.i.d. setups. In the i.i.d. scenario, the
participants have identical or near-identical class distribu-
tions of the training data, while in the non-i.i.d. scenario,
each participant has the training data corresponding to two
randomly selected distinct classes.

We additionally employ random Fourier feature mapping
(RFFM) (Rahimi & Recht, 2007), which is a feature trans-
form projecting the data onto a higher-dimensional space
to facilitate their linear separability. The results in Yu et al.
(2022); Yan et al. (2023) demonstrate that linear separability
is particularly important for HDC performance, especially
in image classification tasks (Dutta et al., 2022). The radial
basis function kernel most commonly approximated with
RFFM has been widely used beyond image classification,
which makes RFFM a universal solution for different types
of data. The proposed RE-FHDC method is compatible with
arbitrary feature extractors, including the state-of-the-art
ANN-based options as in Dutta et al. (2022), and, hence, its
feature extraction stage is largely implementation-specific.
We set the number of RFFM features to 3.2K and the RFFM
length-scale parameter to σ = 1 for the image datasets and
to σ = 2.5 for the UCI HAR dataset.

4.2 Discussion of Key Results

We compare the baseline and the proposed HDC solutions
for N = 20 participants. We set the size of the HDC
model to D = 5K, D0 = D̂, and vary the number of
HDC sub-models as M = [10, 5, 2]. We additionally assess
the performance of the baseline federated HDC model of
dimensionality D/M , which implies the same training costs
as those in the proposed solution. We set the total number of
global epochs to G = 100 and the number of local epochs
to L = 5 and L = 3 for the i.i.d. and the non-i.i.d. scenarios,
respectively.

In Table 1, we report the maximum accuracy achieved by
the considered federated HDC methods under the i.i.d. setup

Resource-Efficient Federated Hyperdimensional Computing

Table 3. Comparison of methods in terms of maximum achieved accuracy, non-i.i.d. setup.
RE-FHDC, D = 5K Baseline federated HDC

D̂ = 2.5K D̂ = 1K D̂ = 0.5K D = 5K D = 2.5K D = 1K D = 0.5K
MNIST 0.926 0.924 0.919 0.927 0.921 0.905 0.879

Fashion MNIST 0.778 0.775 0.773 0.779 0.776 0.774 0.762
CIFAR-10 0.363 0.359 0.355 0.363 0.359 0.352 0.345
UCI HAR 0.922 0.901 0.861 0.898 0.888 0.876 0.862

Size of trained HDC model 100KB 40KB 20KB 200KB 100KB 40KB 20KB

0 20 40 60 80

Global epoch

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

A
cc

u
ra

cy

0 20 40 60 80

Global epoch

0.86

0.88

0.90

0.92

0.94

0.96

0.98

A
cc

u
ra

cy

MNIST

0 20 40 60 80

Global epoch

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

A
cc

u
ra

cy

Baseline D=5K

Baseline D=2.5K

Baseline D=1K

Baseline D=0.5K

RE-FHDC D=5K, M=2

RE-FHDC D=5K, M=5

RE-FHDC D=5K, M=10

0 20 40 60 80

Global epoch

0.80

0.82

0.84

0.86

0.88

0.90

A
cc

u
ra

cy

Fashion MNIST

0 20 40 60 80

Global epoch

0.86

0.88

0.90

0.92

0.94

A
cc

u
ra

cy

UCI HAR

0 20 40 60 80

Global epoch

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

A
cc

u
ra

cy

CIFAR-10

0 20 40 60 80

Global epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

A
cc

u
ra

cy

0 20 40 60 80

Global epoch

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

A
cc

u
ra

cy

Figure 2. Performance comparison of RE-FHDC and baseline federated HDC under i.i.d. (top) and non-i.i.d. (bottom) setups.

after G global iterations. One may see that the proposed RE-
FHDC method achieves a comparable or higher accuracy
than that of the baseline, while processing smaller HDC
models reduces the computational and communication costs
at each global epoch. In Table 2, we demonstrate the total
number of global epochs required to converge to the accu-
racy of the baseline federated HDC model with D = 5K as
well as the corresponding total volume of data transmitted
by the participants. The results suggest that our RE-FHDC
method can reduce the network traffic by up to ×4 times
without sacrificing the predictive performance. A compar-
ison of the maximum accuracy of the methods under the
non-i.i.d. setup is provided in Table 3.

In Fig. 2, we compare the accuracy evolution of our RE-
FHDC vs. the baseline federated HDC method. We hy-
pothesize that the observed instability in the i.i.d scenario is
mainly due to an imperfect selection of the feature extrac-
tor. The work in Dutta et al. (2022); Chandrasekaran et al.
(2022) demonstrates a significantly smoother convergence
with a CNN-based feature extractor, and, therefore, we ar-
gue that our RE-FHDC method can be further enhanced by
applying more advanced data preprocessing techniques. In
the non-i.i.d. scenario, we observe a noticeably smoother
performance evolution, which may be attributed to a more

homogeneous distribution of the local data. Since the partic-
ipants only store the data of two classes, the local retraining
procedure yields smaller changes in the local prototypes
of the absent classes, thus increasing stability of the fed-
erated training. For the more complex datasets, such as
Fashion MNIST and CIFAR-10, we observe periodicity in
the accuracy evolution with peaks at every M -th iteration.
The reason for this is that the accuracy of inference is mea-
sured with the concatenated HDC model, and by the M -th
iteration, all of D positions of the HDC model become up-
dated, resulting in an accuracy leap. We do not observe such
behavior for MNIST and UCI HAR datasets presumably
due to their lower complexity and, therefore, better linear
separability after applying the RFFM feature transform.

5 CONCLUSION

In this work, we developed a resource-efficient federated
HDC method that considerably reduces the computational
and communication loads while achieving a comparable or
higher predictive performance than that of the baseline feder-
ated HDC method. The proposed solution demonstrates up
to a ×4 reduction in the computational and communication
costs for the selected datasets as compared to the baseline.

Resource-Efficient Federated Hyperdimensional Computing

ACKNOWLEDGEMENT

This work was supported by Intel Corporation and the
Academy of Finland (projects RADIANT, IDEA-MILL,
and SOLID).

REFERENCES

Anguita, D., Ghio, A., Oneto, L., Parra Perez, X., and
Reyes Ortiz, J. L. A public domain dataset for human
activity recognition using smartphones. In Proceedings
of the 21th International European Symposium on Arti-
ficial Neural Networks, Computational Intelligence and
Machine Learning, pp. 437–442, 2013.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anand-
kumar, A. signSGD: Compressed optimisation for non-
convex problems. In International Conference on Ma-
chine Learning, pp. 560–569. PMLR, 2018.

Chandrasekaran, R., Ergun, K., Lee, J., Nanjunda, D., Kang,
J., and Rosing, T. FHDnn: Communication efficient
and robust federated learning for AIoT networks. In
Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 37–42, 2022.

Diao, C., Kleyko, D., Rabaey, J. M., and Olshausen, B. A.
Generalized learning vector quantization for classification
in randomized neural networks and hyperdimensional
computing. In 2021 International Joint Conference on
Neural Networks (IJCNN), pp. 1–9. IEEE, 2021.

Dutta, A., Gupta, S., Khaleghi, B., Chandrasekaran, R.,
Xu, W., and Rosing, T. HDnn-PIM: Efficient in-memory
design of hyperdimensional computing with feature ex-
traction. In Proceedings of the Great Lakes Symposium
on VLSI 2022, pp. 281–286, 2022.

Ge, L. and Parhi, K. K. Classification using hyperdimen-
sional computing: A review. IEEE Circuits and Systems
Magazine, 20(2):30–47, 2020.

Hernandez-Cane, A., Matsumoto, N., Ping, E., and Imani,
M. OnlineHD: Robust, efficient, and single-pass online
learning using hyperdimensional system. In 2021 Design,
Automation & Test in Europe Conference & Exhibition
(DATE), pp. 56–61. IEEE, 2021.

Hernández-Cano, A., Zhuo, C., Yin, X., and Imani,
M. RegHD: Robust and efficient regression in hyper-
dimensional learning system. In 2021 58th ACM/IEEE
Design Automation Conference (DAC), pp. 7–12. IEEE,
2021.

Hsieh, C.-Y., Chuang, Y.-C., and Wu, A.-Y. A. FL-HDC:
Hyperdimensional computing design for the application
of federated learning. In 2021 IEEE 3rd International

Conference on Artificial Intelligence Circuits and Systems
(AICAS), pp. 1–5. IEEE, 2021.

Imani, M., Zou, Z., Bosch, S., Rao, S. A., Salamat, S.,
Kumar, V., Kim, Y., and Rosing, T. Revisiting hyperdi-
mensional learning for FPGA and low-power architec-
tures. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 221–
234. IEEE, 2021.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1–2):1–210, 2021.

Kanerva, P. Hyperdimensional computing: An introduc-
tion to computing in distributed representation with high-
dimensional random vectors. Cognitive Computation, 1:
139–159, 2009.

Kang, J., Khaleghi, B., Kim, Y., and Rosing, T. XCelHD:
An efficient GPU-powered hyperdimensional computing
with parallelized training. In 2022 27th Asia and South
Pacific Design Automation Conference (ASP-DAC), pp.
220–225. IEEE, 2022a.

Kang, J., Khaleghi, B., Rosing, T., and Kim, Y. OpenHD:
A GPU-powered framework for hyperdimensional com-
puting. IEEE Transactions on Computers, 71(11):2753–
2765, 2022b.

Karunaratne, G., Le Gallo, M., Cherubini, G., Benini, L.,
Rahimi, A., and Sebastian, A. In-memory hyperdimen-
sional computing. Nature Electronics, 3(6):327–337,
2020.

Kim, M. and Smaragdis, P. Bitwise neural networks. arXiv
preprint arXiv:1601.06071, 2016.

Kleyko, D., Rachkovskij, D., Osipov, E., and Rahimi, A. A
survey on hyperdimensional computing aka vector sym-
bolic architectures, Part I: Models and data transforma-
tions. ACM Computing Surveys, 55(6):1–40, 2023a.

Kleyko, D., Rachkovskij, D., Osipov, E., and Rahimi, A. A
survey on hyperdimensional computing aka vector sym-
bolic architectures, Part II: Applications, cognitive mod-
els, and challenges. ACM Computing Surveys, 55(9):
1–52, 2023b.

Konečnỳ, J., McMahan, H. B., Ramage, D., and Richtárik, P.
Federated optimization: Distributed machine learning for
on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Resource-Efficient Federated Hyperdimensional Computing

LeCun, Y. The MNIST database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Nguyen, H. T., Sehwag, V., Hosseinalipour, S., Brinton,
C. G., Chiang, M., and Poor, H. V. Fast-convergent
federated learning. IEEE Journal on Selected Areas in
Communications, 39(1):201–218, 2020.

Nunes, I., Heddes, M., Givargis, T., Nicolau, A., and Veiden-
baum, A. GraphHD: Efficient graph classification using
hyperdimensional computing. In 2022 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE),
pp. 1485–1490. IEEE, 2022.

Plate, T. A. Holographic reduced representations. IEEE
Transactions on Neural Networks, 6(3):623–641, 1995.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. Advances in Neural Information Pro-
cessing Systems, 20, 2007.

Schlegel, K., Neubert, P., and Protzel, P. HDC-
MiniROCKET: Explicit time encoding in time series
classification with hyperdimensional computing. In
2022 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2022.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: A
novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747, 2017.

Yan, Z., Wang, S., Tang, K., and Wong, W.-F. Ef-
ficient hyperdimensional computing. arXiv preprint
arXiv:2301.10902, 2023.

Yu, T., Zhang, Y., Zhang, Z., and De Sa, C. M. Understand-
ing hyperdimensional computing for parallel single-pass
learning. Advances in Neural Information Processing
Systems, 35:1157–1169, 2022.

Zhao, Q., Lee, K., Liu, J., Huzaifa, M., Yu, X., and Rosing,
T. FedHD: Federated learning with hyperdimensional
computing. In Proceedings of the 28th Annual Interna-
tional Conference on Mobile Computing and Networking,
pp. 791–793, 2022.

