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ABSTRACT

Partial participation (PP) is a fundamental paradigm in federated learning, where
only a fraction of clients can be involved in each communication round. In recent
years, a wide range of mechanisms for partial participation have been proposed.
However, the effectiveness of a particular technique strongly depends on problem-
specific characteristics, e.g. local data distributions. Consequently, achieving better
performance requires a comprehensive search across a number of strategies. This
observation highlights the necessity of a unified framework. In this paper, we
address this challenge by introducing a general scheme that can be combined with
almost any client selection strategy. We provide a unified theoretical analysis
of our approach without relying on properties specific to individual heuristics.
Furthermore, we extend it to settings with unstable client-server connections,
thereby covering real-world scenarios in federated learning. We present empirical
validation of our framework across a range of PP strategies on image classification
tasks, employing modern architectures, such as FasterViT.

1 INTRODUCTION

Optimization is a cornerstone of training machine learning and neural network models. In a nutshell,
almost every Al-based solution aims to minimize an empirical risk (Shalev-Shwartz et al.| [2010),
which evaluates how well the data is approximated. This process involves adjusting parameters
to reduce the discrepancy between predicted outputs and ground truth labels, thereby improving
generalization performance. Formally, the problem can be expressed as

R
min l” ;f(g(wyai),bl)] : (1)
where z denotes the trainable parameters of the model g, (a;, b;) is the i-th sample from the dataset
with size n, and ¢ is the loss function. Nowadays, there is a variety of methods developed to efficiently
solve equationﬂ] (Robbins and Monrol (1951} [Nesterov, |1983; [Kingma and Bal 2014} |Defazio and
Mishchenko, 2023)). The current successes of machine/deep learning owe much to the development
of powerful numerical techniques that enable training on a huge amount of samples. Large-scale
data processing became possible with the advancement of distributed optimization (Verbraeken
et al., |2020). Instead of solving the problem on a single machine, samples are shared among M
nodes/devices/clients/machines connected via a server. Hence, the problem equation [I] transforms
nto
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where n,, is the size of the dataset, stored on m-th device.

1.1 CLIENT WEIGHTING

Parallel data processing helps to reduce computational time significantly (Zinkevich et al., [2010;
Abadi et al.|[2016; |Jouppi et al., 2017)). However, contemporary applications present new challenges.
Training samples are often accumulated locally by each specific machine, rather than being collected
and distributed manually. This paradigm with data remaining on edge devices is called federated
learning (Konecny et al.| 20165 McMahan et al.| | 2017; Bonawitz et al.,[2019). In such a setup, local
datasets are typically heterogeneous — they vary in size, distribution, and quality. For instance, one
device may hold unique objects that are poorly represented across the rest of the network, but are
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crucial for capturing more dependencies. This leads to the conclusion that some clients may be more
useful than others. Modern approaches usually assign dynamic weights {7, }*/_, and use

M M
@)= mmfm(@), st mm >0, =1 3)
m=1 m=1

to calculate statistics. If the devices are considered to be equivalent, this corresponds to the case
where 11 = ... = mp; = /M. As aresult, more important nodes contribute more significantly to the
global loss. There are many strategies to prioritize the clients known in the literature.

Weighting Based on Data Quality/Quantity. The most straightforward way to cope with data
imbalance is to consider a number of local samples. McMahan et al.[(2017) suggested setting each
coefficient as the constant 7, = nm/n. Since then, many modifications of this approach have been
proposed, including federated averaging schemes with momentum (Wang et al., 2019 |Reddi et al.}
2020), variance reduction (Liang et al., 2019; [Karimireddy et al., 2020) and proximal updates (L1
et al.|[2020). However, this type of weighting ignores heterogeneity in terms of data quality, leading
to bias, e.g. if some client holds an enormous amount of objects with the same labels. To support the
diversity of training samples, |Yurochkin et al.[{(2019) proposed to match the neurons of client neural
networks before averaging. Building on the foundations laid by this work, subsequent works have
explored more efficient approaches extensively (Wang et al.| 2020a; Zhang et al., 2022} [Yang et al.,
2023; Wu et al., [2023} |Kafshgari et al., 2023)).

Learned Weighting Strategies. It is also common to learn weighting strategies instead of using

fixed heuristics. |Mohri et al.[(2019) were among the first to present results in this direction. They pro-

posed solving the saddle-point problem min,egs max, ¢ o nm ZAmlzl T fm (@) to give small weights

to well-trained devices. The idea of optimizing agnostic empirical loss was then generalized by [Li
et al. (2019a)). Their g-FedAvg can be reduced to agnostic optimization as one of the special cases.
However, in practice, it is hard to search for appropriate saddle-points (Daskalakis and Panageas|
2018; Jin et al.} 2020), especially in federated learning (Sharma et al., [2023). As a result, the commu-
nity has shifted towards softer adaptive approaches based on local losses (Zhang et al., [2020} |Gao
et al.| 2022) and gradients (Wang et al.,|2020b; [Luo et al., [2024).

Robust Weighting. The idea of assigning weights to the devices found its application in robust
optimization, where malicious clients can disrupt the learning process (Baruch et al.|[2019; [ Xie et al.|

2020; |[Fang et al.,2020). To combat such attacks, advanced schemes usually compute {ﬂ'm}%: 1> as
the trust scores of the devices based on their objectives decrease (Xie et al., |2019)), local gradients
(Cao et al.,|2020; |Yan et al., [2023), and the number of local samples (Cao and Lail, 2019). Recently,

researchers came up with the idea of using a Bayesian approach (Yang et al.,2024).

1.2 CLIENT SAMPLING

Another significant issue of federated learning, on par with heterogeneity, is the communication
bottleneck (Tang et al., [2020; |Shi et al., 2020). Sharing information between machines is costly and
can limit the positive effect of parallelism, which is especially tangible when clients send messages
to the server (Kairouz et al.l 2021). This issue is magnified in federated learning, where edge devices
may have unstable network connectivity, and transmitting large updates may be prohibitively slow.
Many techniques exist to reduce communication (Seide et al.l 2014} |Alistarh et al., 2017} [Stichl
2018). Partial participation is a special one among them (Li et al.,2019b} [Yang et al., 2021)). In each
communication round, only a random subset of clients participates in training, while the rest remain
inactive. This approach offloads the server by decreasing the number of updates that need to be
aggregated. Moreover, it provides significant advantages in edge computing, where communication
channels are not equivalent, or some of them may be unavailable. Nowadays, there is a wide range of
heuristics, which allows to choose subset of clients efficiently.

Data-Based Sampling Strategies. Methods from this class rely on zero- and first-order information
of local functions. Importance Sampling FedAvg (Rizk et al., [2021) was one of the first
such approaches. The authors suggested evaluating the relevance of a device by how large its gradient
is relative to the others. Indeed, a small gradient makes a weak contribution to the step. Consequently,
communication with this node can be neglected. [Nguyen et al.| (2020) proposed an orthogonal
approach. Their FOLB measures the angle between local and average gradient. If it is negative, then
such a device is useless at the current moment. This idea was then developed extensively in (Wu
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and Wang| 2022 |Zhou et al.| 2022). In addition, techniques based on the norms of updates (Chen
et al., 2020) and local loss decrease (Cho et al.,|2022) were proposed. There are also a number of
approaches that dynamically exploit data heterogeneity to maintain balance (Zhang et al.,|2023) or
support diversity (Chen and Vikalo} [2024).

System-Based Sampling Strategies.  Another approach is to use information about the network
itself. FedCsS (Nishio and Yonetani, [2019)) categorizes clients into groups based on their computa-
tional power. This strategy saves wall-clock time by avoiding frequent selection of weak devices.
Another class of techniques optimizes energy consumption (Xu and Wang| |2020). Most modern
system heterogeneity techniques also incorporate local data considerations (Lai et al.| 2021; [Li et al.,
2022). F3AST (Ribero et al.l 2022) learns an availability-dependent client selection strategy to
minimize the impact of variance on the global model’s convergence.

Thus, the community came up with various techniques for weighting and sampling to make partial
participation as efficient as possible. The development of each new scheme was challenging in terms
of algorithm design and convergence proof. Consequently, a number of papers appeared attempting
to propose a theory without utilizing the properties of any particular strategy.

1.3 UNIFICATION OF SAMPLING STRATEGIES

Existing papers in this area of research are built around the federated averaging scheme (McMahan
et al., [2017). |Li et al.| (2019b) proposed an analysis for strongly convex objectives, obtaining a
sublinear convergence rate O (Kz/ K), where « is the condition number. However, they modeled the
partial participation environment via unbiased sampling. |Cho et al.|(2022) were the first to study the
unified case with biased devices selection. They derived O ("ﬁz/ K+ HQ), where () is a non-vanishing
term that becomes zero solely in the absence of sampling bias. Thus, the authors recovered the results
of |L1 et al.| (2019Db)), but failed to extend the theory to weaker assumptions. The first success in this
direction was achieved in (Luo et al.,2022). This work resolved key questions regarding biased
sampling in the strongly convex case. However, the non-convex analysis holds greater significance
for applications. For this setting, Wang and Ji| (2022)) obtained O (ﬁ/\/F + (5), where L is the
smoothness constant and ¢ is the uniform bound on the difference between local gradients. This result
contains the non-vanishing term and does not match the lower bound 2 (Z/k) (Carmon et al.,[2020).
Thus, current works in this field rely on FedAvg. Consequently, their analysis requires boundedness
of gradients (Li et al.l 2019bj [Cho et al., [2022} |Luo et al.l[2022) or their differences (Wang and Ji,
2022)) even in the non-stochastic case. Therefore, there is still no flawless unified theory of partial
participation.

1.4 OUR CONTRIBUTION

In contrast to prior works, where partial participation analysis was built upon FedAvg, we introduce
our own scheme to leverage client sampling. While existing techniques ignore the information from
inactive clients, our approach utilizes it for benefits. Namely, devices accumulate gradient surrogates
locally, and the server accounts for them after the full aggregation round. The proposed approach
allows weighting and sampling clients according to a variety of strategies, including biased ones. The
convergence of our scheme can be proven in both strongly convex and non-convex cases without
introducing unnatural assumptions. The obtained rates do not contain non-vanishing terms. To
validate the theory, we conduct experiments with RESNET-18 and VIT.

2 SETUP
We begin presenting our results with assumptions necessary to prove convergence. First of all, the
objective is assumed to be smooth. This requirement is well-established in optimization.
Assumption 2.1. The function f is L-smooth, i.e. for all z,y € R it satisfies

IV f(z) = VWl < Lz —yll.

Neural networks tend to have a complex loss landscape (Cybenkol [1989; |[Nguyen and Hein, |2018).
Since we are motivated by real-world scenarios, our main goal is to prove convergence in the
non-convex case. For completeness, we also derive results under stronger assumptions.

Assumption 2.2. The function f is:
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(a) non-convex with at least one global minimum:

there exists may be not unique, z* s.t. f(z*) = inf f(z) > —c0.
z€R

(b) p-strongly convex, i.e. for all z, y € R¢ it satisfies
I
Fy) = f(@) + (VF(@),y —2) + Sy — =[*,

Federated learning methods usually require a bound on data heterogeneity to provide convergence
guarantees (Khaled et al.2020; [Karimireddy et al.|[2020). In our work, we quantify it via gradients
(Tang et al., |2018} [Stichl [2020)).

Assumption 2.3. Each gradient V f,, is similar to the full gradient V £, i.e. for all € R? it satisfies

M
% Y IViule) = Vi@ < &lVF(@)IP + b

m=1

This assumption is not too strict, since we do not require uniform boundedness (6; = 0). The
following one is imposed to derive convergence of our algorithm with local stochasticity. If one
removes it, our theory still holds.

Assumption 2.4. Each worker has access to a stochastic gradient V f,,, (z, &, ). This is an unbiased
random variable with bounded variance, i.e. for all z € R? it satisfies

Ee,, [V fm (2, &m)] = V fm (),
Ee,, [IV fin(,&m) = V fm(2)|*] < 0°.

This assumption appears in different forms in a number of classic papers (Stich, [2018; Gower et al.,
2019} |Gorbunov et al., 2020). Next, we consider that weights {7, }_, from equationlie on the

regularized simplex. Namely, 7 € A{V[ N (ﬂi\r/f:l {7r : 6;;7( + % > 0}), where 1 < oo < M is the

regularization parameter and e is the unit basis. This technique is useful for solving a wide range of
tasks (Mehta et al.| 2024).

3 ALGORITHMS AND ANALYSIS

3.1 MOTIVATION

Existing papers on the unification of client sampling consider FedAvg without any modifications.
Section suggests that this approach is not promising due to poor results even under strong
assumptions. A potential direction for future research could be to find a more suitable scheme. Below
we propose an intuition that helps to address this issue.

To understand biased sampling, |Cho et al.[(2022)) introduced the definition of selection skew and
utilized it in the analysis. This is exactly the cause of the non-vanishing term in their rate. Indeed,
there is no convergence if, for example, some devices are never selected for communication. However,
we propose that the problem could be solved if we could somehow account for the error accumulated
due to bias. To develop this idea, we formalize the sampling strategy as follows. First, we assign
weights 7,,, to devices, as described in equation[3} Next, we define the selection rule of the server as
a stochastic operator R : RM — RM that zeros some entries of the input vector while retaining the
others. Applying this operator to the introduced vector of weights, it can be seen that the wide variety
of strategies described in Section [I.2]fits this formalism. This applies not only to simple cases of
selecting clients with the highest weights but also to non-trivial ones, such as zeroing the weights of
unavailable nodes.

Viewing partial participation as weight vector sparsification reveals connections to well-studied
techniques (Beznosikov et al., [2023)). A state-of-the-art technique to handle it efficiently is error
feedback (Stich and Karimireddyl, 2020; Richtarik et al., 2021)). Since sampling rules are represented
as compressors, we believe that this idea may be extremely useful in our setting as well. However,
we cannot apply the error feedback framework directly. The reason is that the sampling rules are
non-contractive compressors, as they zero out certain local gradients. Formally, there does not exist

/8 < oo such that ||z — C(z)||* < (1 - %) |z||? for C(z) = 0,z € R%.

Thus, we have to address the challenge of designing a scheme that can handle non-contractive
compression before proceeding to a unified analysis of partial participation.
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3.2 PARTIAL PARTICIPATION WITHOUT UNAVAILABLE DEVICES

To develop the idea proposed in Section[3.1} we present the Partial Participation with Bias Correction
framework (PPBC, see Algorithm [I)) that supports a wide class of weighting and sampling approaches.
Since computing full-batch gradients is often impractical in modern applications, we also account for
local stochasticity.

Algorithm 1 PPBC

1: Input: Start point x’l’H_l cRe, g’l’H_1 cR?, epochs number K, number of devices M
2: Parameters: Stepsize v > 0, momentum 0 < 6 < 1, regularization 1 < o < M
3: forepochs £ =0,..., K —1do

4: Initialize % // Server weighs clients using any procedure

5: 7k = ﬁk (Trk) // Server selects clients to communicate through epoch using any rule R

6: gfﬁo = 0 // Each client initializes the gradient surrogate

7: k0 = l‘k_l’Hkﬂ — ’ygk_l’H’%l // Server initializes the initial point of the epoch

8: Generate H* ~ Geom(p) // Server generates number of iterations of k-th epoch

9:  foriterations h = 0,..., H* — 1 do

10: kb = ’ﬁ,k’h frk) // Server selects clients to communicate at the current round using rule R
11: for devices m = 1... M in parallel do
12: ,’%’h"_l = gﬁ;h +(1-96) (ﬁ — %fn’h) Vim (xk’h7 fj%’h) // Update the gradient surrogate
13: end for
14: for each device m : %" £ 0 do

15: Send V fn (z%", £5:) to the server

16: end for o
17: hhtl = ghh v |1(1=6) > %ﬁ{thm($k’h, f&h) + egk}_l’Hkil // Server updates

parameters m=t

18: end for

19: for devices m = 1... M in parallel do
20: Send g:H" to the server
21: end for
22: gk HE Z gfn’H i // Server aggregates gradient surrogates

m=1

23: end for

Description of Algorithm (1} In Algorithm 1} the weights 7% = (7F,... 7%,)T are computed
according to any of the mentioned strategies at the beginning of each epoch (Line ). Next, the
rule R is applied to determine the participating machines (Line . Its output #* contains zeros at
positions corresponding to nodes that are not chosen to communicate with the server. Note that R is
not necessarily constant. There are no theoretical restrictions to change it during the execution. For
example, one can vary the number of participating devices. We also allow additional client sampling
at each iteration of the epoch by introducing a rule ‘R (Line . We propose to aggregate local
gradient surrogates during the epoch (Line[T2). To provide intuition beyond this update, we give a toy
example where each 7, is equal to 1/a. In this way, all inactive devices collect their gradients, while
all active ones retain the vector g,, from the previous iteration. In the practical case with various
weights, each device accounts for its deviation from the uniform distribution 7, = {1/m}M_, . Next,
we use the accumulated vectors during the following epoch (Line[T7). To handle the magnitude
imbalance between the gradient and its surrogate, we employ a smoothing scheme with a small
parameter 6. We provide an ablation studies regarding 6 and p in Appendix

Analysis of Algorithm[T} We utilize virtual sequences to derive convergence rates of PPBC. The
idea is to introduce an additional vector

M
~k,h __ k,h k.h
ot = by N gk

m=1

and use it to prove convergence. Substituting Lines[I0] [I7]in this definition, we obtain

M
1 k—1
~k.h+1 _ ~kh _ Eh ¢k k—1,H
T =T v |A-0) 57 Y Vm(abh ghM) + g

m=1
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This is an important technique for our method, since the sequence z is updated with the average

of gradients from all devices, contrary to the original z. However, the virtual update also contains

a combination of accumulated gradients from the previous epoch. We emphasize that handling
k=1, . . .

gt—1H " is one of the main theoretical challenges we address. We set the epoch size H” as a

geometrically distributed random variable and provide the following lemma.

Lemma 3.1. Suppose Assumptions hold. We consider the epoch size H* ~ Geom(p) and
1 < o < M. Then for Algorithm[l|it implies

2 241 -0)%a(6 +1 2 48(1 - 6)2as
EusBeso . Eg ey o || D00 Vg g gt 2L 0%
m Em p2 p2
24(1 — 6)2a0?
+ =
Mp?

Assumption [2.4]is required only to handle local stochasticity. If the devices are able to compute exact
gradients, Lemma [3.1] holds with o = 0. For the details, see Appendix [D} As a result, we obtain the
convergence theorem.

Theorem 3.2. Suppose Assumptions hold. Then for Algorithmwith 0 < %

K-1
1 2 16 (f(2%0) = f(z*))  768yLady  384~*L2ad,
1 Z E||V f(z50)|* <
K part || f(l‘ )H ’VK + p + pS
400vLao? 19272 L% o2
. vLao n VL ao”

Mp Mp?

The main obstacle in proving Theoremis the terms ||g*#" |2 and ||g"~ 5" " |2 that appear in
the analysis. Using Lemma they can be screwed to ||V f(z%H")||2 and ||V f(zF=1H"")|12,
respectively. The first norm is easy to analyze. Classically, it serves as a convergence criterion.
Eliminating the second one turns out to be challenging. To cope with it, we incorporate the surrogate
into the starting point of the epoch (Line[7). For the details, see Appendix[D.1] With such an estimate,
there is a technique to choose the stepsize «y appropriately to obtain convergence (Stichl 2019).

Corollary 3.3. Under conditions of Theorem Algorithm with fixed rules RE = Rkh = R
needs

2
o <MM (ALaél N ALods N ALao >>

C e? et Me*

o _ 1 'H k,0v]|2
number of devices communications to reach e-accuracy, where e = + kzo E HV f (" )|| , A=
f(299) — f(a*) and C is the number of devices participating in each epoch.

We also consider varying sampling rules R* and R*" to study corollaries of Theorem see
Appendix [D.T]for the details. In our work, the analysis is extended to the strongly convex case.

Theorem 3.4. Suppose Assumptions 2.2(b) hold. Then for Algorithmwith 6 < 2k

and v < W;H) it implies that

2 ’yu) K. 0o .2 8o 740
<(1--15 P — | 1446 .
( ) Nl =]+ o ( 2+ =7

E HxK’O —z*

As well as for the non-convex objective, suitable  can be chosen in Theorem [3.4]

Corollary 3.5. Under conditions of Theorem |3.4 Algorithmwithﬁxed rules REh = REh =R

needs
- M\? /L 1 Mady,  ao?
M= Zadlog (2 )+ =22 0
O( <C> <ua10g<€>+cu2€+u2(f€)>

number of devices communications to reach e-accuracy, where €2 = E HxK e
number of devices participating in each epoch.

2 and C'is the
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3.3 PARTIAL PARTICIPATION WITH UNAVAILABLE DEVICES

The previous section addresses partial participation when all devices are available to communicate
with the server. Indeed, in Algorithm [T]each node receives the current parameters at the end of the
iteration, but does not send its gradient. This is motivated by the fact that forwarding a message
from the client to the server is much more expensive than the other way around (Kairouz et al.,
2021)). However, in practice, some devices can become inactive periodically (Li et al.,[2019b} | Yang
et al.,[2021). Namely, these machines not only refrain from transmitting information but also do not
perform local computations. In this section, we extend our theory to cover the case where the actual
parameters are sent to only a fraction of the clients.

Description of Algorithm[2] In this section we present the part of Algorithm [2](see Appendix [A)
that reflects key differences from Algorithm[I} To design it, we refuse using the biased sampling

rule R during the epoch. Instead, we simulate outage probability of the m-th device as a Bernoulli
random variable nf,;h ~ Be(gy,) (Chung, 2000) (Line . To describe client disconnection formally,
nk:" is used to update the gradient surrogates (Line|12)) and to perform the step (Line . Thus, in
practice, it is not necessary for an inactive device to know the actual parameters. We also normalize

the computed gradients by factors {g,, }}/_, to balance their magnitudes.

11: Generate n*"

k,h N
12 gL = ghh (1 - 0) i (= AER) U (b, E40)
Mo gn e
17 AT = bty (1 0) & BRI gk gt
m=1

Analysis of Algorithm[2] We formulate the results for both non-convex and strongly-convex cases.

Corollary 3.6. Suppose Assumptions hold. Algorithm 2| with fixed rules R* =

RFP =R needs

2 4 4

3

M 1 ALad;  ALads ALwao?
+ +—

2 A=

K—1
. I 2 _ 1 k,0
number of devices communications to reach e-accuracy, where e* = 4 l; 3 E H Vf(x®0)

f(299) — f(a*) and C is the number of devices participating in each epoch.

Corollary 3.7. Suppose Assumptions hold. Algorithm @ with fixed rules Rk =

ﬁk"h = R needs

6 (3r(2) i (Eason(L) et , 2o
1<I?n1£M qm \ M € nae nie

*

2 and C' is the

number of devices communications to reach e-accuracy, where €2 = E HxK -
number of devices participating in each epoch.

For more details, see Appendix [E] Note that min; <,,<as ¢, is a constant lying in the interval (0, 1].
Thus, the rates of Algorithm [2| do not differ significantly from those for Algorithm [I} The only
deterioration occurs in the variance term associated with local stochasticity. Thus, if each device has
an access to its exact gradient, there is no asymptotical difference compared to Corollaries [3.3]and

3.4 DISCUSSION

We analyzed a wide class of sampling and weighting techniques and proposed algorithms for different
network scenarios. Their rates asymptotically coincide with the optimal ones for SGD-like approaches
(Stich} 2019). Due to considering biased strategies, we obtained an additional factor M/c. Again
analogizing to compression, this multiplier signifies compression power. It is a well-known fact
that there is no theoretical improvement for methods built upon error-feedback (Richtarik et al.,
2021; |[Beznosikov et al} [2023)). However, we recover the convergence of SGD in the case of full
participation. Comparing our non-convex rate regarding the main term O (1/e?) with prior works,
we note that it surpasses that in (Wang and Ji, [2022) (O (1/s* 4 d2)) both asymptotically and by
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the absence of the non-vanishing term. Next, comparing strongly-convex rates (O (k log 1/¢)), we
are superior to (Cho et al., 2022) (O (+°/= + kd2)) and (Luo et al, 2022) (O (%/=)). Moreover,
both of these works Tack non-convex analysis. We highlight that we soften assumptions from all
aforementioned works.

4 EXPERIMENTS

To validate our theoretical findings, we conduct a systematic empirical comparison of six optimization
frameworks — FedAvg (Reddi et al., |2020), SCAFFOLD (Karimireddy et al., [2020), FedDyn
(Chen et al.,[2023)), Moon (Li et al.,[2021)), and PPBC (Algorithm@ — evaluated under full client
participation (FCP), along with two additional frameworks — F3AST (Ribero et al., [2022) and
PPBC+ (Algorithm [2)) — specifically designed for and evaluated under partial client participation
(PCP). Crucially, we fix the sampling strategy across all frameworks to isolate how each optimizer
interacts with it, thereby decoupling the sampling mechanism from core algorithmic innovations for
FCP experiments. All methods are compared under identical experimental conditions: same model
architectures, benchmark datasets, and hardware configurations. The following section details the
experimental setup, including architectures, datasets, and infrastructure.

Experimental Setup. We evaluate sampling strategies under three distinct data distribution settings:
(distr-1) homogeneous (i.i.d.), (distr-2) heterogeneous (client-specific class sets), and (distr-3)
strongly heterogeneous (varying data volumes and class skew). In this section we will present results
for the most challenging setup with distr-3, full version of experiments is in Appendix [B|along with
other details. Experiments use CIFAR-10 (Krizhevsky et al.,|2009) with RESNET-18 (Meng et al.|
2019) for image classification and FOOD101 |Bossard et al.[|(2014) with FASTERVIT (Hatamizadeh
et al.,[2023) for fine-tuning, providing a controlled benchmark for comparing Algorithm I} Impor-
tantly, each plot compares frameworks — not strategies — by fixing the underlying strategy and varying
the framework. This correspondence is formalized in Algorithm |1} where the gradient surrogate
term vanishes, recovering the conventional update rule. Further implementation details (partitioning,
architecture, datasets) appear in Appendix

4.1 FULL CLIENT PARTICIPATION

Client Selection Rule. Notably, not all strategies in- Table 1: Frameworks and strategies com-
cluded in our comparative analysis inherently incorporate parison on CIFAR-10 & RESNET-18.
a client selection mechanism. To ensure a fair and con-

sistent evaluation, we uniformly applied the following Method + Strategy distr-3
selection rule across all methods: Loss (1) Acc (1)
Sk k
R* = Top, (7r ), FedAvg + PoC 0.898:£0.021  65.340.20

N
where Top~ denotes taking C' > O clients with the high- ~ Fedavg + FOLB  0.674+0.020 71.42£0.19
N
.

. & . FedAvg + BANT 232440023 11324025
est weights 7. Consequently, the remainder of our ex-  __ dAve + GNS 065740019 71154019

periments will focus exclusively on the formulation and  scarrorp + poc  0.78840.020 69.81-0.19
analysis of weight update rules, while treating the client  scarrorp + FoLB 0.663£0.016 71.80+0.20

selection process itself as a fixed component of the exper- ~ SCAFFOLD + BANT 0.698+£0.017 71.31+0.18
imental framework SCAFFOLD + GNS  0.689+0.020 71.75+0.19
: FedDyn 0.652+0.016  76.71+0.14

Moon 0.627+0.014  75.21+40.15

Client Sampling. We evaluate four established client

. . . . PPBC + PoC 0.367+0.019 88.87+0.16
sampling strategies, each designed to improve convergence .~ " DG A
or robustness by prioritizing clients based on different cri-  pppc 4 gant 035740.015 88.96+0.15
teria. PoC (Cho et al.| [2022) selects clients proportionally ~ peec + ans 0.364-£0.016  88.90+0.15
to th;ir local loss Values,' fa'vori.ng those with higher empiri-  pj o0 ALl values averaged over 3 seeds.
cal risk to accelerate optimization. BANT (Xie et al.,|2019)  Arrows indicate optimization direction: |
employs a trust-based mechanism, dynamically scoring minimize loss, 1 maximize accuracy. Green
clients by their historical alignment with server-side val- color represents our algorithms.
idation performance, thereby promoting reliability over
time. FOLB (Nguyen et al.| [2020) samples clients based on the projected utility of their updates
— specifically, the inner product between local gradients and the server’s global descent direction —
to maximize progress per round. Finally, GNS (Wang et al., [2020b) prioritizes clients with larger
gradient norms, under the intuition that clients exhibiting stronger local signals contribute more
meaningfully to global updates.
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Full algorithmic descriptions and implementation details
for all strategies are provided in Appendix [B]

Results. The comparative results are summarized in Ta-
ble[I] with primary evaluation based on final test loss and
accuracy metric. Figure[T]complements this by visualiz-
ing the training dynamics of our PPBC framework against
the strongest baselines. For FedAvg and SCAFFOLD, we
report their best-performing variant per sampling strategy,
ensuring a fair and strategy-aware comparison. This al-
lows us to isolate the impact of the optimization framework
itself, independent of sampling-induced variance.

4.2 PARTIAL CLIENT PARTICIPATION

Client Sampling and Partial Participation. To simu-
late real-world scenarios, we model client presence at each
round via independent Bernoulli trials with participation
probability ¢,,,. We evaluate performance across a spec-
trum of participation regimes, ranging from full availabil-
ity (¢m = 1) to highly sparse communication (g, = 0.3),
reflecting scenarios with frequent dropouts or intermittent
connectivity. To contextualize our framework’s robustness
under such conditions, we include comparative experi-
ments against F3AST, an algorithm specifically designed
to handle client outages and non-uniform participation.
For PPBC+, we set server strategy R* with the FOLB
strategy and employ PoC as the client sampling mecha-

nism RF.

Results. Similarly to previous section, results are sum-
marized in Table 2] with primary evaluation based on final
test loss and accuracy metric. Figure [2]represents accu-
racy graphs of our PPBC+ framework with ¢,, = 0.3
against F3AST with ¢,, = 1,0.7,0.5 and FedAvg with
gm = 1. This plot clearly demonstrates the superiority of
our method over F3AST: even under the most challeng-
ing communication conditions (g,, = 0.3), our approach
achieves substantially higher accuracy than all competing
baselines.

Discussion. We provided experimental validation of the
theoretical convergence estimates for the proposed algo-
rithms across a range of practical federated learning tasks.

Our evaluation included large-scale models,

0.9
08 o-0¢
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© |
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o =]
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20 40 80
# communication rounds

Figure 1: Comparison graphs on distr-3

for best runs.

Table 2: Frameworks and strategies com-
parison on FASTERVIT & FooD101.

Method distr-3
Loss (1) Acc (1)
FedAvg (¢, =1) 1.896+0.021 56.74+0.13
F3AST (¢m =1) 1.692+0.022 68.3140.11
F3AST (¢ =0.7)  1.754£0.020 65.52+0.12
F3AST (¢ =0.5) 1.812+0.018  61.30+0.13
PPBC+ (¢m = 1) 0.930+£0.017  76.11+£0.09
PPBC+ (¢, =0.7) 0.937£0.018 76.04+0.12
PPBC+ (¢, = 0.5) 0.961+0.018  75.07+0.10
PPBC+ (gm = 0.3)  0.996+0.020 74.68-+0.11
0.7 — =
0.6 pe /
> /
5’0.5 / /
E 0.4
= / n
8 0.3 / / +
—@— PPBC+ (¢ =0.3)
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Figure 2: Comparison graphs on distr-3

for best runs.
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fectiveness of our approach in realistic learning
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Algorithm [T] Additionally, we analyzed the be-
havior of the PPBC+ (Algorithm[2)) under vary-
ing client sampling conditions, confirming the
robustness and consistency of its performance
across different parameter ¢, values.

r E) % 100
# communication rounds

L I T
# communication rounds

Figure 3: Test accuracy of PPBC/PPBC+ for image
classification with RESNET18 on CIFAR-10 and
FASTERVIT fine-tuning on FOOD101.

To further support our theoretical findings, we present Figure 3| which illustrates that the algorithms
introduced in this work maintain comparable convergence rates across all considered configura-
tions. These results affirm that our methods preserve efficiency and stability even when applied to
heterogeneous data distributions and complex model architectures.
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A PARTIAL PARTICIPATION WITH UNAVAILABLE DEVICES

In this section, we present Algorithm 2] which is the complete version of algorithm from Section
[3:3] This method can be applied to environments where devices do not perform local computations
periodically.

Algorithm 2 PPBC+

1: Input: Start point p-LHT cR?, g’l’H_1 eRY, epochs number K, number of devices M
2: Parameters: Stepsize v > 0, momentum 0 < 6 < 1, regularization 1 < o < M
3: forepochs k =0,..., K —1do
4: Initialize 7% // Server weighs clients using any procedure
5: 7k = ﬁ,k (ﬂ'k) // Server selects clients to communicate through epoch using any rule R
6 gfﬁo = 0// Each client initializes the gradient surrogate
7 k0 = xk_l’Hk71 — ng_l’H}Pl // Server initializes the initial point of the epoch
8: Generate H* ~ Geom(p) // Server generates number of iterations of k-th epoch
9:  foriterations h = 0,..., H* — 1 do
10: for devices m = 1... M in parallel do
11: Generate nﬁ{h ~ B(qm) // Device generates its state: available / unavailable
12: %h"'l = gﬁ{h +(1-6) % (ﬁ - ﬁ',k,{h) me(xkvh,g,’“,;h) // Update the gradient
surrogate
13: end for
14: for each device m : %" # 0 and 7%, # 0 do
15: Send Mme(xk’h, €R:h) to the server
qm
16: end for
Mk k-1
17: R+l = ghh 5 1(1—6) Zl Do 10N fon (a0 €5 + 0gF T 1y Server up-
m=

dates [)(l]'([l}l(’[(’l‘.\'
18: end for
19: for devices m = 1... M in parallel do

20: Send gk * to the server
21: end for
k M k
22: gk’H = Z gﬁl’H // Server aggregates gradient surrogates
m=1
23: end for

B ADDITIONAL EXPERIMENTS AND DETAILS
Our code is available athhttps://anonymous.4open.science/r/EF25_ICLR/!

Hardware Details. The experiments were conducted using Python with the PyTorch deep learning
framework (Paszke et al.,[2017). The computational hardware consisted of a server equipped with
an Intel Xeon Gold 6342 CPU and two NVIDIA A100 40GB GPUs. The total runtime for all
experimental evaluations amounted to approximately 80 hours. To simulate a federated learning
environment, data was distributed across clients based on a heterogeneity parameter.

Data Distribution. In our study, we employed 10 clients for both the RESNET-18 on CIFAR-10
setup and the FASTERVIT fine-tuning on the FOOD101 dataset. This client count was carefully
chosen to enable comprehensive evaluation across the diverse data distribution scenarios proposed
in our work, while maintaining computational feasibility for thorough experimentation. Below, we
provide a detailed summary of the data distribution characteristics for each experimental setup.
Homogeneous data distribution (distr-1) — each client has the same number of data samples, and
class labels are uniformly distributed across clients.

Example (CIFAR-10): Each client has 500 training samples per class, resulting in 5,000 samples per
client in total.

Heterogeneous data distribution (distr-2) — each client has the same total number of samples, but
class labels are distributed in a non-IID manner.

16


https://anonymous.4open.science/r/EF25_ICLR/

Under review as a conference paper at ICLR 2026

Example (CIFAR-10): We split the 10 classes into two disjoint groups (e.g., classes 0-4 and 5-9), and
assign clients to one of the two groups. Clients in each group receive data only from their assigned
classes. Additionally, the number of samples per class varies across clients.
Pathological data distribution (distr-3) — clients possess Table 3: Client-wise data sample propor-
different amounts of data. The distribution of sample tions in distr-3.
proportions across clients is as follows:

Within each client, class labels are sampled according

Client no. Proportion

to a Dirichlet distribution with concentration parameter 1 10.6%
a = 0.5, resulting in highly non-IID label distributions. 2 7.4%
Next, we provide a detailed overview of the client 3 12.0%
sampling strategies and present comparative results for 4 11.4%
FedAvg, SCAFFOLD, and Algorithm [T We exclude 5 8.8%
FedDyn and Moon from this analysis, as their designs 6 14.6%
incorporate fixed strategies that cannot be decoupled from 7 10.0%
their core update rules. 8 5.4%

9 10.2%

10 9.2%

Loss-aware Client Sampling. Building upon previ-
ous work, (Cho et al.| (2022) introduced the POWER-OF-
CHOICE (PoC) strategy, which employs a weighted client sampling mechanism based on local loss
values. Formally, the weight update rule can be expressed as:

1. The server assigns to all clients the probabil-  z—"! distr-2 e teed
ities proportional to the data size fractions \ k . T\\

N

Pm =77\
(%)

m’=1

(a) Convergence comparison.

2. The global model is sent by the server to the

distr-1 distr-2 distr-3

selected C clients, which compute and return , ;
their local loss values based on their datasets. | =" "’“
Subsequently, the weights are updated: kol il
o ¥ ol A
k
T = — Ug(x,a; ),b; .
( |"l’Lm Z (g( IM) m )] > (b) Metrics comparison.
im=1 m=1

Figure 4: Performance comparison for PoC strat-
egy with different data distributions.

Trust-Score Sampling. The study by |Xie et al.|(2019) introduces the BANT, which implements
a trust-based sampling mechanism. This approach assigns dynamic trust scores to clients based on
historical performance metrics. Thus, weight update rule can be described as:

1. The server assigns trust scores TS';1 to each
client m based on the alignment of their model
updates with the performance on server-held
ground truth data V:

distr-1 distr-2 distr-3

(a) Convergence comparison.

Tsﬁl = exp _i Z fm(xk O gistr1 dgistr2 distr-3

V& = ==
2. The weights are updated with a probability ~+ [ / L e
proportional to trust scores: I I8 .

(b) Metrics comparison.
K TS,,,
= M ‘ Figure 5: Performance comparison for BANT strat-
TSf,L, egy with different data distributions.
m’=1 m=1
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Importance Sampling. Nguyen et al.| (2020) introduced FOLB, a theoretically grounded client
selection framework for federated learning that optimizes convergence by sampling clients propor-
tionally to the expected utility of their local updates. The core selection mechanism operates as
follows: distr-1 distr-2 distr-3

1. Each client is assigned an importance score MM“”’"‘\M - tm\
IS®  proportional to the inner product between =
its gradient V f,,, (x*, ¢ ) and the direction of
the server model improvement (previous gradi-

3 \\: " O80gg, :;;‘:::?;v

ent dk) (a) Convergence comparison.
ISF, = [(V fm (2", &5, d)| . distr-1 distr-2
2. The weights are updated with a probability | #7===  © /W
proportional to the trust scores for each client: | .
M
ISk
ﬂ'k = % . (b) Metrics comparison.
SISk, : -
S ) Figure 6: Performance comparison for FOLB strat-
= —

egy with different data distributions.

Gradient-Norm-Based Sampling. For the image classification problem on CIFAR-10 dataset, we
introduce an alternative client sampling strategy based on gradient norm sampling GNS |Wang et al.
(2020b)), which prioritizes clients whose local updates exhibit larger magnitudes. In particular:

1. At each communication round k, the server diste-1 A2 R diste-3
estimates the relative importance of each client t\mww . ‘“"”%’M\“ I EQ N
m using the norm of its reported gradient - NG

V fm(wh, €h):
v V(e &)1,

= . (a) Convergence comparison.
M kE ¢k
Zm’:l ||me/ (w ) gm/ ) H2 distr-1 distr-2
2. Clients are then sampled with probabilities o i
Iié

proportional to {pX }M_,  ensuring that those
with larger gradient norms are selected more
M
7Tk = (pfn)mzl . (b) Metrics comparison.

.....

s

m

frequently:

'.I‘h;.obtamed compa(r11s70n results are presented Figure 7: Performance comparison for GNS strat-
in Figures i} [61 5} an egy with different data distributions.

ViT Fine-tuning. To further assess the generalization and adaptability of our method, we conduct
additional experiments involving the fine-tuning of a state-of-the-art Vision Transformer architecture
FASTERVIT (Hatamizadeh et al.l2023). The model, pre-trained on the large-scale IMAGENET21K
dataset (Ridnik et al. [2021)), comprises approximately 270M parameters and integrates hybrid
hierarchical-attention mechanisms for efficient multi-scale feature learning. We fine-tune this model
on the FOOD101 dataset (Bossard et al., [2014), a challenging benchmark consisting of 101,000
images across 101 fine-grained food categories. This dataset presents significant visual complexity
due to high class variation and subtle inter-class distinctions, making it particularly suitable for
evaluating the scalability of our method.

Table 4: Summary of training strategies used in additional experiments. Top and Rand denote the
client selection rules, where the number indicates how many clients were selected for training.

Epoch Strategy Round Strategy

GNS (Top 3) PoC (Top 1)
FOLB (Top 3) PoC (Top 1)
PoC (Top 3) Rand 1
FOLB (Top 3) Rand 1

18



Under review as a conference paper at ICLR 2026

GNS + PoC FOLB + PoC PoC + Rand 1 FOLB + Rand 1
N ~ ~
@ = I ! @ =2 2 0
o o o o
ko] o) il ]
8 8 8 8
—e— PPBC —e— PPBC —e— PPBC —e— PPBC
| —o FedAvg N ol 7 FedAvg T—g | —° FedAvg T | —° FedAvg T
R T 1 e R P VR ERI s T e PRI
# communication rounds # communication rounds # communication rounds # communication rounds

(a) Losses for strategy mixture comparison.

GNS + PoC FOLB + PoC PoC + Rand 1 FOLB + Rand 1
0
o7 = o —~ 07 — — . — |
o o
Ze @ Zo x Ze * e z i
e, C. e, 2,
=1 =] 3 =]
g > S . g 5 g 5
2 —o— PPBC <o / —— PPBC o —e— PPBC o —— PPBC
o / a— FedAvg o1 / a— FedAvg o / a— FedAvg o / o— FedAvg
00 ; 00 | 00 | 00
] i I VI i BRI R TR
# communication rounds # communication rounds # communication rounds # communication rounds

(b) Metrics (Accuracy @1) for strategy mixture comparison.

Figure 8: Performance comparison for combination of strategies on FASTERVIT fine-tuning.

Strategy Mixture. In the preceding experimental setups, we restricted our evaluation to a fixed,
server-based client sampling strategy. However, as demonstrated in our theoretical analysis, Algo-
rithm [1] is flexible enough to accommodate a broader class of sampling mechanisms, potentially
varying across communication rounds. To validate this flexibility empirically, we conduct additional
experiments for FASTERVIT fine-tuning on distr-3 data distribution. We consider this setup to be the
most challenging one, because strong heterogeneity with different amount of samples and classes
per client and various strategies makes the FedAvg and SCAFFOLD algorithms behave similarly.
Therefore, our further experimental comparisons will only include FedAvg. We allow the sampling
rule R¥" to change dynamically at each communication round k. The combinations of strategies are
presented in Tabled] The performance validation results for each strategy mixture can be observed in

Figure[§]

Ablation Study on Hyperparameters. Our framework admits a unifying interpretation: by setting
6 = 0 and disabling the client weighting mechanism, we recover the original baseline methods
(FedAvg + any client sampling strategy). Consequently, by varying 6 we can obtain various perfor-
mance of Algorithm[I] Our method also utilizes another hyperparameter: the duration between global
aggregations (length of the local epochs) H*, modeled as a geometrically distributed random variable
with parameter p. Our theoretical analysis imposes no constraints on p; convergence guarantees hold
for any choice, with rates explicitly dependent on this hyperparameter (see Theorems [3.4] 3.2} [E.2}
[E.6). Next, we conduct an ablation study on both hyperparameters 6, p to quantify their impact on
performance. Moreover, we demonstrate the empirical connection between 6 and p, which correlates
with our theoretical findings.

Firstly, we provide ablation study on #. We fix p = 0.2 (yielding H* = 5) and vary 6 under the GNS
client selection rule. Results are shown in Table[3

Table 5: Ablation on 6 with H* = 5.

0 Accuracy Loss

0.05 0.88 0.35
0.10 0.90 0.31
0.15 0.93 0.21
0.20 0.89 0.32

We confirm our theoretical expectations: excessively small values of 6 do not allow for effectively
accounting for the clients’ history (§ = 0 corresponds to FedAvg), while large values disproportion-
ately increases the contribution of gradient surrogates that become outdated after an epoch. However,
there exists a wide interval within which the method do not lose much quality compared to optimal 6
value.
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Next, we fix § = 0.2 and vary p (i.e., the expected epoch size H k— 1/p), with results in Table@

Table 6: Ablation on local epoch size with 6 = 0.2.

H*  Accuracy Loss

1 0.81 0.38
3 0.91 0.23
5 0.89 0.32
7 0.82 0.39

For 6 = 0.15, the optimal local epoch size is H* = 5 (see Table E)l) while for 8 = 0.2, the optimal
value decreases to H¥ = 3. This finding is in complete agreement with theoretical expectations:
bigger values of  require fewer number of local steps to achieve optimal convergence.

Ablation Study on Convergence. In this para-  pronpT1 8, CIFAR-10  FASTERVIT, Foop101
graph, we emphasize that the proposed Algo- =
rithm [T maintains similar convergence behavior ) i

i

—]

. . . >° >,
across all combinations of the considered strate-  g°| / T PPRCCNS g /
. . . . . 0. =]
gies (see Figure [9). This result is obtained by g !f PPBCBANT | go A e
gradient compensation technique incorporated || T FPBCFOLB o B ey
—— PPBC PoC —4— PPBC (PoC-+Rand)

in our method. Thus, a biases that appear due to ———— e
applylng client sampling Strategies are equally # communication rounds # communication rounds

mitigated by our algorithm. Figure 9: Test accuracy of PPBC for image clas-

sification with RESNET18 on CIFAR-10 and
FASTERVIT fine-tuning on FOOD101.

C GENERAL STATEMENTS

Notation. In the work we use the following notation. z*" € R is the vector of model’s parameters
in h-th iteration in k-th epoch, V f,,(z) € R represents the gradient of function f,, at the point
r € RY, Vi, (r,&) € R? denotes the stochastic gradient at the point 2 € R? with respect to
stochastic realization €.

For a random vector z € R? and stochasticity & we denote E [z] is the expected value of x and E¢ [z]
as the conditioned expected value with the respect to €.

[ d d
We use ||z]| = (/> x? as l-norm of the vector z € R¢ and (z,y) = > represents the scalar
i=1

i=1
product of vectors z,y € R%.
We use number of devices communications (device to server communications) as the metric. This
choice arises from the recognition that the number of rounds of communication is insufficient to
adequately compare distributed methods. For example, this limitation becomes evident when the
nodes operate asynchronously. In this case, the more appropriate metric is the total number of
communications rather than the number of rounds.

General inequalities. Suppose z,y, {a;};—, € R {w;}_, € R, f(-) inherent to Assumptions
2.2(b)

2.2(b)l (+) is under Assumption Then,

IVf(z) = VIW)I* <2L(f(2) = fy) = (VF(y),x =), (Lip)
(@) < 5 ol + 55 1l (Fen)

n 2 n
Yoail| <n) e, (CS)

=1 =1

D Wiay D aip(s)

90( E?:MH ) S ZL a ten)
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Lemma C.1 ((Allen-Zhu, 2018)). Given sequence Dy, D1,... Dy € R, where N € Geom(p).
Then,

En [Dn-1] = pDo + (1 — p)En [Dn] .

D PROOFS FOR ALGORITHM [T]

Lemma D.1 (Lemma[3.1). Suppose Assumptions2.3| 2.4 hold. Then for Algorithm|[\it implies that

2 24(1 - 0)2a(6; + 1 12 48(1 — 6)2a6
EpEero. .. E s [l¢8" || < (L=6)ai+Dp HVf(:ck’Hk)‘ 4 480 =0)7ad,
m fni p2 p2
24(1 — 6)%a0?
atal S T
Mp?

Proof. Let us start with the following estimate:

M
1= 0) D (37— 7 ) Vhnla k)

m=1

2

2
||gk:,h+1 ||

[Fen)

< (+olls’
1 1 1— )2 L1 v kb pkih
w1 g) amor| S (g7 Vot e

where c is defined below. Let us estimate the last term and obtain

2

TN

2
Z ( %Zf,;h) V(2 €50

m=

<

M 2

2|2 (37— 7" ) Vonla)
mL
222 (-

m=1

2

) V(@ E01) =V frn (a™M)]

i\H

M 2

M
Z (J\l/[ W,’ﬁ;h) V fon (2™ Z ( an) Vf(zh)
m=1 =1

M

3 () s

m=1

M

Adding and subtracting > 7"V f(x*") in the first term yields
m=1

Mo 2
) (M ~ h) Y fon(a €0")

2

<23 (57— 74 [Vl - )= 30 k) Vi 2
2 M m L) m
M 2
w2 (;4—%’6 h) [V fn(h €51) = ¥ fon (21)]
(k) LS ~kh k,h 2
<42_1(M— )[Vf( ") -V f(a)]
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M
+4 Z (%ﬁ;h — 777]‘,1) Vf(zhh)
m];l ,
+2 Z (]\14 - ~fnh) [Vf ( 1h) - vfm(mk’h)]
m=1

We apply equation[CS]to the first term and identically transform the second and third terms:

Mo 2
) (M - ?rii;h) Y fon (@ E5")

m=1

2 M

M
<4 Z:l (M =k, h) Z Hme kh Vf(xk,h)Hz
M 2
+4 (Z 7n ) ||Vf kh)”
M
+2)° ( . ,’;h) [ fin (a2, €5) = fr () |

m=1

~h.h 1 e
i
i#]

(VI ) = V), V) = V)

Agii@ k,hy (|2 < 1 ~k,h 2 k,hy (|2
< 4AM (51 |V £ (M) +52) > (M_W ) +4||VfEEM)|
m=1

M 2
+2) (;4 - %f,;”) IV fon (@ €)= 9 frn (@) |
m=1

1 - 1 -
"y (M _ vah) (M _ W;m) .
i#j

' <Vfi($k7h’§f’h) = V(@) V f(ahh ) — ij(l‘k’h)> :

M M
where (i) was made due to > (4 — k) =1—1=0, (ii) with respect to > (7
=1

m=1

bl
}
:1
N
—

3

o
Taking expectation on £%:" and using Assumption 2.4, we have

2 Mo 2
E < Ao TIPS <M_%:;h>

m=1

Mo
Z (M - %k h) anl(xk,h’gs{h)

m=1

k,h
Em

+4[[ 7 £ ()]

M 1 2
+4M6, Y (M _ 7757{0

m=1

M 2
+202 Z ( — 7k h) , (5)
m=1

since 55 " and §;€’h are independent random variables and, consequently, the scalar product equals to
ZEero.
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We use 7 € AM N (ﬂf\le {miepm+ &2 O}) where 1 < a < M and {e,, }M_, is the unit

basis. In this way, worst case in terms of average distance from ﬁ is realization, where [%J weights
are % and the rest are zero. In such a case, we can estimate

- () <[] (e[ 5
S (Low) < |¥ 1)
= \M o M2 a|) M?
M (a —1)2 M
< —mE +(M a+1)M
et oo ©

M M2~ M
We can transform equation [3]into

" 2
L kb kb (|2 2002
Egnn mz::l (Mwm )me(:c )| <4 (6y+ 1) V£ + 4002 + L
Substituting equation [7)into equation[d we have
2 2 1 N
B [0 < (g 4 (14 1) (1= 0P8+ ) [
1 2
(14 =) (1-6)%a0
&
vo(1+ )02
- —0)"—o".
c M
Enrolling a recursion, we get
2 1 L
Eexo.. Egon [|[¢" " < 4 (1 + C) (1- 6026+ 1) Y (1 + )" |V (")
=0
1 L .
+4 (1 + C) (1 - 0)%as, ;(1 4 o)t
1 o L
2 & 9 h—i
+2 <1+c> (1-0)°770 ;(1+C) . (8)
Now we use that H* ~ Geom(p):
k,H" 2

EmEero - Egrs

> P =PV Eeo . Bersor [|g™7 ]

J=20

< 4 (1 + 1) (1—0)%a(d +1)-

9

j7

1
Do py 3o e [V
7=0 =0
+2(1+1) (1—0)2<= (0% +2M36,) -
M 2

i—

1
D_p(=p) (14 ©

320 =0

Let us choose ¢ = £ and consider the following term individually:
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S =) S+ R = 1 [V

720 =0

-2 {4 ) VA 4 [T ]
=p(1—p){(1—p)°(1+6)°+(1— p)(1+c)+ MVf 20|

+p(1 - p)? [(1 —p>°<1+c>°+ (1=p)(1+c) +] 1w FEH + ..

<> A=p 1+ DY —p) [ VEEH)
1>0 >0

< Zpl— ) " (a:k’Hk)‘z
1—(1- ) S p(p+1)

<§]Em Vi (ak )H . (10)

Additionally, we have

—

Jj— .
. . J
Sop—pP Y+ < pY o -pVi+ by <pY i (1-5)
320 =0 7=0 3=0
12 4
= 2 < (an
(1-(-5) »

Combining this estimates with equation[9] we obtain the result of the lemma:

2 24(1 —0)2%a(6 1 2 48(1 — 0)%2as
EgeEoro.. . E v |6 < (L=6)a+Dp Vf (k" 4 80 —0)ady
fm f?n p2 p2
24(179)2a02
+ 2
Mp

D.1 PROOF FOR NON-CONVEX CASE

Theorem D 2 (Theorem @ Suppose Assumptions 2.1} 23] 24 hold. Then for Algorithm([I]

1 16 (£(290) — (" S Lnd, 3810 L2
EZ]EHVJC(J:’“O)HQ < (f(220) - f(z ))+ yLady | 384y°L7ad,

VK p p?
400yLac? 19272 L%ac?
+ + .
Mp Mp?
Proof. We start with the definition of virtual sequence:
M
FhRh = gk Z ghh = ghh _ yghih, (12)
m=1
It is followed by
~k _ k—1
Fhihtl _ghhtl Z gl = ghoh [ Z FERY £ (2P0 gy 4 ggk—1H
m=1
M M
_,yzgfn,h_ Z(_ﬂ )me(khgkh)
m=1 m=1

24



Under review as a conference paper at ICLR 2026

M
~ 1 k-1
_xk’h—”y[(l—H)MZme(xkh, khy 1 ggh—1H ] (13)
m=1
Assumption 2.T]implies
~ - ~ ~ ~ L. ke 12
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Taking expectation over £F:", we have
Egor [f@"] < Eggn [£@")] — 0B g <Vf(f’“’h), gt

—(1-0)E M<Vf~’“” Zme “5"”)>
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2
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T 7(9 + ( );(M T > f(z m )>
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Thus, 7% and ¢¥;" are independent. Analogously, g and £5:7 are independent. In this way,

equation [T4] transforms into
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Now we pay attention to the following term:

M 2
e % Y (Vhmla™" 60" = V (™)
m=1
L ¢ Lo ghoh b 112
D > B [V 5" = T fn ()|
m=1
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where (@) is correct, since §f " and 13 f " are independent. Substituting this estimate into equation ,
we have
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Let us estimate the scalar products separately.
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Combining it with equation[T6] we have
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Now we put h = H¥ — 1 and take additional expectations.
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We take expectation with respect to H*~! and H*, and apply Lemma|C.1}
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Next, we put v < 7~ and 6 < . Moreover, we use that H* and {¢k 1"} h_o  are independent
stochastic values.
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]EHIc—l]EHkEgk—l,D .. .]EEk,Hk,l

2
k—1,H% !
g

Egr1E k-10...E o 1 gr-1_4
Em Em

+

EHk—l]EHkEgk—l,o .. .ll‘igkﬂk,f1 {f(jijk )}
<(1- p)EkalEHkEgicn—l,o .. .]E‘Ek,Hki1 |:f(:"i.'k7Hk):|
—I—p]Ekalng;l,o N [f(ﬁfko)}

13
1-6
— %EHA:—JE&F"—LO L E k—1,Hk—1_1 ||Vf(.1‘k’0)

3
1-6)(1—
- wEWIEH;@EwW By

4
Y L*(1 - 6)(1 —p)
2

I

vt

k,H* 2

EHk—lEficn—l,U e ng’,LHk71,1EHkE£§n,0 SN ngntHk,I g

k—1,m* 1|

+ ’VeEHk71E§k71,o ... Egk,l’Hk71,1

Y2L(1 — 6)o?
TiC L g (17)

. k|2 k—1|2 .
We use Lemma to estimate Hgk’H H and Hg’“’l’H H . We obtain

g
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2 24(1—0)%a(6 + 1 2 48(1—6)%ad
EgvE ko . .E . gr_y gk’Hk < ( )"a(d1 + )EHk HVf(l‘k’Hk) ‘ 4 w
£m‘ Em p2 p2
24(1 — 0)? a0
» B0 s Mpl : (18)
112
As fongk_l’Hk IH , we have
EpeE E et |
Hk—1 Eic”—1,0 e Ef‘}L_l'Hk_l_l g

< 24(1 — 0)%a(d; + 1)

rormh |12, 48(1 —0)%ady | 24(1 - 0)*ac®
= Epes |V f(a ) ] + - + = h
(©S) 48(1 — O)a(67 + 1 _ k—1 —t k-1 |2
D BUDa t Vg, g peh-1a) - v g

48(1 — 0)2a(6, + 1)

|2 48(1—0)%ad, | 24(1 — 0)2ac?
+ p2 ]EHk—l Vf(:l? ) ’ + p2 —+ Mp2
As.ZD 48 L2(1 — 0)2a(6 1 1 o1 (|2
< 8L( p)2 (b1 + )]EHk—l kaq,Hk _ h—1HM
48(1 — 6)2a(8; + 1) coui2 | 48(1—0)%ad,  24(1 — 6)2a0?
+ 2 ||Vf(x ' )H + D2 + Mp?
48’)/2L2(1 — 9)2a(51 —+ 1) k_1.HF1 2
= p2 EH}c—l g ’
48(1 — 0)%a(6y + 1) wov2  A8(1—0)%ady  24(1 —0)2ao?
+ 2 ||Vf(x ' )H + 2 + Mp? :

We choose v < m. Moreover, we take additional expectations and again use that H k=1

HF11 . .
and {&y"},_ are independent stochastic values:

12
EH}c—lEEk—l,O ce ]Efk_l)Hk—l_l gkil’Hk '
96(1 — 60)?a(dy + 1) cov2 . 96(1 —0)2ad,
< p2 EE:‘;LU .. .ngn,Lkal,l HVf(.T ’ )H + T
48(1 — 0)?ao?
. 19
+ Mp? (19)
Now we substitute equation[I8|and equation [I9]into equation [I7}
pEHk71EHkE£k71,o . ]Egk,kal [f(%k’Hk)}
< pEHk71E§i71'0 .. .Egﬁrlﬂkfl,l [f(%k’o)]
1-6 2
— %EHIC—JE&;—LO .. ~E£k—1,H’C—1—1 ||Vf(gjk,O)H
1-0)(1— 2
- WEW,IEWE%W o Egme s Vf(z"H")
1293L%(1 - 0)3(1 — p)au(61 + 1 NIk
+ i ( )p(z p) ( ! )]EHI«71E£$;1,0 .. .Egk,l‘kal,lEHk Vf(Ik’Hk)H
243L2(1 — 0)3(1 — p)ady  1293L%(1 — 0)3(1 — p)ac?
+ 2 + 2
p Mp
. 96v0(1 — 0)%a (61 + 1)

E&f{l’o L E Kokl va(xk,o)HQ

p? 3
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N 9670(1 — 0)%ad, n 4870(1 — 0)%ao? n Y2L(1 — 6)o?
P’ Mp? M
We take the full expectation, then use a law of expectation and rearrange terms:

PE [f@)] < pE[FE)]
(1 - 9;(1 - p) (1 A8YPLA(1 = 0)*a(é + 1)) E va(xk,H")H2

2
~(1—=0)p 3840(1 — O)ax(01 + 1 2
e B
243L%(1 = 0)3(1 — p)ady ~ 9670(1 — 0)%ady
+ ¢ + ;
p p
Y2L(1 - 6)o? n 1293L%(1 — 6)3(1 — p)ao? n 48v6(1 — 0)%ao?
M Mp? Mp? '

+

We choose 6§ < 1L and v < WM. Note that all previous transitions hold even with larger

choice of 8 and ~, consequently this choice is correct. In that way, we obtain

Wl(lggﬂEHVf(xk,O)H? < JE [f(gk,())if(gk}Hk)

2473 20
+ 202 4 48y Lad,y

~2Lo? n 12v3 L2 oo n 24~2 Lowo?
M Mp? M '

Note that zF-H7" = ghH" — gk H" = pk+1.0 and 7F0 = 2#0 Thus,

+

y(1—-6 2 48y Lad 24v2L%ad
( < )EHVf(xk,O)H < E [f(.’tk’o) _f(karl,O)] + > 2 + p3 2
+25’y2La02 + 1273L2a02.
Mp Mp?

Averaging over all epochs, we obtain the result of the theorem:

KZ E |V f(z"0) < 8 (f(z%0) —E [f(="0)]) 384yLady = 1924°L2ad,
) 110K W1-0) T a0
n 200y Lao? N 962 L2a0?
Mp(1—0) ~ Mp(1-0)
16 (f(200) — f(2*)) | T68vLady 38421200,

k=0

g 3
vK p p
400yLac? 19272 L%ac?
+ + .
Mp Mp?

Corollary D.3 (Corollary 3.3). Under conditions of Theorem [3.2| Algorithm [I) with fixed rules
RF = RF" =R needs

0 (M (ALa51 N ALa62 ALao? >> epochs and

C g2 gt Met
M (ALaé ALads  ALac?
O M= a9 + 402 + ag number of devices communications
C g2 gt Met
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K—1

to reach -accuracy, where e? = - 5" E HVf(xk’O) Hz, A = f(2%9) — f(z*) and C is the number
k=0

of devices participating in each epoch.

Proof. Using the result of Theorem [3.2] we choose

_ min{ p V@) = f@)p /(f@00) — fz*)p
TS 384La(d; + 1) 4J3La52 ’ 2\/3L20452 ’
V (f(200) — Mp Y/ (f(@00) — f(x*)) Mp
5\/Lo¢02K \/12L2002K )

Thus, we need

o ((f(xw) — @) Lady | (fa®) — Ja)) Lady | (a2) —f(a)) Loo®
pe 23 Mpe

L (@) = f@) Lvad | (f(=*) - f(a:*))L\/&a>

p3ed VMpies
epochs to reach e-accuracy, where ¢2 = Z EHV f(zk0) H Since the last two

terms in the estimate in a magnitude smaller, than the second and third accordingly,
we can ignore them. The length of the epoch H € Geom(p), Algorithm [l| requires

0 (f("°)=f(z"))Lad n (f(z"°)=f(z*))Las, n (f"°)=f(="))Lac®

22 p2et M pZe communication rounds.

Next we mention that at each communication round we communicate with C' devices, thus, number of
(£(a*°)—f(z*))Las; Lo (£(2*°)—f(z*))Lass Lo (£(2°°)—f(z*))Lao® )

p2e? p2et Mp2et

communications is O (C

Taking p = %, we have the result of the corollary. The choice of p is motivated by the fact
that we perform %C + M communications per-epoch, and established p is the minimal, which

delivers O(M) communications at each epoch. This is also the reason for the additional factor M in
the estimate on communications. O

Corollary D.4. Under conditions of Theorem[3.2|Algorithm[I| needs

M A1;0551 ALO[52 ALQU2
© minCk:h ( e2 + o4 D epochs and
k,h
2
M ALad;  ALady — ALao?
o1 r}qli}p(}kvh ( 5(21 -+ ;f 2 + ij ) number of devices communications

K-1

to reach e-accuracy, where £* = 4= > E||Vf(z A= f(@%9) — f(z*) and C*" is the
k=0

number of devices participating in k-th iteration in h-th epoch.

Proof. Using the result of Theorem [3.2] we choose

_ min{ p V@) — f@))p /(f(@00) — f(z*))p
TS 384La(d; + 1) 4J3La52 ’ 2\/3L2a62 ’
V (f(200) — Mp Y/ (f(@00) — f(x*)) Mp
5\/Lo¢02K \/12L2a02K )

Thus, we need

0 ((ﬂxw) —f(@) Ladi (f@*®) = fo")) Lady  (£a®®) - (@) Lao?

pe? pet Mpet

+

(fa20) = @) Lv/ady | (f(=") = /(")) Lv/ao
p253 \/Mpgg?)
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epochs to reach e-accuracy, where &2 = Z E ||V f(z*0) H . Since the last

two terms in the estimate in a magnitude smaller than the second and third ac-
cordingly, we can ignore them. The length of the epoch H € Geom(p), Algo-

o (UE")=ia))tas | ($E)-f@)Lads (f(wo’o)—f(w*))LwQ)

rithm 1 requires Per P Mp2et

communication rounds. Next we mention that at each communication round
we communicate with CF"  devices, thus, number of communications is

0,0y __ * 0,0y__ * 0,0y__ * o2 .
(’)(maxC’k’h ((f(x )-f@)Lad | (S0 fa)Lass | (f0)-I@")La )) Taking,

p2e? p2e? Mp2et
)
minC*F "
k,h

p = ——— > we have the result of the corollary. The choice of p is motivated by the fact that we

perform %H]g?}XOk’h + M communications per-epoch, and established p is the minimal, which
h

delivers O (M rnlnIVICkh) communications at each epoch while guarantee the epoch is executed
k,h

maxCF"
(if we take p = k’hM , we can meet p = 1). This is also the reason for the additional factor
M —2 . in the estimate on communications. O

minCk.h
.k

Remark D.5. Considering fixed rules R = R = R, we have O (M% (AL‘SI + AL62 + Aﬁg ))

Me#
parameter « = 1 and o« = M respectively. Considering various rules, best case with regularizing

2 . . . . . .
and O (M 2% (AEL;” + AELJS? + ALg )) number of devices communications with regularizing

k,h

2
. . 2
coefficient o = 1 gives us O (M (rninlgkyh) (AL51 + AL«SZ n L}\Z‘{l )) and worst case o = M

maxCk.h Me*
k,h

2
. 2 . . .
gives us O (M 2 ( M ) (AL51 + AL62 4 AL )) number of devices communications.

D.2 PROOF FOR STRONGLY-CONVEX CASE

Theorem D.6 (Theorem[3.4). Suppose Assumptions[2.1}[2.2(D) hold. Then for Algorithm
2
with 0 < 232 and < m it implies that

2
Ble ol < (1= 1) a0 P4 205 (10 BT )

Proof. We start with the definition of virtual sequence'

ol = gkl — Z gk, (20)
It is followed by
Fhhtl kbl PN Z gk A1
= oMy [(1 ) Z Y (@ E5) +og“’H’“‘1]
m=1
M M 1
Y 10X (- ) Vo)
m=1 m=1
1M
= FFh_y [(1 -0) 57 D Vm(ah g5 + 095 HE ] . (21)
m=1
‘We use this to write a descent:
ka 1 x*H? _ ||%kh _ x*||2 +9 @k, g xk h+1 ~k,h> + ||%k,h+1 . Ek,hHQ
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(21D [ x*||2 — 20 <5k,h _ x*’gkfl,Hk*1>
M
—2 (1 — 9) <§k’h -z, M Z vfm(xkyhagr]:{h)>
m=1
1 & ’
_ k—1
92 09" A (1= 0) 17 D V(@€
m=1
Jer) ||§k7h o .’E*||2 o 279 <5k’h —x* gkfl,Hk71>

M
1
~2y(1-6) <~ ARy DY me<xkvh,£ii;h>>
m=1

M
—27y(1-6) <x’“’h — ", % > me(x’“’h,ffizh)>
m=1

2

k—1,m+ 1| 2
’ +°(1-6)

1 M
17 2 VEm(@® €5
m=1

++%0 H g
Taking the expectation over £, we have

B |70 —o*|” < E

m

75 = [[* = 290 (T — 2, gh T

k,h
Em

M
1
~kh _ kh L kb ek
—2y(1-6) E&’fn’,h <CL‘ xr, Vi mE,1 me(x Em )>

M
L 1
—2 (1 — 9) ngﬁh <:Ek’h -z, i E vfm(xk7hv§§{h)>
m=1

k1,101
g+ b

+720E5]¢,h

M

1

17 2 Vim(@t "t En (22)
m=1

—|—’72 (1 — 9) ]Egk,h

Mention that

ok 20 Zhh _ ghh
ik -~ (1
Line[  g.h k,h—1 ~k,h—1 k,h—1 ¢h,h—1
= h ’ 1-6 — —Fhh1) V(R ek :
v 7(9 =03 () T >>

~ . k— . .
Thus, 75" and £:" are independent. Analogously, g"~1#" " and ¢*:" are independent. In this way,
equation 22| transforms into

2 < Hflm_x*

2 240 <%k,h _ I*7gk—1,H’“’1>
—2y (1= 0) (@"" — P Y f(aPh)

—2v(1-6) <xk’h -z, Vf(xk’h)>
2

ngn,h Hi:k,h—‘rl —x*

120 Hgkq,H’“*l

2

M
1
+7° (1= 0) E i i Z:l V [y (a0 gE:R)

~ 2 — _ k—1
< Hmk,h_x* _279<$k,h_x*7gk 1,H >
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—2v(1-106) <5k’h —gkh Vf(xk’h)>

—2v(1-6) <xk’h — ¥, Vf(xk’h)>

1 M

17 2 (V@™ 650 = V(")

m=1

v (1 0) [T+ 470 g1

2

“1‘2’)/2 (1 - 9) Egicﬁh

(23)

Now we pay attention to the following term:

M
gic”h Z kol gfdh) *me(l‘k’h))
m=1
3 2
Z i |V Funa P E51) = ¥ f ()|
Z< oo [VREHE) = VRG] B [6H 60 = Vhi)])
i#j
As<m 1 )
X MO’

where (i) is correct, since §f’h and f;“’h are independent. Substituting this estimate into equation ,
we have

2

ng,;;" FRhtl ;v*| Hgk,h B x*| 2 270 <Ek’h _ ‘r*’gk_17Hk—1>
_27 <~k N k:,h Vf( k,h)>
—2y (1 —0) (a®" — 2, V f(a™"))

_11l2
+292 (1= 0) V£ + 470 ||g
+2’y2(1 —0)o?

24
7 (24)
Let us estimate scalar products separately.
. k—1 (Fen) N k1|2
—240 <xk,h e > < 0 —a 29 Hgkq,H ’
(Fen)

(1-0) ka,h _ xk,th
2 (1= 0) ||V (M)

Y2(1=0) ||g*"||* + 721 = 0) |V @),

—2v(1—-6) <Ek’h — ghh, Vf(xkh)>

N

z
ANT I[E]
E

2

*

—yu(l = 0) 2" — =
=2y(1 =) [f(z"") = f(2™)]

—2v(1-0) <xk’h —x", Vf(xk’h)>

_w(12— 9) |5 — |
(1 — 0) ||Fh — 7R
—2y(1 = 0) [f(z"") = f(a")]

E9) 77#(12— D) 7 m*HQ
+u(1 = 6)[|g***
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~2y(1 - 6) [f(*") — f()].

Substituting this estimates into equation [24] we obtain

I ey (R ey ] P
+92(1 = 0)(1+ ) || g™ + 3921 = 0) | V(™M) |
_’YM(% Hgk,h —2* 2 _2’7(1 —9) [f(xk,h) _f(x*)]
2v%(1 —0)o?
T
- (1_W(12_0)+9) ||~kh x*||2+2,y29Hgk71,Hk—l 2
V(1= 0)(1+ ) |9 + 3421 — 0) |V £ (a*h)|°

(1= 0) [f) g+ LD

Letus choose 0 < 3 and 7 < f. Then, (1= G0 +6) < (1= %+ ) = (1= ). I
this way, equation @transforms to

Egy |7 - 2" < (1 w) 7" — 2*||* + 24%6 Hg’“*LHk‘l ’

+292(1 = 0) [|g°"]|° + 3+2(1 - 0) | V£ )|

231 0) [f(a) — o)) + AT

(26)
Next we estimate
(Lip)

371 =0 [V )* ST 69°L(1 —0) [ — f(a)]
and combine with equation 23}

ngﬁh H%k,h—&-l —z*

2 < (l_ﬂ)""kh Z‘*2

+292(1 - 0) |||
—27(1 —0)(1 = 3+L) [f(="") — f(a*)]
—‘,—272(1]\; 9)0’2.

112
+2,}/29Hgk—1,H’“ 1

By choosing v < 3 L we can simplify as

Eger 3504 -2 |* < (1- %) [7" — || + 2420 Hg’“*LH'“‘l ’

2 *
+292(1 = 0) [|¢"" " = (1 = 0) [f(«"") = f(a")]
2v2(1 - 6)o?
+ M
Now we put h = H* — 1 and take additional expectations to obtain

2

2 o
]Eg’:n—lﬁ .- 'Egk,Hk—l fk’Hk —z" < (1 — %) E&fn_l’o .. .Eék,ykq gk’Hk_l -z
112
+2'}/29E€§n—1,0 - Egk—l,kal,l gk—LHk 1
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2

k,H’“—lH

+272(1 — Q)Eﬁf{l’o .. ‘]Eg’“Hk*l g

k
—y(1 = O)Egrro . Egyme [f(W “1) f(x*)}
272(1 — 0)o?
Gl )
M
We take expectation with respect to *~! and H*, and apply Lemma

2
~ k
{Ek’H r*

EpesEmEgrro. . Egen

< p (]. — %) IEHk—l]Egicnfl,O ."Eﬁﬁfl’Hk71_1 ka’o — l’*H2

2
- k
Jfk’H _ Z‘*

+ (1 — p) (1 — %) EHk—lEHI«]EgﬁL—l,O .. 'Egk'Hk"’l

1,151

+ 2’)/29EH19—1E£I¢—1,0 .. .Egk,Lkal,l g
2
k
gt

+27°(1 = 0)(1 = p)Egr 1 EgnEgro .. B

+ 292 (1= OPE s Egrro - By v "]

=0

— (1= ) = OB B By [£(") = f(a7)]
—p(L = OF g1 Egiovo . By -1y [f(250) = f ()]
2v2(1 - 6)o?

T

HF1 1 . .
We rearrange terms and use that H* and {¢},"""}," = are independent stochastic values:

+

PEgr-1EprEee—ro.. 'ngan’“—l g _ g ’
<p (1= F)EmeaEgrro. B e [0 — o7
+ 29 0E e Bgrvo . By 1y go-rH
+272(1=p)(1 = OEmsEgrro - B vmv 2 EmnEepo . B s s
— (1= )1 = OB s BBoro . By ey [f(e51) = f(2)]
—p(1 = OE g1 Egioro . By iy [F(250) = f(a7)]
N 272(1 — 9)02. @7

M

. k|2 k—1|2 .
We use Lemma to estimate Hgk’H H and Hgk’l’H H . We obtain

2 24(1 - 0)2a(6; + 1 12 48(1 —0)%ad
EHkEficn,o .. .ngﬁHk,I gk’HlC < ( )pza( ! )EHk Vf(l’k’Hk)H + (p2m
24(1 — 6)?ao?
s ) 28
+ 2020 (28)
2
As for Hgk’l’Hk ' , we have
2
]EHk—l]Egicn—l,O ...ngn,lkaq,l gk—l,H" '
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_ 24(1-0Pa(d +1)

g2 48(1—6)2ad,  24(1 —6)2ao0?
NS p2 ]EHk—l Vf(l‘k LH )’ + p2 + Mp2
48(1 — O)au(61 + 1 - . NIk
< ( Z))g( 1+ )EHI@—I Vf(.’l?k_l’Hk 1) _ Vf(.’l?k_l’Hk 1) ‘
48(1 — 0)%a(6; + 1) g o102 48(1 —0)%ady  24(1 — 0)%ao?
+ e Ege- |VF(@ ™ ) ’ + 2 + Mp?
As<|ﬂ| 48L2(1 — 9):&((51 + 1) B ka_l,Hk—l _ %k'—l,Hk’l 2
p
48(1 — 0)%a(6; + 1) wov2 - A8(1—0)%ady  24(1 — 6)2ac?
+ D2 Ege- [[Vf @) + 2 + Mp?
48’72[/2(1 — 9)20((51 + 1)E h—1,H*1 2
= p2 Hk-1 ||g
48(1 — 0)%a(6; + 1) wov2 - A8(1—0)%ady  24(1 — 6)%ac?
+ D2 Eg- [V f (@) + P2 + Mp? :
We choose v < W. Moreover, we take additional expectations and again use that H*~!

HF1—1 . .
and {fﬁfl’h } he0 are independent stochastic values:

1,151 |2

EHk—lEgi@n—l,O . Egkfl‘Hkilfl
96(1 — 0)2a(d; + 1)
< p2
48(1 — 6)2a0?
TR L T
Mp?
Applying equation[Lip|to equation 28] equation[29]and substituting it to equation [27] we get

9

2 96(1 —6)%as
EkalE&.i%fl,O .. 'Eﬁrﬁfl’Hk71_1 va(xk’o)H + %

(29)

2
~ k
xk,H —r*

pEH’V'*llEH’*‘ng;flvU .. -Egk,H’C—l

*

’ 2

g;;(l—%) ]ngn—l,o...E

~k,0
ehot k=11 Hx —x
m

— ’y(l — p)(l — Q)EHk—lEHkEgicn—l,D .. .]Efsin,l {f(xk’Hk) — f(ac*)}

—yp(1 — H)EHk—lEgicn—l,() .. .Eff;l,kal,l [f(xk,O) _ f(l‘*)]
2L(1 —p)(1 —0)3a(d; +1
+ 967 ( p)( 5 ) a( Lt )EHk—lEgk—l,O .. .]Eé.k:—l,H—lEHk {f($k’Hk) — f(x*)}
p m m
n 9672(1 — p)(1 — 6)3ady n 4872 (1 — p)(1 — 6)3ac?
p? Mp?

38472 LO(1 — 0)%a(6y + 1 .
+ 2 ( p2 ) ( ! )EHk—lngn—l,O v ]EEQL—I,H—I [f(.fbk’()) — f(lL' )]
n 192720(1 — 0)%ady n 967260(1 — 0)%ao? n 27v%(1 - 6)o?

p? Mp? Mo
We take the full expectation, then use a law of expectation and rearrange terms:

2

2
pE Hika —z*

< p(1-F) B0 -

96vL(1 —0)%a(dy + 1)
L 0ale 11

(1= (1
E £ - f(a")]

36



Under review as a conference paper at ICLR 2026

384vLO(1 — O)ae(91 + 1 .

—p(1 —0) (1— ( pg) 4 )>E[f(xk’°)—f(w )]

96v2(1 — p)(1 — 0)3ady  1927260(1 — 6)%ads
" p? i p?
+4872(1 —p)(1 —0)3a0? N 96v20(1 — 0)%ac?

Mp? Mp?
2v2(1 - 6)o?
M
We choose 0 < 23 and v < W;H)‘ Note that all previous transitions hold even with larger

choice of # and ~y, consequently this choice is correct. In that way, we obtain

Bt o (1o L) B0 — o 4 L0525 00

p? p?
487?20 2473 uac? 24202
Rt R
Mp? Mp? Mp

~ k k k ~
Note that ZF-H" = ghH" _ gk H" = k1.0 and 750 = 250, Thus,

w2 Y 2 Y T40?

It remains for us to take into account going into recursion over all epochs and claim the result of the
theorem:

12 K a2, Vo 740%\ Nk
Blei o < (1= 1) Ja0o ) +p3<14452+ 1o )2(1_)

42
2+872‘(14452+70 )
11p

K
< (-3

Corollary D.7 (Corollary 3.5). Under conditions of Theorem [3.4] Algorithm [I| with fixed rules
R =R = R needs

~ M\? (L 1 M «ado ao?
@) ((C’) (Ma(Sl log <5> + C e + ,u2Cg>> epochs and

~ M\* (L 1\ Mas 2
O(M|— —adlog | - | + —= % + oo number of devices communications
C ] € C u2e  p2Ce

2 . . T
to reach e-accuracy, where € = E HmK 0 g* H and C' is the number devices participating in each
epoch.

Proof. Using the result of Theorem [3.4] we choose

. 9 ;1,2Mp3||m0’0—m* 2K /L2p3H.’tO’D—J,‘*||2K
2 0g | max q 2, 1736a0? ) 9216003

96La(d1 + 1)’ uK

v < min

7~ [ Lady 1 ads ao? 5 2
Thus, we need O ( 2 log (8) + i Tz Mp36> epochs to reach e-accuracy, where ¢ =

IEHxK*O —x*HQ. Since the length of the epoch H € Geom(p), Algorithm |l| requires

A~ ( Lad; 1 ads ac? : : :

O (Tpg, log (E) + T + EApE communication rounds. Next we mention that at each

communication round we communicate with C' devices, thus, number of communications is
2

O (C’ (Li‘? log (%) + 9% 4 _ag )) Taking, p = %, we have the result of the corollary.

m n2pie n2Mpie
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The choice of p is motivated by the fact that we perform %C + M communications per-epoch, and

established p is the minimal, which delivers O(M') communications at each epoch. This is also the
reason for the additional factor M in the estimate on communications. O

Corollary D.8. Under conditions of Theorem 3.4 Algorithm|I|needs
2

9 M L 1 M ad ac?
Oll——] (Zadilog(-)+—- S+ " s and
minCh" Ma Hoe (6) t nimCRR pre * p2minCk-he cpochs an
kol k,h k,h
3
A M L 1 M OZ(;Z Oé0'2
O\M| —— Zadlog (=) 422 @0
rilihnck,h ﬂa 1 log (€> + r?i’nOk»h e + uQI?i}JLaCkvha

. . 2 .
number of devices communications to reach s-accuracy, where ¢? = ||xK’0 —z* || and C*" is
the number of devices participating in k-th iteration in h-th epoch.

Proof. Using the result of Theorem [3.4] we choose
2 3(],.0,0__ 31|,.0,0 = |2
u“Mp ||a: ’ H:v —x K
P2 8log (max {27 736002 9216005

96La(6, + 1) uK

v < min

A~ ( Lad; 1 adso ac? _ 2 _
Thus, we need O (Tpg log (6) + + E e Mp3€> epochs to reach e-accuracy, where ¢ =

u2p3e
E HxK’O —z* 2

~ 2 . . s
O (%{g’l log (%) + ﬁgie + %) communication rounds. Next we mention that at each

Since the length of the epoch H € Geom(p), Algorithm |l| requires

communication round we communicate with C*" devices, thus, number of communications is
minCk: "

A k,h La51 ads aoc? __ kh

O (rrklz%xC ( log ( ) + 20t T e . Taking, p = ——;7—, we have the result of the

corollary. The choice of p is motivated by the fact that we perform EI%B;LXC kb 4 M communications

per-epoch, and established p is the minimal, which delivers O <M ) communications at

M
minCk.h
Kok
maxC* "

each epoch while guarantee the epoch is executed (if we take p = =2

7 we can meet p = 1).
This is also the reason for the additional factor M

m in the estimate on communications. [
k,h

Remark D.9. Considering fixed rules R=R= R,
wehave@(M(%)Q( &1 log (£ )—&—%;254- 205))
and O <M2 (%)2 (1751 log () + ;2525 + 206)) number of devices communi-

cations with regularizing parameter o« = 1 and a = M respectively. Con-

sidering various rules, best case with regularizing coefficient a« = 1 gives us
3

A M L 1 M &y o? _

0] (M <r£1i£1C’“="> <M61 log (1) + RO s + #gr’?i}?ck,hg> and worst case @ = M

k. h k. h

3
. ~ 2 .
gives us O <M2 <mm]gkh> (561 log (%) + ﬁﬂ 7+ “55“;"1%)) number of devices

communications.

E PROOFS FOR ALGORITHM 2

Lemma E.1. Suppose Assumptions[2.3| 2.4 hold. Then for Algorithm[2]it implies that
1-0 o1 +1) 2
A0 aG+ D va(xk,Hk)H

mln
p? 1<m<M Gm

Ic,Hk

R

m

g
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192(1 - 0)*ad, | 96(1 - 0)*ac

2
mln mln
p 1<m<M m p? 1<m<M G

Proof. Let us start with the following estimate:

k,h - ﬁk’h 1 k,h kb ck,h
P (L 0) S0 I () Ve

m=1

2

2
Hgk,h-i-l H

(Fen))
< (140l
2

+(1 +1 (1— 9)2 i nfrzh i _ skh \v (xk,h gk,h) (30)
& m=1 q7ﬂ M m " m ’
where c is defined below. Let us estimate the last term and obtain
M L 2
m 1 P k.h ¢k,h
/| = - \Y
‘mz_:l qm (M m ) fm( 5 )
2
CD || &L /pkih 1
< 2 m__ 1 AR xk,h’ k,h
mz_l(qm ) (5 - 5 ) Vamta g
M 1 2
21> (—A )Vf (™, )
m=1
e M 1 =z 2
3 (B 1) () 2wt
m=1
1 k,h
+2 Z 1~ ) V(" 6"
m=1
We pay attention to the first term. Using %" ~ B(q,,),
2
pksh 2E e (15" = am) o2 1-gq, 1
E xn —1 = o 5 < 5 = < —
AN (gm) (gm) Im Im
In that way,
- n (1 k,h k.h ck,h i
]E”Ifn’,h m221 Om (M —Tm )me({l? ’ »grr{ )
9 M 1 2 M )
- = ~k.h k,h ¢k,h
< i 2 (377 X 19 e
1<m<M m=1 m=1
M 1
+2|1> < —frf;”;h) V fn (2™, €51 31)
m=1

We obtained an estimate for the second term in Lemma [D-T]in equation 7}

2

2002

E .
M

M
> (]\14 - fr’;;h) V(@M < 4a (6, +1) HVf(x’“’h)HQ + 4ady +

m=1

Moreover, in equation [6| we found out

ke,
Em”
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m=1

Combining this estimates with equation[31]

2
ngﬁ h E’Iﬁih

M nk,h 1
Z . (M - A“) V(2" €51

<2izu«:khuw 2Pl gty |

min ¢, M
1<m<M
+8a(8y + 1) || V£ + 8ad, + 401(;7
(€S) 4oy
D e 3 B IV
1<m<M m=1
da 2
+mZE“Hme (@651 = V@)
1<m<M

doo?

+8a(6y + 1) || V£ + 8ady +

As.Z4 4oy 4ao?
S min ¢, M Z ||me kh)” * min  g¢m
1<m<M 1<m<M
4 2
+8a(8y + 1) | V£ (F )| + 8ads + Oﬁ
€3l
— Z |V £ (") Z [ fon () Vf(xk,h)H2
min g, M min_ ¢, M
1<m<M 1<m<M
2
808y + 1) [V A + 8asy + —27
1<rfln1£M m
3
AS\ Muvf kh)||2+8a(51+1)va(xk,h)‘|2+%
min_  qm, min - - gm,
1<m<M 1<m<M
2
+ 8ady + 8ao
1<1211£M dm
< 160&(51 + 1 ||Vf k, h)” 169 i 8cvo?
min g, min  qm min  ¢n
1<m<M 1<m<M 1<m<M
Substituting this estimate into equation 30} we have
EgnBn [ < (140 ||g | + 16 <1+1> (=02 2Ot gy by 2
¢ , 0D, dm

+16 (1 + 1) (1%
&

min
1<m<M qm

1 2
+8 (1 + ) 1-02—27
c min ¢,

1<m<M

Enrolling a recursion, we get
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EEEAOEU&O .. .Ed%h,]E ook H k7h+1H2
h

1 a(d +1 . 2
K66 (1+-](1—-02——=) (14" 7|V f("
(145) a-op2 Bl S s ot vt
1<m<M =0
1 ad h
16(14=)(1-0>*—2—S (140"
* <+c>( ) min qmz( )
1<m<M 1=0
1 ac? h
I+-]1-02*————) 1+ 32
+8(+0)< P23+ 62
1<m<M i=0
Next, choosing ¢ = £, taking exception on H* and applying equatlonlgl, equatlonm equatlon.
from Lemma[D.1] we > obtain the result of the lemma:
|2 96 1—0)2a(6 +1 12
EHkE kol ko...E ka,lE k.Hk_1 gk’Hk < ( ) ( 1+ )E k (Z‘k’Hk)H
Em N ¢k e p2 min g
<m<M
n 192(1 — 0)%ads, n 96(1 — 0)%402
P? 1<m1£lM G P? 1<1212M m

E.1 PROOF FOR NON-CONVEX SETTING

Theorem E.2. Suppose Assumptions hold. Then for Algorithm@with 0 < %”2

pmini<mg M gm
and vy < 768La(0; +1)

Z |Vf k,0 ‘ < 16 (f(ZO’O) 7f(l‘*))

k

it implies that

153672 L%ad, n 3200y Lads

min min
p1< <qu p1< <qu

76872 L%ac? + 1600y Loo?

mln min ’
P’ 1<m<M Gm p1<m<M m

Proof. We start with the definition of virtual sequence'

gt = —ngm =zt —ygth. (33)

It is followed by

skl kRt k,h+1
T = ’YE 9

k,h .
= ZFh_y [(1 — ) Z ”Lﬁ%hvfm(xk,h7 frih) +99k71,H’“ ]

m=1 M

M M
— kb (19 ﬁ i_“kh v k,h
Y Z 9m 7( )Z q M fm( §7n )
m=1 m

m=1

m=1

M
_ ~k,h 1 Wﬁih k.h kb k—1,HF!
=7 —vl(l—H)MZ%me(x &) + 09 SENEO)
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Assumption [2.T]implies
~ ~ ~ ~ ~ L ~ 2
FETY) @Y 1 (VFERN), FRL Ry 4 z [ — |
(Jen) _ - _ k—1
< SE) =0 (TFER), gt >
M
_ ( )<Vf~kh Z m me khfkh)>
2
2 k,h 2
7L - 1 Zﬁn{ kb choh YLO || g ||
DI G| I i
Mmzl Qm 2

Now we use that n%:" ~ B(gy). Consequently, Enf:"* = q,,. Since %" is independent of

k—1 . .
gl ghh ehh gk=1H""" \ye take the expectation and obtain

B [FEMH] < f@) =90 <Vf<%’“h>,gk—1ﬂ’“>
7(10)<Vf ~kh vam k,h Ek;h)>

Y2L(1 —
2

2

+ ]Ekh

77
Z m Vf k,h’gﬁih)
dm

m=1
2

+’}/2L9 Hgk_l’Hk71

2
We take the expectation over £¥;"*. Mention that

Fhoh ©3) 2P yghh
) M o kh—=1 /4
Line[T2] okl ~y <gk,h—1 +(1-0) Z 7772 (M . ﬁ_fﬁh—l) Vf(xk,h—17§7lil,h—1)> _
m=1 m

1 Hk—l

Thus, 7% and ¢;" are independent. Analogously, g*~ and &¥:7 are independent. In this way,

EeirnE e [f(@"HH] < f(%“)—79<Vf<%’“’h>,g’“*1ﬂ“>
—y(1 = 0)(Vf@""), v fa™")

2
2 M k.h
—1—7(2 )Egb‘rzhEnﬁ{}L E vfm( kb gk h)
210 —1]|2
+7 ; Hgk—l,H" b (35)

Let us consider separately the following term:

1 - TIk’h k.h ¢k,h
MZLme(Z",Wi)

M
Lo
< BB |27 D TV (@t €M) - Z V f (2", E51)

42



Under review as a conference paper at ICLR 2026

2

M k h
= 2B || = Z ( 1) V (2060
M 2
+2E, Z V [ (@™, 600
D 2 u Um k,h kh
< e Per By Zl ( P ) Z [V fm(a g
1 U ’
kh ¢ckih
+2Ecxn Mmz_lvfm@ ERh) (36)
We pay attention to the first term. Using n%:" ~ B(g,,),
M 2 M kh _ 2 M 2
ZEM(Um _ ) :ZEnﬁzh(nm ) gz In
m=1 o qm m=1 (Qm)Q m=1 (qm)2
M
_ Z 1—qm < M
qm 1<H771112M G-
Combining with equation 36
2
IE ih]Enth M Z m me gfn’h)
2 1 U ’
kb ek,hy (|2 kh kb
<mZEM |V fin (&P €57 + 2B i MZme(x ,ERR)
1<m<M m=1
(€9) 4 M il gkh
< M g 2o Bt [ 6]
1<m<M
©3) 8 M k2
~ M min qm Z ||me )H
1<m<M
M
8 Z kh Vf ( k,h é-kh) vf ( kh)H
M min q,, ’
1<m<M m=1
As.24 8 M 2 8o2
< - ° v k,h
M min g, Z H (@ )H in qm
1<m<M m=1 1<m<M
16 M >
= k,h
=~ M min qm Z HVf(m )H
1<m<M m=1
M
16 kb k.h 8a2
M min g, Z vam )= Vil )H in qm
1<m<M m=1 1<m<M
As23 16(3 166 802
min g, min g, min  qn
1<m<M 1<m<M 1<m<M

We substitute this estimate into equation [33]to obtain

BBy [FE0] < f@) =40 (VIE), g1
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—y(1-9) <Vf“*h>Vf<kh»

8y 2L(1—6)(6; +1 2
4 ( )( 1 HVf(a:k’h)H
mln q’"L
1<m<M
2 2
VLo kv )? | 8T~ 0)5
+ 2 Hg * min g,
1<m<M
min g,
1<m<M
Let us estimate the scalar products separately.
~ y(1 -6 - 2 y(1-4 2
—y(1=0)(VF@E""), V") = —% [V F@E")|" y1=9) [V £ ()|
1-6 ~ 2
A0 i) - v

N

SO g s - T2 v )P

+7L2(; —0) Hgk,h _ xk,th
() (1 —0) ez V(1 —=0) INE
Mo s - WD oty

Y L2(1 - 6) 2
+4444ﬂfw7

2
~ _ k—1 (Fen) ~ k—1]2
_79<Vf(xk,h)7gk 1LH > = va Kok H id H k—1,H
Combining it with equation [38]
~k ht1 ~kny, V(1 —0) 167vL(61 + 1) k,hy |2
ES%hEnfﬁh [f(;v ! )] < f(@ )—T 1_Tq HVf(ac )H
1<m<M
(1 —20) ~k.hN[12 | 312 (1-0) k|2
=20 g iy 4 L0
(WOLED) s $LO =05 | 4700 =07
min - gm min - gm
1<m<M 1<m<M

Inln1<7n<M dm ande

] 1
Choosing ¥ < =357 (51) S

. . —0 3r2 -9
BBy [FE] < 5@ =T ws |+ T oo

12 8y2L(1 —6)6 442 L(1 — 0)o?
+79Hgk—1,H’€ T veL( )2+ 2 ( ) .
min  qm, min  gm
1<m<M 1<m<M

Now we put h = H* — 1 and take additional expectations.

ETYL
< E,x 10E k—1,0 ~--]E£1c,H’€71]E koHE—1 [f(fk’Hkil)}

gk okt gkl
7(1-0)
Syl
Y L*(1-0)

4+ ——— "R k10K k-10...E kK k_
2 Em Nm Eicn HE =1 fc,,: HE =1

E, x 10E k= 10"'E£k’Hk*1Enk,Hk71 [f(ik),Hk)}

Gl

Er-10E x-10...E ; yr 1 E | gr_y
Em Nm Em Nm

m

2
k,HF—1
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k—1,m+1]|%

g

E xc71,Hk*171IE k—1,Hk=1_1
Em Nm

+ ’yeE&f{LoEniﬁrho -

8y2L(1 — )8 4y2L(1 — 0)o?
LA 0y 4L 01

min g, min
1<m<M 1<m<M

We take expectation with respect to H*~! and H*, and apply Lemma

~ k
EHIC71EH1@E£§;1,0E”${1,0 .. .]EffﬁkalEnfy{kal |:f($k’H )}

<(1- p)EHk—l]EHkEgk—l,OEnk—l,O .. ~E§k,H’€—1Enk,H’C—1 [f(fk’Hk)}

+pEH"’*1E§§;1’°Enf;;LO ... EE,&,LH}CA,IEUER,LH/Plﬂ [f(xk,())]

1-0)p 2
_ uEHkilE&fnil’OEnfnil'o .. ']Efk*LHk*lflEnkakal,l va(xk,O)H

4
Y(1-0)1-p k(12
— %EWIEME%LOEWLO...Egﬁin,lEnﬁin,l Vf(zhH )H
372
v L*(1 —0)p 2
+ %EH’%JEE&*LOEUE;LO .. .Egk,lkaﬂ,lE k1, Hk—1_1 Hgk,OH
2 v m NMm N ~- ,
372
yL(1-6)(1—p k(]2
( D) )( )EkalEHkEgﬁflfUEnﬁ;l’o Ce E&ﬁ;kalEnf,;kal gk’H
1112
+ 'YH]EHk—lng;L—l,OEnicn—l,O .. .Efk_lka—l_lEnk_lka—l_l gkil’Hk '
8v2L(1—0)52  49?L(1 —0)o?
: m(in - + : m(in : ' (39
1<ment ™ 1<menr I
2 112
We use Lemmato estimate Hgk’HkH and Hgkfl’Hk "II”. We have

2 _ 96(1—6)%a(dy +1 N
< (2 )"0 )EHkHW(xk,H)H
p° min ¢p
1<m<M
—0)2 — 0272
192(1 — 6) a62+962(1 .0) oo’ 40
p min gm

R~
p? min ¢
1<m<M 1<m<M

pry/Mini<m<m g .
—v___="~" ™ and obtain

Next, analogously to equation , we choose v < — 17 NCVIES

k,H"

EHk]ng,;OEnf;;o '“Eﬁfn’kalEnf;{kal g

2
k—1,HF 1

g

Egr—1E x—1,0E s-10...E .1 ge-1_1E 1 gr—1_4
&m m Em NMm

384(1 — 0)%2a(6, + 1
( ) Oé( 1+ )EHk_lEgk—l,O]Enk—l,O ...Egk_LHk—l_lEnk_lka—l_l HVf(xk,O)HQ

R
p 1<I2L1£M m
41

384(1 — 0)%ad, N 192(1 — 6)2a0?
p? min g,

<

TR
p? min g
1<maM 1<m<M
1

. . . . . k—1 . k—1,h HF1—
We combine equation @ 2n§1 equation 4 1|with equation [39|and use that H"~" with {gm } heo
. HE-lo1 . .
and H* with {nf~""} "~ =~ are independent stochastic values. Moreover we take full expectation:

PE[f@T)] < pE 1))
ﬂﬂf@ IV £ 0| - WE Hvﬂwk’m)HQ
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Jr48’y3122(1 —0)3(1 —p)a(dy +1

B} .
min
p 1<m<M G

+19279(1 —0)%a(d + 1

p?2 min ¢,

)Eva(zk,Hk>

‘ 2

JE v

1<m<M
+9673L2(1 —0)3(1 — p)ads n 384v0(1 — )2z n 8v2L(1 — 0)2
R TR :
p 1517113 v I p 1<IB¢1£ a I 1<I£1@1£ u I
+4873L2(1 —0)3(1 — p)ac? n 19270(1 — 0)*ao? n 492 L(1 — 6)o?
R CI— -
p 1<I¥ln1£M 4m p 1<r?n1£M dm 1<H73Ll£11\4 dm
= pE[f@E"")]
1-60)(1-— 192+2L2(1 — 0)2a(6 1 N
4 p? min g,
1<m<M
y(1—0)p 3840(1 — 0)%a (61 + 1) 2
Sl P B[
p min dm
1<m<M
+96’y3L2(1 —0)3(1 — p)ads n 76870(1 — 0)2ad, n 8v2L(1 — 0)d
R TR :
p 1<I¥1n1£ a I p 1571@121% m 15212 a0
Jr4873L2(1 —0)3(1 — p)ac? . 19270(1 — 0)%ao? n 492 L(1 — 6)o?
2 . 5 : - .
p 1<HT}£M m p 1<H7}L1£M m 15&2}\4 m

~Lp? pPMini<m< M dm
We choose 0 < - < ToSLa(0rT) In that way,

o [£@H)] < pB[pEe)] - Dy g ?

8
963 L2ad 19242 Lad 8~v2L6
T2 Znin —+ m?n -+ n?;n p
p 1<m<M m 1<m<M m 1<m<M qm
4873 L2 ao? n 9672 Lao? n 4+%Lo?
2 . . . 9
p 1<H7"}11£M Gm 1571113 A dm 137112 a dm
~(1—6) 2 ~ i 1k
WOg |vpero)* < E[f@) ~E @]

9673 L%ady L 20072 Lads

p3 min ¢ p min ¢
1<maM 1<maM

48v3 L2 ao? n 100v%Lao?

R - .
p3 min ¢ p min
1<m<M 1<m<M G

~ k k k ~
Note that zF " = ghH" — gk H" = pk+1.0 and 770 = 2#0_ Thus,

11-0)g
8

[VAOI° < E[f@0)] - E[fa+10)] 4 oL 0% 2007 Lad

T -
p3 min ¢ p min gq
1<maM 1<maM

48v3L2ao? + 100v2 Lao?

— -
min min
p 1<m<M qm plgmgM m

Summing over all iterations, we obtain the result of the theorem:
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LY glvseho) < LU0 -ELET)
K= = NEEYe
768v2L2ad, 1600y Lovds
3 A — . -
P’ Joig, (1 =0) P, 20in, 4m(1=0)
384v°L*a0® 800y Lao?
3 : — i -
P i, (1 =6) ©p, aoin, (1 =6)
< 16 (f (@) - f(a"))
X ,)/K

153672 L%ad, L 3200y Lads

p3 min ¢ p min gq
1<m<Mm 1<m<Mm

76872 L2 ao? N 1600y Lao?

R - .
p3 min ¢ p min ¢
1<m<M 1<m<M

O

Corollary E.3 (Corollary 3.6). Under conditions of Theorem [E.2] Algorithm [2| with fixed rules
R =R = R needs

M 1 ALad ALad ALoo?
O =5— 201, R0 | DRA9 epochs and
C min ¢ g2 gt et
1<m<M
M 1 ALad ALad ALao?
O|\M Yol - ( 6;1 L 5? 2 4 siw ) number of devices communications
min ¢,

1<m<M

A= f(2%0) — f(2*) and C is the number

K—1

to reach e-accuracy, where e = % " E ||V f(z*?)
k=0

of devices participating in each epoch.

Proof. Proof is analogous to the proof of Corollary O

Corollary E.4. Under conditions of Theorem[E.2|Algorithm 2| needs

M 1 ALad; ALady ALac?
- - + + epochs and
minC*k" min g, g? gt gt
k,h 1<m<M
2
M 1 ALad; ALady ALac?
O\M
minCkh min qm< €2 + e + gt
k,h 1<m<M

Q,A:

K-1
- o 2 _ 1 k,0
number of devices communications to reach e-accuracy, where ¢* = kzo E HV (&™)

F(@%9) — f(x*) and C*" is the number of devices participating in k-th iteration in h-th epoch.
Proof. Proof is analogous to the proof of Corollary[D.4] O

Remark E.5. Considering fixed rules R=R= R,
we have O <MJ‘C4 1 — (AEL;SI A€L452 Aﬁj))

min
1<m<M

min g2 Me*
1<m<M

ularizing parameter « = 1 and o« = M respectively. Considering various rules, best case with

2 . . . .
and O <M 2% L 7 (Aml + Affz + &Lg )) number of devices communications with reg-
m
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2
regularizing coefficient o = 1 gives us O (M (minjvék,h) minl 7 (AL‘Sl + AL‘SZ + AA’;EU ))
1 g

k,h <m<M

maxCk: min
Eih 1<m<M

2
. 2
and worst case o = ives us - 2 num-
d t M O M2 M 1 - AL61 + AL(SQ + A]\/%EU
ber of devices communications.

E.2 PROOF FOR STRONGLY-CONVEX SETTING
Theorem E.6. Suppose Assumptions 2.2(b) hola’. Then for Algorithm with § < 22E

2 .
pmIny<mM dm

and v < it implies that

384L(51+1)
2368
Bt o < (1= 2) B0 o P B0 55,4 02)
8 up® min  qmn,
1<m<M
Proof. We start with the definition of virtual sequence:
M
R — kb _ ~ Z gsih — kb _ ,ng,h. (42)
It is followed by
Fhhtl Rkl —y Z gk 41
k,h - TIk k,h kh ¢k,h k—1,H*!
= T’ =y (179)2 Am me( 7575)4»99*,
m=1 qm
M M ki /1
> gty (1—0) > ( - frf,;h) V (R0 R
m=1 m=1 qm M
k.h 1 - Wk’h k.h ¢k,h k—1,H*1
= Fhh (1—6)M2—q’” V fu(a®h ghhy 4 ggh—1 : (43)
m=1 m
Next, we use this to write a descent:
ka 1 x*HQ _ kah . x*H? 19 <§k gt xk h+1 _ ~k > + ||$k 1 k:,h||2
(E3) ||~k h ‘T/*HQ — 240 <55k,h _ x*’gkq,H’ﬂ 1>
ok 1 o k. ckoh
—2y(1—0) (3" —a*, — > TV (2P g
M Im
m=1
2
2 k—1,H*1 1 - nfrzh k.h ¢k,h
+’Y 99 ’ + (1 - 0) M Z 7Vf,m($ ’ 7£7n’ )
ey dm
(en) _
< ka h x*| 2 240 <%k,h _ x*’gk—l,H’“ 1>
~k,h e 1 Z Uk’h kb ck,h
—2v(1-0) (%" — 2™ ,—Z e Vi Y i St
M Im
m=1
k.h 1 u 77k h k.h ¢k,h
—2v(1=0)( «™" —z*, — Z NV i (2™, 5
M Im
m=1
2
1 ogk—1]]2 77
+’V29H9k 1,H H +'y (1-6) Z mvf khvdcn,h)
Now we use that n%" ~ B(gy). Consequently, Enf:" = q,,. Since " is independent of
ghh ghh ekih gh=1,H*"" e take the expectation and obtain
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E xn H.%k’h-"_l —z* 2
Nm

2 _ 279 <i:k,h _ x*)gk—l,H’“’1>

—2y(1 =) <%’“h — ok, Z V fon (" §“>>

M
!
~2(1-9) <x 57 2 Vi, fi;h)>
m=1

L2
+729H9k_1’Hk E

+7*(1 = O)E, n LG (o g

M
m=
Now we take the expectation over £X:". Mention that

- (42)
Fhoh e

M kh—1

Li - 3 M L ke - -

inel Jik’h — (gk,h 1 + (1 _ 0) TZ (M _ ﬂ-'lrfih 1) Vf(l‘k’h 1’§7kn,h 1)) )
m=1 m

Thus, 7% and ¢;" are independent. Analogously, g*~# " and ¢Rh are independent. In this way,

. hEnf“nh ||~k ,h+1 z*HQ < Hikﬁ . x*||2 _ 270 <%k’h B x*’gkil’Hk—1>
_ 2,-)/ <~kh k’h,Vf(IEk’h)>
—2v9(1 — @) (a®h — 2*, V f(z™"))

2

420 Hgk—LH’“*l
1 M nk:h 2
9 Z m kb ek
—|— ’}/ (1 - Q)EﬁﬁihEnfn’h M Pt qTme(x 7£m ) (44)
Recall we estimated the last term in Theorem [E.2]in equation 37}
1 oL phih ’ 16(5; + 1) 166
m 1 2
E kh]E kb M E 7me(xk7h7£1§{h) 7HVf kh)” T i o
Em Gm mn  gm min  qm
m=1 1<m<M 1<m<M
8 2
o (45)
min g,
1<m<M

Now let us estimate scalar products separately.

—2+0 <5k,h _ x*,gkfl,H’“_1> " 9 Hikh _ :r*||2 20 Hgkfl,H’“_l 2’
—2y(1—0) <§k,h . xl@h’vf(xk,h» ng (1- Hgk,h _ Ie,h||2
+92(1 = 0) |V £ @)
72(1 —0) g |* + 42 - 0) [V
2y (1= 0) (@M -2 Vi) UL 1 - 6) 5 o
—2y(1 = 0) [f(z™") = f(z")]
\CE) 7’7#(1 —0) Hgk,h . m*HQ
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+y(1 = 0) [[Fh — 3n |
~2y(1 = 0) [f(="") = f(2")]

_W’M(l—e) ~k,h _ 2
—5 7

(1 - 0) g5 |
—2v(1 - 0) [f(=*") - f(a")] .

Substituting this estimates and equation [43]into equation [#4]

2 < (1—W(12_9)+9)|\%’“h—x*
21 = 0)(1+m) |8

+19~y (1-6)(6:+1) HVf(xk’h)H2

min  gm,
1<m<M

=29(1 = 0) [f(="") = f(a")]
+1672(1 — 0)2 n 8v2(1 —6)o?

min g, min ¢,
1<m<M 1<m<M

~Then, (1- 2G=0 4 9) < (1- 2 4 24) = (1- ).

[E

z"|

ngn,hEnﬁih H.%k’h-"_l — x*|

2 2420 Hgk—l,H’“*l

Let us choose § < 2 and v <

Sl

this way,

EﬁlfrihEnﬁih ka’thl — gg*”2 < (1 _ %) Hik,h _ x*Hz + 2,}/20 Hgkfl’H’“—l

[\~]

2 (1= 0)(1+yu) [|g™"]”
+19’72(1 — 0)(51 + ]-) ||vf(1,lc7h)

min ¢
1<m<M

~2y(1 =) [f(a"") — f(z")]
+16’y2(1 —0)d2 n 8v2(1 — 9)02'

min ¢ min ¢
1<m<M 1<m<M

I’

Next, we estimate

1992(1 - 0)(6, + 1) HVf(x’“v’l)HQ < 38y2L(1 —0)(61 + 1)
min g, = min g,

1<m<M 1<m<M

[F(=™") = fa")].
It implies that

R+ _ 2 + 2420 Hgk—LH’“*l 2

2 RN sk
< (1 S)Hx !

(1= 0)(1+ ) ||g*"|

199L(d; +1)

min g,
1<m<M

1672(1 — 6)5y,  842(1 — 0)0>
+7( )2+7( )o

min min '
1<m<M qm 1<m<M Gm

E&ﬁihEn’ﬁ{h H

—29(1-6) |1 [f(a®") = f(a")]

ming <m<M _dm

Choosing v < 38L(51+1)

, we can simplify as
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I S (B 1 e e PR

+292(1 - ) |||
—y(1=0) [f(a®") = f(a")]
+1672(1 —6)4y N 8v2(1 — 9)02.

min g, min g,
1<m<M 1<m<M

Now we put h = H* — 1 and take additional expectations to obtain

2
~ k
xk,H _r*

Ed@n—LoEnfn—l,o ...ngﬁHk,lEn%Hk,l

2
~ k
Ik’H 1 CC*

< (1 — M) EiroF 0. B gk o o rs
8 Em M

m Nm

k1,101
g+ b

+ Q’YQQE&?H—I,OEWI:H—I,U .. .Eﬁfnfl’HkililEnfnfl’Hkilil

2
k,H*"—1
g

+ 2’}/2(1 — 9)E5ﬁ71’0E7lfﬁ_1’0 o Eéi’in_l]Eﬁfrin_l

=91 = OB 0B, pro o B i 1B e [f(xk’Hk_l) - f(x*)}
1672(1 — 6)6 8+2(1 — 0)o?
L 160°(1 = 6)  8y°(1 —6)o*

min ¢ min ¢
1<m<M 1<m<M

We take expectation with respect to H*~' and H*, and apply Lemma [C.1}

~k,H" L2
ot —x

EHk—lEHkEéﬁm—l,OEnicn—l,O .. .]Egkka_l]E K HE—1

m

2

*

< p (1 — %) EHk—lng;z—l,OEn:cn—l,O .. .E&ﬁfl’Hk_lflEnﬁfl’Hk_lfl H%kp —X
2
+(1 —p) (1 - %) EH"'*lEH’“ngn*LO]En’;;LO . E /CL'vk’Hk —a*

k,Hk—lE k,Hk—1
nm

gm

k1,101

+2729]EH1€71E£5{1,0E77§;1,0 .. 'Eiﬁfl'HkilflEnﬁfl’Hkilfl g

2
k,H"*

+2’}/2(1 — 9)(1 — p)]EHk'—lEHkEsﬁl—l,OEnﬁl—l,O .. Egk'Hk’lEnk’Hk’l q

2
+2’)/2(1 — 0)pEHk71E§5;1,oEn£;1,o .. .Egk_l’kal_lE k—1,Hk—1_1 ||gk’OH
m NMm N ~- ,

—fy(l —p)(l — G)EHk—lEHkEfk—l,OE kE—1,0 . . .]Eflrcn’Hk_lE'flk’Hk_l {f(xk’Hk) — f($*):|

oy N k.,
7’}/]7(1 — H)EHIC71EE;¢;1,OE”§;1,0 .. ']Eﬁk_l’Hkil_l]Enk_l’Hkil_1 [f(xkao) _ f(:L'*)}
167%(1 — 6)d2  8y*(1 — 6)o?
L1671 - 0)3, | 87°(1 - 6)

min  gn min ¢,
1<m<M 1<m<M

. k 2 k—1 2
We use Lemmato estimate Hg’“H H and Hgk_LH H . We have

(46)

2 96(1—0)%a(d +1)

CR—
min
p Lemenr am

k
k,H ]EHk

v

]EHk]Egk,O]E k,0 . ..]Efk,‘Hk_l]E oHE 1
m m Nm

Mm, i

9

L 192(1—0)%ad, | 96(1 - 0)ac?

2 2 e
p? min ¢ p? min g
1<maM 1<maM

. (47)
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Next, analogously to equation we choose v < Prymism <M dm and obtain

384L\/av/61+1
k1,81 ||?
EH}cflngn—l,OEnfn—LO AN Egyk_lkafl_1En’k_1‘kal_1 g ’
384(1 — 0)2a(0y + 1
< ( ) (0 + )EHk—lE k—1,0E k—10...E o gr-1 B o gr-1_, HVf(.Tk’O)HQ
p? min ¢, Em m Em Nm
1<m<M
384(1 — 0)“ad 192(1 — 0)%ao?
+ (mln) -+ 2( in) (48)
p? 1<m<M qm p 1<m<M m
Now we use equatlonand that H* with {¢k~1 h}h, ~!and H*1 with {nk-1 h}h, 1 are
independent stochastic values. Moreover, we combine equation [#7)and equatlon@ with equat10n|3f_3|

and take full expectation.

PE Hng’“ _ 2 p( %) E szo o |2
—y(1=p)(1 = OF [ f("") - f(a")]
—p(1 = O)E [f(2"0) — f(2")]

| 38472L(1— 0)* (1~ p)ady + 1)

mi
p? <m <MQm

+153672L9(1 —0)2a(d + 1)

p? min gy,

E[f(@") - f(z")]

E [f(a"0) = f(2")]

1<m<M
3847 (1—-0)3(1 — p)ads 768720(1 —0)%ad; n 169%(1 — 0)62
P* dnin,  dm P* dnin,  dm 1<men I
+192'72( —0)3(1 — p)ao? N 384720(1 — 0)%ao? N 8v%(1 — )02
2 2
b 1<H7”}11£JW m b 1<I}71112 a I 1<I¥11112 I

< p(1-F)E[F0 -

384vL(1 — 0)2a(dy + 1)

p? min gm
1<m<M

—y(1-p)(1-0) |1~

E |f@) - fa)]

15367 LO(1 — 0)a(d; + 1)

_ 1— 1— E k,0\ _ *
yp(1 - 0) o [f(™0) = f(a™)]
1<m<M
3847 (1—-6)3(1 — p)ads 768729(1 —0)%ad; L+ 169%(1 — 0)62
p? 1<m1<M m P? 1<ml<M m 1<H73L1£M dm
+192’yz( —0)3(1 — p)ac? 384729(1 —0)%a0? n 8v2(1 — 6)o?
p? 1<m12M qm p? 1<m12M Gm 1522»1 m

P2 mini<m<mr gm
384La (0, +1)

_w ~k,0 _ _x
< (1 8)]EH33 T

, wWe obtain

296
s

min
p 1<m <]\/[q

(202 + 0'2).

~ k . k k —~
Note that zFH" = ghH" — gk H" = pk+1.0 and 7F0 = 2#0_ Thus,
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2 2962
L L

min
p 1<m <1Wq

E H‘,Ek-i-l,() _ 37*

2 < (1—%>E’|xk’o—x*|

(202 + (72).

It remains for us to going into recursion over all epochs and the result of the theorem:

K

2
< (1= B[00 - 2| + 20T (95, 1 o2 2(1——)
8 p? min gy
1<m<M k=0

< (- B[00 ot P4 B (25, 402,

8 Hp? 1<m12M am

E HxK,O —x*

O

Corollary E.7 (Corollary 3.7). Under conditions of Theorem [E.6] Algorithm 2] with fixed rules
R =R = R needs

G (M) 1 (Epsrop (L) Mad:  Mac®
o min_ g, ual 8\e C u2e  C p2e

1<m<M
epochs and
~ M\ 1 L 1\ Mad, M
oM (c) S <a6110g () et G )
1<ml£1M Gm \ [ € JIRE ple

number of devices communications

2 . . S
to reach c-accuracy, where 2 = HJ;K 0 “II” and C' is number of devices participating in each

epoch.

Proof. Proof is analogous to the proof of Corollary O

Corollary E.8. Under conditions of Theorem|E.6|Algorithm 2| needs
2

- M 1 L 1 M ad M ao®
O : = ady log (€> + S 2

minCk-h min  qn, minCk" y2e  minCkh p2e
k,h 1<m<M k,h k,h
epochs or
3
~ M 1 L 1 M  ady M «ao?
O\ M| _— = —adlog | — |+ — o+ R s
minC* min g, |\ @ minC*" p2e  minCkh p2e
ke,h 1<m<M k,h k,h

communications

to reach e-accuracy, where 2 = E HxK*O —
k-th iteration in h-th epoch.

C*! is the number of devices participating in

Proof. Proof is analogous to the proof of Corollary O

Remark E.9. Considering fixed rules R=R=R,
~ 9 ‘ -
wetave & (M () o (Koo (1) + ¥+ 22

and O (M2 (%)2 W (%51 log () + M4 %2 + %};1)) number of devices commu-

nications with regularizing parameter « = 1 and o« = M respectively. Con-
sidering various rules, best case with regularizing coefficient @ = 1 gives us

3
A M 1 L 1 o? _
0 (M (minck’h) mm ; dm <M61 IOg (E) InmC’” h H 6 + mlnC" hop? E)) and worst case o =

k,h 1<m<

53



Under review as a conference paper at ICLR 2026

3
: %) 2 M 1 L 1 M 32 M a?
M givesus O | M (r,{,liﬁck’h’) T <u51 log (6) + IO + ;

ber of devices communications.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) were used exclusively for spelling edits.

54



	Introduction
	Client Weighting
	Client Sampling
	Unification of Sampling Strategies
	Our Contribution

	Setup
	Algorithms and Analysis
	Motivation
	Partial Participation without Unavailable Devices
	Partial Participation with Unavailable Devices
	Discussion

	Experiments
	Full client participation
	Partial client participation

	Partial Participation with Unavailable Devices
	Additional experiments and details
	General statements
	Proofs for Algorithm 1
	Proof for non-convex case
	Proof for strongly-convex case

	Proofs for Algorithm 2
	Proof for non-convex setting
	Proof for strongly-convex setting


