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Abstract

Due to the large number of parameters and high com-
putational complexity, Vision Transformer (ViT) is not suit-
able for deployment on mobile devices. As a result, the
design of efficient vision transformer models has become
the focus of many studies. In this paper, we introduce
a novel technique called Spatial and Channel Enhanced
Self-Attention (SCSA) for lightweight vision transformers.
Specially, we utilize multi-head self-attention and convo-
lutional attention in parallel to extract global spatial fea-
tures and local spatial features, respectively. Subsequently,
a fusion module based on channel attention effectively com-
bines the extracted features from both global and local con-
texts. Based on SCSA, we introduce the Spatial and Channel
enhanced Attention Transformer (SCAT). On the ImageNet-
1k dataset, SCAT achieves a top-1 accuracy of 76.6% with
approximately 4.9M parameters and 0.7G FLOPs, outper-
forming state-of-the-art Vision Transformer architectures
when the number of parameters and FLOPs are similar.

1. Introduction
Recently, ViT [3] has achieved remarkable results on ma-

jor computer vision tasks with the assistance of long-range
spatial feature relations captured through Multi-Head Self-
Attention (MHSA). However, the secondary complexity of
MHSA demands substantial computational resources, lead-
ing to efforts to reduce its computational complexity. To
reduce computational overhead, PVT [16, 17] uses down-
sampling of key and value to decrease the complexity of
MHSA, while Swin-Transformer [5] reduces complexity by
dividing multiple windows and performing MHSA compu-
tation within the windows.

However, the performance of these models drops dra-
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Figure 1: Top-1 accuracy v.s. FLOPs on ImageNet-1k of
efficient models.

matically when reduced to a size and computation suit-
able for the mobile devices. Therefore, there are many
works devoted to designing a lightweight and efficient vi-
sion transformers [7, 8, 6, 11, 9, 1, 20, 13, 12]. Some
works refer to the perception of the human visual system to
study the extraction and fusion of local and global informa-
tion [7, 8, 6]. MobileViT [7] combines MobileNetv2 [10]
with transformer blocks to enhance the global representa-
tion capability of the network. EdgeViT [8] proposes a
local-global-local block for local and global information ag-
gregation. EdgeNeXt [6] adopts split depth-wise convolu-
tion and transposes attention to implicitly increase the re-
ceptive field and encode multi-scale features. They both
use a serial structure to stack the convolutional and self-
attention layers, which model one structure (local or global)
at a time and might destroy previous local features when ex-
tracting global features, and vice versa. Therefore, we have
adopted a parallel structure approach to extract both local
and global features simultaneously.



Figure 2: Architecture of our SCAT.

Before ViT [3] was proposed, there have been many
attention-related works [4, 18, 15, 21]. SENet [4] intro-
duces a channel attention module to highlight the important
channels. It first compresses the feature map in the spatial
dimension and then learns the importance of each channel
in the channel dimension. The spatial attention module in
CBAM [18] performs different pooling operations on the
feature map in the channel dimension and then mixes the
weights obtained from pooling to learn the importance of
spatial locations. These works can be summarized as us-
ing the feature map to generate weights that act back on the
feature map itself.

Based on the above analysis, we introduced the Spa-
tial and Channel enhanced Self-Attention Block (SCSA).
To be specific, we utilize MHSA to capture global long-
range spatial features and employ convolutional attention to
model local spatial features in parallel. Moreover, a channel
attention-based fusion module is applied on top of the par-
allel global and local spatial attention block to learn their
relationship and enhance the fusion of local and global fea-
tures after concatenation. Furthermore, we propose a Con-
volutional Tokens Reduction (CTR) block to decrease the
computational costs of MHSA by reducing the token length.
Based on SCSA and CTR, following the common principles
of lightweight transformer architecture design [8, 16], we
propose the Spatial and Channel enhanced Attention Trans-
former (SCAT). Our main contributions are summarized as
follows:

• We propose a Spatial and Channel enhanced Self-
Attention (SCSA) mechanism that employs a two-
branch architecture to efficiently extract local and
global features and balances local and global features
using channel attention.

• Our SCAT-XXS achieves a top-1 accuracy of 76.6%
on ImageNet-1K with only 4.8M parameters and 0.7G
FLOPs.

2. Method
2.1. Overview

The architecture of Spatial and Channel enhanced Atten-
tion Transformer (SCAT) is shown in Figure 2. We follow

the same pyramid architecture as [16, 17], decreasing the
resolution of the feature maps while increasing the number
of channels of the feature maps during the forward propaga-
tion. First, we use the convolutional stem proposed in [19]
to generate feature maps with a resolution of H/4 ×W/4,
the convolutional stem consists of four 3 × 3 convolutions
and one 1× 1 convolution, where the stride of the first two
3×3 convolutions is 2 and the remaining is 1. Then we fol-
low the 4-stage architecture adopted in [8, 6], where each
stage consists of n SCAT blocks. Except for the first stage,
the resolution of the feature map is reduced using non-
overlapping large-step convolution before the other stages.

As shown in Figure 3a, the SCAT block is mainly com-
posed of three parts: Conditional Position Encoding (CPE),
Spatial and Channel enhanced Self-Attention (SCSA), and
Feed-Forward Network (FFN). Our SCAT block can be for-
mulated as:

X = CPE(Xin) +Xin,

Y = SCSA(Norm(X)) +X,

Xout = FFN(Norm(Y )) + Y.

(1)

At first, the input tensor X ∈ RH×W×C is embedded
with the position information of tokens through CPE, which
uses DWConv. Then SCSA extracts the fused and enhanced
multi-scale features from both local and global branches,
and finally the features are redistributed among channels by
a classical feed-forward neural network.

2.2. Spatial and Channel enhanced Self-Attention

As shown in Figure 3b, Spatial and Channel enhanced
Self-Attention (SCSA) consists of three parts: local branch,
global branch and fusion module. The local branch extracts
and reinforces local features, the global branch learns the
global representation, and the fusion module further learns
and fuses local and global features.

2.2.1 Global Branch

Inspired by PVT [16, 17], we use MHSA with resolution re-
duction of key and value, which can significantly reduce the
computational complexity while still retaining the global re-
ceptive field. We propose the Convolutional Tokens Reduc-
tion (CTR) module to scale down the resolution of the fea-



Figure 3: (a) Model architecture of our SCAT block.
The SCAT block consists of Conditional Position Encod-
ing (CPE), Spatial and Channel enhanced Self-Attention
(SCSA) and Feed-Forward Network (FFN). (b) SCSA con-
sists of three parts: local branch, global branch and fusion
module.

ture map. CTR leverages a DWConv with a kernel size of
2k × 2k and a stride of k, where the k is the reduction rate.
The process can be formulated as:

X ′ = CTR(X),

Q = WQX,

K ′, V ′ = WKX ′,WV X ′,

Xglobal = MHSA(Q,K ′, V ′),

(2)

where the X ′ ∈ RH
k ×W

k ×C is the resolution reduced fea-
ture map, k is reduction rate. WQ,WK ,WV are linear pro-
jection parameters.

2.2.2 Local Branch

Inspired by CBAM [18], we employ depth-wise convolution
and local spatial attention to extract local features in local
branch. Convolution with inductive bias can effectively ex-
tract local features, we further introduce local spatial atten-
tion to strengthen local features in spatial dimension. The
details of local branching can be formulated as follows:

Q′ = DWConv(Q),

Wspatial = σ(Conv([AvgPool(Q′),MaxPool(Q′)]),

Xlocal = Q′ ⊙Wspatial,

(3)

where the σ denotes the sigmoid function and Conv repre-
sents a convolution operation with the kernel size of 7 × 7,
the ⊙ donates element-wise multiplication.

2.2.3 Fusion Module

In the fusion module, we concatenate the local and global
features; then, we employ the channel attention to further
learn the relationship between local and global features in
the channel dimension. We use the SE module in [4] as a
channel attention operation. We follow SENet and set the
reduction rate in the SE module to 4. The fusion module
can be formulated as follows:

Wchanal = SE([Xlocal, Xglobal]),

Y = FC([Xlocal, Xglobal]⊙Wchanal),
(4)

where the ⊙ donates element-wise multiplication. [·] is a
concat operation.

3. Experiments
3.1. Data Set

We conduct the experiment on the ImageNet-1K dataset.
ImageNet-1K [2] provides 1.28 million training images and
50, 000 validation images from 1000 categories. We report
top-1 accuracy on the validation set for all experiments.

3.2. Implementation Details

We follow the training strategy in DeiT [14]. We use the
AdamW optimizer to train the network, setting the batch
size, initial learning rate, weight decay and momentum to
1024, 0.01, 0.05, and 0.9. Different from DeiT, we use a lin-
ear warm-up of 20 epochs. The maximum rates of increas-
ing stochastic depth are set to 0.05/0.05/0.15 for SCAT-
XXS/XS/S. We used the same data augmentation in Swin-
Transformer [5], including RandAugment, Mixup, CutMix,
and Random Erasing.

In table 1, we present the specific parameter details of
the three variants of SCAT. In order to save FLOPs, we used
small convolutional kernels to capture low-level features in
the early stages and large convolutional kernels to capture
high-level features in the later stages.

3.3. Ablation Study

3.3.1 Local Spatial Attention

To verify the role of local spatial attention for local feature
extraction and enhancement, we evaluated the performance
of SCAT without local spatial attention. As shown in Table
2, the local spatial attention module [18] improved the accu-
racy of SCAT by 0.23% with almost no additional parame-
ters and FLOPs. The results show that local spatial attention
plays an important role in enhancing local features.

3.3.2 Convolutional Tokens Reduction

To comprehensively assess the CTR performance, we con-
duct a comparative analysis with three downsampling meth-



Model Channals Blocks Heads Kernel size FLOPs(G) Param(M)
SCAT-XXS [32,80,160,256] [2,2,5,2] [2,5,10,16] [3,5,7,9] 0.7 4.9
SCAT-XS [48,96,192,384] [2,2,5,2] [3,6,12,24] [3,5,7,9] 1.2 8.7
SCAT-S [64,128,256,512] [4,4,12,4] [2,4,8,16] [3,5,7,9] 4.1 31.0

Table 1: Configuration of three SCAT variants.

Model
Params

(M)
FLOPs

(G)
Top-1
(%)

SCAT w/o lsa 4.9 0.71 76.38
SCAT w/ lsa 4.9 0.71 76.61

Table 2: Ablation study of local spatial attention.

Model
Params

(M)
FLOPs

(G)
Top-1
(%)

sampling 4.8 0.70 76.08
mean pooling 4.8 0.70 76.54
conv w/o overlap 4.8 0.70 76.27
CTR 4.9 0.71 76.61

Table 3: Ablation study of CTR.

Model
Params

(M)
FLOPs

(G)
Top-1
(%)

SCAT-G w/o SE 4.3 0.70 75.68
SCAT-G w/ SE 4.4 0.70 75.95
SCAT w/o SE 4.3 0.70 75.82
SCAT w/ SE 4.9 0.71 76.61

Table 4: Ablation study of channel attention.

ods: sampling, mean pooling, and non-overlapping large-
step convolution. As shown in Table 3, with minor differ-
ences in parameters and FLOPs, our CTR method outper-
forms the other three downsampling methods. This result
suggests that our method might better preserve the integrity
of information when downsampling tokens.

3.3.3 Fusion Module

To evaluate the effectiveness of the proposed fusion module,
we carried out experiments on both full SCAT and SCAT
without the local branch. The results of the experiment
are shown in Table 4, SCAT-G denotes SCAT with only
a global branch. In order to maintain SCAT-G and SCAT at
the same FLOPs size thus reflecting the role of channel at-
tention on feature fusion, we adjusted the model depth from
[2, 2, 5, 2] to [2, 2, 6, 2]. In SCAT-G, the addition of the SE
module [4] only increased the accuracy by 0.27%, while in
SCAT, the SE module increased the accuracy of the model
by 0.79%. The experiments indicate that the SE module
plays a great role in learning the relationship between local
and global features.

3.4. Compare with State-Of-The-Art

We compare our SCAT against many state-of-the-art
models in Table 5. The comparison results show that our

Model Input
Params

(M)
FLOPs

(G)
Top-1
(%)

MobileViT-XXS [7] 2562 1.3 0.4 69.0
EdgeViT-XXS [8] 2242 4.1 0.6 74.4
LVT [20] 2242 5.5 0.9 74.8
EdgeNeXt-XS [6] 2562 2.3 0.5 75.0
PVT-T [16] 2242 13.2 1.6 75.1
ViT-C [19] 2242 4.6 1.1 75.3
SCAT-XXS 2242 4.9 0.7 76.6
ResT-lite [22] 2242 10.5 1.4 77.2
EdgeViT-XS [8] 2242 6.7 1.1 77.5
MobileViT-S [7] 2562 5.6 2.0 78.4
PVTv2-B1 [17] 2242 13.1 2.1 78.7
EdgeNext-S [6] 2242 5.6 1.0 78.8
SCAT-XS 2242 8.7 1.2 79.2
Swin-T [5] 2242 29.0 4.5 81.3
ResT-Base [22] 2242 30.3 4.3 81.6
PVTv2-B2 [17] 2242 25.4 4.0 82.0
SCAT-S 2242 31.0 4.1 83.1

Table 5: Comparison with the state-of-the-art on ImageNet-
1k classification.

SCAT consistently outperforms SOTA vision transformer
architectures when the parameters and FLOPs are close. our
SCAT-XXS achieves 76.6% Top1-accuracy with only 4.9M
parameters and 0.7G FLOPs. SCAT-XS achieves a better
trade-off between FLOPs and top-1 accuracy than Mobile-
ViT and EdgeViT.

Furthermore, we evaluate the scaling capacity of our
SCAT model by introducing a scaled-up SCAT-S, which in-
corporates 31M parameters and 4.1G FLOPs. As shown
in the third part of Table 5, our SCAT-S model still demon-
strates excellent competitiveness, outperforming Swin-T [5]
and PVTv2-B2 [17] at similar parameters and FLOPs.

4. Conclusion

In this paper, we proposed SCAT, an efficient vision
transformer. The core of our network is Spatial and Channel
enhanced Self-Attention, which combines local spatial at-
tention, global spatial attention, and channel attention. Lo-
cal spatial attention and global spatial attention extract and
reinforce local and global features, respectively. The chan-
nel attention further learns the relationship between local
and global features. The experimental results demonstrate
the efficiency of the SCAT model in the image classification
task. In the future, we plan to evaluate our SCAT model on
more vision tasks, such as object detection and image seg-
mentation.
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