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ABSTRACT

Partial participation (PP) is a fundamental paradigm in federated learning, where
only a fraction of clients can be involved in each communication round. In recent
years, a wide range of mechanisms for partial participation have been proposed.
However, the effectiveness of a particular technique strongly depends on problem-
specific characteristics, e.g. local data distributions. Consequently, achieving better
performance requires a comprehensive search across a number of strategies. This
observation highlights the necessity of a unified framework. In this paper, we
address this challenge by introducing a general scheme that can be combined with
almost any client selection strategy. We provide a unified theoretical analysis
of our approach without relying on properties specific to individual heuristics.
Furthermore, we extend it to settings with unstable client-server connections,
thereby covering real-world scenarios in federated learning. We present empirical
validation of our framework across a range of PP strategies on image classification
tasks, employing modern architectures, such as FasterViT.

1 INTRODUCTION

Optimization is a cornerstone of training machine learning and neural network models. In a nutshell,
almost every Al-based solution aims to minimize an empirical risk (Shalev-Shwartz et al.| [2010),
which evaluates how well the data is approximated. This process involves adjusting parameters
to reduce the discrepancy between predicted outputs and ground truth labels, thereby improving
generalization performance. Formally, the problem can be expressed as

R
min l” ;f(g(wyai),bl)] : (1)
where z denotes the trainable parameters of the model g, (a;, b;) is the i-th sample from the dataset
with size n, and ¢ is the loss function. Nowadays, there is a variety of methods developed to efficiently
solve equationﬂ] (Robbins and Monrol (1951} [Nesterov, |1983; [Kingma and Bal 2014} |Defazio and
Mishchenko, 2023)). The current successes of machine/deep learning owe much to the development
of powerful numerical techniques that enable training on a huge amount of samples. Large-scale
data processing became possible with the advancement of distributed optimization (Verbraeken
et al., |2020). Instead of solving the problem on a single machine, samples are shared among M
nodes/devices/clients/machines connected via a server. Hence, the problem equation [I] transforms
nto
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where n,, is the size of the dataset, stored on m-th device.

1.1 CLIENT WEIGHTING

Parallel data processing helps to reduce computational time significantly (Zinkevich et al., [2010;
Abadi et al.|[2016; |Jouppi et al., 2017)). However, contemporary applications present new challenges.
Training samples are often accumulated locally by each specific machine, rather than being collected
and distributed manually. This paradigm with data remaining on edge devices is called federated
learning (Konecny et al.| 20165 McMahan et al.| | 2017; Bonawitz et al.,[2019). In such a setup, local
datasets are typically heterogeneous — they vary in size, distribution, and quality. For instance, one
device may hold unique objects that are poorly represented across the rest of the network, but are
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crucial for capturing more dependencies. This leads to the conclusion that some clients may be more
useful than others. Modern approaches usually assign dynamic weights {7, }*/_, and use

M M
@)= mmfm(@), st mm >0, =1 3)
m=1 m=1

to calculate statistics. If the devices are considered to be equivalent, this corresponds to the case
where 11 = ... = mp; = /M. As aresult, more important nodes contribute more significantly to the
global loss. There are many strategies to prioritize the clients known in the literature.

Weighting Based on Data Quality/Quantity. The most straightforward way to cope with data
imbalance is to consider a number of local samples. McMahan et al.[(2017) suggested setting each
coefficient as the constant 7, = nm/n. Since then, many modifications of this approach have been
proposed, including federated averaging schemes with momentum (Wang et al., 2019 |Reddi et al.}
2020), variance reduction (Liang et al., 2019; [Karimireddy et al., 2020) and proximal updates (L1
et al.|[2020). However, this type of weighting ignores heterogeneity in terms of data quality, leading
to bias, e.g. if some client holds an enormous amount of objects with the same labels. To support the
diversity of training samples, |Yurochkin et al.[{(2019) proposed to match the neurons of client neural
networks before averaging. Building on the foundations laid by this work, subsequent works have
explored more efficient approaches extensively (Wang et al.| 2020a; Zhang et al., 2022} [Yang et al.,
2023; Wu et al., [2023} |Kafshgari et al., 2023)).

Learned Weighting Strategies. It is also common to learn weighting strategies instead of using

fixed heuristics. |Mohri et al.[(2019) were among the first to present results in this direction. They pro-

posed solving the saddle-point problem min,egs max, ¢ o nm ZAmlzl T fm (@) to give small weights

to well-trained devices. The idea of optimizing agnostic empirical loss was then generalized by [Li
et al. (2019a)). Their g-FedAvg can be reduced to agnostic optimization as one of the special cases.
However, in practice, it is hard to search for appropriate saddle-points (Daskalakis and Panageas|
2018; Jin et al.} 2020), especially in federated learning (Sharma et al., [2023). As a result, the commu-
nity has shifted towards softer adaptive approaches based on local losses (Zhang et al., [2020} |Gao
et al.| 2022) and gradients (Wang et al.,|2020b; [Luo et al., [2024).

Robust Weighting. The idea of assigning weights to the devices found its application in robust
optimization, where malicious clients can disrupt the learning process (Baruch et al.|[2019; [ Xie et al.|

2020; |[Fang et al.,2020). To combat such attacks, advanced schemes usually compute {ﬂ'm}%: 1> as
the trust scores of the devices based on their objectives decrease (Xie et al., |2019)), local gradients
(Cao et al.,|2020; |Yan et al., [2023), and the number of local samples (Cao and Lail, 2019). Recently,

researchers came up with the idea of using a Bayesian approach (Yang et al.,2024).

1.2 CLIENT SAMPLING

Another significant issue of federated learning, on par with heterogeneity, is the communication
bottleneck (Tang et al., [2020; |Shi et al., 2020). Sharing information between machines is costly and
can limit the positive effect of parallelism, which is especially tangible when clients send messages
to the server (Kairouz et al.l 2021). This issue is magnified in federated learning, where edge devices
may have unstable network connectivity, and transmitting large updates may be prohibitively slow.
Many techniques exist to reduce communication (Seide et al.l 2014} |Alistarh et al., 2017} [Stichl
2018). Partial participation is a special one among them (Li et al.,2019b} [Yang et al., 2021)). In each
communication round, only a random subset of clients participates in training, while the rest remain
inactive. This approach offloads the server by decreasing the number of updates that need to be
aggregated. Moreover, it provides significant advantages in edge computing, where communication
channels are not equivalent, or some of them may be unavailable. Nowadays, there is a wide range of
heuristics, which allows to choose subset of clients efficiently.

Data-Based Sampling Strategies. Methods from this class rely on zero- and first-order information
of local functions. Importance Sampling FedAvg (Rizk et al., [2021) was one of the first
such approaches. The authors suggested evaluating the relevance of a device by how large its gradient
is relative to the others. Indeed, a small gradient makes a weak contribution to the step. Consequently,
communication with this node can be neglected. [Nguyen et al.| (2020) proposed an orthogonal
approach. Their FOLB measures the angle between local and average gradient. If it is negative, then
such a device is useless at the current moment. This idea was then developed extensively in (Wu
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and Wang| 2022 |Zhou et al.| 2022). In addition, techniques based on the norms of updates (Chen
et al., 2020) and local loss decrease (Cho et al.,|2022) were proposed. There are also a number of
approaches that dynamically exploit data heterogeneity to maintain balance (Zhang et al.,|2023) or
support diversity (Chen and Vikalo} [2024).

System-Based Sampling Strategies.  Another approach is to use information about the network
itself. FedCsS (Nishio and Yonetani, [2019)) categorizes clients into groups based on their computa-
tional power. This strategy saves wall-clock time by avoiding frequent selection of weak devices.
Another class of techniques optimizes energy consumption (Xu and Wang| |2020). Most modern
system heterogeneity techniques also incorporate local data considerations (Lai et al.| 2021; [Li et al.,
2022). F3AST (Ribero et al.l 2022) learns an availability-dependent client selection strategy to
minimize the impact of variance on the global model’s convergence.

Thus, the community came up with various techniques for weighting and sampling to make partial
participation as efficient as possible. The development of each new scheme was challenging in terms
of algorithm design and convergence proof. Consequently, a number of papers appeared attempting
to propose a theory without utilizing the properties of any particular strategy.

1.3 UNIFICATION OF SAMPLING STRATEGIES

Existing papers in this area of research are built around the federated averaging scheme (McMahan
et al., [2017). |Li et al.| (2019b) proposed an analysis for strongly convex objectives, obtaining a
sublinear convergence rate O (Kz/ K), where « is the condition number. However, they modeled the
partial participation environment via unbiased sampling. |Cho et al.|(2022) were the first to study the
unified case with biased devices selection. They derived O ("ﬁz/ K+ HQ), where () is a non-vanishing
term that becomes zero solely in the absence of sampling bias. Thus, the authors recovered the results
of |L1 et al.| (2019Db)), but failed to extend the theory to weaker assumptions. The first success in this
direction was achieved in (Luo et al.,2022). This work resolved key questions regarding biased
sampling in the strongly convex case. However, the non-convex analysis holds greater significance
for applications. For this setting, Wang and Ji| (2022)) obtained O (ﬁ/\/F + (5), where L is the
smoothness constant and ¢ is the uniform bound on the difference between local gradients. This result
contains the non-vanishing term and does not match the lower bound 2 (Z/k) (Carmon et al.,[2020).
Thus, current works in this field rely on FedAvg. Consequently, their analysis requires boundedness
of gradients (Li et al.l 2019bj [Cho et al., [2022} |Luo et al.l[2022) or their differences (Wang and Ji,
2022)) even in the non-stochastic case. Therefore, there is still no flawless unified theory of partial
participation.

1.4 OUR CONTRIBUTION

In contrast to prior works, where partial participation analysis was built upon FedAvg, we introduce
our own scheme to leverage client sampling. While existing techniques ignore the information from
inactive clients, our approach utilizes it for benefits. Namely, devices accumulate gradient surrogates
locally, and the server accounts for them after the full aggregation round. The proposed approach
allows weighting and sampling clients according to a variety of strategies, including biased ones. The
convergence of our scheme can be proven in both strongly convex and non-convex cases without
introducing unnatural assumptions. The obtained rates do not contain non-vanishing terms. To
validate the theory, we conduct experiments with RESNET-18 and VIT.

2 SETUP
We begin presenting our results with assumptions necessary to prove convergence. First of all, the
objective is assumed to be smooth. This requirement is well-established in optimization.
Assumption 2.1. The function f is L-smooth, i.e. for all z,y € R it satisfies

IV f(z) = VWl < Lz —yll.

Neural networks tend to have a complex loss landscape (Cybenkol [1989; |[Nguyen and Hein, |2018).
Since we are motivated by real-world scenarios, our main goal is to prove convergence in the
non-convex case. For completeness, we also derive results under stronger assumptions.

Assumption 2.2. The function f is:
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(a) non-convex with at least one global minimum:

there exists may be not unique, z* s.t. f(z*) = inf f(z) > —c0.
z€R

(b) p-strongly convex, i.e. for all z, y € R¢ it satisfies
I
Fy) = f(@) + (VF(@),y —2) + Sy — =[*,

Federated learning methods usually require a bound on data heterogeneity to provide convergence
guarantees (Khaled et al.2020; [Karimireddy et al.|[2020). In our work, we quantify it via gradients
(Tang et al., |2018} [Stichl [2020)).

Assumption 2.3. Each gradient V f,, is similar to the full gradient V £, i.e. for all € R? it satisfies

M
% Y IViule) = Vi@ < &lVF(@)IP + b

m=1

This assumption is not too strict, since we do not require uniform boundedness (6; = 0). The
following one is imposed to derive convergence of our algorithm with local stochasticity. If one
removes it, our theory still holds.

Assumption 2.4. Each worker has access to a stochastic gradient V f,,, (z, &, ). This is an unbiased
random variable with bounded variance, i.e. for all z € R? it satisfies

Ee,, [V fm (2, &m)] = V fm (),
Ee,, [IV fin(,&m) = V fm(2)|*] < 0°.

This assumption appears in different forms in a number of classic papers (Stich, [2018; Gower et al.,
2019} |Gorbunov et al., 2020). Next, we consider that weights {7, }_, from equationlie on the

regularized simplex. Namely, 7 € A{V[ N (ﬂi\r/f:l {7r : 6;;7( + % > 0}), where 1 < oo < M is the

regularization parameter and e is the unit basis. This technique is useful for solving a wide range of
tasks (Mehta et al.| 2024).

3 ALGORITHMS AND ANALYSIS

3.1 MOTIVATION

Existing papers on the unification of client sampling consider FedAvg without any modifications.
Section suggests that this approach is not promising due to poor results even under strong
assumptions. A potential direction for future research could be to find a more suitable scheme. Below
we propose an intuition that helps to address this issue.

To understand biased sampling, |Cho et al.[(2022)) introduced the definition of selection skew and
utilized it in the analysis. This is exactly the cause of the non-vanishing term in their rate. Indeed,
there is no convergence if, for example, some devices are never selected for communication. However,
we propose that the problem could be solved if we could somehow account for the error accumulated
due to bias. To develop this idea, we formalize the sampling strategy as follows. First, we assign
weights 7,,, to devices, as described in equation[3} Next, we define the selection rule of the server as
a stochastic operator R : RM — RM that zeros some entries of the input vector while retaining the
others. Applying this operator to the introduced vector of weights, it can be seen that the wide variety
of strategies described in Section [I.2]fits this formalism. This applies not only to simple cases of
selecting clients with the highest weights but also to non-trivial ones, such as zeroing the weights of
unavailable nodes.

Viewing partial participation as weight vector sparsification reveals connections to well-studied
techniques (Beznosikov et al., [2023). A state-of-the-art approach to handle it efficiently is error
feedback (Stich and Karimireddyl, 2020; Richtarik et al., 2021)). Since sampling rules are represented
as compressors, we believe that this idea may be extremely useful in our setting as well. However,
we cannot apply the error feedback framework directly. The reason is that the sampling rules are
non-contractive compressors, as they zero out certain local gradients. Formally, there does not exist

/8 < oo such that ||z — C(z)||* < (1 - %) |z||? for C(z) = 0,z € R%.

Thus, we have to address the challenge of designing a scheme that can handle non-contractive
compression before proceeding to a unified analysis of partial participation.



Under review as a conference paper at ICLR 2026

3.2 PARTIAL PARTICIPATION WITHOUT UNAVAILABLE DEVICES

To develop the idea proposed in Section[3.1} we present the Partial Participation with Bias Correction
framework (PPBC, see Algorithm [I)) that supports a wide class of weighting and sampling approaches.
Since computing full-batch gradients is often impractical in modern applications, we also account for
local stochasticity.

Algorithm 1 PPBC

1: Input: Start point x’l’H_l cRe, g’l’H_1 cR?, epochs number K, number of devices M
2: Parameters: Stepsize v > 0, momentum 0 < 6 < 1, regularization 1 < o < M
3: forepochs £ =0,..., K —1do

4: Initialize % // Server weighs clients using any procedure

5: 7k = ﬁk (Trk) // Server selects clients to communicate through epoch using any rule R

6: gfﬁo = 0 // Each client initializes the gradient surrogate

7: k0 = l‘k_l’Hkﬂ — ’ygk_l’H’%l // Server initializes the initial point of the epoch

8: Generate H* ~ Geom(p) // Server generates number of iterations of k-th epoch

9:  foriterations h = 0,..., H* — 1 do

10: kb = ’ﬁ,k’h frk) // Server selects clients to communicate at the current round using rule R
11: for devices m = 1... M in parallel do
12: ,’%’h"_l = gﬁ;h +(1-96) (ﬁ — %fn’h) Vim (xk’h7 fj%’h) // Update the gradient surrogate
13: end for
14: for each device m : %" £ 0 do

15: Send V fn (z%", £5:) to the server

16: end for o
17: hhtl = ghh v |1(1=6) > %ﬁ{thm($k’h, f&h) + egk}_l’Hkil // Server updates

parameters m=t

18: end for

19: for devices m = 1... M in parallel do
20: Send g:H" to the server
21: end for
22: gk HE Z gfn’H i // Server aggregates gradient surrogates

m=1

23: end for

Description of Algorithm (1} In Algorithm 1} the weights 7% = (7F,... 7%,)T are computed
according to any of the mentioned strategies at the beginning of each epoch (Line ). Next, the
rule R is applied to determine the participating machines (Line . Its output #* contains zeros at
positions corresponding to nodes that are not chosen to communicate with the server. Note that R is
not necessarily constant. There are no theoretical restrictions to change it during the execution. For
example, one can vary the number of participating devices. We also allow additional client sampling
at each iteration of the epoch by introducing a rule ‘R (Line . We propose to aggregate local
gradient surrogates during the epoch (Line[T2). To provide intuition beyond this update, we give a toy
example where each 7, is equal to 1/a. In this way, all inactive devices collect their gradients, while
all active ones retain the vector g,, from the previous iteration. In the practical case with various
weights, each device accounts for its deviation from the uniform distribution 7, = {1/m}M_, . Next,
we use the accumulated vectors during the following epoch (Line[T7). To handle the magnitude
imbalance between the gradient and its surrogate, we employ a smoothing scheme with a small
parameter 6. We provide an ablation studies regarding 6 and p in Appendix

Analysis of Algorithm[T} We utilize virtual sequences to derive convergence rates of PPBC. The
idea is to introduce an additional vector

M
~k,h __ k,h k.h
ot = by N gk

m=1

and use it to prove convergence. Substituting Lines[I0] [I7]in this definition, we obtain

M
1 k—1
~k.h+1 _ ~kh _ Eh ¢k k—1,H
T =T v |A-0) 57 Y Vm(abh ghM) + g

m=1
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This is an important technique for our method, since the sequence z is updated with the average
of gradients from all devices, contrary to the original z. However, the virtual update also contains
a combination of accumulated gradients from the previous epoch. We emphasize that handling

gt—1H """ is one of the main theoretical challenges we address. We set the epoch size H” as a
geometrically distributed random variable and provide the following lemma.

Lemma 3.1. Suppose Assumptions hold. We consider the epoch size H* ~ Geom(p) and
1 < o < M. Then for Algorithm[l)it implies

2 241 -0)%a(6 +1 2 48(1 - 6)2as
EusBeso .. Eg ey o || D00 Vg g gt BA_0 0%
m Em p2 p2
24(1 — 6)2a0?
+ =
Mp?

Assumption [2.4]is required only to handle local stochasticity. If the devices are able to compute exact
gradients, Lemma [3.1] holds with o = 0. For the details, see Appendix [D} As a result, we obtain the
convergence theorem.

Theorem 3.2. Suppose Assumptions hold. Then for Algorithm|l|with 6 < %

and v < W@H) it implies that
K-1 0,0 X 272
1 povy2 16 (F(2%0) = f(z*)) | 768yLady | 384vy*L2ad,
By S
400yLac?  192y2L%ac?
+ + .
Mp Mp3

The main obstacle in proving Theoremis the terms ||g*- * |2 and ||gF—1H o |? that appear in
the analysis. Using Lemma they can be screwed to ||V f(z%")||2 and ||V f(z*~1H" )12,
respectively. The first norm is easy to analyze. Classically, it serves as a convergence criterion.
Eliminating the second one turns out to be challenging. To cope with it, we incorporate the surrogate
into the starting point of the epoch (Line[7). For the details, see Appendix[D.I} With such an estimate,
there is a technique to choose the stepsize «y appropriately to obtain convergence (Stich, 2019).

Corollary 3.3. Under conditions of Theorem Algorithm with fixed rules RF = REh =R
needs

M (ALady ALady ALac?
O<MC< e? * et + Me* )>

Q,A:

K—1
: Sy 2 _ 1 k,0
number of devices communications to reach e-accuracy, where € = 4 kg 3 E H V f(x®9)

f(2%0) — f(a*) and C is the number of devices participating in each epoch.

We also consider varying sampling rules R* and R*" to study corollaries of Theorem
Corollary 3.4. Under conditions of Theorem[3.2)Algorithm[I|needs

M ALady L ALady  ALac?
nkli}?C k.h g2 gt Me?

) epochs and

2
M (ALaél N ALads  ALao?

O\ M
Iili}flck’h 2 e Met

) number of devices communications
€

2, A = f(2%9) — f(z*) and C*" is the

K—1
2 _ 1 E,0
to reach e-accuracy, where €° = 4 AZO E ||V f(z*0)
number of devices participating in k-th iteration in h-th epoch.

In our work, the analysis is extended to the strongly convex case.
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Theorem 3.5. Suppose Assumptions 2.2(b) hold. Then for Algorithmwith <L

and v < it implies that

p2
96La(0:+1)
2
E |50 _ *2<(17ﬂ)K 0,0 *2+8’YQ< 74o>.
o0 | oo -+ £ i

8
As well as for the non-convex objective, suitable  can be chosen in Theorem [3.3]

Corollary 3.6. Under conditions of Theorem Algorithmwilh fixed rules REh = REP =R

needs
- M\? /L 1 Mady,  ao?
M= 5,1 =
O( <C> (ualog< >+Cu€+u206)>

number of devices communications to reach e-accuracy, where €2 = E H:CK 0 _
number of devices participating in each epoch.

Corollary 3.7. Under conditions of Theorem[3.3|Algorithm[I|needs
2

~ M L 1 M 0 2
(@) _— —ad log <> + _C_a% + A epochs and
1 €

:L,*

2 and C'is the

minC*" minC#" y2e ~ p2minCkhe
k.h k.h k,h
3
~ M L 1 M «ads ac?
O\M | ——— —ady log | — _
minCFk" wo & (5) * minCFkh ;2 + pPminCk.he
koh koh k,h

. .. 2 .
number of devices communications to reach e-accuracy, where e2=E ||xK’0 —z* || and CFM g
the number of devices participating in k-th iteration in h-th epoch.

3.3 PARTIAL PARTICIPATION WITH UNAVAILABLE DEVICES

The previous section addresses partial participation when all devices are available to communicate
with the server. Indeed, in Algorithm [I]each node receives the current parameters at the end of the
iteration, but does not send its gradient. This is motivated by the fact that forwarding a message
from the client to the server is much more expensive than the other way around (Kairouz et al.|
2021)). However, in practice, some devices can become inactive periodically (Li et al.,[2019b} | Yang
et al.,[2021). Namely, these machines not only refrain from transmitting information but also do not
perform local computations. In this section, we extend our theory to cover the case where the actual
parameters are sent to only a fraction of the clients.

Description of Algorithm[2} In this section we present the part of Algorithm 2](see Appendix [A)
that reflects key differences from Algorithm[I] To design it, we refuse using the biased sampling

rule R during the epoch. Instead, we simulate outage probability of the m-th device as a Bernoulli
random variable %" ~ Be(g,,) (Chung, 2000) (Line|11). To describe client disconnection formally,
1k is used to update the gradient surrogates (Line[12) and to perform the step (Line[17). Thus, in
practice, it is not necessary for an inactive device to know the actual parameters. We also normalize

the computed gradients by factors {g,, }}/_, to balance their magnitudes.

11: Generate n*"
12 ghhtl — g n,,L KRV £, (0 €hh)

M kb k—1
17: kh-‘rl_x _,y|:(1_ )E an fﬂhvf (khgkh)_"_egk 1,H :|

Analysis of Algorithm[2} We formulate the results for both non-convex and strongly-convex cases.

Corollary 3.8. Suppose Assumptions hold. Algorithm|2|with fixed rules Rk =
RFM = R needs

M 1 ALad; ALady ALao?
7 T ya— 4
€ € €
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K-1
. . . 2 1 k,0 2 .
number of devices communications to reach e-accuracy, where e = + kéo E H Vf(z )|| , A=

f(299) — f(a*) and C is the number of devices participating in each epoch.
Corollary 3.9. Under conditions of Theorem[E2)Algorithm 2| needs

M 1 ALadq L ALado n ALao? hs and
epochs an
minCk" min ¢, e? gt gt P
k.h 1<m<M
2
M 1 ALad ALad ALao?
ofm|—— . T
minCk-h min g, g2 gt et
k,h 1<m<M

Q’A:

K—1
: I 2 _ 1 E,0
number of devices communications to reach e-accuracy, where € = 4; kE ) E H Vf(z"?)

F(x%0) — f(x*) and %" is the number of devices participating in k-th iteration in h-th epoch.

Corollary 3.10. Suppose Assumptions 2.1} 2.2(b)} [2.3] hold. Algorithm 2] with fixed rules
RF = R¥P = R needs

~ M2 1 L 1 M ads M ac?
OlM(=) ———— (Zadilog (=) + =2 4 =20
(C> min g, (ua10g<€)+0u26+0u26>

1<m<M

2 and C'is the

number of devices communications to reach e-accuracy, where €2 = E HmK e
number of devices participating in each epoch.

Corollary 3.11. Under conditions of Theorem|E.6|Algorithm 2 needs
2

o M 1 L 51 1 n M «ady n M  «ao?
—adlog | — —= -
minCk:" min_ gm \ g &\ ¢ minCk" p2e ' minCkh 12
k,h 1<m<M k.,h k.,h
epochs or
3
~ M 1 L 1 M «d M  ao?
o|lm|— : “adilog (- )+ —— 22, 9T
minCkh min ¢, € minCkh p2e ' minCkPr ;2
k,h 1<m<M k.h k.h
communications

2 . . C
to reach e-accuracy, where > = E HxK 0 g* H and C*" is the number of devices participating in
k-th iteration in h-th epoch.

For more details, see Appendix [E} Note that minj<,,<as ¢, 1s a constant lying in the interval (0,1].
Thus, the rates of Algorithm [2]do not differ significantly from those for Algorithm [I] The only
deterioration occurs in the variance term associated with local stochasticity. Thus, if each device has
an access to its exact gradient, there is no asymptotical difference compared to Corollaries [3.3]and
3.0

3.4 DISCUSSION

We analyzed a wide class of sampling and weighting techniques and proposed algorithms for different
network scenarios. Their rates asymptotically coincide with the optimal ones for SGD-like approaches
(Stichl 2019). Due to considering biased strategies, we obtained an additional factor M/c. Again
analogizing to compression, this multiplier signifies compression power. It is a well-known fact
that there is no theoretical improvement for methods built upon error-feedback (Richtarik et al.,
2021; |Beznosikov et al., 2023)). However, we recover the convergence of SGD in the case of full
participation. Comparing our non-convex rate regarding the main term O (1/?) with prior works,
we note that it surpasses that in (Wang and Ji, [2022) (O (1/=* + d2)) both asymptotically and by
the absence of the non-vanishing term. Next, comparing strongly-convex rates (O (k log /<)), we
are superior to (Cho et al., 2022) (O (+*/e + kd2)) and (Luo et al., 2022) (O (%/<)). Moreover,
both of these works Iack non-convex analysis. We highlight that we soften assumptions from all
aforementioned works.
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4 EXPERIMENTS

To validate our theoretical findings, we conduct a systematic empirical comparison of six optimization
frameworks — FedAvg (Reddi et al., |2020), SCAFFOLD (Karimireddy et al., [2020), FedDyn
(Chen et al.,[2023)), Moon (Li et al.,[2021)), and PPBC (Algorithm@ — evaluated under full client
participation (FCP), along with two additional frameworks — F3AST (Ribero et al., [2022) and
PPBC+ (Algorithm [2)) — specifically designed for and evaluated under partial client participation
(PCP). Crucially, we fix the sampling strategy across all frameworks to isolate how each optimizer
interacts with it, thereby decoupling the sampling mechanism from core algorithmic innovations for
FCP experiments. All methods are compared under identical experimental conditions: same model
architectures, benchmark datasets, and hardware configurations. The following section details the
experimental setup, including architectures, datasets, and infrastructure.

Experimental Setup. We evaluate sampling strategies under three distinct data distribution settings:
(distr-1) homogeneous (i.i.d.), (distr-2) heterogeneous (client-specific class sets), and (distr-3)
strongly heterogeneous (varying data volumes and class skew). In this section we will present results
for the most challenging setup with distr-3, full version of experiments is in Appendix |B|along with
other details. Experiments use CIFAR-10 (Krizhevsky et al.,|2009) with RESNET-18 (Meng et al.,
2019) for image classification and FOOD101 Bossard et al.|(2014) with FASTERVIT (Hatamizadeh
et al.,[2023) for fine-tuning, providing a controlled benchmark for comparing Algorithm [I} Impor-
tantly, each plot compares frameworks — not strategies — by fixing the underlying strategy and varying
the framework. This correspondence is formalized in Algorithm [T} where the gradient surrogate
term vanishes, recovering the conventional update rule. Further implementation details (partitioning,
architecture, datasets) appear in Appendix

4.1 FULL CLIENT PARTICIPATION

Client Selection Rule. Notably, not all strategies in- Table 1: Frameworks and strategies com-
cluded in our comparative analysis inherently incorporate parison on CIFAR-10 & RESNET-18.
a client selection mechanism. To ensure a fair and con-

sistent evaluation, we uniformly applied the following Method + Strategy distr-3
selection rule across all methods: Loss (1) Ace (D)
Sk k
R" = Topc <7T ) ) FedAvg + PoC 0.898+0.021  65.3+0.20

;
where Top, denotes taking C' > 0 clients with the high- ~ FedAvg + FOLB 067420020 71.42:+0.19
est weights 7%, Consequently, the remainder of our ex- oo 9 © BT 232450023 11327025

WEIBLS 7 - quentty, . FedAvg + GNS 0.657+£0.019  71.15£0.19
periments will focus exclusively on the formulation and  scarrorp

+ PoC  0.788+0.020 69.81+0.19
analysis of weight update rules, while treating the client  scarroLp + FoLB 0.663£0.016 71.80+0.20
selection process itself as a fixed component of the exper- ~ SCAFFOLD + BANT 0.698+0.017 71.313+0.18
imental framework. SCAFFOLD + GNS  0.689+0.020 71.75+0.19
FedDyn 0.652+0.016  76.71%0.14
. . . . Moon 0.627+0.014  75.21+40.15
Client Sampling. We evaluate four established client
sampling strategies, each designed to improve convergence ~ FFPC * FoC 0-367:£0.019  88.87:£0.16
b by prioritizine cli based on diff . PPBC + FOLB 03620016  88.91+0.14
or ro ustness by prioritizing clients ased on di er.ent Cll- 035740015 88.964+0.15
teria. PoC (Cho et al.| 2022) selects clients proportionally  perc + cns 0.3644+0.016  88.90-+0.15

to their local loss values, favoring those with higher empiri- v~ "~

. . . otation: All values averaged over 3 seeds.
cal risk to accelerate optlmlzathn. BANT (X}e et al., 20'19) Arrows indicate optimization direction: |
employs a trust-based mechanism, dynamically scoring  minimize loss, 1 maximize accuracy. Green
clients by their historical alignment with server-side val- color represents our a]gorithms_
idation performance, thereby promoting reliability over
time. FOLB (Nguyen et al.| 2020) samples clients based on the projected utility of their updates
— specifically, the inner product between local gradients and the server’s global descent direction —
to maximize progress per round. Finally, GNS (Wang et al., [2020b) prioritizes clients with larger
gradient norms, under the intuition that clients exhibiting stronger local signals contribute more
meaningfully to global updates.

Full algorithmic descriptions and implementation details for all strategies are provided in Appendix [B]

Results. The comparative results are summarized in Table with primary evaluation
based on final test loss and accuracy metric. Figure [I] complements this by visu-
alizing the training dynamics of our PPBC framework against the strongest baselines.
For FedAvg and SCAFFOLD, we report their best-performing variant per sampling strat-
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egy, ensuring a fair and strategy-aware comparison. This allows us to isolate the
impact of the optimization framework itself, independent of sampling-induced variance.
0.9
0.8 o0
4.2  PARTIAL CLIENT PARTICIPATION " MM“W“‘?’;ﬁ*ﬁj’j

e

Client Sampling and Partial Participation. To simu-
late real-world scenarios, we model client presence at each

Accuracy

round via independent Bernoulli trials with participation
probability g,,,. We evaluate performance across a spec-

/I
7

o

=
/DE]

trum of participation regimes, ranging from full availabil-
ity (g, = 1) to highly sparse communication (g,, = 0.3),

ttied

PPBC + PoC

FedAvg + FOLB
SCAFFOLD + FOLB
MOON |
FedDyn

reflecting scenarios with frequent dropouts or intermittent
connectivity. To contextualize our framework’s robustness
under such conditions, we include comparative experi-
ments against F3AST, an algorithm specifically designed

to handle client outages and non-uniform participation. for best

20 40 . .,
# communicati

runs.

60

on rounds

80 1

Figure 1: Comparison graphs on distr-3

For PPBC+, we set server strategy RF with the FOLB strategy and employ PoC as the client sampling

mechanism R”.

Table 2: Frameworks and
Results. Similarly to the previous section, results Stralegies —comparison —on
are summarized in Table ] with the primary evalua- FASTERVIT & FOOD101.
tion based on the final test loss and accuracy metrics. ‘
Figure 2] represents accuracy graphs of our PPBC+ framework (Al-  Method - (Ud's"a W
gorithm2) with g,,, = 0.3 against F3AST with ¢,,, = 1,0.7,0.5 and P — 960001 671013
FedAvg with ¢, = 1. This plot clearly demonstrates the superi-  rsast(gn=1) 1692002 6831=0.11
ority of our method over F3AST. Moreover, we highlight that even ;2271 =00 |00 89002
under the most challenging communication conditions (¢ = 0.3),  escr (g =1) 093020017 76112000
our approach consistently converges to substantially higher accuracy =~ P2EC+ (g =0.7)  0.957£0018  76.04:0.12
. . PPBC+ (¢ = 0.5) 0.961£0.018  75.07+0.10
than all competing baselines. PPECH (g, —03) 0.996£0020 74684011
Discussion. We provided experimental validation of the —
theoretical convergence estimates for the proposed algo- ~ /*"_7
rithms across a range of practical federated learning tasks. >: =
Our evaluation included large-scale models, such as the FASTERVIT § / - 1
architecture with 270M parameters, demonstrating the scalability - / e i
and effectiveness of our approach in realistic learning scenarios. < / /g// el
Results demonstrate a substantial performance gap between con- "/ __ e i
ventional approaches (FedAvg, SCAFFOLD, FedDyn, Moon) and T s 5w wmw
# communication rounds

Algorithm [I| Additionally, we analyzed the behavior of the PPBC+
(Algorithm 2)) under varying client sampling conditions, confirming
the robustness and consistency of its performance across different
parameter ¢,,, values.

To further support our theoretical findings, we present Figure
[3l which illustrates that the algorithms introduced in this work
maintain comparable convergence rates across all considered
configurations. These results affirm that our methods preserve
efficiency and stability even when applied to heterogeneous data
distributions and complex model architectures.

Figure 3:

Accuracy

Figure 2: Comparison graphs
on distr-3 for best runs.

RESNETI18,

FASTERVIT,

CIFAR-10

—e— PPBC GNS
s~ PPBC BANT

—— PPBC FOLB

—— PPBC PoC

Accuracy

Foopn101

# communication rounds

# communication rounds

Test accuracy of

PPBC/PPBC+ for image clas-
sification with RESNETI18 on
CIFAR-10 and FASTERVIT fine-
tuning on Foop101.
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A PARTIAL PARTICIPATION WITH UNAVAILABLE DEVICES

In this section, we present Algorithm 2] which is the complete version of algorithm from Section
[3:3] This method can be applied to environments where devices do not perform local computations
periodically.

Algorithm 2 PPBC+

1: Input: Start point p-LHT cR?, g’l’H_1 eRY, epochs number K, number of devices M
2: Parameters: Stepsize v > 0, momentum 0 < 6 < 1, regularization 1 < o < M
3: forepochs k =0,..., K —1do
4: Initialize 7% // Server weighs clients using any procedure
5: 7k = ﬁ,k (ﬂ'k) // Server selects clients to communicate through epoch using any rule R
6 gfﬁo = 0// Each client initializes the gradient surrogate
7 k0 = xk_l’Hk71 — ng_l’H}Pl // Server initializes the initial point of the epoch
8: Generate H* ~ Geom(p) // Server generates number of iterations of k-th epoch
9:  foriterations h = 0,..., H* — 1 do
10: for devices m = 1... M in parallel do
11: Generate nﬁ{h ~ B(qm) // Device generates its state: available / unavailable
12: %h"'l = gﬁ{h +(1-6) % (ﬁ - ﬁ',k,{h) me(xkvh,g,’“,;h) // Update the gradient
surrogate
13: end for
14: for each device m : %" # 0 and 7%, # 0 do
15: Send Mme(xk’h, €R:h) to the server
qm
16: end for
Mk k-1
17: R+l = ghh 5 1(1—6) Zl Do 10N fon (a0 €5 + 0gF T 1y Server up-
m=

dates [)(l]'([l}l(’[(’l‘.\'
18: end for
19: for devices m = 1... M in parallel do

20: Send gk * to the server
21: end for
k M k
22: gk’H = Z gﬁl’H // Server aggregates gradient surrogates
m=1
23: end for

B ADDITIONAL EXPERIMENTS AND DETAILS
Our code is available athhttps://anonymous.4open.science/r/EF25_ICLR/!

Hardware Details. The experiments were conducted using Python with the PyTorch deep learning
framework (Paszke et al.,[2017). The computational hardware consisted of a server equipped with
an Intel Xeon Gold 6342 CPU and two NVIDIA A100 40GB GPUs. The total runtime for all
experimental evaluations amounted to approximately 80 hours. To simulate a federated learning
environment, data was distributed across clients based on a heterogeneity parameter.

Data Distribution. In our study, we employed 10 clients for both the RESNET-18 on CIFAR-10
setup and the FASTERVIT fine-tuning on the FOOD101 dataset. This client count was carefully
chosen to enable comprehensive evaluation across the diverse data distribution scenarios proposed
in our work, while maintaining computational feasibility for thorough experimentation. Below, we
provide a detailed summary of the data distribution characteristics for each experimental setup.
Homogeneous data distribution (distr-1) — each client has the same number of data samples, and
class labels are uniformly distributed across clients.

Example (CIFAR-10): Each client has 500 training samples per class, resulting in 5,000 samples per
client in total.

Heterogeneous data distribution (distr-2) — each client has the same total number of samples, but
class labels are distributed in a non-IID manner.
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Example (CIFAR-10): We split the 10 classes into two disjoint groups (e.g., classes 0-4 and 5-9), and
assign clients to one of the two groups. Clients in each group receive data only from their assigned
classes. Additionally, the number of samples per class varies across clients.
Pathological data distribution (distr-3) — clients possess Table 3: Client-wise data sample propor-
different amounts of data. The distribution of sample tions in distr-3.
proportions across clients is as follows:

Within each client, class labels are sampled according

Client no. Proportion

to a Dirichlet distribution with concentration parameter 1 10.6%
a = 0.5, resulting in highly non-IID label distributions. 2 7.4%
Next, we provide a detailed overview of the client 3 12.0%
sampling strategies and present comparative results for 4 11.4%
FedAvg, SCAFFOLD, and Algorithm [T We exclude 5 8.8%
FedDyn and Moon from this analysis, as their designs 6 14.6%
incorporate fixed strategies that cannot be decoupled from 7 10.0%
their core update rules. 8 5.4%

9 10.2%

10 9.2%

Loss-aware Client Sampling. Building upon previ-
ous work, (Cho et al.| (2022) introduced the POWER-OF-
CHOICE (PoC) strategy, which employs a weighted client sampling mechanism based on local loss
values. Formally, the weight update rule can be expressed as:

1. The server assigns to all clients the probabil-  z—"! distr-2 e teed
ities proportional to the data size fractions \ k . T\\

N

Pm =77\
(%)

m’=1

(a) Convergence comparison.

2. The global model is sent by the server to the

distr-1 distr-2 distr-3

selected C clients, which compute and return , ;
their local loss values based on their datasets. | =" "’“
Subsequently, the weights are updated: kol il
o ¥ ol A
k
T = — Ug(x,a; ),b; .
( |"l’Lm Z (g( IM) m )] > (b) Metrics comparison.
im=1 m=1

Figure 4: Performance comparison for PoC strat-
egy with different data distributions.

Trust-Score Sampling. The study by |Xie et al.|(2019) introduces the BANT, which implements
a trust-based sampling mechanism. This approach assigns dynamic trust scores to clients based on
historical performance metrics. Thus, weight update rule can be described as:

1. The server assigns trust scores TS';1 to each
client m based on the alignment of their model
updates with the performance on server-held
ground truth data V:

distr-1 distr-2 distr-3

(a) Convergence comparison.

Tsﬁl = exp _i Z fm(xk O gistr1 dgistr2 distr-3

V& = ==
2. The weights are updated with a probability ~+ [ / L e
proportional to trust scores: I I8 .

(b) Metrics comparison.
K TS,,,
= M ‘ Figure 5: Performance comparison for BANT strat-
TSf,L, egy with different data distributions.
m’=1 m=1
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Importance Sampling. Nguyen et al.| (2020) introduced FOLB, a theoretically grounded client
selection framework for federated learning that optimizes convergence by sampling clients propor-
tionally to the expected utility of their local updates. The core selection mechanism operates as
follows: distr-1 distr-2 distr-3

1. Each client is assigned an importance score MM“”’"‘\M - tm\
IS®  proportional to the inner product between =
its gradient V f,,, (x*, ¢ ) and the direction of
the server model improvement (previous gradi-

3 \\: " O80gg, :;;‘:::?;v

ent dk) (a) Convergence comparison.
ISF, = [(V fm (2", &5, d)| . distr-1 distr-2
2. The weights are updated with a probability | #7===  © /W
proportional to the trust scores for each client: | .
M
ISk
ﬂ'k = % . (b) Metrics comparison.
SISk, : -
S ) Figure 6: Performance comparison for FOLB strat-
= —

egy with different data distributions.

Gradient-Norm-Based Sampling. For the image classification problem on CIFAR-10 dataset, we
introduce an alternative client sampling strategy based on gradient norm sampling GNS |Wang et al.
(2020b)), which prioritizes clients whose local updates exhibit larger magnitudes. In particular:

1. At each communication round k, the server diste-1 A2 R diste-3
estimates the relative importance of each client t\mww . ‘“"”%’M\“ I EQ N
m using the norm of its reported gradient - NG

V fm(wh, €h):
v V(e &)1,

= . (a) Convergence comparison.
M kE ¢k
Zm’:l ||me/ (w ) gm/ ) H2 distr-1 distr-2
2. Clients are then sampled with probabilities o i
Iié

proportional to {pX }M_,  ensuring that those
with larger gradient norms are selected more
M
7Tk = (pfn)mzl . (b) Metrics comparison.

.....

s

m

frequently:

'.I‘h;.obtamed compa(r11s70n results are presented Figure 7: Performance comparison for GNS strat-
in Figures i} [61 5} an egy with different data distributions.

ViT Fine-tuning. To further assess the generalization and adaptability of our method, we conduct
additional experiments involving the fine-tuning of a state-of-the-art Vision Transformer architecture
FASTERVIT (Hatamizadeh et al.l2023). The model, pre-trained on the large-scale IMAGENET21K
dataset (Ridnik et al. [2021)), comprises approximately 270M parameters and integrates hybrid
hierarchical-attention mechanisms for efficient multi-scale feature learning. We fine-tune this model
on the FOOD101 dataset (Bossard et al., [2014), a challenging benchmark consisting of 101,000
images across 101 fine-grained food categories. This dataset presents significant visual complexity
due to high class variation and subtle inter-class distinctions, making it particularly suitable for
evaluating the scalability of our method.

Table 4: Summary of training strategies used in additional experiments. Top and Rand denote the
client selection rules, where the number indicates how many clients were selected for training.

Epoch Strategy Round Strategy

GNS (Top 3) PoC (Top 1)
FOLB (Top 3) PoC (Top 1)
PoC (Top 3) Rand 1
FOLB (Top 3) Rand 1

19



Under review as a conference paper at ICLR 2026

GNS + PoC FOLB + PoC PoC + Rand 1 FOLB + Rand 1
N ~ ~
@ = I ! @ =2 2 0
o o o o
ko] o) il ]
8 8 8 8
—e— PPBC —e— PPBC —e— PPBC —e— PPBC
| —o FedAvg N ol 7 FedAvg T—g | —° FedAvg T | —° FedAvg T
R T 1 e R P VR ERI s T e PRI
# communication rounds # communication rounds # communication rounds # communication rounds

(a) Losses for strategy mixture comparison.

GNS + PoC FOLB + PoC PoC + Rand 1 FOLB + Rand 1
0
o7 = o —~ 07 — — . — |
o o
Ze @ Zo x Ze * e z i
e, C. e, 2,
=1 =] 3 =]
g > S . g 5 g 5
2 —o— PPBC <o / —— PPBC o —e— PPBC o —— PPBC
o / a— FedAvg o1 / a— FedAvg o / a— FedAvg o / o— FedAvg
00 ; 00 | 00 | 00
] i I VI i BRI R TR
# communication rounds # communication rounds # communication rounds # communication rounds

(b) Metrics (Accuracy @1) for strategy mixture comparison.

Figure 8: Performance comparison for combination of strategies on FASTERVIT fine-tuning.

Strategy Mixture. In the preceding experimental setups, we restricted our evaluation to a fixed,
server-based client sampling strategy. However, as demonstrated in our theoretical analysis, Algo-
rithm [1] is flexible enough to accommodate a broader class of sampling mechanisms, potentially
varying across communication rounds. To validate this flexibility empirically, we conduct additional
experiments for FASTERVIT fine-tuning on distr-3 data distribution. We consider this setup to be the
most challenging one, because strong heterogeneity with different amount of samples and classes
per client and various strategies makes the FedAvg and SCAFFOLD algorithms behave similarly.
Therefore, our further experimental comparisons will only include FedAvg. We allow the sampling
rule R¥" to change dynamically at each communication round k. The combinations of strategies are
presented in Tabled] The performance validation results for each strategy mixture can be observed in

Figure[§]

Ablation Study on Hyperparameters. Our framework admits a unifying interpretation: by setting
6 = 0 and disabling the client weighting mechanism, we recover the original baseline methods
(FedAvg + any client sampling strategy). Consequently, by varying 6 we can obtain various perfor-
mance of Algorithm[I] Our method also utilizes another hyperparameter: the duration between global
aggregations (length of the local epochs) H*, modeled as a geometrically distributed random variable
with parameter p. Our theoretical analysis imposes no constraints on p; convergence guarantees hold
for any choice, with rates explicitly dependent on this hyperparameter (see Theorems [3.5] 3.2} [E.2}
[E.6). Next, we conduct an ablation study on both hyperparameters 6, p to quantify their impact on
performance. Moreover, we demonstrate the empirical connection between 6 and p, which correlates
with our theoretical findings.

Firstly, we provide ablation study on #. We fix p = 0.2 (yielding H* = 5) and vary 6 under the GNS
client selection rule. Results are shown in Table[3

Table 5: Ablation on 6 with H* = 5.

0 Accuracy Loss

0.05 0.88 0.35
0.10 0.90 0.31
0.15 0.93 0.21
0.20 0.89 0.32

We confirm our theoretical expectations: excessively small values of 6 do not allow for effectively
accounting for the clients’ history (§ = 0 corresponds to FedAvg), while large values disproportion-
ately increases the contribution of gradient surrogates that become outdated after an epoch. However,
there exists a wide interval within which the method do not lose much quality compared to optimal 6
value.
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Next, we fix § = 0.2 and vary p (i.e., the expected epoch size H k— 1/p), with results in Table@

Table 6: Ablation on local epoch size with § = 0.2.

H*  Accuracy Loss

1 0.81 0.38
3 0.91 0.23
5 0.89 0.32
7 0.82 0.39

For 6 = 0.15, the optimal local epoch size is H* = 5 (see Table E[), while for 8 = 0.2, the optimal
value decreases to H¥ = 3. This finding is in complete agreement with theoretical expectations:
bigger values of  require fewer number of local steps to achieve optimal convergence.

Ablation Study on Convergence. In this para- RESNETI8, CIFAR-10 FASTERVIT, Foop101

graph, we emphasize that the proposed Algo- . == o — —
rithm[T] maintains similar convergence behavior gj 3 //
across all combinations of the considered strate-  3° T[ ioiaaan I N

. . . . . v g —e— PPBC (GNS+PoC)
gies (see Figure[9). This result is obtained by <. " —— PPBC FOLB <o o PPBC (FOLB+PoC)
gradient compensation technique incorporated —— PPBC PoC o e corapa
in our method. Thus, a biases that appear due to # communication rotnds # communication rounds
applying client sampling strategies are equally
mitigated by our algorithm. Figure 9: Test accuracy of PPBC for image clas-

sification with RESNET18 on CIFAR-10 and

PPBC does not require a fixed aggregation TASTERVIT fine-tuning on FOOD101.

round. Our algorithms PPBC and PPBC+ have one limitation: they require transmitting all accu-
mulated surrogates once per epoch. For this reason, we conduct an experimental study (PPBC) in
which we remove the requirement that all devices must send their information every fixed number of
iterations.
We introduced an additional mechanism: at the moment of full aggregation, a client may choose not
to send the surrogate it accumulated during the epoch. This is modeled similarly to PPBC+, using
a Bernoulli random variable with a new hyperparameter ¢.. In other words, any client may fail to
provide its surrogate during the full aggregation step. Consequently, line 20 of the Algorithm[2]is
modified to the following block:

generate nfﬁ ~ Q. if 777'31 =1: send g,’j{H"' to the server
We conducted experiments (see Figure@) for different values of both ¢,, and g., and compared our
results with standard PPBC+ (Algorithm [2) using ¢,,, = 0.3, as well as with the baseline FedAvg
under pathological data heterogeneity. As expected, the new algorithm performs worse than PPBC+
with full aggregation, yet it still consistently outperforms FedAvg.

—@— PPBC+ (qm=0.3) 07 /.._”"
B PPBC(gm=qe=0.7) ’ . —
—#— PPBC(qm = e =0.5) 0.6 =
0 —— PPBC(gn=0.=0.3) L>)‘° s Z
wn —o— FedAvg (gm =1.0)
o \ I I ©oa / o /
+ | | 3 /
$ : | 8 0.3 7K/ —e- PPBC+ (qn=03)
= \ <,, B PPBC(Gm=0e=0.7) _
\ o i / / / —#— PPBC(qm =g =0.5)
\ 01 / V4 —— PPBC(Gm=0e=0.3)
100 — 0.0 —o- FedAvg (an=10) |
0 4 ) 8 10 12 14 0 2 4 6' B 10 12 14
# communication rounds # communication rounds

Figure 10: Test loss and test accuracy of PPBC, PPBC+, and FedAvg on FASTERVIT fine-tuning on
Foop101.
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C GENERAL STATEMENTS

Notation. In the work we use the following notation. z*" € R is the vector of model’s parameters
in h-th iteration in k-th epoch, V f,,(z) € R? represents the gradient of function f,, at the point
x € R4, Vf,(r,&) € R? denotes the stochastic gradient at the point 2 € R? with respect to
stochastic realization &.

For a random vector « € R? and stochasticity ¢ we denote [E [] is the expected value of = and E¢ []
as the conditioned expected value with the respect to &.

[ d d
We use ||z]| = (/> x? as l-norm of the vector z € R¢ and (z,y) = > represents the scalar
i=1

i=1
product of vectors z,y € R%.

We use number of devices communications (device to server communications) as the metric. This
choice arises from the recognition that the number of rounds of communication is insufficient to
adequately compare distributed methods. For example, this limitation becomes evident when the
nodes operate asynchronously. In this case, the more appropriate metric is the total number of
communications rather than the number of rounds.

General inequalities. Suppose z,y,{a;};_, € R, {w;}!_, € R, f(-) inherent to Assumptions
22(b)

¢(+) is under Assumption Then,
IV f(2) = VI)I* <2L(f(z) = fy) = (VI(y).x — ), (Lip)
1
(@) < 5 ol + 55 1ol (Fen)
n 2 n
> ail| <n ) llail?, (CS)
=1 i=1

. (Z?_1 wiai) POMSTITICHY (Jen)

D iy @i D i @i
Lemma C.1 ((Allen-Zhu, 2018)). Given sequence Dy, D1,... Dy € R, where N € Geom(p).
Then,

En [Dn-1] = pDo + (1 — p)En [Dn] .

D PROOFS FOR ALGORITHM 1]

Lemma D.1 (Lemma[3.1). Suppose Assumptions hold. Then for Algorithm([l|it implies that

2 24(1—0)2a(6 + 1 2 48(1— 0)%a6
EpBero ... E ey |68 < (=6 a+1)p va(xk,H’“)H L 180 =0)ad,
m Em p2 p2
24(1 — 6)2a0?
i Sl i
Mp?

Proof. Let us start with the following estimate:

M
-0y (]\1/[ — %fn’h) Ay

m=1

2

2
thh+1H

(Fen)) Eoh 12
SErIr

+<1+i> (1—6)?

where c is defined below. Let us estimate the last term and obtain

2

M
2 (;4 - %ﬁzh> Vin@" &M @

m=1

2

Mo
) (M - ?rii;h) V(@ E5)

m=1
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2

s m% % = 7h) F (o)
mf( T ) [T E5) = V() 2
mfj(M ) V) - i(;—w)w o
u :

Z ( _ 5 h) V fn (2" €8T =V fn (2]

Adding and subtracting Z 7R £ (2%7) in the first term yields

M 2
1 kb Lok ghih
> ( L ) V fo (bt €5
M M
1 ~k.h s h kb
mZ: (M ) [V fon () — mzil k)Y f(ah
M 2
+2 -_— Nk h vfm( §7n ) Vf ( )
> () |
M 2
il ( ! ) Y fun(ah) = V f(ah )]
M 2
+4 Z k) V()
M 2
w23 (;4 _ %m) [V fn (1, E5) = f (21)]

We apply equation[CS]to the first term and identically transform the second and third terms:
Iy 2
1
> (M - anh) V fon (2, €57
- 2
<4Z( — h) Z [V fin (") = V(]|
M 2
(S ) et

1
< i,%,h ’ kb eck,hy k,hy (|2
+23 7 (37— ") IV Fm@™" €5 = V(@)

m=1
1 1
+4§ = - W) (M B Wf,;)
(VLR M) = Vi), VL ) = 9 fy ()
A(Siil:z):{I ) Mo 2 ,
< AM (8 [|VFEM)F+6) (M —ﬁ’i‘;h) + 4[| V)

m=1
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M 2
+2) (1\14 - %Zizh) |V £ @ 6857 = V(M)
m=1

1 1
"y (M _ %f’h) (M _ ;@h) .

i
(VE@EHL ) = VAN, VI - V),

M M
where (i) was made due to Y (& —7k) =1—1=0, (i) with respect to Y (75" — 7k ) < 1.
m=1 m=1

Taking expectation on £%:" and using Assumption [2.4] we have

2
SO ICOTEY

m=1

E

g
VR
==
|

2
gk‘
>

N———

M1
> (M - %Zf,;") Vfin (2, E5")

m=1

ke,
Em”

||V M)

M 1 2
+AMSy > (M - %’;;h)

m=1
M 1 2
+207 ) ( - %f,;h) , 5)
m=1 M

since ff " and 13 f " are independent random variables and, consequently, the scalar product equals to
Zero.

We use 7 € AM N (ﬂ%:l {riepm+ &> O}), where 1 < a < M and {e,, }_; is the unit

basis. In this way, worst case in terms of average distance from % is realization, where {%J weights
are % and the rest are zero. In such a case, we can estimate
M 2
1 M| (a—1)? M 1
- ) < - M — - -
;(M Wm> {aJ TE o) i
M (a —1)? M 1
< —— M-—+1|—
a M2 + @ + M?
a—1 1 «@
= — < —. 6
M + M2 - M ©)
We can transform equation [3]into
M 1 ’ 2 2002
Eeen || Y (M - %f,;h) Vin(@®™)| <4a (@ + D) || V™M) + 4ads + AL
m=1

Substituting equation[7]into equation[4] we have
X 1
Econ [l 1° < (1+0) g5 +4 (1 + C) (1-0)%a(d + 1) |[VF@*")|
+4 <1 + 1) (1—6)%*ad,
c
va(1ei)a-02s?
- A

Enrolling a recursion, we get

h
Ego. Egor 8] < 4(1+i) (1= 020 +1) S (1 + 0" ||V £
=0
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h

44 (1 + i) (1-0)%ad Y (1+c)"~

=0

49 <1+) - QZ (1+c) 8)

Now we use that H* ~ Geom(p):

k|2 . 9
EmBero - Eg o |07 = D p(1l—p)Ego.. Eg g™
j=0
B 1 ,
< 414 2) -0+

Jj—1
D= P (1 O
3=0 =0
1 o
+2 (1 + ) (1- Q)QM (0% +2M65) -

> pA—p JZ (14 )=t ©)

3=0 i=

<.
—

(=)

Let us choose ¢ = £ and consider the following term individually:

j—1
Sop =y 1+ [ = [0 [T

=0 i=0

+(1—p)? {(1 +0) [+ [V} + ]
[ "1+ +(1-p)(L+c)+ va kO)H

+p(1 p)2|:( )(1+c)+(1—p)(1+c)+...]||Vf(ack’1)H2+...

<Y A=)+ DY —p) V)

1>0 7>0
2 2 k|12
< (1-p) v - s 2 H H
1_<1_ ;p ) |V Y (™)
J
2 2
< B Vf(xk’Hk)’ . (10)

Additionally, we have

Jj— )

i . N . p J

> opl=py Y (14+ef 7t < PZ(l—P)JJ(1+§)'7<PZ](1—§)
0

>0 i= >0 >0

1-2 4
= p——2 L. (11)

P 5 <
(1-(-%) P
Combining this estimates with equation [9] we obtain the result of the lemma:

[y

2 _24(1 - 0)%a(dy +1)

2 48(1 — 9)20462
p? T

p2

k
k,H ]Ech

]EHk]Egk,O ...Egk)Hk,l Vf(xk,Hk)H

9
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24(1 — 0)%a0?
+ .
Mp

D.1 PROOF FOR NON-CONVEX CASE

Theorem D.2 (Theorem[3.2). Suppose Assumptions 2.1 23] 24 hold. Then for Algorithm([I]

. ~Lp? P .. .
with 0 § 5 and’}/ < m it lmpll@s that

K-—1 1 0.0y § -
% > IEHVf(xk,o)”Z p 6 (f(220) — f(a*)) N 768y Lad, N 38472 L2ady

7K p P
400yLac? 19272 L%ac?
+ + .
Mp Mp?

Proof. We start with the definition of virtual sequence:

M
G — gk Z gh = ghoh _ A ghh, (12)
It is followed by
M
-~ ~ _ k—1
Gt _phhtl _ Z ghtl — g [(1 —9) Z ThI o (ghh gl | gk
m=1 m=1
M Mo
SN0 Y (5 - ) Vo)
m=1 m=1
1 < -
=k N ko ckh k—1,H"~
=z = [(1 9) MMZZI V(2™ 657) + 09 ] : (13)
Assumption [2.T]implies

f(fk’h+1) < f(fk"h) + <Vf(%k7h)7%k’h+1 _ iEk,h> + é ||5k,h+1 _ Ek’h||2

(13)
(Jen)

2 2

< SE) a0 (TIEE), g 17H’“’1>
_fy( )<Vf ~kh vam khfkh)>
) = Z Vit gy + T2 o=
m=1

Taking expectation over £F:", we have
B [f@ "] < Egon [f@")] — 10E gk <Vf(%'“’h), gHH“>

—(1 - O, <Vf~“ Zme “5’”>>

2

2
¥ L(1—6
+ (2 ) gfnh Z vfm k,h fk h)
2L0 12
+ T B Hg’H’Hk (14)
Note that
Fhoh 12 b ng,h
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Line[l2  k.n k=1 |
= r =719

Thus, 25" and £:" are independent. Analogously, g"~1#" " and ¢%:» are independent. In this way,
equation [T4] transforms into

f_ (57— 7 ) wrehe, m>>

m=1

Eg.n [f@E"D] < f@k’h)—79<Vf(§kah),gk—l,Hk*1>
(L= 0)(VF(@E""), V f(""))

2 M

v4L(1—0) 1

— i Z vfm(zk’h,ffn’h)
m=1

2

2

+ Efﬁih

2L6 .
+’Y Hgkq,H’f 1

2

< @) =0 (TG, g )
—v<1—e><w<%kvh> F@ ")

M
Z me k,h fkh) me(l'k’h))

+2L(1 = 6) |V f(z*" ||2
+’72L0 Hgkil)Hk—l

2
+’Y2L( E koh

15)

Now we pay attention to the following term:

1 M
M Z (vfm(mk’haff,{h) _ me(l'k’h))
m=1

@) 1 M
?
- W E ]E&.icn,h

L g [ 0 -] g [t ) 1]

i#j

V (@ €51 = W fon (M)

A4 1
< MO- )

where (i) is correct, since ff " and ﬁf’h are independent. Substituting this estimate into equation ,
we have

Egen [f@™] < f@") — 20 <Vf(fk,h),gk71,Hk_l>
—y(1 = 0)(Vf(@""), V f(a™h))

7L = )+ T g

Y2L(1 — 6)c?
+7M . (16)
Let us estimate the scalar products separately.
~ (1 -6 — 2 1-40 2
-0 (v vy = g - 0 )

S ek
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s.21 — _
Ag _7(12 0) va(fk,h)w B '7(12 0) va(xk,h)HQ

yL2(1—0) | - 2
A0 oo

2
12 7(1-9) ey 2 YL —6) k,hy||2
= TS @ - B vt
37201 _
+’V L (21 9) ||gk,h| 27

(Fen) 2

~ k—1 0 ~ 0 k-1
0 <vf(xk,h)’gk71,H > < ’Y? va(xk,h)HQ n ’Y? Hgkq,H

Combining it with equation[T6] we have

~ - 1-0
E&’fn’h [f(xk,hﬂﬂ < f(xk,h) . ¥( 5 )
372
v LA (1 —6) 2 YO(YL + 1) || p_q gr—1
S0 gon2  20OLED)
2 2
Now we put h = H¥ — 1 and take additional expectations.

(1 -2y O - L2 g g

2 ~42L(1 - 0)o?
TEZ YT
+ i .

Egk—l,o .. 'Egka’“—1 {f(%k,]{k )}
< Egk—l,o .. 'Egk,H’C71 [f(%k,Hk_l)}

- w (1 — 2’)/L) ngr:m) .. .ngnﬂkfl
v(1 —26)
2
372
+ WEg{LO .. 'Egﬁz’,”k’l
L 200L+1)
2
Y2L(1 — 6)o?
—ar
We take expectation with respect to H*~! and H*, and apply LemmalC.1}

v |

v |

Egt i Egpm s

2
k,H* -1
g

2
k—1,Hk1!
g

ngn—l,() . Egk,l’Hk71,1
m

EHk—lEHkngn—l,O . Egk)Hk,l [f(fk’Hk)]

< (1 _p)EHk—lEHk]Egk—l,O .. 'Egk,H’C—1 [f(fk’Hk)]
+pEHk71E£k—1,O O R [f(fk’o)]

3
1 —0)p
2
1-0)(1—
— w (1 — 2’)/L) EHk—ﬂEHkE&k;L—Lo .. ']Egk’Hk_l
(1 —20)p
2

1-26)(1 -
- wEHHEHkE%A,O o Ege

2
3L2(1-6
MEH’“*EE?;LO L E k—1,Hk—1_1 Hg

] - ~

(1= 2yL) Egem1Berro . By oty HVf(xk,o)Hz

V()

’ 2

Ekalngnfl,o . Egkfl,H’Cflfl HVf(fk’O)HQ

v

2

N VAL (1 —-6)(1 - p) NG

2

]EHk—l]EHk]Egk—l,O ce ]EEk,Hk,l g
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k—1,m+1]|%

O(vL +1
el (72+ )
Y2L(1 — 6)o?

M

EHk—lEé.k—l,(J .. 'Eskfl,kalfl g

HF 11 .
Next, we put v < 7 and § < 1. Moreover, we use that H* and {¢k 1"} ,_o  areindependent
stochastic values.

EkalEH’“nggl’o c ]EEk,Hk,l {f(.ﬁik’Hk )}

< (1 — p)]EHk—l]EHk]Egﬁl—l,o .. ']Efk’Hk_l {f(fk’Hk)]
+p]EHk71E£:cnfl,0 R DS [f(%k,o)}

13
1-6
_ WEHJQAE&;LO ...E k—1,k=1-1 HVf(xk,o)

13
1-6)(1 -
- wElemEéwo Bt

4
L PRO-00 )

2
I

k(12
V|

ko H ||

g

Ekalngr;Lo .. 'Efﬁfl’Hkil_lEHkEﬁfdo .. 'Eff,{Hk_l

k—1,m+=1 ]|
g b

+ ’}/GEHA:—lEé:v’,L—l,O o ]Egk_l’Hk’_l_l

YV2L(1 — 6)o?
+ TR a7

. k 2 k—1 2 .
We use Lemmato estimate Hgk’H H and Hgk_l’H H . We obtain

2 24(1 —0)%a(d 1 2 48(1 —6)%as
EHkE ko ... koK1 gk7Hk < ( ) a( 1+ )EHk va(xk,Hk)H + w
m Em p2 p2
24(1 — 0)2a0?
T (18)
1112
As fongk_l’Hk "|I', we have
12
EHk—lEff;l—l,O .. 'Egkfl,Hk—l,l gkfl,Hk

< 24(1 — 0)%a(dy + 1) ’2 n 48(1 — 0)%ady N 24(1 — 0)%ao?

Eppics ||V £t 1)

p2 p2 Mp2
€3 48(1 — 0)a(6, + 1 -1 _ 12
< ( )2‘( 1+ )EHk—l vf(l,lcfl,H’C )*Vf(ﬂﬁkil’Hk ) ’
48(1 — 0)%a(6; + 1) g2 48(1—0)2ady  24(1 — 6)%ao?
+ 7 Epr— Vf(xk LH ) ‘ + 7 + Mp?
As.<|Zﬂ 48L2(1 — 9)2a(51 + 1)EHk—1 kail’kal B Ekfl,H’“’l 2
48(1 — 0)%a(6; + 1) povn2 . 48(1—0)%ady  24(1 — 0)%*ao?
T D2 [VF (2" + D2 + Mp?
48v2L%(1 — 0)%a(d1 + 1) o1 g1 |2
= B EHk—l g ?
p
48(1 — 0)%a(6; + 1) o2 . 48(1—6)%ady  24(1 — 6)%*ao?
t D2 V£ + 2 T Mp? :
We choose v < m. Moreover, we take additional expectations and again use that H k—1

HE1 1 . .
and {&y"},_ are independent stochastic values:
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k—1 Hk,—l 2

Ekalngnfl,O - ]E&_k_l)Hk—l_l
m

96(1 — 0)2a(d; + 1)
< ( )pz Egi:,rrl,u ...ngn,Lkal,l HVf(xk’O)
n 48(1 — 0)?ao?
Mp? ’
Now we substitute equation[I8]and equation [I9]into equation [I7}

g

96(1 — 6)%ad
H2+ ( 2)042
p
(19)

PR BB o By [f(%’“’Hk)]
< pEHk—JE{:cn—l,o .. .Eff;fl’Hk_lfl [f(%k’o)]

1-6 2
_ %EHIC—IEE&—LO .. 'Eg,ﬁfl’Hk71_1 ||Vf(xk,O)H
1@ -6)1-p)
4
1293L%(1 — 6)2(1 — p)a(6y + 1)
+ 2
p
243L2(1 — 0)3(1 — p)ady  1293L%(1 — 0)3(1 — p)ao?
+ 2 + 2
p Mp
96v0(1 — 0)%a(; + 1) 5.0
+ 7 ngn—u) .. .]Egj;lfl,Hk—l,l HVf(Z‘ ’ )
N 96v60(1 — 60)%ady . 48v0(1 — 0)%ac? n Y2L(1 — 6)0?
p? Mp? M '
We take the full expectation, then use a law of expectation and rearrange terms:

v i

EHk—lEHkEgk—l,O .. .]Eﬁk’Hk71

V("

‘ 2

]EHk—lEgk—l,O “e . Egk—l‘Hk_l—l]EHk

I

PE [f@1)] < pE[£(E)]

v(1—=6)(1—p) < 48v2L2%(1 — 0)%a(d; + 1)
4

> )E|vsam|

1-96 38460(1 — O)ae(91 + 1
243L%(1 - 0)3(1 — p)ady ~ 9670(1 — 0)%ady
+ 2 + 2
p p
Y2L(1 — 6)o? n 1293L2(1 - 0)3(1 — p)ao? n 4870(1 — 0)*ao?
M Mp? Mp? '

1-—

I

+

2
We choose 8 < % and v < W@H)' Note that all previous transitions hold even with larger
choice of 8 and -, consequently this choice is correct. In that way, we obtain

(1 —-0)p 2 _ . HE
WO |gp@ho)|* < pB[r@) - f@H)
243 L2 ad
+ 20 L 482 Lad,
p
+72L02 N 12v3 L2 ao? " 2472Loz02'
M Mp? M

~ k k k ~
Note that ZF- 1" = ghH" — gk H" = gk+1.0 and 750 = 250 Thus,

1-06 48~y Lod 24~2L2% 06
V( )EHVf(:z:k’O) < E[f(xk,o)if(szrLo)]Jr Y 2Jr Y 2

2
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2572 Lao? N 1272 L2 oo
Mp Mp3
Averaging over all epochs, we obtain the result of the theorem:

Kz: E ||V f(z"°) | < 8 (f(z0) —E [f(="0)]) 384yLady = 19292L2ad,
k=0 = '7(1 —9)K p(l_a) p3(1—6‘)
+ 2007La02 96’)/2[,20402
Mp(1—0) ~ Mp3(1—0)
< 16 (f(x0,0) - f(x*)) n 768y Lads N 38472520[52

VK » »
400yLao?  192v2L2a0?
+ =+ )
Mp Mp?

O

Corollary D.3 (Corollary 3.3). Under conditions of Theorem [3.2 Algorithm [I| with fixed rules
RF = RFP = R needs

M (ALady ALady ALao?
O(C( = + = + = epochs and

M (ALady ALady ALac?
O<MC’< e? + et * Met

> ) number of devices communications

K-1
to reach e-accuracy, where e* = = 3 E||Vf(x A= f(2%0) — f(2*) and C is the number
k=0

of devices participating in each epoch.

Proof. Using the result of Theorem [3.2] we choose

_ min{ p V(@00 — Flz))p Y/ (f@%0) — f(z*))p
TS 384La(d; + 1) 4\/3La62K ’ 2\/3L2a62 ’
V (f(@20) — Mp {/(f(@00) — f(x*)) Mp
5\/La02K \/12L2a02K )

Thus, we need

o ((f(xw) @) Lady | (fa®) — Ja)) Lady | () — J(a)) Loo®
pe pe Mpe

+(f(x“) ())L\/W (f(220) — f(x*))L\/aa>

p3ed VMpies

epochs to reach e-accuracy, where ¢2 = Z EHV f(zk0) H Since the last two

terms in the estimate in a magnitude smaller, than the second and third accordingly,
we can ignore them. The length of the epoch H € Geom(p), Algorithm [l| requires

0 (f(z"°)=f(z"))Las (f(:co'o)—f(:c*))LmSz (fz"°)=f(="))Lac®
p252 + p2€4 Mp264

communication rounds.

Next we mention that at each communication round we communicate with C' devices, thus, number of
C(f(wo’o)*f(w*))Lafh (f(@>°)—f(z"))Lady (f(wo‘o)f(w*))La02>

communications is O ( pEp +C peps +C MpZes

Taking p = % we have the result of the corollary. The choice of p is motivated by the fact
that we perform %C + M communications per-epoch, and established p is the minimal, which

delivers O(M ) communications at each epoch. This is also the reason for the additional factor M in
the estimate on communications. O
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Corollary D.4. Under conditions of Theorem[3.2| Algorithm|I| needs
M ALad; ALadys ALac?
+ +

) epochs and

minCk:h g2 e Met
k,h
2
M ALad; ALady; ALac?
O\M - + + number of devices communications
Iiu}nC’“»h g2 e Met f
h

A= f(@%0) — f(x*) and C*" is the

number of devices participating in k- th ltemtton in h-th epoch

to reach e-accuracy, where £? = % Z E HVf

Proof. Using the result of Theorem we choose

7<mm{ p V(f(200) — Np V/(f(°0) — f(z*))p
= 384La(d; + 1)’ 4«/3La52 ’ 2\/3L2a52 ’

V@) — F ) Mp /(@) f(:c*))Mp}.

5V Lao?K ’ V12L200°K

Thus, we need

(f(@%0) = f(z*)) Lady  (f(2%°) — f(z*)) Lady  (f(2"0) — f(2*)) Lac?
© < pe2 * pet * Mpet

(@)~ f@) Lvas | (£ >—f<m*>)wao>

p3ed VMpies

epochs to reach ec-accuracy, where &2 = Z ]EHV f(ak0) H . Since the last

two terms in the estimate in a magnitude smaller than the second and third ac-
cordingly, we can ignore them. The length of the epoch H € Geom(p), Algo-

(J0)=s@))Lady | (100 @)Lass (f(ro’”)f(r*))La02>

p2e? p2et Mp2et

rithm requires (9(

communication rounds. Next we mention that at each communication round
we communicate with CF"  devices, thus, number of communications is

0,0y _ f(g* a 200V fip* a 200y flp* ac?
(9(1%%3(0’“”1((““3 )=f@))Lady | (J@) = @))Lads | (J")=I@")L )> Taking.

p2e? p2et Mp2et
r’?i}nck’h
p = ——37— we have the result of the corollary. The choice of p is motivated by the fact that we
perform %n;cla}GC’“’h + M communications per-epoch, and established p is the minimal, which

delivers O (M nm%m) communications at each epoch while guarantee the epoch is executed
k.h

maxCF "
(if we take p = **;7—, we can meet p = 1). This is also the reason for the additional factor
% in the estimate on communications. 0

k,h

Remark D.5. Considering fixed rules R = R = R, we have O (M% (AL(sl + AL‘SZ + ﬁ?j ))

2 . . . . . .
and O (M 2% (AL‘Sl + AL‘S? + Aﬂf;; number of devices communications with regularizing

parameter « = 1 and o = M respectively. Considering various rules, best case with regularizing

2
. . 2
coefficient o = 1 gives us O <M ( M ) (AELQ‘S1 + AL 4 Al )) and worst case a = M

minCk.h
k,h

maxCk:h Met
k.h

. / 2 . . .
gives us O <M2 ( M > (AL51 + AL52 + &lg )) number of devices communications.
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D.2 PROOF FOR STRONGLY-CONVEX CASE

Theorem D.6 (Theorem - Suppose Assumptions 2.1} [2.2(b)} [2.3) 2.4 hold. Then for Algorithml[I]
with 0 < 238 and ~ < m it implies that

K 8’yo¢ 7402
E |50 — 2% < (1_ﬂ) 0,0 _ oo .
Hx x 3 Hm x —|— ,u i
Proof. We start with the definition of virtual sequence:
M
gt = bt =y Y ght, (20)
m=1
It is followed by
Fehtl kbl —y Z gk 1
M
= gkh_ [ Z anhvf s h,ffn,h) + egk—l,HkI]
m=1
M M 1
D NERTEUD O G A RN
m=1 m=1
1 M k—1
_ ~kho oy kh ck,h k—1,H
=z vl(l 9>M§1me(m ) + 09 1 1)
‘We use this to write a descent:
ka Sl |2 _ kah g |2 _’_2<Ek, e xk h+1 ~k,h> + ||%k,h+1 . Ek,hH2

(21 ||§kh _ x*H? — 20 <ik7h g gkfl,H"'_1>
| M
(-0 (-0 3 Vet
m=1
1 & ’
_ k—1
2 09" (L= 0) 17 D V(@€
m=1
(Jen)
< Hik,h = | 279< k—1,H* 1>

g
M
~Ja,h LRoh ehih
—27(1—0)<:v - Mmzz &m )>
M
oo e fonionen)

m=1

2

_ 2
+729Hgk_1’Hk 1H +4%(1 -0

1
i Z V fn (@™, 600
m=1

Taking the expectation over £, we have

~ 2 _ 2
]Egk,h Fhhtl _ g | {xk’h —z*
m

— 2791!3 h <Ek’h — x*,gk_l’Hk71>

< EE%;L

. . ~k,h u k,h k,h
2’}/ (1 9) Effﬂ,h, x Z 7€n )
i/[: k h)>

—29v(1—-0) Efi‘;{h <
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+’729E€§;h gk—l,H’“*1 2
1 & ’
+1? (1= 0 Egen |37 mZ_jl V fom (@, €0 (22)
Mention that
ok (20 2P ghh
M
Line[12 Zhh (gk,hl +(1-0) Z (]\14[ _ %fr;hl) vf(xk,h1_§§1,h1)> 7

m=1

Thus, %" and £:" are independent. Analogously, g"~1#" " and ¢¥:» are independent. In this way,
equation 22] transforms into

bl _ |2 < HEk,h ot

2 _ 2'79 <Ek’h _ x*7gk—1,H’“’1>
—2y(1—0) (@"" — P v f(amh))
2y (1— 0) (P — o, V()

Egbﬁ,h

2
_,'_,erHgk—l,H’“ 1

M 2
1
72 (1= O Egen | <7 mz::l Y fo (@0, R
" k—1

< =P - 290 (T -0 gt
2y (1= 0) (@"" — P v f(ahh))
_27 (1 _ 0) <$k’h _ .I*, Vf(xk’h)>

1 M 2

22 (1= OB |37 D, (Vhm(h67) = 9 G5)

292 (L= 0) [V P4 420 o2 (23)

Now we pay attention to the following term:

e % 3 (Vi (@™ 60" = V fin ("))
m=1
. iiﬂ‘f b || o (21 €5 = 7 f (1) [
M? — Em m »Sm m
i 2 (B [TAGH €)= VAAD] B [V, 687) = 91,-])
. '
SVl

where (i) is correct, since §f’h and f;?’h are independent. Substituting this estimate into equation
we have
2

Ek,h-&-l o < kar,h — ot

E x.n $*|
§v

m

2 _ 279 <Ek’h o x*,gk_l’Hk71>
—27 (1= 0) (" — 2™h v (")
2y (1— 0) (P — o, T f()
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202 (1= 0) V)| o0 ot

2v%(1 — 6)o?
S

(24)

Let us estimate scalar products separately.

—240 <%k,h _ x*ygkfl,Hk’1> Fé” H~k h 22 Hgkq,H’“l 2’
—2y(1-6) <~k h k,h’vf(xk,h» Fé" (1-6) kar,h B xk,th
+72(1 - 0) ||V £ (=)
V(1= 0) || + 22— 6) Vi,
—2y (1 0) (B — 2t VFEE) TS (1 - 6) a*h — ||
=29(1 = 0) [f(=™") — f(a")]
" _’Y.U(12_ 0) Hgk,h e 2
(1 = ) |ath — 300
—2y(1 = 0) [f(z™") = f(z")]
@ e -9) 7 — 2|
2
%1 = 0) g

=2y(1 = 0) [f(z"") = f(z")] .

Substituting this estimates into equation[24] we obtain

’ ] P

EE’:,{" ka,h+1 g 2 +0 H%k,h g

V(1= 0)(1+ ) [|g""|* +3+2(1 = 0) [V £ (")
_FYM(127 HEk,h _ x*HQ _ 27(1 _ 9) [f($k’h) _ f(ZE*)]
272(1 — 6)o?
L T
(1 _ 7#(12— Q) n 9) H%«k,h _ x*| 2 +2920 Hgk—l,ﬂ"*1 2
2 (L= 0) (L + ) [|g""]|* + 3221 — 0) |V ()|
510 [ - fat)] + LT 25)

Let us choose § < 2 and v < 1. Then, (1 — w—i—H) <(1- 3%—1—%) =(1-2).In
this way, equation 23] transforms to

2
< (1_%)”5;“_9;*2

Bege [+ o

12420 Hgk—l,H"*1

+29°(1=0) |9 + 3271 = )|V £ ()|
(10 [ - fan)] + PO )

Next we estimate
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392(1— 0) [V £*)|* 2 692L(1 - 0) [Fa*) — f(a)]

and combine with equation 25}

gk,h%»l _ JJ*

E S (R R e e

8
+292(1 - 0) |||
~29(1 = 0)(1 = 37L) [f(a"") = f(2")]
+272(1j\; 9)02-

ent H

By choosing v < 6% we can simplify as

2

Egl‘;gh H5k7h+1 . x*H? < (1 _ %) Hik,h _ $*||2 " 2729 HgkiLkal

2 *
+292(1 = 0) [|¢""||” = (1 = 0) [f(«"") = f(2")]
292(1 - 6)o?
e
Now we put h = H* — 1 and take additional expectations to obtain

ke H* 2 - 2
]ngn—w .- 'ngﬂ,Hk—l e HT g < (1 - %) E&ﬁfl’o .. 'ng,’;Hk_l FhH L g
1112
+2’Y29E5k—1,0 . EEk—l,H’C*171 gk_l’H !

2
k,H"—1
g

+272(1 — H)Edcn—l,o .. .Efk’Hk_l

(1= O)Egrro . Egpme [f(mk’Hk_l) - f(:c*)}

2v%(1 — 6)o?
+ — 7
We take expectation with respect to H*~! and H*, and apply Lemma

2

EkalEHkng;l‘o .. ']Efk.kal 5]@,]—[79 e
<p (]- - %) EHk—l]EEicn—l,o .. ‘Eék—l,kal,l H%’k,o —z* 2
2
+ (1 - p) (1 - %) EHk*lEHk]E&.k—l,U "'Egka’“—l 5]@,H’“ g
_112
+ 2720EH19—1E£71%_1,0 .. .Eékﬂ’H,ﬁ_lil gk—l,H’“ 1
12
+ 2’72(1 -0)(1 *p)EHk—lEHkngn_l,o .. ']Eékka—l gk,Hk
2
+ 2’72(1 — e)p]EHk—lEffn—l,o .. ']Egk—l,yk—l,l gk,OH
m ~-
k
_ ’Y(l - p)(l - O)EHkngn’l*U .. ngy{H’V—1 [f(l‘k’H ) _ f(.’lﬁ*):|
—p(1 — 9>EH1€71E£§L—1,0 .. .]ng;Lkalil [f(xk’o) _ f(a?*)]
27%(1 — 0)o?
L A —0)e%
M

HF1 1 . .
We rearrange terms and use that H* and {¢}~""}"_ = are independent stochastic values:
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Ek:,H’C Lk

pEHk—lEHk]ngn—l,O...Egyk’Hk_l T

< p (1 — %) EHkt—l]Eff}n—l,O .. .Egk,LHk—l,l H%k’o —z*

+ 2’729EHI<:71E€]€71,0 .. .Egk,LHk—l,l

g

+ 2’)/2(1 — p)(l — Q)Ekalngnfl,o N Egﬁ,LHk71,lEHkE£§£U ..

2

k—1,HF 1

2

2

.ngnﬂk,l

k,H"
g

~ (1 =P~ OB BgpnByro - B ey {f(xk’Hk) - f(x*)}

—yp(l — G)EH"‘*lngnfl’o .. Eff{l'Hk7171 [f(xkvo) _ f(l‘*)}

2v2(1 — 6)o?
+

. k(|2 k—1|]2 .
We use Lemmato estimate Hng H and Hg’f_lvH ' H . We obtain

(12 24(1 — 6)2a(6 1
]EHkE ko...E k.Hk 1 gk’Hk < ( ) a( 1+ )
Em Em p2
| 24(1-6)%a0”
Mp? ’
2
As for Hg’“*LH’C IH , we have
1112
]EkaﬂEEb;l,o .. .ng;;l’kal,l gk_l’Hk '

Eyn

Vf(:z:k’Hk)H2 +

p2

27)

48(1 — 6)2ad,

(28)

24(1 — 0)2a(5; + 1) L2 48(1—0)2a0y  24(1 — 0)2a0?
< > Epies |57+ R
(©5) 48(1 — 1 . o—1 - 1|2
QD BU 000t D |oph) - vy
48(1 — 0)%a(61 + 1) g1 ]2 48(1—6)2ady  24(1 — 6)2ac?
+ e Ege— ||V (T ) ' + e + Np?
As<m 48L2(1 — 2)2204((51 +1) B ka_l,Hk—l _ %k_Lkal 2
48(1 — 0)%a(61 + 1) wov2 - A8(1—0)%ady  24(1 — 0)%ac?
+ e E g1 HVf(m ' )H + e + 2
48v2L2%(1 — 0)%a(6; + 1) 2

k—1
= EHk—l Hgk_l’H

2
48(1 — 0)%a(61 + 1 2 48(1 — 6)%as 24(1 — 6)%ao?
P SO0 Dy ooy 4 SO0l | 200 - 0fac”

We choose v <

HF1—1 . .
and {&F-"}," " are independent stochastic values:

12
EkalEgk—l,o .. 'Egk‘—l,Hk*1,1 gk—LHk !
96(1 — 6)%2a(6; + 1
< ( )an( 1+ )EH,C,IIEE%,LO "'Esf{lﬂk”* [V £ (%)
48(1 — 0)%a0?
+
Mp

12+ 96(1 — 6)%ad,

p2

Applying equation[Lip|to equation 28] equation[29]and substituting it to equation [27] we get
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2
gkr,H)C Lk

p]EHk—l]EHkEEk—l,O . T

< p (1 — %) Egicn—l,ﬂ .. .Egk,LHk—l,l H%k"o —z*

B
g

2

k
~ (1= p)(1 = OB EgnBro - By s {f(xk’H ) — f(a:*)}

—yp(1 — Q)EHJC71E£§';1,0 .. 'Eﬁﬁfl’Hk71_1 [f(l,k,O) _ f(I*)]

N 96v2L(1 — p)(1 — 0)3a(d; + 1)

k
p2 EHk—lEéicn—l,O .. .ngn—l,H—lEHk |:f(l‘k’H ) — f(l‘*):|
n 967v2(1 — p)(1 — 0)3ads n 48v2(1 — p)(1 — 0)3ao?
p? Mp?
38472LO(1 — 0)%a(5; + 1 .
+ il ( p2 ) ( ! )EHk71E£ﬁ71’0 .. .]Eé.:cn—l,H—l [f(xk’o) — f(l‘ )]
n 192920(1 — 6)2ads, n 96v20(1 — 0)%ac? n 29%(1 — 6)o?
p? Mp? M '

We take the full expectation, then use a law of expectation and rearrange terms:

pE HW —|

Y ~ .2
< p(1-2)E[e0 |

—y(1-p)(1-90) (1 _ 969L(1 —0)*a(d + 1)> :

p2
E ") = f(a")]

3847LO(1 — 0)a(5y + 1 .
9672(1 — p)(1 — 0)ady | 192926(1 — 6)%ad,
+ 2 + e
+4872(1 —p)(1 - 6)*ac? N 96720(1 — 0)2a0?
Mp? Mp2
2v2(1 - 6)0?
+ i .
We choose 0 < 23 and v <

2
m. Note that all previous transitions hold even with larger
choice of # and ~y, consequently this choice is correct. In that way, we obtain

2
- k
E kaH -z

¢ (1 Wysppe s WS Bt

p? p?
487v%ac? 2473 uac? 24202
et R
Mp? Mp? Mp

~ k k k ~
Note that ZF-H" = ghH" _ gk H" = gk+1.0 and 750 = 250 Thus,

w12 o 2 Y 7402
]EkaH,o_x H < (1—§)E|}zk’o—$ H +p3(14462+ i )

It remains for us to take into account going into recursion over all epochs and claim the result of the
theorem:

12 K a2, Vo 740%\ Nk
Blei o < (1-24)" a0 o) +p3<14452+ 1o )2(1_)
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v\ E L2 3y 7402
e +Mp3(14452+ 1 )

O

Corollary D.7 (Corollary 3.6). Under conditions of Theorem [3.5] Algorithm [I| with fixed rules
R =R = R needs

~ M\’ /L 1 M ady ao?
@) ((C’) (ua(h log (€> + E% + NQCE>> epochs and

~ M\* (L 1\ Mas 2
O(M|— —adlog | — | + —= 2% + a7 number of devices communications
C 7 € C u2e  p2Ce

K,0

2 ; . L
to reach e-accuracy, where ¢ = E H:z: —z* H and C' is the number devices participating in each

epoch.
Proof. Using the result of Theorem [3.5] we choose

810 S 9 ;1,2Mp3||z0’07:1:* 2K p2p3|‘m0‘071* 2K
P2 ) ) 4736002 d 9216005

96La(6y + 1) e

v < min

Thus, we need O (Lua—p‘;l log (%) + 9% 4 _ao® ) epochs to reach e-accuracy, where €2 =

wup3e | p2Mpse
2
E HxK’O —x*

Since the length of the epoch H € Geom(p), Algorithm |l| requires
o (LO‘51 log (%) + 9% 4 M;"T';%) communication rounds. Next we mention that at each

3 2,4
up u2ple
communication round we communicate with C devices, thus, number of communications is
2

1) (C’ (%p‘;l log (1) + #‘5236 + #2?\;;;45))' Taking, p = <, we have the result of the corollary.
The choice of p is motivated by the fact that we perform %’C + M communications per-epoch, and
established p is the minimal, which delivers O(M') communications at each epoch. This is also the

reason for the additional factor M in the estimate on communications. O

Corollary D.8. Under conditions of Theorem[3.3|Algorithm[I|needs
2

~ M L 1 M  «ady ao?

Ol [—-2 | [Zasilog (=) + 2 202, 99" hs and
minCk-h ,ua 1708 (5) * minCkh y2e — p2minCk-he epochs an
kb kb kb

3

~ M L 1 M «ads ao?

Olm| -2 | [Zasilog( =)+ 202, 90

minCk-h ua 1708 (5) + minCkh y2e  p2minCk-he
kb kb kb

. Lo 2 .
number of devices communications to reach e-accuracy, where ¢2 = E ||xK O | and C*" is

the number of devices participating in k-th iteration in h-th epoch.

Proof. Using the result of Theorem [3.5] we choose
* |12 * |2
81 5 ;L2Mp3||$0’0—w K u2p3H£0’o—x ” K
p? 08 | maxH £, 1736002 ’ 921600,

96La(dy + 1)’ uK

v < min

Thus, we need O (% log (1) + H‘;g%g + HZO‘T';JE) epochs to reach e-accuracy, where ¢ =
E HxK L 2

0] (%}f; log (%) + u(g"zis + ALQO‘T';E) communication rounds. Next we mention that at each
communication round we communicate with C*" devices, thus, number of communications is

- 5 ) millck’h
O (n};athkvh (%}le log () + H‘;gzg + u;;\;p%))' Taking, p = “*—, we have the result of the

Since the length of the epoch H € Geom(p), Algorithm |l| requires
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corollary. The choice of p is motivated by the fact that we perform %r%:%xC kb 4 M communications

per-epoch, and established p is the minimal, which delivers O (M mmﬂékh) communications at

each epoch while guarantee the epoch is executed (if we take p = ——5—, we can meet p = 1).

This is also the reason for the additional factor M W in the estimate on communications. [
k,h

Remark D.9. Considering fixed rules R=R= R,
wehave@(M(%)Q( &1 log (£ )—&—%;24— 208»
and O <M2 (%)2 (551 log (1) + ¥ B2 4 205)) number of devices communi-

C u2e
cations with regularizing parameter o« = 1 and a = M respectively. Con-
sidering various rules, best case with regularizing coefficient a« = 1 gives us
3
%) M L 1 M_ 3 2
O (M (W) <H61 log (g) O 32 =z +p,II11r1M€> and worst case a« = M

3
gives us O <M2 <minﬂékvh> (551 log (%) + % 522 + umuﬁM)) number of devices
k,h

k. h k. h

communications.

E PROOFS FOR ALGORITHM

Lemma E.1. Suppose Assumptions[2.3| 2.4 hold. Then for Algorithm2]it implies that
2 1-0)%a(6 +1 NIk
A -0 el +1)p va(xk,H’“)H

mln
p? 1emenr I

SM

k,H"

EHkEEicr;OEnicn,O .. 'Efﬁin_lEnf,;Hk_l

g

N 192(1 — 0)%ad, N 96(1 — 9)2a02

min min
P’ 1<m <qu p? 1<m <qu

Proof. Let us start with the following estimate:

) M yEh (1
Hgk,h+1H gk,h + (1 _ 0) Z qm (M _ ﬁ_rl;,h) vfm(xk,h’gﬁl,h)
m=1 1M
(Fen)
< (40 |¢"|

; (30)

+ 1_|_1 (1_9)2 f:nfn’h i_ﬁk,h v/ (mk,h Ek,h)
¢ m=1 qm M " " o

where c is defined below. Let us estimate the last term and obtain

M kh 1 2
D Tt (M - frfiz") V fon(ah, €07

el dm
M | ’
— m R kb kb
\2mz<qm 1>(M o )vf( i)
M 1 2
+2() (M - w“) V Lo (€50
m=1
©3 M opkh NP1 N\ M )
<2y (B o) (G- kt) IVt
m=1 m m=1
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2
+2

M
Z i _ ﬁ-hh Vf (ka’h é—k,h)
M m m ySm

m=1

We pay attention to the first term. Using n%:" ~ B(q,,),

k.h 2 , kb _ 2 2
E kn (TM _1> :Enm(nm ) < I 1z 1

dm (Qm)2 h (Qm)2 dm = Qm'
In that way,
M nk,h 1 2
9 M 2 M )
b kb
<> (4 ) > [Vhntet g
1<m<M m=1
o 2
9 L kn) gp (ghh gk 31
+ Z M T Jm(z ?gm) G
m=1

We obtained an estimate for the second term in Lemma [D.T]in equation 7}

2
2002

E
M

M
e (|22 (]\14 - ffii:”) Vi@ )| <da (6 + 1) [|[VF@M)|* + 406, +

m=1

Moreover, in equation |§| we found out

M 1 2 «
> (o) <

Combining this estimates with equation 31]

2

m=1 Q’H’L

E.x.nE k5
Em Nm

(134 - frfﬁﬁ) V f (2 €51

2

2
S i i 2 ZE s [V 5m @ 60
1<m<M

2

+8a(dy + 1) || VFR)||* + 8ads + dao

M
c3) 4o
S mZEM V)|
1<m<M
4o 2
+mZEthme zhh 7n) Vf( )H
1<m<M
2
+8a(d +1) ||Vf(;v’f=h)|\2 +8ad, + 40]:;’
As. 24 M 4ac?
S min g, M Z vam " h + min_ gm,
1<m<M m=1 1<m<M
2
+ 8a(dy 4+ 1) ||Vf(:z:k*h)||2 + 8ady + 401(;
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C3) Sa M Sa
< —M8M— vV f (ko = v Kby 7 f (kb
min ¢, MZH I )H * min  ¢m, Mz:H Fm(@™7) =V f(z )H
1<m<M m=1 1<m<M m=1
2 8ao?
+8a(d1 + 1) || VA(5M)||* + 8ads + ——r
min  gn,
1<m<M
A>|E|8a5 +1) 2 X 2 8ad:
8ol 1) g p(ah M |P 4 8alsy + 1) |V AP + —202__
min g, mim  gm
1<m<M 1<m<M
8 2
+ 8ady + .OzO'
min g,
1<mE<M
16a(01 + 1) 16cdo S8ao?
S m(m1 q va kh)” + min g * min  ¢n
1<maM 1<maM 7 i<m<m T
Substituting this estimate into equation 30} we have
1 1) 1
BB e g5 " < (l—i-c)Hgk’hH2+16<1+> (1—9)20‘(17+HW (M)
m im c min  gm,
1<m<M
1 1)
+16(1+>(1—9)2 902
c min  gn,
1<m<M
1 2
+8 (1+) 1-02—27
c min ¢,
1<m<M
Enrolling a recursion, we get
EﬁY{OEUﬁ,’,O .. .ngﬁh]E k,h H k’h+1H2
h
1 of 51 +1
g 16 1 - 2 h 7 k,i
<+C>(1 0) LS s o v st
1< <M ™ =0
1 ad h
wB(1+=-)1-02—2 1 h—
+ <+C>( ) — qu( +0)
1<m<M 1=0
1 ao? h
8(14+=-)(1-60)2— 1 h=i, 32
814 2)0-0P—2" Y o) 62

1<maM T i=0

Next, choosing ¢ = £, taking exception on * and applying equation EI, equatlonm equatlon.
from Lemma[D.1} we 2 obtain the result of the lemma:

k,H"

2 <96(1 —0)2a(6; +1)
X 2 .
P S I

IM

BB 0B, 0 By 1B ey

gl R Rk vf(xk’Hk)Hz

Egn

g

L 192(1-0)%ad,  96(1 - 9)20402.

mln ml
p1< <qu p1< <Mq
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E.1 PROOF FOR NON-CONVEX SETTING
Theorem E.2. Suppose Assumptions 2.2(a) hold. Then for Algorithm@with 0 < %

PmMini<mg M gm

“T68La(s+1) U implies that

and v <

K—1
1 2 16 (f(2%9) — f(z*))
7 2 BV < 7

153672 L%ad, n 3200y Lado

min min
p1< <qu p1< <qu

k=0

768v2 L2 o n 1600y Lao?

5 .
mln mln
1<m<M Gm p1< <M dm

Proof. We start with the definition of virtual sequence:

M
Fhoh — kb ~ Z gfr{h — kb _ ng,h. (33)
It is followed by
Fhhtl Rkl —y Z gk 1
M nk,h L
— xk,h — (1 _ 9) Z qm ﬁ'f;{th (xk7h7§1]€rih) + egk—l,H
m=1 1M
= k,h - Uk’h 1 k,h kb kb
1Y ot -0) Y 2 (M—fr,,; )Vf (", &™)
m=1 m=1 qm
~k,h 1 - Uk’h kh kb k—1,H""1
= BNy |00 g D VG gt 6
m=1 m
Assumption 2.T]implies
~ . ~ ~ . L . - 2
f(l‘k’thl) < f(l'k’h) + <Vf(l‘k’h),l‘k’h+1 o xk,h> + 5 ||xk,h+1 o :Ek’hH
(Jen)
< S@) =0 (T, gt 1>

M
—(1-9) <Vf(5k’h) Z m (2 ’“’h,é’ﬁ;h)>

20(1—6 2
L7 (2 )

~2L Hgk_LHk—l

A

M 2
i Z ﬁv‘f ((Ek’h é—k,h)
M — qm m rSsSm

Now we use that n®:* ~ B(g,). Consequently, Enf:" = ¢,,. Since n¥:" is independent of
k.h =k,h ¢kh o k—1,HF !
A N SN

, we take the expectation and obtain
B [FEM] < f@) 40 (VG gk—LH’H>

(1~ ><Vf~“ Zv,fm “5“)>
72L(1—9 ’

A

M
Z " me kh7§kh)

2

+72L9 H k—1,HE1

2
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We take the expectation over £¥;". Mention that

kb ©33) gy ghoh
M k-1
. ) 1
Line[T2] mk,h_7<gk,h—1+(1_9>znn; (M ﬁ _)Vf( k,h— 1’§kh 1)>_
m=1 m

Thus, 7% and ¢;" are independent. Analogously, g*~1#" " and £%:" are independent. In this way,

Bep B [f@E] < F@) =0 (VFE), 27
—y(1 = 0)(Vf(@@""), Vf(z™"))

)
M k
Z TG f (€Y

2

2L(1—90
Jr%EEﬁlhE k,h .
m
2L k—1]2
+ 52 o (35)
Let us consider separately the following term:
M k 2
i i n ZL (2P gh)
3 M M 2
< 2EenE e Z me " M Z ki
M 2
—I-QE khE Kok Z zhh fkh)
M - 2
= 2B E b Z("’” - )me(“g“)
1 & 7 ’
2B || 25 > V(@ €01
m=1
€ 2 = i ‘L k.h ck,h
< BB X (B 1) 2 |Vha e
m=1 m=1
1 & ’
2B || 37 D Vi@ €51 (36)
m=1

We pay attention to the first term. Using n%:" ~ B(q,,),

M 2 M . M
ZEkh(kh I)ZZEW%}L(% i) Z

1 m=1 (qm m:l

:iw:l—qm< M

m=1 m 1<IPn12M Gm’
Combining with equation [36]
1 o nlh kb kb :
m 9 k)
ngnh]}znfnh M Z q vf (ﬂf 7£m )
m=1
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|V fon (2, €51 ||° + 2E g

9 M
< — E x.n
M min ¢, Z Em'

1<m<M m=1

1 M
17 2 ViEm (@5
m=1

(C9) 4 2
S M _min_qn 2 ZE i |V Fn 2, 620
1<m<M
8 M o
< o 2 Vi
1<m<M m=1
8
mz thme (PP M) =V frn (@ kh)H
1<m<Mm T m=1
As.ZA 8 M kol 112 802
S o 2o V@I
1<m<M m=1 1<m<M
16 - 2
< Wmm o 2 Ve
1<m<M m=1
M 2
S Vsl = Trat| + i
M min  gm, min g,
1<m<M m=1 1<m<M
2
As. m 16((51 +1 va k, h)H n 1605 " 8o 37)
1<nrﬂnlgM m 1<I}11112M m 1<I}1111£1M Gm
We substitute this estimate into equation [33]to obtain
BBy [F@M] < F@) =40 (VAEE), g2 )
—y(1 = 0) (Vf(@""), Vf( ")
8v2L(1 o141
LD o o
1<m<M
L —1|2 2L(1 -
L7 5 0 Hgk—l,Hk " 8y m(m 0)d2
1<menr I
2 2
+4’y L(1—-6)o . (38)
min ¢,
1<m<M
Let us estimate the scalar products separately.
~ 1-46 - 1—46
-0 (v Vi) = D g O g P
1-96 ~
_’_’Y( 5 ) va(xk,h) o Vf(il'k7h)H2
As.ZTl 1-46 ~ 1—-46
Sg 77( . ) va(xkh)H? _ ol > ) va(xk,h)HQ
2(1 —
Jr’YL (; 0) H%k,h 7Ik,h||2
(12) _7(1 —9) ~k,h\[|2 _ 7(1-10) k,hy (|2
B 200 gy - 20 g s
372
7 L*(1-9)
+ 9 | g
-
0 (i@, ¢ B D)+ 2 g
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Combining it with equation [38]

~kht1 ey Y1 —0) 167 L(0y + 1) k,hy||2
EnE kn [f(@ )] < fEMY) - — (1~ T min g [V (@)
1<m<M
~(1—260 - 2 3L2(1—-0 2
_ ( . ) ||Vf(l,k,h)|| Jr’Y (2 ) Hgth
+79(7L +1) Hgkil’Hk—l 2 n 872L(.1 —6)dy n 4’72L(.1 — 9)02.
2 min g, min g,
1<m<M 1<m<M
Choosing v < 7“2;?(’3?111)% and 0 < 3,
~ ~ ~v(1—6) 2 VL2 —0) || pni2
BerByo 1] < 1@ - 920 o pabm 4 ZEA=0 e
—1)2 2L(1—0 442 L(1 — 0)o?
-Py@Hgk*l’Hk + & ( )02 + 7 ( )o .
min ¢, min ¢,
1<m<M 1<m<M

Now we put h = H* — 1 and take additional expectations.

- k
]ngnfl,oEnlcnfLo .. .ngr{Hk,lEn%Hk,l {f(‘rk’H ):|

~k,H* —
<EggnoByp v BB, [F@7)]

1-6 ,
_ %Egﬁfl’o}znﬁfl’o .. 'Egk’kal]Enk,H’cﬂ vf(xk,Hk,l)H
312
v L2(1 -6 e
+ %ngn—l,OEnﬁ;l,D .. .ngr{HkilEnfr{kal gk7H 1H
k—1,H*! 2

9

+ VGEEﬁL—l,o]Engl—l,o . Egk_l‘Hk—1_1E k1, Hk—1_1

8v2L(1 —0)5s  472L(1 — 0)o?
+7( )2+’Y( Jo*

min g, min_ g,
1<m<M 1<m<M

We take expectation with respect to H*~' and H*, and apply Lemma

- K
EHk—lEHk]ngcn—l,OEnk—l,O . .]Eﬁlfn'Hk_lEﬂk’Hk_l |:f(l’k’H )]

m m

< (1= DB BBy 0By vo - By 1By [f(%’f’H")}

+pEHk71E§5;1,0En£;1,o e ngnilkaililEnfnil’Hkilil [f(%’k,O)]

1-6 2
_ %EH;‘._lEéﬁb_LoEnﬁ—l,o .. .E&fn_l’Hk_l_lEnﬁz_l’Hk_l_1 ||Vf(ggk,0)H

1-6)(1—
- ”(—MEHk,lEHkEgk,l,oEnk,l,o B o E iy

4

3172
LA (1 —0)p
71[‘31{&711@ k—1,0E _k-1,0...1E k,lkafl,lE k—1,Hk—1_1 ||g
2 Em Nm Em Nm H ,

P00 ]

Vi)

ke ||

g

Egr—1EgeE s—1,0E x—10...E , gr _1E , gr_y
Em Nm ¢k, nk

2

k—1,HF !

g

+AOE -1 E k—10E rk—10.. . E | gr—1 E o gr—1_
v H Em NMm Efn LHE ! nfn LH !

8v2L(1 — 6)§ 4~v2L(1 — 0)o?
+7 ( )2+7 ( )U.

min g, min g,
1<m<M 1<m<M

(39)
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2 12
We use Lemmato estimate Hng H anng’“_LH H . We have

P < 950 =0 +1)

p? minM qm

IMsx

(96’“’H1C)H2

EpEeroE o B 1 ks

N 192(1 —0)%ad, N 96(1 0)*ao?

. (40)
P 1<I}71112M m P 1<r51n12M m
. \/ i <m< m .
Next, analogously to equation , we choose v < % and obtain
12
EH}C_lEEfﬁ_l’OEnfn—LO .. 'Egkfl‘H’ﬁ_lflEnkfl,H’“_lfl gk_l"Hk !
384(1 — 0)%2a(6; + 1 2
< ( m)ln ( >EH;€71E§£€{1,0]E775{1,0 E&kn LEk—1_ IE k- I L va(xk’O)H
p? 1emenr I
384(1 — 0)“ad 192(1 — 0)2ac?
+ (mn) -+ (mm) ' “h
P 1<m<M m p? 1<m<M m

. . . . . . HE1 1
We combine equation @ and equatlon with equation|39|and use that H*~! with {&}- 1"},

k 1
-1 . . .
and H* with {77 —1, h} he0 are independent stochastic values. Moreover we take full expectation:

PE [f@1)] < pE[£GE)]
7’Y(1 - 9)pE va(zk,o)H?
48731&2( —0)>(1 —p)a(d +1)

min
p? 1§m<qu

10 -6)1-p)
4

e vt

zfosca

+19279(1 —0)%a(d + 1)

p? min ¢,

E ||Vt

1<m<M
9673L2( —0)3(1 — p)ads 38470(1 —6)2ads n 8v2L(1 — 0)2
5 .
p 1<r£7111£lM m P’ 1<%12M G 1emen I
4873L2(1 —0)3(1 — p)ao? n 192’y6‘(1 —0)2a0? n 492 L(1 — 0)o?
p? 1<m12M 4m p? 1<mlgM dm 1<12112M dm
= pE[f@")]
1-6)(1— 19272L2%(1 — 0)%«(6 1 12
=00 =) (|10 el 1)) g
4 P e I
v(1—=0)p 3840(1 — 0)%a(6; + 1 2
_ ( 1 ) 1— ( ) ( 1 ) ]EHVf(iEk’O)H
p3 min ¢,
1<mEM
9673L2( —0)3(1 — p)ads N 76870(1 — 0)2ad, n 8v2L(1 — 0)5
P 1<m1£lM m p* 1<m12M qm 1<I1£111£M m
4873L2( —0)3(1 — p)ac? . 19279(1 —0)%ao? . 492 L(1 — 0)o?
P? 1<m12M G P’ 1<H7}L1£M G 1<r£1nlgM G

'pr pPMini<m<M Im
We choose 6 < v < ToSLa(0rD) In that way,
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pE [f(@*)] -
9673 L20d,

pE[f@™)] <

(1 - 0pp

8

IV £+
n 19272 Lads, n

8’}’2[/52

oI
p? min gq
1<m<M

4873 L2ao?

min ¢
1<m<M

96v2 Lao?

min ¢
1<m<M

442 Lo?

.
p2 min ¢
1<maM

(1-0)g

Vg |vs(a-)

I

N

9673 L2ady

min  qm,
1<m<M

E[£(@*)] - E [f@H")]
20072 Ladsy
+

I
min
p 1<m<M Gm

48v3 L2 ao?

min
p1<m<M dm

10072 Lac?
n v*Lao

3 -
min
p Lemens dm

P min g,

1<m<M

- K k k ~
Note that £5 1" = gk H" _ nghH" = k41,0 apd 750 = k.0, Thus,

1(1-0)g

8 IO <

E [f(z"9)]

48v3L2ao?

—E[f@0)] +

9673 L2ads

min ¢’
1<m<M

100v2Lao?

CE—
mn
P 1<m<M Gm

p min g
1<m<M

Summing over all iterations, we obtain the result of the theorem:

’ 2

N

8 (f(z*%) —E [f(="9)])

1 K—1
LY e viat)
k=0

v(1-0)K
76821206,

p® min gn
1<m<M

L 20072 Lady

min
p1<m<M dm

1600y Lado

p? min gn(1—0)

1<m<M

384v2 L2 ao?

P e Gm (1= 9)

800yLao?

p3 minM Gm (1

1<m<

16 (f(2%0) —

N

f*))

vK
153672 L%ad,

n 3200y Lads

p® min gn
1<m<M

76872 L2 00>

p mi

in  gm
1<m<M

1600y Lao?
n vyLao

Ca—
min g
1<m<M

p min g,
1<m<M

+ -
—0) p, min Gm (1 —0)

IM

O

Corollary E.3 (Corollary 3.8). Under conditions of Theorem [E2] Algorithm 2] with fixed rules

R =R = R needs

M 1 ALad; ALady ALac?
ol — - 5— + Rl 1
min ¢, € € €
1<m<M
O\ M=

M 1 (ALQ§1 ALadys ALac?
+ +

C min gpn

g2 e et
1<m<M
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K—1
to reach e-accuracy, where € = = " E ||V f(z"0) Hz, A = f(2%9) — f(z*) and C is the number
k=0

of devices participating in each epoch.

Proof. Proof is analogous to the proof of Corollary [D.3] O

Corollary E4. Under conditions of Theorem[E2] Algorithm 2| needs

M 1 ALad ALad ALac?
@ - aon + @02 + ag epochs and
minCk" min ¢, g2 g4 et
k,h 1<m<M
2
M 1 ALaé;  ALads ALac?
O|M
minC#:h min qm< 2 TTa tTa
k,h 1<m<M

K—1
. oo 2
number of devices communications to reach e-accuracy, where €2 = % > E HV f(z , A=
k=0

f(x%9) — f(x*) and C*" is the number of devices participating in k-th iteration in h-th epoch.
Proof. Proof is analogous to the proof of Corollary [D.4] O

Remark E.5. Considering fixed rules R=R= R,
we have O <M‘7g . 1 (AL‘SI + ALCSQ + Ajézsof))

min  gm
1<m<M

C  min  qm
1<m<M

ularizing parameter o« = 1 and o = M respectively. Considering various rules, best case with

2
regularizing coefficient o« = 1 gives us O (M <minAC{"“vh> 1 (AL‘sl + AL‘SQ + ALU ))

min
Kok 1<m<M qm

2 . . . .
and O <M M1 (Astl + AELfZ + Aﬂ/fsi )) number of devices communications with reg-

2
and worst case o« = M gives us O <M2 (Ina)i\ékvh> . (AL‘SI + AL‘sz + AL" )> num-
<m

k,h
ber of devices communications.

E.2 PROOF FOR STRONGLY-CONVEX SETTING
Theorem E.6. Suppose Assumptions 2.2(b) hola’. Then for Algorithm with § < BIE

2 .
pmnygm<M dm

and v < it implies that

384La(51+1)
K 2368
I R (I 1 PP L o V)
8 up® min  qn,
1<m<M
Proof. We start with the definition of virtual sequence:
b = gk Z gl = ghh _ yghih, (42)
oo
It is followed by
gk,thl — l,lc,h+1 — Z gfkr{thl
k,h = U k,h k—1,H*"!
= T - (1_9) LAm vfm( m )"’09 ’
m=1 1M

M M L
> gty (1-0) >
m=1 m=

1 pn k.h ¢k,
D (M i )me(x &
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M k
- l Z TG f (a1, 5 )+99'“1’Hk_1] W
m
Next, we use this to write a descent: "
N2 ~ w112 ~ ~ ~ ~ 2
Hwk htl H _ ka,h_x H +2<xk, g xk h+1 xk,h>+|‘xk,h+1_xk,h||
lb Hgk,h . x*HZ — 240 <gk,h _ gkfl,Hk_1>
b
~2y(1-6) <~ Z i T f (" 5“>>
m=1

2

2 egkq,H’“—lJr(lio Z 77m me( k,h gkh)

m=1
" H,”fk’h e 2 _ 279 <§§k,h _ x*’gk_17Hk—1>
M
m=
M
*2’7(1*9) < Z k?,h’ fr{h)>

LSl g e g
M~ qm "

Now we use that n*:* ~ B(g,). Consequently, Enf:" = ¢,,. Since n¥:" is independent of
k.h kb ¢kh o k—1,HF !
A N SN

+7

2

_ 2
+729Hgk_1’Hk IH +7%(1 -0

, we take the expectation and obtain

2 270 <%k,h _ ﬂU*,gk—1,H’°*1>

I o

M
—29(1-6) <‘f‘“h— DR “5“>>
XZ:
s S o)
_i_,yzeHgk—l,Hk* 2

2

+72( Ekh an me khgkh)

m=

Now we take the expectation over £X:". Mention that

~ @z

Fhoh 42) ZPh _ ghh

Line[[ k. h koh=1 4 U, kh—1 ¢k,h—1
s ) dm - - - st
= € —719 Z Gm <M 71— ) Vf( sSm ) .
~ . k—1 . .

Thus, 7% and £F;" are independent. Analogously, g*~1#" " and ¢*:" are independent. In this way,

E klhE k.h ||xk htl *H2 < ka’h _ x*H2 — 276 <Ek:,h . sr*’gk:fl,H"’_1>
= 2y(1 = 0) (@ — 2P v fahh)
—2y(1 = 0) (2" — 2, V f(a™"))
_i_,ng"gk—l,H’“*l 2
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2

M
+72(1 — OB v Z il "V fon (™ ebm| L aa)
Recall we estimated the last term in Theorem [E.2]in equation .
1 & gk ’ 16(6; + 1) 166
m kb ¢k h 1 k,h 2
]Eﬁf;;hEnf}'zh M Z Im V(@55 607) min_  gm, ||Vf )H + min g,
m=1 1<m<M 1<m<M
8 2
min  ¢n
1<m<M
Now let us estimate scalar products separately.
—240 <gk,h _ x*’gk—17H’“’1> " 0 Hglmh g 2 Hgk—l,H’“’l 2’
(Fen)
—2y(1—0) <Ek,h _ xk,h7vf(xk,h)> < (1- H~k,h _ k,h||2
(1= )|V £
k, |12
P =0) ¢+ 22— 0) [ Vit

As.

/E [E]

—yu(l - 0) |2 — 2|
—29(1 = 0) [f(«") = f(a")]

—2v(1-6) <xk’h — ", Vf(xk’h)>

_7#(12— 0) Hgk,h —_ )
(1l - 0) [l —
—=2y(1 =) [f(="") = f(a™)]
29 _%U(l —0) sz,h, ot 2
2
+7*u(L = 0) [lg""||”

=29(1 = 0) [f(a™") = f(a")] .

Substituting this estimates and equation [45]into equation [44]

EeenE, o |35 —2*|” < (1 - w + 9) 30 — 2 ||* + 2926 [ g~ 1H i

921 = 0)(1 + ) [l
19'7 ( 9)(61 + ]-) va(xk,h)H2

mln
1<m<M dm

—2y(1—=0) [f(z"") = f(a")]
L1602 = 6)d;  8y*(1 —6)o”

mln mln
1<m<M m 1<m<M m

Let us choose § < 2 and v < +. Then, (1—@4—9) < (1—3%“4—%) =(1-2).In
this way,

Egi@nﬁhEni‘:ﬁh H?L‘ik’h—i_l —z*

? < (1—ﬂ)u~’f’l 2|

+27(1 = 0) (1 + ) || 9"

+ 2420 Hgk—l,H’“’l
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2(1 - 2

min
1<m<M qm

=2y(1 = 0) [f(z™") — f(2")]
Jr16’y2(1 —0)d2 n 8v2(1 — 9)02.

min g, min g,
1<m<M 1<m<M

Next, we estimate

1992(1 — 0)(61 + 1) va(xk’h)HQ < 38v2L(1—6)(6; + 1) [f(xk’h) B f(x*)] .

min ¢, min g,
1<m<M 1<m<M

It implies that
2

? < (1 - %) @ — a* 1242 Hg’“_l’H’ﬁ1

21 =01+ ||g*"|

E&%}LEanh ka’h—H —z*

199L(6, + 1 .
oy -y [1- k0D [f®m) = f(a")]
min ¢,

1<m<M
1672(1 — 0)02  87%(1 — )02
16y ( ) el (. Jo*
min g, min g,
1<m<M 1<m<M

Choosing v < W, we can simplify as

2

~kh+1

EgenE kn || :c*||2 < (1 _ %) [ x*HQ +24%0 Hgkq,H’“—l

X

+29%(1 - 0) [l ||
—y(1=0) [f(a™") = f(z")]
+1672(1 —6)4y n 8v2(1 — 9)0’2.

min g, min g,
1<m<M 1<m<M

Now we put h = H* — 1 and take additional expectations to obtain

2
~ k
xk,H _r*

Efi_l'O]Eﬁfn_l’o R Egk,kalEnk,H"'fl
< (1 - M) E..
8 Em

+ 2’}/291[‘255{1,01@771:;1,0 .. .Eﬁfnfl’HkililEnfnfl’Hkilil

2

~f. H* —
Ik’H 1 r*

—1,0]E k—1,0 .. .E k_Hk_l]E k. Hk -1
v Mm Em Nm
2
k—1,HF !

g

2
k,H"—1
g

+ 2’}/2(1 — Q)Eéﬁ;l‘OEﬂfﬁ_l’o [N E&,’?{Hk_lEnf,{Hk_l

&
— 7(1 — Q)Efﬁfl’OEnf{l’o .. ']Egk’kalEnk‘Hk’I {f(l‘k’H _1) — f(x*)}

1672(1 — 0)68 8v2(1 — 6)o?
1000 | 500t

min g, min
1<m<M 1<m<M

We take expectation with respect to H*~! and H*, and apply Lernma

~k,H" L2
ot —x

Egr 1 EgeEe—10E v—10...E , gx 1 E . go_y
&m M, Em N

~ 2

xk,O —x*

g P (1 - %) EHk—lng;z—l,OEnfn—l,O .. .E&ﬁfl‘Hk_lilEnsfl’Hk_lil H
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. 2

+(1 _p) (1 - %) EHk*IEHkEgk*LOEnkfl,O . 'Egk,Hk—lEnk,Hk,1 .%-fk;7Hk _ x*

_ 2
+2729]EH}°71EEZ‘II’OEnf{LO : Egk 1,Hk=1_ 1E k-1, Hk—1_1 gk_l’H,C '

2
+2’72(1 — 9)(1 — p)EkalEHkngn—l,oEniﬁl—l,o .. 'Egk ok 1E,’71‘7,Hk—1 gk,Hk
2

+27°(1 = O)pE g1 Egr1.0E k10 SIS g~

=0

7’)/(1 7p)(1 — G)Eka1IEH1¢EE¢;1,UE”§H’71,0 Ce E&icr;Hk_lEnﬁz’Hk_l {f(l‘k’Hk) — f((ﬂ*):|

—vp(l — Q)Ekal]EEicnfl,OE,,hknfl,O Ce ]ng,fl’kal’l]Enﬁfl'kal’l [f(.rk’o) — f(x*)}
1672(1 — 6)6 8y2(1 — 0)o?
L1697 = 6)d; | 89*(L —6)o

. 46
min g, min_ gm, o
1<m<M 1<m<M
L2
We use Lemmato estimate Hg’“’HkH and Hg’“_lka "II”. We have
(12 96(1 — )26y + 1 2
EptEeroE po ... E e iy [l 95" 16 olitly (:ck’H’“)H
m Im Em Nm p min qm
1<m<M
192(1 — 0)%ady  96(1 — 0)?ao?
(mm) -+ ( mm) - 47)
p1< ar I p1< ar I
. ms m .
Next, analogously to equatlon we choose 7 < S —RiIoaTd W and obtain
2
EHk_lEifﬁ_l’OEnfn_l’o"'Egkfl‘Hk_l’lEnkfl’Hk_l’l gk_l"Hk !

_ 3841 0)%a(8 + 1)

2
EHk*lE&flfl’O]Enf{l'o "‘ngnflvH'“’lflEn’;glvH’“’lfl va(xk’O)H

S 2
p 1<T112M m
384(1 — 0)°ad: 192(1 — 0)2a0?
( min o + ( mm) ' “48)
p* 1<m<M m p? 1<m<M Gm

-1 —
Now we use equatlonand that H* with {&F, " h}h 0 " and H*~1 with {nk " h} _
independent stochastic values. Moreover, we combine equation [#7]and equation [48] with equatlonlzf_B]
and take full expectation.

2 2

pE kaHk —x*

s
—y(1=p)(1 = OF [ f(") — f(a")]

< p( WM)Ekao =
(
—p(1 - O)E [f(:v %) — fa")]

384 2L(1 - —pla(d +1 Kk .
p? min gn
1<m<M
153672 LO(1 5 +1 .
+ Y (mln ) ( 1 )]E [f(xk,O) _ f(CE )}
p L<men qm
3847 (1—-0)3(1 — p)ads 768720(1 —0)%ad, . 1672(1 — 6)62
p? 1<m1£1 v I p? 1<m1£1 v I 15#2 a I
192’7 (1-6)3(1 - p)ac? 384729( - 0)%ao? n 8v%(1 — 0)o?
r? 1<m12M dm P? 1<1Pn12 ar I 1<Hril£ ar I
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Y ~ .2
< p(1-F)E[0 |

_ 3849L(1 — 0)2c(dy + 1)

p? min gnm
1<m<M

—y(1-p)(1-0)|1

E ") = f(a")]

_ 1536yLO(1 — O)a(d1 + 1)

—p(1—0) |1 E [f(2*0) — f(a*
yp(1 - 0) e —— [f(™0) = f(a™)]
1<m<M
+384W2(1 —0)3(1 — p)ads n 768v20(1 — 6)2ady L+ 169%(1 — 0)62
R SR~ .
p 1 <HT}11£M dm p 1 <Hrr111£]vf dm 1 gnrjrlngM dm
+192’y?(1 —0)3(1 — p)ac? N 384+%0(1 — 0)%ao? N 8v2(1 — 6)o?
2 3 2 . " .
p 1571112M qm p 1<%1£ v I 1317112 v I

. DY PP minigmenm gm .
Choosing 6 < B2E and v < ——+S"", we obtain

1 384La (3, +1)
~k ~ 296
EkaHk z* < (1— w)]Eka’o—x* 2—&-#(252—1—02).
8 p3 min g,
1<m<M
Note that T%H" = ghH" _ gk H" — pk+1.0 ynd 780 = k0 Thuys,
296+>
Efe* 10 —a'|* < (1= ) E[ab? - |* + L0 (26, + 0?).
8 p3 min ¢,
1<m<M

It remains for us to going into recursion over all epochs and the result of the theorem:

2 K
Blet o < (1-7) Bl - Y (12 )

1<m<M k=0
K 2368
< (1= ) g o0 —ar P B g5, 1 2
8 pp? min g,
1<m<M

Corollary E.7 (Corollary B.10). Under conditions of Theorem [E.6| Algorithm 2| with fixed rules
R =R = R needs

~ [ /M2 1 L 1\ Mad, M ac?
OW\eE) mm g \ g\ o) T E e T e e
1<m<qu 1% 1% 19

epochs and

oO\M (]\C/l> _— 1 <La51 log <1) + %L? + J\C/Iag>
D, gm \ p € p2e pi%e

number of devices communications

2 . . T
to reach e-accuracy, where > = E ||:vK’0 —z* || and C' is number of devices participating in each
epoch.

Proof. Proof is analogous to the proof of Corollary O
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Corollary E.8. Under conditions of Theorem|E.6|Algorithm 2| needs
2

o M 1 L 5l (1) n M «ds n M  aoc?
. . —Qo01 10g | — n —= -
k,h ) kb 2
I}€11}£1C' 1<I?n1£M Gm \ 1 € rﬁl}{lc u?e Iﬁl}{lC u2e
epochs or
3

~ M 1 L 1 M ad M  ao?
O|\M ; : —ady log | — - "2, T~

minCk min g € minCk" y2e ~ minCkh p2e

k,h 1<m<M k.h k,h
communications

2 . . C
to reach -accuracy, where > = E HxK 0 ¥ H and C*" is the number of devices participating in
k-th iteration in h-th epoch.

Proof. Proof is analogous to the proof of Corollary O

Remark E.9. Considering fixed rules R=R=R,
%) M2 1 L M 3§ M o2
we have O (M (#)" —a (Folos (2) + ¥k + c)>

1<m<M

and O (M2 (%)2 ﬁ (%61 log (1) + Mo Ag")) number of devices commu-

min C p2e 2e
1<m< M
nications with regularizing parameter « = 1 and o« = M respectively. Con-
sidering various rules, best case with regularizing coefficient o« = 1 gives us
3
A M 1 L 1 M 32 M o? _
o (M (mianvh) min_ gm <,LL51 log (E) + minCFk:-" p2e + minCFk." #26)> and worst case o =
k.h 1<m<M k.h k.h
3
: %) 2 M 1 L 1 M 5o M o? _
M gives us o\M (minC’kvh) min g, (,uél lOg (E) + minCkh (2e + minCk.h 25) num
k,h 1<m<M k.h k,h

ber of devices communications.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) were used exclusively for spelling edits.
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