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ABSTRACT

Partial participation (PP) is a fundamental paradigm in federated learning, where
only a fraction of clients can be involved in each communication round. In recent
years, a wide range of mechanisms for partial participation have been proposed.
However, the effectiveness of a particular technique strongly depends on problem-
specific characteristics, e.g. local data distributions. Consequently, achieving better
performance requires a comprehensive search across a number of strategies. This
observation highlights the necessity of a unified framework. In this paper, we
address this challenge by introducing a general scheme that can be combined with
almost any client selection strategy. We provide a unified theoretical analysis
of our approach without relying on properties specific to individual heuristics.
Furthermore, we extend it to settings with unstable client-server connections,
thereby covering real-world scenarios in federated learning. We present empirical
validation of our framework across a range of PP strategies on image classification
tasks, employing modern architectures, such as FasterViT.

1 INTRODUCTION

Optimization is a cornerstone of training machine learning and neural network models. In a nutshell,
almost every AI-based solution aims to minimize an empirical risk (Shalev-Shwartz et al., 2010),
which evaluates how well the data is approximated. This process involves adjusting parameters
to reduce the discrepancy between predicted outputs and ground truth labels, thereby improving
generalization performance. Formally, the problem can be expressed as

min
x∈Rd

[
1

n

n∑
i=1

ℓ(g(x, ai), bi)

]
, (1)

where x denotes the trainable parameters of the model g, (ai, bi) is the i-th sample from the dataset
with size n, and ℓ is the loss function. Nowadays, there is a variety of methods developed to efficiently
solve equation 1 (Robbins and Monro, 1951; Nesterov, 1983; Kingma and Ba, 2014; Defazio and
Mishchenko, 2023). The current successes of machine/deep learning owe much to the development
of powerful numerical techniques that enable training on a huge amount of samples. Large-scale
data processing became possible with the advancement of distributed optimization (Verbraeken
et al., 2020). Instead of solving the problem on a single machine, samples are shared among M
nodes/devices/clients/machines connected via a server. Hence, the problem equation 1 transforms
into

min
x∈Rd

[
f(x) =

1

M

M∑
m=1

fm(x) =
1

M

M∑
m=1

1

nm

nm∑
im=1

ℓ(g(x, aim), bim)

]
, (2)

where nm is the size of the dataset, stored on m-th device.

1.1 CLIENT WEIGHTING

Parallel data processing helps to reduce computational time significantly (Zinkevich et al., 2010;
Abadi et al., 2016; Jouppi et al., 2017). However, contemporary applications present new challenges.
Training samples are often accumulated locally by each specific machine, rather than being collected
and distributed manually. This paradigm with data remaining on edge devices is called federated
learning (Konečnỳ et al., 2016; McMahan et al., 2017; Bonawitz et al., 2019). In such a setup, local
datasets are typically heterogeneous – they vary in size, distribution, and quality. For instance, one
device may hold unique objects that are poorly represented across the rest of the network, but are
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crucial for capturing more dependencies. This leads to the conclusion that some clients may be more
useful than others. Modern approaches usually assign dynamic weights {πm}Mm=1 and use

f(x) =

M∑
m=1

πmfm(x), s.t. πm > 0,

M∑
m=1

πm = 1 (3)

to calculate statistics. If the devices are considered to be equivalent, this corresponds to the case
where π1 = . . . = πM = 1/M . As a result, more important nodes contribute more significantly to the
global loss. There are many strategies to prioritize the clients known in the literature.

Weighting Based on Data Quality/Quantity. The most straightforward way to cope with data
imbalance is to consider a number of local samples. McMahan et al. (2017) suggested setting each
coefficient as the constant πm = nm/n. Since then, many modifications of this approach have been
proposed, including federated averaging schemes with momentum (Wang et al., 2019; Reddi et al.,
2020), variance reduction (Liang et al., 2019; Karimireddy et al., 2020) and proximal updates (Li
et al., 2020). However, this type of weighting ignores heterogeneity in terms of data quality, leading
to bias, e.g. if some client holds an enormous amount of objects with the same labels. To support the
diversity of training samples, Yurochkin et al. (2019) proposed to match the neurons of client neural
networks before averaging. Building on the foundations laid by this work, subsequent works have
explored more efficient approaches extensively (Wang et al., 2020a; Zhang et al., 2022; Yang et al.,
2023; Wu et al., 2023; Kafshgari et al., 2023).

Learned Weighting Strategies. It is also common to learn weighting strategies instead of using
fixed heuristics. Mohri et al. (2019) were among the first to present results in this direction. They pro-
posed solving the saddle-point problem minx∈Rd maxπ∈△M

1

∑M
m=1 πmfm(x) to give small weights

to well-trained devices. The idea of optimizing agnostic empirical loss was then generalized by Li
et al. (2019a). Their q-FedAvg can be reduced to agnostic optimization as one of the special cases.
However, in practice, it is hard to search for appropriate saddle-points (Daskalakis and Panageas,
2018; Jin et al., 2020), especially in federated learning (Sharma et al., 2023). As a result, the commu-
nity has shifted towards softer adaptive approaches based on local losses (Zhang et al., 2020; Gao
et al., 2022) and gradients (Wang et al., 2020b; Luo et al., 2024).

Robust Weighting. The idea of assigning weights to the devices found its application in robust
optimization, where malicious clients can disrupt the learning process (Baruch et al., 2019; Xie et al.,
2020; Fang et al., 2020). To combat such attacks, advanced schemes usually compute {πm}Mm=1, as
the trust scores of the devices based on their objectives decrease (Xie et al., 2019), local gradients
(Cao et al., 2020; Yan et al., 2023), and the number of local samples (Cao and Lai, 2019). Recently,
researchers came up with the idea of using a Bayesian approach (Yang et al., 2024).

1.2 CLIENT SAMPLING

Another significant issue of federated learning, on par with heterogeneity, is the communication
bottleneck (Tang et al., 2020; Shi et al., 2020). Sharing information between machines is costly and
can limit the positive effect of parallelism, which is especially tangible when clients send messages
to the server (Kairouz et al., 2021). This issue is magnified in federated learning, where edge devices
may have unstable network connectivity, and transmitting large updates may be prohibitively slow.
Many techniques exist to reduce communication (Seide et al., 2014; Alistarh et al., 2017; Stich,
2018). Partial participation is a special one among them (Li et al., 2019b; Yang et al., 2021). In each
communication round, only a random subset of clients participates in training, while the rest remain
inactive. This approach offloads the server by decreasing the number of updates that need to be
aggregated. Moreover, it provides significant advantages in edge computing, where communication
channels are not equivalent, or some of them may be unavailable. Nowadays, there is a wide range of
heuristics, which allows to choose subset of clients efficiently.

Data-Based Sampling Strategies. Methods from this class rely on zero- and first-order information
of local functions. Importance Sampling FedAvg (Rizk et al., 2021) was one of the first
such approaches. The authors suggested evaluating the relevance of a device by how large its gradient
is relative to the others. Indeed, a small gradient makes a weak contribution to the step. Consequently,
communication with this node can be neglected. Nguyen et al. (2020) proposed an orthogonal
approach. Their FOLB measures the angle between local and average gradient. If it is negative, then
such a device is useless at the current moment. This idea was then developed extensively in (Wu

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and Wang, 2022; Zhou et al., 2022). In addition, techniques based on the norms of updates (Chen
et al., 2020) and local loss decrease (Cho et al., 2022) were proposed. There are also a number of
approaches that dynamically exploit data heterogeneity to maintain balance (Zhang et al., 2023) or
support diversity (Chen and Vikalo, 2024).

System-Based Sampling Strategies. Another approach is to use information about the network
itself. FedCS (Nishio and Yonetani, 2019) categorizes clients into groups based on their computa-
tional power. This strategy saves wall-clock time by avoiding frequent selection of weak devices.
Another class of techniques optimizes energy consumption (Xu and Wang, 2020). Most modern
system heterogeneity techniques also incorporate local data considerations (Lai et al., 2021; Li et al.,
2022). F3AST (Ribero et al., 2022) learns an availability-dependent client selection strategy to
minimize the impact of variance on the global model’s convergence.
Thus, the community came up with various techniques for weighting and sampling to make partial
participation as efficient as possible. The development of each new scheme was challenging in terms
of algorithm design and convergence proof. Consequently, a number of papers appeared attempting
to propose a theory without utilizing the properties of any particular strategy.

1.3 UNIFICATION OF SAMPLING STRATEGIES

Existing papers in this area of research are built around the federated averaging scheme (McMahan
et al., 2017). Li et al. (2019b) proposed an analysis for strongly convex objectives, obtaining a
sublinear convergence rate O

(
κ2
/K
)
, where κ is the condition number. However, they modeled the

partial participation environment via unbiased sampling. Cho et al. (2022) were the first to study the
unified case with biased devices selection. They derived O

(
κ2
/K + κQ

)
, where Q is a non-vanishing

term that becomes zero solely in the absence of sampling bias. Thus, the authors recovered the results
of Li et al. (2019b), but failed to extend the theory to weaker assumptions. The first success in this
direction was achieved in (Luo et al., 2022). This work resolved key questions regarding biased
sampling in the strongly convex case. However, the non-convex analysis holds greater significance
for applications. For this setting, Wang and Ji (2022) obtained O

(√
L/

√
K + δ

)
, where L is the

smoothness constant and δ is the uniform bound on the difference between local gradients. This result
contains the non-vanishing term and does not match the lower bound Ω (L/K) (Carmon et al., 2020).
Thus, current works in this field rely on FedAvg. Consequently, their analysis requires boundedness
of gradients (Li et al., 2019b; Cho et al., 2022; Luo et al., 2022) or their differences (Wang and Ji,
2022) even in the non-stochastic case. Therefore, there is still no flawless unified theory of partial
participation.

1.4 OUR CONTRIBUTION

In contrast to prior works, where partial participation analysis was built upon FedAvg, we introduce
our own scheme to leverage client sampling. While existing techniques ignore the information from
inactive clients, our approach utilizes it for benefits. Namely, devices accumulate gradient surrogates
locally, and the server accounts for them after the full aggregation round. The proposed approach
allows weighting and sampling clients according to a variety of strategies, including biased ones. The
convergence of our scheme can be proven in both strongly convex and non-convex cases without
introducing unnatural assumptions. The obtained rates do not contain non-vanishing terms. To
validate the theory, we conduct experiments with RESNET-18 and VIT.

2 SETUP

We begin presenting our results with assumptions necessary to prove convergence. First of all, the
objective is assumed to be smooth. This requirement is well-established in optimization.

Assumption 2.1. The function f is L-smooth, i.e. for all x, y ∈ Rd it satisfies
∥∇f(x)−∇f(y)∥ ⩽ L∥x− y∥.

Neural networks tend to have a complex loss landscape (Cybenko, 1989; Nguyen and Hein, 2018).
Since we are motivated by real-world scenarios, our main goal is to prove convergence in the
non-convex case. For completeness, we also derive results under stronger assumptions.

Assumption 2.2. The function f is:

3
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(a) non-convex with at least one global minimum:
there exists may be not unique, x∗ s.t. f(x∗) = inf

x∈Rd
f(x) > −∞.

(b) µ-strongly convex, i.e. for all x, y ∈ Rd it satisfies

f(y) ⩾ f(x) + ⟨∇f(x), y − x⟩+ µ

2
∥y − x∥2.

Federated learning methods usually require a bound on data heterogeneity to provide convergence
guarantees (Khaled et al., 2020; Karimireddy et al., 2020). In our work, we quantify it via gradients
(Tang et al., 2018; Stich, 2020).

Assumption 2.3. Each gradient ∇fm is similar to the full gradient ∇f , i.e. for all x ∈ Rd it satisfies

1

M

M∑
m=1

∥∇fm(x)−∇f(x)∥2 ⩽ δ1∥∇f(x)∥2 + δ2.

This assumption is not too strict, since we do not require uniform boundedness (δ1 = 0). The
following one is imposed to derive convergence of our algorithm with local stochasticity. If one
removes it, our theory still holds.

Assumption 2.4. Each worker has access to a stochastic gradient ∇fm(x, ξm). This is an unbiased
random variable with bounded variance, i.e. for all x ∈ Rd it satisfies

Eξm [∇fm(x, ξm)] = ∇fm(x),

Eξm

[
∥∇fm(x, ξm)−∇fm(x)∥2

]
⩽ σ2.

This assumption appears in different forms in a number of classic papers (Stich, 2018; Gower et al.,
2019; Gorbunov et al., 2020). Next, we consider that weights {πm}Mm=1 from equation 3 lie on the
regularized simplex. Namely, π ∈ ∆M

1 ∩
(⋂M

m=1

{
π : e⊤mπ + α

M ⩾ 0
})

, where 1 ⩽ α ⩽ M is the
regularization parameter and e is the unit basis. This technique is useful for solving a wide range of
tasks (Mehta et al., 2024).

3 ALGORITHMS AND ANALYSIS

3.1 MOTIVATION

Existing papers on the unification of client sampling consider FedAvg without any modifications.
Section 1.3 suggests that this approach is not promising due to poor results even under strong
assumptions. A potential direction for future research could be to find a more suitable scheme. Below
we propose an intuition that helps to address this issue.
To understand biased sampling, Cho et al. (2022) introduced the definition of selection skew and
utilized it in the analysis. This is exactly the cause of the non-vanishing term in their rate. Indeed,
there is no convergence if, for example, some devices are never selected for communication. However,
we propose that the problem could be solved if we could somehow account for the error accumulated
due to bias. To develop this idea, we formalize the sampling strategy as follows. First, we assign
weights πm to devices, as described in equation 3. Next, we define the selection rule of the server as
a stochastic operator R : RM → RM that zeros some entries of the input vector while retaining the
others. Applying this operator to the introduced vector of weights, it can be seen that the wide variety
of strategies described in Section 1.2 fits this formalism. This applies not only to simple cases of
selecting clients with the highest weights but also to non-trivial ones, such as zeroing the weights of
unavailable nodes.
Viewing partial participation as weight vector sparsification reveals connections to well-studied
techniques (Beznosikov et al., 2023). A state-of-the-art approach to handle it efficiently is error
feedback (Stich and Karimireddy, 2020; Richtárik et al., 2021). Since sampling rules are represented
as compressors, we believe that this idea may be extremely useful in our setting as well. However,
we cannot apply the error feedback framework directly. The reason is that the sampling rules are
non-contractive compressors, as they zero out certain local gradients. Formally, there does not exist
β < ∞ such that ∥x− C(x)∥2 ⩽

(
1− 1

β

)
∥x∥2 for C(x) = 0, x ∈ Rd.

Thus, we have to address the challenge of designing a scheme that can handle non-contractive
compression before proceeding to a unified analysis of partial participation.
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3.2 PARTIAL PARTICIPATION WITHOUT UNAVAILABLE DEVICES

To develop the idea proposed in Section 3.1, we present the Partial Participation with Bias Correction
framework (PPBC, see Algorithm 1) that supports a wide class of weighting and sampling approaches.
Since computing full-batch gradients is often impractical in modern applications, we also account for
local stochasticity.
Algorithm 1 PPBC

1: Input: Start point x−1,H−1 ∈Rd, g−1,H−1 ∈Rd, epochs number K, number of devices M
2: Parameters: Stepsize γ > 0, momentum 0 < θ < 1, regularization 1 ⩽ α ⩽ M
3: for epochs k = 0, . . . ,K − 1 do
4: Initialize πk // Server weighs clients using any procedure
5: π̂k = R̂k(πk) // Server selects clients to communicate through epoch using any rule R̂
6: gk,0m = 0 // Each client initializes the gradient surrogate

7: xk,0 = xk−1,Hk−1 − γgk−1,Hk−1

// Server initializes the initial point of the epoch
8: Generate Hk ∼ Geom(p) // Server generates number of iterations of k-th epoch
9: for iterations h = 0, . . . ,Hk − 1 do

10: π̃k,h = R̃k,h
(
π̂k
)

// Server selects clients to communicate at the current round using rule R̃
11: for devices m = 1 . . .M in parallel do
12: gk,h+1

m = gk,hm +(1− θ)
(

1
M − π̃k,h

m

)
∇fm(xk,h, ξk,hm ) // Update the gradient surrogate

13: end for
14: for each device m : π̃k,h

m ̸= 0 do
15: Send ∇fm(xk,h, ξk,hm ) to the server
16: end for

17: xk,h+1 = xk,h − γ

[
(1− θ)

M∑
m=1

π̃k,h
m ∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
// Server updates

parameters
18: end for
19: for devices m = 1 . . .M in parallel do
20: Send gk,H

k

m to the server
21: end for

22: gk,H
k

=
M∑

m=1
gk,H

k

m // Server aggregates gradient surrogates

23: end for

Description of Algorithm 1. In Algorithm 1, the weights πk = (πk
1 , . . . , π

k
M )⊤ are computed

according to any of the mentioned strategies at the beginning of each epoch (Line 4). Next, the
rule R̂ is applied to determine the participating machines (Line 5). Its output π̂k contains zeros at
positions corresponding to nodes that are not chosen to communicate with the server. Note that R̂ is
not necessarily constant. There are no theoretical restrictions to change it during the execution. For
example, one can vary the number of participating devices. We also allow additional client sampling
at each iteration of the epoch by introducing a rule R̃ (Line 10). We propose to aggregate local
gradient surrogates during the epoch (Line 12). To provide intuition beyond this update, we give a toy
example where each πm is equal to 1/M . In this way, all inactive devices collect their gradients, while
all active ones retain the vector gm from the previous iteration. In the practical case with various
weights, each device accounts for its deviation from the uniform distribution πu = {1/M}Mm=1. Next,
we use the accumulated vectors during the following epoch (Line 17). To handle the magnitude
imbalance between the gradient and its surrogate, we employ a smoothing scheme with a small
parameter θ. We provide an ablation studies regarding θ and p in Appendix B.

Analysis of Algorithm 1. We utilize virtual sequences to derive convergence rates of PPBC. The
idea is to introduce an additional vector

x̃k,h = xk,h − γ
M∑

m=1

gk,hm

and use it to prove convergence. Substituting Lines 10, 17 in this definition, we obtain

x̃k,h+1 = x̃k,h − γ

[
(1− θ)

1

M

M∑
m=1

∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
.
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This is an important technique for our method, since the sequence x̃ is updated with the average
of gradients from all devices, contrary to the original x. However, the virtual update also contains
a combination of accumulated gradients from the previous epoch. We emphasize that handling
gk−1,Hk−1

is one of the main theoretical challenges we address. We set the epoch size Hk as a
geometrically distributed random variable and provide the following lemma.

Lemma 3.1. Suppose Assumptions 2.3, 2.4 hold. We consider the epoch size Hk ∼ Geom(p) and
1 ⩽ α ⩽ M . Then for Algorithm 1 it implies

EHkEξk,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 ⩽

24(1− θ)2α(δ1 + 1)

p2
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2 + 48(1− θ)2αδ2

p2

+
24(1− θ)2ασ2

Mp2
.

Assumption 2.4 is required only to handle local stochasticity. If the devices are able to compute exact
gradients, Lemma 3.1 holds with σ = 0. For the details, see Appendix D. As a result, we obtain the
convergence theorem.

Theorem 3.2. Suppose Assumptions 2.1, 2.2(a), 2.3, 2.4 hold. Then for Algorithm 1 with θ ⩽ γLp2

2
and γ ⩽ p

384Lα(δ1+1) it implies that

1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2 ⩽
16
(
f(x0,0)− f(x∗)

)
γK

+
768γLαδ2

p
+

384γ2L2αδ2
p3

+
400γLασ2

Mp
+

192γ2L2ασ2

Mp3
.

The main obstacle in proving Theorem 3.2 is the terms ∥gk,Hk∥2 and ∥gk−1,Hk−1∥2 that appear in
the analysis. Using Lemma 3.1, they can be screwed to ∥∇f(xk,Hk

)∥2 and ∥∇f(xk−1,Hk−1

)∥2,
respectively. The first norm is easy to analyze. Classically, it serves as a convergence criterion.
Eliminating the second one turns out to be challenging. To cope with it, we incorporate the surrogate
into the starting point of the epoch (Line 7). For the details, see Appendix D.1. With such an estimate,
there is a technique to choose the stepsize γ appropriately to obtain convergence (Stich, 2019).

Corollary 3.3. Under conditions of Theorem 3.2 Algorithm 1 with fixed rules R̂k ≡ R̃k,h ≡ R
needs

O
(
M

M

C

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

Mε4

))
number of devices communications to reach ε-accuracy, where ε2 = 1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2, ∆ =

f(x0,0)− f(x∗) and C is the number of devices participating in each epoch.

We also consider varying sampling rules R̂k and R̃k,h to study corollaries of Theorem 3.2.

Corollary 3.4. Under conditions of Theorem 3.2 Algorithm 1 needs

O

 M

min
k,h

Ck,h

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

Mε4

) epochs and

O

M

 M

min
k,h

Ck,h

2(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

Mε4

) number of devices communications

to reach ε-accuracy, where ε2 = 1
K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2, ∆ = f(x0,0) − f(x∗) and Ck,h is the

number of devices participating in k-th iteration in h-th epoch.

In our work, the analysis is extended to the strongly convex case.
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Theorem 3.5. Suppose Assumptions 2.1, 2.2(b), 2.3, 2.4 hold. Then for Algorithm 1 with θ ⩽ pγµ
4

and γ ⩽ p2

96Lα(δ1+1) it implies that

E
∥∥xK,0 − x∗∥∥2 ⩽

(
1− γµ

8

)K ∥∥x0,0 − x∗∥∥2 + 8γα

µp3

(
144δ2 +

74σ2

M

)
.

As well as for the non-convex objective, suitable γ can be chosen in Theorem 3.5.

Corollary 3.6. Under conditions of Theorem 3.5 Algorithm 1 with fixed rules R̂k,h ≡ R̃k,h ≡ R
needs

Õ

(
M

(
M

C

)2(
L

µ
αδ1 log

(
1

ε

)
+

M

C

αδ2
µ2ε

+
ασ2

µ2Cε

))
number of devices communications to reach ε-accuracy, where ε2 = E

∥∥xK,0 − x∗
∥∥2 and C is the

number of devices participating in each epoch.

Corollary 3.7. Under conditions of Theorem 3.5 Algorithm 1 needs

Õ


 M

min
k,h

Ck,h

2L

µ
αδ1 log

(
1

ε

)
+

M

min
k,h

Ck,h

αδ2
µ2ε

+
ασ2

µ2min
k,h

Ck,hε


 epochs and

Õ

M

 M

min
k,h

Ck,h

3L

µ
αδ1 log

(
1

ε

)
+

M

min
k,h

Ck,h

αδ2
µ2ε

+
ασ2

µ2min
k,h

Ck,hε




number of devices communications to reach ε-accuracy, where ε2 = E
∥∥xK,0 − x∗

∥∥2 and Ck,h is
the number of devices participating in k-th iteration in h-th epoch.

3.3 PARTIAL PARTICIPATION WITH UNAVAILABLE DEVICES

The previous section addresses partial participation when all devices are available to communicate
with the server. Indeed, in Algorithm 1 each node receives the current parameters at the end of the
iteration, but does not send its gradient. This is motivated by the fact that forwarding a message
from the client to the server is much more expensive than the other way around (Kairouz et al.,
2021). However, in practice, some devices can become inactive periodically (Li et al., 2019b; Yang
et al., 2021). Namely, these machines not only refrain from transmitting information but also do not
perform local computations. In this section, we extend our theory to cover the case where the actual
parameters are sent to only a fraction of the clients.

Description of Algorithm 2. In this section we present the part of Algorithm 2 (see Appendix A)
that reflects key differences from Algorithm 1. To design it, we refuse using the biased sampling
rule R̃ during the epoch. Instead, we simulate outage probability of the m-th device as a Bernoulli
random variable ηk,hm ∼ Be(qm) (Chung, 2000) (Line 11). To describe client disconnection formally,
ηk,hm is used to update the gradient surrogates (Line 12) and to perform the step (Line 17). Thus, in
practice, it is not necessary for an inactive device to know the actual parameters. We also normalize
the computed gradients by factors {qm}Mm=1 to balance their magnitudes.

11: Generate ηk,h

12: gk,h+1
m = gk,hm + (1− θ)

ηk,h
m

qm

(
1
M − π̂k,h

m

)
∇fm(xk,h, ξk,hm )

17: xk,h+1 = xk,h − γ

[
(1− θ)

M∑
m=1

ηk,h
m

qm
π̂k,h
m ∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
Analysis of Algorithm 2. We formulate the results for both non-convex and strongly-convex cases.

Corollary 3.8. Suppose Assumptions 2.1, 2.2(a), 2.3, 2.4 hold. Algorithm 2 with fixed rules R̂k ≡
R̃k,h ≡ R needs

O

M
M

C

1

min
1⩽m⩽M

qm

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

ε4

)
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number of devices communications to reach ε-accuracy, where ε2 = 1
K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2, ∆ =

f(x0,0)− f(x∗) and C is the number of devices participating in each epoch.

Corollary 3.9. Under conditions of Theorem E.2 Algorithm 2 needs

O

 M

min
k,h

Ck,h

1

min
1⩽m⩽M

qm

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

ε4

) epochs and

O

M

 M

min
k,h

Ck,h

2

1

min
1⩽m⩽M

qm

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

ε4

)
number of devices communications to reach ε-accuracy, where ε2 = 1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2, ∆ =

f(x0,0)− f(x∗) and Ck,h is the number of devices participating in k-th iteration in h-th epoch.

Corollary 3.10. Suppose Assumptions 2.1, 2.2(b), 2.3, 2.4 hold. Algorithm 2 with fixed rules
R̂k ≡ R̃k,h ≡ R needs

Õ

M

(
M

C

)2
1

min
1⩽m⩽M

qm

(
L

µ
αδ1 log

(
1

ε

)
+

M

C

αδ2
µ2ε

+
M

C

ασ2

µ2ε

)
number of devices communications to reach ε-accuracy, where ε2 = E

∥∥xK,0 − x∗
∥∥2 and C is the

number of devices participating in each epoch.

Corollary 3.11. Under conditions of Theorem E.6 Algorithm 2 needs

Õ


 M

min
k,h

Ck,h

2

1

min
1⩽m⩽M

qm

L

µ
αδ1 log

(
1

ε

)
+

M

min
k,h

Ck,h

αδ2
µ2ε

+
M

min
k,h

Ck,h

ασ2

µ2ε




epochs or

Õ

M

 M

min
k,h

Ck,h

3

1

min
1⩽m⩽M

qm

L

µ
αδ1 log

(
1

ε

)
+

M

min
k,h

Ck,h

αδ2
µ2ε

+
M

min
k,h

Ck,h

ασ2

µ2ε




communications

to reach ε-accuracy, where ε2 = E
∥∥xK,0 − x∗

∥∥2 and Ck,h is the number of devices participating in
k-th iteration in h-th epoch.

For more details, see Appendix E. Note that min1≤m≤M qm is a constant lying in the interval (0, 1].
Thus, the rates of Algorithm 2 do not differ significantly from those for Algorithm 1. The only
deterioration occurs in the variance term associated with local stochasticity. Thus, if each device has
an access to its exact gradient, there is no asymptotical difference compared to Corollaries 3.3 and
3.6.

3.4 DISCUSSION

We analyzed a wide class of sampling and weighting techniques and proposed algorithms for different
network scenarios. Their rates asymptotically coincide with the optimal ones for SGD-like approaches
(Stich, 2019). Due to considering biased strategies, we obtained an additional factor M/C. Again
analogizing to compression, this multiplier signifies compression power. It is a well-known fact
that there is no theoretical improvement for methods built upon error-feedback (Richtárik et al.,
2021; Beznosikov et al., 2023). However, we recover the convergence of SGD in the case of full
participation. Comparing our non-convex rate regarding the main term O (1/ε2) with prior works,
we note that it surpasses that in (Wang and Ji, 2022) (O (1/ε4 + δ2)) both asymptotically and by
the absence of the non-vanishing term. Next, comparing strongly-convex rates (O (κ log 1/ε)), we
are superior to (Cho et al., 2022)

(
O
(
κ2
/ε + κδ2

))
and (Luo et al., 2022) (O (κ/ε)). Moreover,

both of these works lack non-convex analysis. We highlight that we soften assumptions from all
aforementioned works.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

To validate our theoretical findings, we conduct a systematic empirical comparison of six optimization
frameworks – FedAvg (Reddi et al., 2020), SCAFFOLD (Karimireddy et al., 2020), FedDyn
(Chen et al., 2023), Moon (Li et al., 2021), and PPBC (Algorithm 1) — evaluated under full client
participation (FCP), along with two additional frameworks – F3AST (Ribero et al., 2022) and
PPBC+ (Algorithm 2) – specifically designed for and evaluated under partial client participation
(PCP). Crucially, we fix the sampling strategy across all frameworks to isolate how each optimizer
interacts with it, thereby decoupling the sampling mechanism from core algorithmic innovations for
FCP experiments. All methods are compared under identical experimental conditions: same model
architectures, benchmark datasets, and hardware configurations. The following section details the
experimental setup, including architectures, datasets, and infrastructure.

Experimental Setup. We evaluate sampling strategies under three distinct data distribution settings:
(distr-1) homogeneous (i.i.d.), (distr-2) heterogeneous (client-specific class sets), and (distr-3)
strongly heterogeneous (varying data volumes and class skew). In this section we will present results
for the most challenging setup with distr-3, full version of experiments is in Appendix B along with
other details. Experiments use CIFAR-10 (Krizhevsky et al., 2009) with RESNET-18 (Meng et al.,
2019) for image classification and FOOD101 Bossard et al. (2014) with FASTERVIT (Hatamizadeh
et al., 2023) for fine-tuning, providing a controlled benchmark for comparing Algorithm 1. Impor-
tantly, each plot compares frameworks – not strategies – by fixing the underlying strategy and varying
the framework. This correspondence is formalized in Algorithm 1, where the gradient surrogate
term vanishes, recovering the conventional update rule. Further implementation details (partitioning,
architecture, datasets) appear in Appendix B.

4.1 FULL CLIENT PARTICIPATION

Table 1: Frameworks and strategies com-
parison on CIFAR-10 & RESNET-18.

Method + Strategy distr-3

Loss (↓) Acc (↑)

FedAvg + PoC 0.898±0.021 65.3±0.20
FedAvg + FOLB 0.674±0.020 71.42±0.19
FedAvg + BANT 2.324±0.023 11.32±0.25
FedAvg + GNS 0.657±0.019 71.15±0.19
SCAFFOLD + PoC 0.788±0.020 69.81±0.19
SCAFFOLD + FOLB 0.663±0.016 71.80±0.20
SCAFFOLD + BANT 0.698±0.017 71.31±0.18
SCAFFOLD + GNS 0.689±0.020 71.75±0.19
FedDyn 0.652±0.016 76.71±0.14
Moon 0.627±0.014 75.21±0.15

PPBC + PoC 0.367±0.019 88.87±0.16
PPBC + FOLB 0.362±0.016 88.91±0.14
PPBC + BANT 0.357±0.015 88.96±0.15
PPBC + GNS 0.364±0.016 88.90±0.15

Notation: All values averaged over 3 seeds.
Arrows indicate optimization direction: ↓
minimize loss, ↑ maximize accuracy. Green
color represents our algorithms.

Client Selection Rule. Notably, not all strategies in-
cluded in our comparative analysis inherently incorporate
a client selection mechanism. To ensure a fair and con-
sistent evaluation, we uniformly applied the following
selection rule across all methods:

R̂k = TopC

(
πk
)
,

where TopC denotes taking C > 0 clients with the high-
est weights πk. Consequently, the remainder of our ex-
periments will focus exclusively on the formulation and
analysis of weight update rules, while treating the client
selection process itself as a fixed component of the exper-
imental framework.

Client Sampling. We evaluate four established client
sampling strategies, each designed to improve convergence
or robustness by prioritizing clients based on different cri-
teria. PoC (Cho et al., 2022) selects clients proportionally
to their local loss values, favoring those with higher empiri-
cal risk to accelerate optimization. BANT (Xie et al., 2019)
employs a trust-based mechanism, dynamically scoring
clients by their historical alignment with server-side val-
idation performance, thereby promoting reliability over
time. FOLB (Nguyen et al., 2020) samples clients based on the projected utility of their updates
– specifically, the inner product between local gradients and the server’s global descent direction –
to maximize progress per round. Finally, GNS (Wang et al., 2020b) prioritizes clients with larger
gradient norms, under the intuition that clients exhibiting stronger local signals contribute more
meaningfully to global updates.
Full algorithmic descriptions and implementation details for all strategies are provided in Appendix B.

Results. The comparative results are summarized in Table 1, with primary evaluation
based on final test loss and accuracy metric. Figure 1 complements this by visu-
alizing the training dynamics of our PPBC framework against the strongest baselines.
For FedAvg and SCAFFOLD, we report their best-performing variant per sampling strat-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

egy, ensuring a fair and strategy-aware comparison. This allows us to isolate the
impact of the optimization framework itself, independent of sampling-induced variance.

0 20 40 60 80 100

# communication  rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

PPBC + PoC
FedAvg + FOLB
SCAFFOLD + FOLB
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FedDyn

Figure 1: Comparison graphs on distr-3
for best runs.

4.2 PARTIAL CLIENT PARTICIPATION

Client Sampling and Partial Participation. To simu-
late real-world scenarios, we model client presence at each
round via independent Bernoulli trials with participation
probability qm. We evaluate performance across a spec-
trum of participation regimes, ranging from full availabil-
ity (qm = 1) to highly sparse communication (qm = 0.3),
reflecting scenarios with frequent dropouts or intermittent
connectivity. To contextualize our framework’s robustness
under such conditions, we include comparative experi-
ments against F3AST, an algorithm specifically designed
to handle client outages and non-uniform participation.
For PPBC+, we set server strategy R̂k with the FOLB strategy and employ PoC as the client sampling
mechanism R̃k. Table 2: Frameworks and

strategies comparison on
FASTERVIT & FOOD101.

Method distr-3

Loss (↓) Acc (↑)

FedAvg (qm = 1) 1.896±0.021 56.74±0.13
F3AST (qm = 1) 1.692±0.022 68.31±0.11
F3AST (qm = 0.7) 1.754±0.020 65.52±0.12
F3AST (qm = 0.5) 1.812±0.018 61.30±0.13

PPBC+ (qm = 1) 0.930±0.017 76.11±0.09
PPBC+ (qm = 0.7) 0.937±0.018 76.04±0.12
PPBC+ (qm = 0.5) 0.961±0.018 75.07±0.10
PPBC+ (qm = 0.3) 0.996±0.020 74.68±0.11

Results. Similarly to the previous section, results
are summarized in Table 2, with the primary evalua-
tion based on the final test loss and accuracy metrics.
Figure 2 represents accuracy graphs of our PPBC+ framework (Al-
gorithm 2) with qm = 0.3 against F3AST with qm = 1, 0.7, 0.5 and
FedAvg with qm = 1. This plot clearly demonstrates the superi-
ority of our method over F3AST. Moreover, we highlight that even
under the most challenging communication conditions (qm = 0.3),
our approach consistently converges to substantially higher accuracy
than all competing baselines.
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Figure 2: Comparison graphs
on distr-3 for best runs.

Discussion. We provided experimental validation of the
theoretical convergence estimates for the proposed algo-
rithms across a range of practical federated learning tasks.
Our evaluation included large-scale models, such as the FASTERVIT
architecture with 270M parameters, demonstrating the scalability
and effectiveness of our approach in realistic learning scenarios.
Results demonstrate a substantial performance gap between con-
ventional approaches (FedAvg, SCAFFOLD, FedDyn, Moon) and
Algorithm 1 Additionally, we analyzed the behavior of the PPBC+
(Algorithm 2) under varying client sampling conditions, confirming
the robustness and consistency of its performance across different
parameter qm values.

RESNET18,
CIFAR-10
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Figure 3: Test accuracy of
PPBC/PPBC+ for image clas-
sification with RESNET18 on
CIFAR-10 and FASTERVIT fine-
tuning on FOOD101.

To further support our theoretical findings, we present Figure
3, which illustrates that the algorithms introduced in this work
maintain comparable convergence rates across all considered
configurations. These results affirm that our methods preserve
efficiency and stability even when applied to heterogeneous data
distributions and complex model architectures.
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split-federated learning for segmenting medical images with inaccurate annotations. In 2023 IEEE
20th International Symposium on Biomedical Imaging (ISBI), pages 1–5. IEEE, 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pages 5132–5143. PMLR, 2020.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtárik. Tighter theory for local sgd on identical
and heterogeneous data. In International conference on artificial intelligence and statistics, pages
4519–4529. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.
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A PARTIAL PARTICIPATION WITH UNAVAILABLE DEVICES

In this section, we present Algorithm 2, which is the complete version of algorithm from Section
3.3. This method can be applied to environments where devices do not perform local computations
periodically.

Algorithm 2 PPBC+

1: Input: Start point x−1,H−1 ∈Rd, g−1,H−1 ∈Rd, epochs number K, number of devices M
2: Parameters: Stepsize γ > 0, momentum 0 < θ < 1, regularization 1 ⩽ α ⩽ M
3: for epochs k = 0, . . . ,K − 1 do
4: Initialize πk // Server weighs clients using any procedure
5: π̂k = R̂k(πk) // Server selects clients to communicate through epoch using any rule R̂
6: gk,0m = 0 // Each client initializes the gradient surrogate

7: xk,0 = xk−1,Hk−1 − γgk−1,Hk−1

// Server initializes the initial point of the epoch
8: Generate Hk ∼ Geom(p) // Server generates number of iterations of k-th epoch
9: for iterations h = 0, . . . ,Hk − 1 do

10: for devices m = 1 . . .M in parallel do
11: Generate ηk,hm ∼ B(qm) // Device generates its state: available / unavailable

12: gk,h+1
m = gk,hm + (1− θ)

ηk,h
m

qm

(
1
M − π̂k,h

m

)
∇fm(xk,h, ξk,hm ) // Update the gradient

surrogate
13: end for
14: for each device m : ηk,hm ̸= 0 and π̂k

m ̸= 0 do
15: Send ηk,h

m

qm
∇fm(xk,h, ξk,hm ) to the server

16: end for

17: xk,h+1 = xk,h − γ

[
(1− θ)

M∑
m=1

ηk,h
m

qm
π̂k,h
m ∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
// Server up-

dates parameters
18: end for
19: for devices m = 1 . . .M in parallel do
20: Send gk,H

k

m to the server
21: end for

22: gk,H
k

=
M∑

m=1
gk,H

k

m // Server aggregates gradient surrogates

23: end for

B ADDITIONAL EXPERIMENTS AND DETAILS

Our code is available at https://anonymous.4open.science/r/EF25_ICLR/.

Hardware Details. The experiments were conducted using Python with the PyTorch deep learning
framework (Paszke et al., 2017). The computational hardware consisted of a server equipped with
an Intel Xeon Gold 6342 CPU and two NVIDIA A100 40GB GPUs. The total runtime for all
experimental evaluations amounted to approximately 80 hours. To simulate a federated learning
environment, data was distributed across clients based on a heterogeneity parameter.

Data Distribution. In our study, we employed 10 clients for both the RESNET-18 on CIFAR-10
setup and the FASTERVIT fine-tuning on the FOOD101 dataset. This client count was carefully
chosen to enable comprehensive evaluation across the diverse data distribution scenarios proposed
in our work, while maintaining computational feasibility for thorough experimentation. Below, we
provide a detailed summary of the data distribution characteristics for each experimental setup.
Homogeneous data distribution (distr-1) – each client has the same number of data samples, and
class labels are uniformly distributed across clients.
Example (CIFAR-10): Each client has 500 training samples per class, resulting in 5,000 samples per
client in total.
Heterogeneous data distribution (distr-2) – each client has the same total number of samples, but
class labels are distributed in a non-IID manner.
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Example (CIFAR-10): We split the 10 classes into two disjoint groups (e.g., classes 0-4 and 5-9), and
assign clients to one of the two groups. Clients in each group receive data only from their assigned
classes. Additionally, the number of samples per class varies across clients.

Table 3: Client-wise data sample propor-
tions in distr-3.

Client no. Proportion
1 10.6%
2 7.4%
3 12.0%
4 11.4%
5 8.8%
6 14.6%
7 10.0%
8 5.4%
9 10.2%

10 9.2%

Pathological data distribution (distr-3) – clients possess
different amounts of data. The distribution of sample
proportions across clients is as follows:
Within each client, class labels are sampled according
to a Dirichlet distribution with concentration parameter
α = 0.5, resulting in highly non-IID label distributions.
Next, we provide a detailed overview of the client
sampling strategies and present comparative results for
FedAvg, SCAFFOLD, and Algorithm 1. We exclude
FedDyn and Moon from this analysis, as their designs
incorporate fixed strategies that cannot be decoupled from
their core update rules.

Loss-aware Client Sampling. Building upon previ-
ous work, Cho et al. (2022) introduced the POWER-OF-
CHOICE (PoC) strategy, which employs a weighted client sampling mechanism based on local loss
values. Formally, the weight update rule can be expressed as:
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(b) Metrics comparison.

Figure 4: Performance comparison for PoC strat-
egy with different data distributions.

1. The server assigns to all clients the probabil-
ities proportional to the data size fractions

pm =
nm(

M∑
m′=1

nm′

) .

2. The global model is sent by the server to the
selected C clients, which compute and return
their local loss values based on their datasets.
Subsequently, the weights are updated:

πk =

([
1

nm

nm∑
im=1

ℓ(g(x, aim), bim)

])M

m=1

.

Trust-Score Sampling. The study by Xie et al. (2019) introduces the BANT, which implements
a trust-based sampling mechanism. This approach assigns dynamic trust scores to clients based on
historical performance metrics. Thus, weight update rule can be described as:
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(b) Metrics comparison.

Figure 5: Performance comparison for BANT strat-
egy with different data distributions.

1. The server assigns trust scores TSk
m to each

client m based on the alignment of their model
updates with the performance on server-held
ground truth data V:

TSk
m = exp

− 1

|V|
∑
ξ∈V

fm(xk, ξ)

 .

2. The weights are updated with a probability
proportional to trust scores:

πk =

 TSk
m

M∑
m′=1

TSk
m′


M

m=1

.
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Importance Sampling. Nguyen et al. (2020) introduced FOLB, a theoretically grounded client
selection framework for federated learning that optimizes convergence by sampling clients propor-
tionally to the expected utility of their local updates. The core selection mechanism operates as
follows: distr-1
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(b) Metrics comparison.

Figure 6: Performance comparison for FOLB strat-
egy with different data distributions.

1. Each client is assigned an importance score
ISk

m proportional to the inner product between
its gradient ∇fm(xk, ξkm) and the direction of
the server model improvement (previous gradi-
ent dk):

ISk
m =

∣∣〈∇fm(xk, ξkm), dk
〉∣∣ .

2. The weights are updated with a probability
proportional to the trust scores for each client:

πk =

 ISk
m

M∑
m′=1

ISk
m′


M

m=1

.

Gradient-Norm-Based Sampling. For the image classification problem on CIFAR-10 dataset, we
introduce an alternative client sampling strategy based on gradient norm sampling GNS Wang et al.
(2020b), which prioritizes clients whose local updates exhibit larger magnitudes. In particular:
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(b) Metrics comparison.

Figure 7: Performance comparison for GNS strat-
egy with different data distributions.

1. At each communication round k, the server
estimates the relative importance of each client
m using the norm of its reported gradient
∇fm(wk, ξkm):

pkm =

∥∥∇fm(wk, ξkm)
∥∥
2∑M

m′=1

∥∥∇fm′(wk, ξkm′)
∥∥
2

.

2. Clients are then sampled with probabilities
proportional to {pkm}Mm=1, ensuring that those
with larger gradient norms are selected more
frequently:

πk =
(
pkm
)M
m=1

.

The obtained comparison results are presented
in Figures 4, 6, 5, and 7.

ViT Fine-tuning. To further assess the generalization and adaptability of our method, we conduct
additional experiments involving the fine-tuning of a state-of-the-art Vision Transformer architecture
FASTERVIT (Hatamizadeh et al., 2023). The model, pre-trained on the large-scale IMAGENET21K
dataset (Ridnik et al., 2021), comprises approximately 270M parameters and integrates hybrid
hierarchical-attention mechanisms for efficient multi-scale feature learning. We fine-tune this model
on the FOOD101 dataset (Bossard et al., 2014), a challenging benchmark consisting of 101,000
images across 101 fine-grained food categories. This dataset presents significant visual complexity
due to high class variation and subtle inter-class distinctions, making it particularly suitable for
evaluating the scalability of our method.

Table 4: Summary of training strategies used in additional experiments. Top and Rand denote the
client selection rules, where the number indicates how many clients were selected for training.

Epoch Strategy Round Strategy
GNS (Top 3) PoC (Top 1)
FOLB (Top 3) PoC (Top 1)
PoC (Top 3) Rand 1
FOLB (Top 3) Rand 1
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(b) Metrics (Accuracy@1) for strategy mixture comparison.

Figure 8: Performance comparison for combination of strategies on FASTERVIT fine-tuning.

Strategy Mixture. In the preceding experimental setups, we restricted our evaluation to a fixed,
server-based client sampling strategy. However, as demonstrated in our theoretical analysis, Algo-
rithm 1 is flexible enough to accommodate a broader class of sampling mechanisms, potentially
varying across communication rounds. To validate this flexibility empirically, we conduct additional
experiments for FASTERVIT fine-tuning on distr-3 data distribution. We consider this setup to be the
most challenging one, because strong heterogeneity with different amount of samples and classes
per client and various strategies makes the FedAvg and SCAFFOLD algorithms behave similarly.
Therefore, our further experimental comparisons will only include FedAvg. We allow the sampling
rule R̃k,h to change dynamically at each communication round k. The combinations of strategies are
presented in Table 4. The performance validation results for each strategy mixture can be observed in
Figure 8.

Ablation Study on Hyperparameters. Our framework admits a unifying interpretation: by setting
θ = 0 and disabling the client weighting mechanism, we recover the original baseline methods
(FedAvg + any client sampling strategy). Consequently, by varying θ we can obtain various perfor-
mance of Algorithm 1. Our method also utilizes another hyperparameter: the duration between global
aggregations (length of the local epochs) Hk, modeled as a geometrically distributed random variable
with parameter p. Our theoretical analysis imposes no constraints on p; convergence guarantees hold
for any choice, with rates explicitly dependent on this hyperparameter (see Theorems 3.5, 3.2, E.2,
E.6). Next, we conduct an ablation study on both hyperparameters θ, p to quantify their impact on
performance. Moreover, we demonstrate the empirical connection between θ and p, which correlates
with our theoretical findings.
Firstly, we provide ablation study on θ. We fix p = 0.2 (yielding Hk = 5) and vary θ under the GNS
client selection rule. Results are shown in Table 5.

Table 5: Ablation on θ with Hk = 5.

θ Accuracy Loss

0.05 0.88 0.35
0.10 0.90 0.31
0.15 0.93 0.21
0.20 0.89 0.32

We confirm our theoretical expectations: excessively small values of θ do not allow for effectively
accounting for the clients’ history (θ = 0 corresponds to FedAvg), while large values disproportion-
ately increases the contribution of gradient surrogates that become outdated after an epoch. However,
there exists a wide interval within which the method do not lose much quality compared to optimal θ
value.
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Next, we fix θ = 0.2 and vary p (i.e., the expected epoch size Hk = 1/p), with results in Table 6.

Table 6: Ablation on local epoch size with θ = 0.2.

Hk Accuracy Loss

1 0.81 0.38
3 0.91 0.23
5 0.89 0.32
7 0.82 0.39

For θ = 0.15, the optimal local epoch size is Hk = 5 (see Table 6), while for θ = 0.2, the optimal
value decreases to Hk = 3. This finding is in complete agreement with theoretical expectations:
bigger values of θ require fewer number of local steps to achieve optimal convergence.
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Figure 9: Test accuracy of PPBC for image clas-
sification with RESNET18 on CIFAR-10 and
FASTERVIT fine-tuning on FOOD101.

Ablation Study on Convergence. In this para-
graph, we emphasize that the proposed Algo-
rithm 1 maintains similar convergence behavior
across all combinations of the considered strate-
gies (see Figure 9). This result is obtained by
gradient compensation technique incorporated
in our method. Thus, a biases that appear due to
applying client sampling strategies are equally
mitigated by our algorithm.

PPBC does not require a fixed aggregation
round. Our algorithms PPBC and PPBC+ have one limitation: they require transmitting all accu-
mulated surrogates once per epoch. For this reason, we conduct an experimental study ( ˆPPBC) in
which we remove the requirement that all devices must send their information every fixed number of
iterations.
We introduced an additional mechanism: at the moment of full aggregation, a client may choose not
to send the surrogate it accumulated during the epoch. This is modeled similarly to PPBC+, using
a Bernoulli random variable with a new hyperparameter qe. In other words, any client may fail to
provide its surrogate during the full aggregation step. Consequently, line 20 of the Algorithm 2 is
modified to the following block:

generate ηkm ∼ Qe, if ηkm = 1 : send gk,Hk
m to the server

We conducted experiments (see Figure 10) for different values of both qm and qe, and compared our
results with standard PPBC+ (Algorithm 2) using qm = 0.3, as well as with the baseline FedAvg
under pathological data heterogeneity. As expected, the new algorithm performs worse than PPBC+
with full aggregation, yet it still consistently outperforms FedAvg.
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Figure 10: Test loss and test accuracy of ˆPPBC, PPBC+, and FedAvg on FASTERVIT fine-tuning on
FOOD101.
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C GENERAL STATEMENTS

Notation. In the work we use the following notation. xk,h ∈ Rd is the vector of model’s parameters
in h-th iteration in k-th epoch, ∇fm(x) ∈ Rd represents the gradient of function fm at the point
x ∈ Rd, ∇fm(x, ξ) ∈ Rd denotes the stochastic gradient at the point x ∈ Rd with respect to
stochastic realization ξ.
For a random vector x ∈ Rd and stochasticity ξ we denote E [x] is the expected value of x and Eξ [x]
as the conditioned expected value with the respect to ξ.

We use ∥x∥ =

√
d∑

i=1

x2
i as l2-norm of the vector x ∈ Rd and ⟨x, y⟩ =

d∑
i=1

represents the scalar

product of vectors x, y ∈ Rd.
We use number of devices communications (device to server communications) as the metric. This
choice arises from the recognition that the number of rounds of communication is insufficient to
adequately compare distributed methods. For example, this limitation becomes evident when the
nodes operate asynchronously. In this case, the more appropriate metric is the total number of
communications rather than the number of rounds.

General inequalities. Suppose x, y, {ai}ni=1 ∈ Rd, {ωi}ni=1 ∈ R, f(·) inherent to Assumptions
2.1, 2.2(b), φ(·) is under Assumption 2.2(b). Then,

∥∇f(x)−∇f(y)∥2 ⩽ 2L (f(x)− f(y)− ⟨∇f(y), x− y⟩) , (Lip)

⟨x, y⟩ ⩽ β

2
∥x∥2 + 1

2β
∥y∥2 , (Fen)∥∥∥∥∥

n∑
i=1

ai

∥∥∥∥∥
2

⩽ n

n∑
i=1

∥ai∥2 , (CS)

φ

(∑n
i=1 wiai∑n
i=1 ai

)
⩽

∑n
i=1 aiφ(xi)∑n

i=1 ai
. (Jen)

Lemma C.1 ((Allen-Zhu, 2018)). Given sequence D0, D1, . . . DN ∈ R, where N ∈ Geom(p).
Then,

EN [DN−1] = pD0 + (1− p)EN [DN ] .

D PROOFS FOR ALGORITHM 1

Lemma D.1 (Lemma 3.1). Suppose Assumptions 2.3, 2.4 hold. Then for Algorithm 1 it implies that

EHkEξk,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 ⩽

24(1− θ)2α(δ1 + 1)

p2
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2 + 48(1− θ)2αδ2

p2

+
24(1− θ)2ασ2

Mp2
.

Proof. Let us start with the following estimate:∥∥gk,h+1
∥∥2 =

∥∥∥∥∥gk,h + (1− θ)

M∑
m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

(Fen)

⩽ (1 + c)
∥∥gk,h∥∥2

+

(
1 +

1

c

)
(1− θ)2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

, (4)

where c is defined below. Let us estimate the last term and obtain∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2
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(CS)

⩽ 2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h)

∥∥∥∥∥
2

+2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)[
∇fm(xk,h, ξk,hm )−∇fm(xk,h)

]∥∥∥∥∥
2

(i)
= 2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h)−

M∑
m=1

(
1

M
− πk

m

)
∇f(xk,h)

∥∥∥∥∥
2

+2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)[
∇fm(xk,h, ξk,hm )−∇fm(xk,h)

]∥∥∥∥∥
2

.

Adding and subtracting
M∑

m=1
π̃k,h
m ∇f(xk,h) in the first term yields∥∥∥∥∥

M∑
m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

⩽ 2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)[
∇fm(xk,h)−∇f(xk,h)

]
−

M∑
m=1

(
π̃k,h
m − πk

m

)
∇f(xk,h)

∥∥∥∥∥
2

+2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)[
∇fm(xk,h, ξk,hm )−∇fm(xk,h)

]∥∥∥∥∥
2

(CS)

⩽ 4

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)[
∇fm(xk,h)−∇f(xk,h)

]∥∥∥∥∥
2

+4

∥∥∥∥∥
M∑

m=1

(
π̃k,h
m − πk

m

)
∇f(xk,h)

∥∥∥∥∥
2

+2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)[
∇fm(xk,h, ξk,hm )−∇fm(xk,h)

]∥∥∥∥∥
2

.

We apply equation CS to the first term and identically transform the second and third terms:∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

⩽ 4

M∑
m=1

(
1

M
− π̃k,h

m

)2 M∑
m=1

∥∥∇fm(xk,h)−∇f(xk,h)
∥∥2

+4

(
M∑

m=1

(
π̃k,h
m − πk

m

))2 ∥∥∇f(xk,h)
∥∥2

+2

M∑
m=1

(
1

M
− π̃k,h

m

)2 ∥∥∇fm(xk,h, ξk,hm )−∇fm(xk,h)
∥∥2

+4
∑
i ̸=j

(
1

M
− π̃k,h

i

)(
1

M
− π̃k,h

j

)
·
〈
∇fi(x

k,h, ξk,hi )−∇fi(x
k,h),∇fj(x

k,h, ξk,hj )−∇fj(x
k,h)

〉
As. 2.3
(ii)

⩽ 4M
(
δ1
∥∥∇f(xk,h)

∥∥2 + δ2

) M∑
m=1

(
1

M
− π̃k,h

m

)2

+ 4
∥∥∇f(xk,h)

∥∥2
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+2

M∑
m=1

(
1

M
− π̃k,h

m

)2 ∥∥∇fm(xk,h, ξk,hm )−∇fm(xk,h)
∥∥2

+4
∑
i ̸=j

(
1

M
− π̃k,h

i

)(
1

M
− π̃k,h

j

)
·

·
〈
∇fi(x

k,h, ξk,hi )−∇fi(x
k,h),∇fj(x

k,h, ξk,hj )−∇fj(x
k,h)

〉
,

where (i) was made due to
M∑

m=1

(
1
M − πk

m

)
= 1− 1 = 0, (ii) with respect to

M∑
m=1

(
π̃k,h
m − πk

m

)
⩽ 1.

Taking expectation on ξk,hm and using Assumption 2.4, we have

Eξk,h
m

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

⩽ 4Mδ1
∥∥∇f(xk,h)

∥∥2 M∑
m=1

(
1

M
− π̃k,h

m

)2

+4
∥∥∇f(xk,h)

∥∥2
+4Mδ2

M∑
m=1

(
1

M
− π̃k,h

m

)2

+2σ2
M∑

m=1

(
1

M
− π̃k,h

m

)2

, (5)

since ξk,hi and ξk,hj are independent random variables and, consequently, the scalar product equals to
zero.
We use πk ∈ ∆M

1 ∩
(⋂M

m=1

{
π : e⊤mπ + α

M ⩾ 0
})

, where 1 ⩽ α ⩽ M and {em}Mm=1 is the unit

basis. In this way, worst case in terms of average distance from 1
M is realization, where

⌊
M
α

⌋
weights

are α
M and the rest are zero. In such a case, we can estimate

M∑
m=1

(
1

M
− π̃k,h

m

)2

⩽

⌊
M

α

⌋
(α− 1)2

M2
+

(
M −

⌊
M

α

⌋)
1

M2

⩽
M

α

(α− 1)2

M2
+

(
M − M

α
+ 1

)
1

M2

=
α− 1

M
+

1

M2
⩽

α

M
. (6)

We can transform equation 5 into

Eξk,h
m

∥∥∥∥∥
M∑

m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h)

∥∥∥∥∥
2

⩽ 4α (δ1 + 1)
∥∥∇f(xk,h)

∥∥2 + 4αδ2 +
2ασ2

M
. (7)

Substituting equation 7 into equation 4, we have

Eξk,h
m

∥∥gk,h+1
∥∥2 ⩽ (1 + c)

∥∥gk,h∥∥2 + 4

(
1 +

1

c

)
(1− θ)2α(δ1 + 1)

∥∥∇f(xk,h)
∥∥2

+4

(
1 +

1

c

)
(1− θ)2αδ2

+2

(
1 +

1

c

)
(1− θ)2

α

M
σ2.

Enrolling a recursion, we get

Eξk,0
m

. . .Eξk,h
m

∥∥gk,h+1
∥∥2 ⩽ 4

(
1 +

1

c

)
(1− θ)2α(δ1 + 1)

h∑
i=0

(1 + c)h−i
∥∥∇f(xk,i)

∥∥2
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+4

(
1 +

1

c

)
(1− θ)2αδ2

h∑
i=0

(1 + c)h−i

+2

(
1 +

1

c

)
(1− θ)2

α

M
σ2

h∑
i=0

(1 + c)h−i. (8)

Now we use that Hk ∼ Geom(p):

EHkEξk,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 =

∑
j⩾0

p(1− p)jEξk,0
m

. . .Eξk,j−1
m

∥∥gk,j∥∥2
(8)

⩽ 4

(
1 +

1

c

)
(1− θ)2α(δ1 + 1) ·

·
∑
j⩾0

p(1− p)j
j−1∑
i=0

(1 + c)j−i−1
∥∥∇f(xk,i)

∥∥2
+2

(
1 +

1

c

)
(1− θ)2

α

M

(
σ2 + 2Mδ2

)
·

·
∑
j⩾0

p(1− p)j
j−1∑
i=0

(1 + c)j−i−1. (9)

Let us choose c = p
2 and consider the following term individually:

∑
j⩾0

p(1− p)j
j−1∑
i=0

(1 + c)j−i−1
∥∥∇f(xk,i)

∥∥2 = p

[
(1− p)

∥∥∇f(xk,0)
∥∥2

+(1− p)2
{
(1 + c)

∥∥∇f(xk,0)
∥∥2 + ∥∥∇f(xk,1)

∥∥2}+ . . .

]
= p(1− p)

[
(1− p)0(1 + c)0 + (1− p)(1 + c) + . . .

] ∥∥∇f(xk,0)
∥∥2

+p(1− p)2
[
(1− p)0(1 + c)0 + (1− p)(1 + c) + . . .

] ∥∥∇f(xk,1)
∥∥2 + . . .

⩽
∑
l⩾0

(1− p)l(1 +
p

2
)l
∑
j⩾0

p(1− p)j+1
∥∥∇f(xk,j)

∥∥2
⩽

1

1− (1− p)(1 + p
2 )

∑
j⩾0

p(1− p)j
∥∥∇f(xk,j)

∥∥2 =
2

p(p+ 1)
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2

⩽
2

p
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2 . (10)

Additionally, we have

∑
j⩾0

p(1− p)j
j−1∑
i=0

(1 + c)j−i−1 ⩽ p
∑
j⩾0

(1− p)jj(1 +
p

2
)j ⩽ p

∑
j⩾0

j
(
1− p

2

)j
= p

1− p
2(

1−
(
1− p

2

))2 ⩽
4

p
. (11)

Combining this estimates with equation 9 we obtain the result of the lemma:

EHkEξk,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 ⩽

24(1− θ)2α(δ1 + 1)

p2
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2 + 48(1− θ)2αδ2

p2
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+
24(1− θ)2ασ2

Mp2
.

D.1 PROOF FOR NON-CONVEX CASE

Theorem D.2 (Theorem 3.2). Suppose Assumptions 2.1, 2.2(a), 2.3, 2.4 hold. Then for Algorithm 1
with θ ⩽ γLp2

2 and γ ⩽ p
384Lα(δ1+1) it implies that

1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2 ⩽
16
(
f(x0,0)− f(x∗)

)
γK

+
768γLαδ2

p
+

384γ2L2αδ2
p3

+
400γLασ2

Mp
+

192γ2L2ασ2

Mp3
.

Proof. We start with the definition of virtual sequence:

x̃k,h = xk,h − γ

M∑
m=1

gk,hm = xk,h − γgk,h. (12)

It is followed by

x̃k,h+1 =xk,h+1 − γ

M∑
m=1

gk,h+1
m = xk,h − γ

[
(1− θ)

M∑
m=1

π̃k,h
m ∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]

− γ

M∑
m=1

gk,hm − γ (1− θ)

M∑
m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h, ξk,hm )

=x̃k,h − γ

[
(1− θ)

1

M

M∑
m=1

∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
. (13)

Assumption 2.1 implies

f(x̃k,h+1) ⩽ f(x̃k,h) +
〈
∇f(x̃k,h), x̃k,h+1 − x̃k,h

〉
+

L

2

∥∥x̃k,h+1 − x̃k,h
∥∥2

(13)
(Jen)

⩽ f(x̃k,h)− γθ
〈
∇f(x̃k,h), gk−1,Hk−1

〉
−γ(1− θ)

〈
∇f(x̃k,h),

1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

〉

+
γ2L(1− θ)

2

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

+
γ2Lθ

2

∥∥∥gk−1,Hk−1
∥∥∥2 .

Taking expectation over ξk,hm , we have

Eξk,h
m

[
f(x̃k,h+1)

]
⩽ Eξk,h

m

[
f(x̃k,h)

]
− γθEξk,h

m

〈
∇f(x̃k,h), gk−1,Hk−1

〉
−γ(1− θ)Eξk,h

m

〈
∇f(x̃k,h),

1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

〉

+
γ2L(1− θ)

2
Eξk,h

m

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

+
γ2Lθ

2
Eξk,h

m

∥∥∥gk−1,Hk−1
∥∥∥2 . (14)

Note that

x̃k,h (12)
= xk,h − γgk,h
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Line 12
= xk,h − γ

(
gk,h−1 + (1− θ)

M∑
m=1

(
1

M
− π̃k,h−1

m

)
∇f(xk,h−1, ξk,h−1

m )

)
.

Thus, x̃k,h and ξk,hm are independent. Analogously, gk−1,Hk−1

and ξk,hm are independent. In this way,
equation 14 transforms into

Eξk,h
m

[
f(x̃k,h+1)

]
⩽ f(x̃k,h)− γθ

〈
∇f(x̃k,h), gk−1,Hk−1

〉
−γ(1− θ)

〈
∇f(x̃k,h),∇f(xk,h)

〉
+
γ2L(1− θ)

2
Eξk,h

m

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

+
γ2Lθ

2

∥∥∥gk−1,Hk−1
∥∥∥2

(CS)

⩽ f(x̃k,h)− γθ
〈
∇f(x̃k,h), gk−1,Hk−1

〉
−γ(1− θ)

〈
∇f(x̃k,h),∇f(xk,h)

〉
+γ2L(1− θ)Eξk,h

m

∥∥∥∥∥ 1

M

M∑
m=1

(
∇fm(xk,h, ξk,hm )−∇fm(xk,h)

)∥∥∥∥∥
2

+γ2L(1− θ)
∥∥∇f(xk,h)

∥∥2
+
γ2Lθ

2

∥∥∥gk−1,Hk−1
∥∥∥2 . (15)

Now we pay attention to the following term:

Eξk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

(
∇fm(xk,h, ξk,hm )−∇fm(xk,h)

)∥∥∥∥∥
2

(i)
=

1

M2

M∑
m=1

Eξk,h
m

∥∥∇fm(xk,h, ξk,hm )−∇fm(xk,h)
∥∥2

+
2

M2

∑
i̸=j

〈
Eξk,h

i

[
∇fi(x

k,h, ξk,hi )−∇fi(x
k,h)

]
,Eξk,h

j

[
∇fj(x

k,h, ξk,hj )−∇fj(x
k,h)

]〉
As. 2.4
⩽

1

M
σ2,

where (i) is correct, since ξk,hi and ξk,hj are independent. Substituting this estimate into equation 15,
we have

Eξk,h
m

[
f(x̃k,h+1)

]
⩽ f(x̃k,h)− γθ

〈
∇f(x̃k,h), gk−1,Hk−1

〉
−γ(1− θ)

〈
∇f(x̃k,h),∇f(xk,h)

〉
+γ2L(1− θ)

∥∥∇f(xk,h)
∥∥2 + γ2Lθ

2

∥∥∥gk−1,Hk−1
∥∥∥2

+
γ2L(1− θ)σ2

M
. (16)

Let us estimate the scalar products separately.

−γ(1− θ)
〈
∇f(x̃k,h),∇f(xk,h)

〉
= −γ(1− θ)

2

∥∥∇f(x̃k,h)
∥∥2 − γ(1− θ)

2

∥∥∇f(xk,h)
∥∥2

+
γ(1− θ)

2

∥∥∇f(x̃k,h)−∇f(xk,h)
∥∥2
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As. 2.1
⩽ −γ(1− θ)

2

∥∥∇f(x̃k,h)
∥∥2 − γ(1− θ)

2

∥∥∇f(xk,h)
∥∥2

+
γL2(1− θ)

2

∥∥x̃k,h − xk,h
∥∥2

(12)
= −γ(1− θ)

2

∥∥∇f(x̃k,h)
∥∥2 − γ(1− θ)

2

∥∥∇f(xk,h)
∥∥2

+
γ3L2(1− θ)

2

∥∥gk,h∥∥2 ,
−γθ

〈
∇f(x̃k,h), gk−1,Hk−1

〉 (Fen)

⩽
γθ

2

∥∥∇f(x̃k,h)
∥∥2 + γθ

2

∥∥∥gk−1,Hk−1
∥∥∥2 .

Combining it with equation 16, we have

Eξk,h
m

[
f(x̃k,h+1)

]
⩽ f(x̃k,h)− γ(1− θ)

2
(1− 2γL)

∥∥∇f(xk,h)
∥∥2 − γ(1− 2θ)

2

∥∥∇f(x̃k,h)
∥∥2

+
γ3L2(1− θ)

2

∥∥gk,h∥∥2 + γθ(γL+ 1)

2

∥∥∥gk−1,Hk−1
∥∥∥2 + γ2L(1− θ)σ2

M
.

Now we put h = Hk − 1 and take additional expectations.

Eξk−1,0
m

. . .E
ξk,Hk−1
m

[
f(x̃k,Hk

)
]

⩽ Eξk−1,0
m

. . .E
ξk,Hk−1
m

[
f(x̃k,Hk−1)

]
− γ(1− θ)

2
(1− 2γL)Eξk−1,0

m
. . .E

ξk,Hk−1
m

∥∥∥∇f(xk,Hk−1)
∥∥∥2

− γ(1− 2θ)

2
Eξk−1,0

m
. . .E

ξk,Hk−1
m

∥∥∥∇f(x̃k,Hk−1)
∥∥∥2

+
γ3L2(1− θ)

2
Eξk−1,0

m
. . .E

ξk,Hk−1
m

∥∥∥gk,Hk−1
∥∥∥2

+
γθ(γL+ 1)

2
Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

+
γ2L(1− θ)σ2

M
.

We take expectation with respect to Hk−1 and Hk, and apply Lemma C.1:

EHk−1EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

[
f(x̃k,Hk

)
]

⩽ (1− p)EHk−1EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

[
f(x̃k,Hk

)
]

+ pEHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

[
f(x̃k,0)

]
− γ(1− θ)p

2
(1− 2γL)EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥∇f(xk,0)
∥∥2

− γ(1− θ)(1− p)

2
(1− 2γL)EHk−1EHkEξk−1,0

m
. . .E

ξk,Hk−1
m

∥∥∥∇f(xk,Hk

)
∥∥∥2

− γ(1− 2θ)p

2
EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥∇f(x̃k,0)
∥∥2

− γ(1− 2θ)(1− p)

2
EHk−1EHkEξk−1,0

m
. . .E

ξk,Hk−1
m

∥∥∥∇f(x̃k,Hk

)
∥∥∥2

+
γ3L2(1− θ)p

2
EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥gk,0∥∥2︸ ︷︷ ︸
=0

+
γ3L2(1− θ)(1− p)

2
EHk−1EHkEξk−1,0

m
. . .E

ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2
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+
γθ(γL+ 1)

2
EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

+
γ2L(1− θ)σ2

M
.

Next, we put γ ⩽ 1
4L and θ ⩽ 1

2 . Moreover, we use that Hk and
{
ξk−1,h
m

}Hk−1−1

h=0
are independent

stochastic values.

EHk−1EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

[
f(x̃k,Hk

)
]

⩽ (1− p)EHk−1EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

[
f(x̃k,Hk

)
]

+ pEHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

[
f(x̃k,0)

]
− γ(1− θ)p

4
EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥∇f(xk,0)
∥∥2

− γ(1− θ)(1− p)

4
EHk−1EHkEξk−1,0

m
. . .E

ξk,Hk−1
m

∥∥∥∇f(xk,Hk

)
∥∥∥2

+
γ3L2(1− θ)(1− p)

2
EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

EHkEξk,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2

+ γθEHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

+
γ2L(1− θ)σ2

M
. (17)

We use Lemma 3.1 to estimate
∥∥∥gk,Hk

∥∥∥2 and
∥∥∥gk−1,Hk−1

∥∥∥2. We obtain

EHkEξk,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 ⩽

24(1− θ)2α(δ1 + 1)

p2
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2 + 48(1− θ)2αδ2

p2

+
24(1− θ)2ασ2

Mp2
. (18)

As for
∥∥∥gk−1,Hk−1

∥∥∥2, we have

EHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

⩽
24(1− θ)2α(δ1 + 1)

p2
EHk−1

∥∥∥∇f(xk−1,Hk−1

)
∥∥∥2 + 48(1− θ)2αδ2

p2
+

24(1− θ)2ασ2

Mp2

(CS)

⩽
48(1− θ)α(δ1 + 1)

p2
EHk−1

∥∥∥∇f(xk−1,Hk−1

)−∇f(x̃k−1,Hk−1

)
∥∥∥2

+
48(1− θ)2α(δ1 + 1)

p2
EHk−1

∥∥∥∇f(x̃k−1,Hk−1

)
∥∥∥2 + 48(1− θ)2αδ2

p2
+

24(1− θ)2ασ2

Mp2

As. 2.1
⩽

48L2(1− θ)2α(δ1 + 1)

p2
EHk−1

∥∥∥xk−1,Hk−1

− x̃k−1,Hk−1
∥∥∥2

+
48(1− θ)2α(δ1 + 1)

p2
∥∥∇f(xk,0)

∥∥2 + 48(1− θ)2αδ2
p2

+
24(1− θ)2ασ2

Mp2

(12)
=

48γ2L2(1− θ)2α(δ1 + 1)

p2
EHk−1

∥∥∥gk−1,Hk−1
∥∥∥2

+
48(1− θ)2α(δ1 + 1)

p2
∥∥∇f(xk,0)

∥∥2 + 48(1− θ)2αδ2
p2

+
24(1− θ)2ασ2

Mp2
.

We choose γ ⩽ p
96L

√
α
√
δ1+1

. Moreover, we take additional expectations and again use that Hk−1

and
{
ξk−1,h
m

}Hk−1−1

h=0
are independent stochastic values:
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EHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

⩽
96(1− θ)2α(δ1 + 1)

p2
Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥∇f(xk,0)
∥∥2 + 96(1− θ)2αδ2

p2

+
48(1− θ)2ασ2

Mp2
. (19)

Now we substitute equation 18 and equation 19 into equation 17:

pEHk−1EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

[
f(x̃k,Hk

)
]

⩽ pEHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

[
f(x̃k,0)

]
− γ(1− θ)p

4
EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥∇f(xk,0)
∥∥2

− γ(1− θ)(1− p)

4
EHk−1EHkEξk−1,0

m
. . .E

ξk,Hk−1
m

∥∥∥∇f(xk,Hk

)
∥∥∥2

+
12γ3L2(1− θ)3(1− p)α(δ1 + 1)

p2
EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2

+
24γ3L2(1− θ)3(1− p)αδ2

p2
+

12γ3L2(1− θ)3(1− p)ασ2

Mp2

+
96γθ(1− θ)2α(δ1 + 1)

p2
Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥∇f(xk,0)
∥∥2

+
96γθ(1− θ)2αδ2

p2
+

48γθ(1− θ)2ασ2

Mp2
+

γ2L(1− θ)σ2

M
.

We take the full expectation, then use a law of expectation and rearrange terms:

pE
[
f(x̃k,Hk

)
]

⩽ pE
[
f(x̃k,0)

]
−γ(1− θ)(1− p)

4

(
1− 48γ2L2(1− θ)2α(δ1 + 1)

p2

)
E
∥∥∥∇f(xk,Hk

)
∥∥∥2

−γ(1− θ)p

4

(
1− 384θ(1− θ)α(δ1 + 1)

p3

)
E
∥∥∇f(xk,0)

∥∥2
+
24γ3L2(1− θ)3(1− p)αδ2

p2
+

96γθ(1− θ)2αδ2
p2

+
γ2L(1− θ)σ2

M
+

12γ3L2(1− θ)3(1− p)ασ2

Mp2
+

48γθ(1− θ)2ασ2

Mp2
.

We choose θ ⩽ γLp2

2 and γ ⩽ p
384Lα(δ1+1) . Note that all previous transitions hold even with larger

choice of θ and γ, consequently this choice is correct. In that way, we obtain

γ(1− θ)p

8
E
∥∥∇f(xk,0)

∥∥2 ⩽ pE
[
f(x̃k,0)− f(x̃k,Hk

)
]

+
24γ3L2αδ2

p2
+ 48γ2Lαδ2

+
γ2Lσ2

M
+

12γ3L2ασ2

Mp2
+

24γ2Lασ2

M
.

Note that x̃k,Hk

= xk,Hk − γgk,H
k

= xk+1,0 and x̃k,0 = xk,0. Thus,

γ(1− θ)

8
E
∥∥∇f(xk,0)

∥∥2 ⩽ E
[
f(xk,0)− f(xk+1,0)

]
+

48γLαδ2
p

+
24γ2L2αδ2

p3
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+
25γ2Lασ2

Mp
+

12γ3L2ασ2

Mp3
.

Averaging over all epochs, we obtain the result of the theorem:

1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2 ⩽
8
(
f(x0,0)− E

[
f(xK,0)

])
γ(1− θ)K

+
384γLαδ2
p(1− θ)

+
192γ2L2αδ2
p3(1− θ)

+
200γLασ2

Mp(1− θ)
+

96γ2L2ασ2

Mp3(1− θ)

⩽
16
(
f(x0,0)− f(x∗)

)
γK

+
768γLαδ2

p
+

384γ2L2αδ2
p3

+
400γLασ2

Mp
+

192γ2L2ασ2

Mp3
.

Corollary D.3 (Corollary 3.3). Under conditions of Theorem 3.2 Algorithm 1 with fixed rules
R̂k ≡ R̃k,h ≡ R needs

O
(
M

C

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

Mε4

))
epochs and

O
(
M

M

C

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

Mε4

))
number of devices communications

to reach ε-accuracy, where ε2 = 1
K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2, ∆ = f(x0,0)−f(x∗) and C is the number

of devices participating in each epoch.

Proof. Using the result of Theorem 3.2, we choose

γ ⩽ min

{
p

384Lα(δ1 + 1)
,

√
(f(x0,0)− f(x∗)) p

4
√
3Lαδ2K

,
3
√
(f(x0,0)− f(x∗))p

2 3
√
3L2αδ2K

,√
(f(x0,0)− f(x∗))Mp

5
√
Lασ2K

,
3
√
(f(x0,0)− f(x∗))Mp

3
√
12L2ασ2K

}
.

Thus, we need

O

((
f(x0,0)− f(x∗)

)
Lαδ1

pε2
+

(
f(x0,0)− f(x∗)

)
Lαδ2

pε4
+

(
f(x0,0)− f(x∗)

)
Lασ2

Mpε4

+

(
f(x0,0)− f(x∗)

)
L
√
αδ2

p
3
2 ε3

+

(
f(x0,0)− f(x∗)

)
L
√
ασ

√
Mp

3
2 ε3

)

epochs to reach ε-accuracy, where ε2 = 1
K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2. Since the last two

terms in the estimate in a magnitude smaller, than the second and third accordingly,
we can ignore them. The length of the epoch H ∈ Geom(p), Algorithm 1 requires

O
(
(f(x0,0)−f(x∗))Lαδ1

p2ε2 +
(f(x0,0)−f(x∗))Lαδ2

p2ε4 +
(f(x0,0)−f(x∗))Lασ2

Mp2ε4

)
communication rounds.

Next we mention that at each communication round we communicate with C devices, thus, number of

communications is O
(
C
(f(x0,0)−f(x∗))Lαδ1

p2ε2 + C
(f(x0,0)−f(x∗))Lαδ2

p2ε4 + C
(f(x0,0)−f(x∗))Lασ2

Mp2ε4

)
.

Taking p = C
M , we have the result of the corollary. The choice of p is motivated by the fact

that we perform 1
pC + M communications per-epoch, and established p is the minimal, which

delivers O(M) communications at each epoch. This is also the reason for the additional factor M in
the estimate on communications.
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Corollary D.4. Under conditions of Theorem 3.2 Algorithm 1 needs

O

 M

min
k,h

Ck,h

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

Mε4

) epochs and

O

M

 M

min
k,h

Ck,h

2(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

Mε4

) number of devices communications

to reach ε-accuracy, where ε2 = 1
K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2, ∆ = f(x0,0) − f(x∗) and Ck,h is the

number of devices participating in k-th iteration in h-th epoch.

Proof. Using the result of Theorem 3.2, we choose

γ ⩽ min

{
p

384Lα(δ1 + 1)
,

√
(f(x0,0)− f(x∗)) p

4
√
3Lαδ2K

,
3
√
(f(x0,0)− f(x∗))p

2 3
√
3L2αδ2K

,√
(f(x0,0)− f(x∗))Mp

5
√
Lασ2K

,
3
√
(f(x0,0)− f(x∗))Mp

3
√
12L2ασ2K

}
.

Thus, we need

O

((
f(x0,0)− f(x∗)

)
Lαδ1

pε2
+

(
f(x0,0)− f(x∗)

)
Lαδ2

pε4
+

(
f(x0,0)− f(x∗)

)
Lασ2

Mpε4

+

(
f(x0,0)− f(x∗)

)
L
√
αδ2

p
3
2 ε3

+

(
f(x0,0)− f(x∗)

)
L
√
ασ

√
Mp

3
2 ε3

)

epochs to reach ε-accuracy, where ε2 = 1
K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2. Since the last

two terms in the estimate in a magnitude smaller, than the second and third ac-
cordingly, we can ignore them. The length of the epoch H ∈ Geom(p), Algo-

rithm 1 requires O
(
(f(x0,0)−f(x∗))Lαδ1

p2ε2 +
(f(x0,0)−f(x∗))Lαδ2

p2ε4 +
(f(x0,0)−f(x∗))Lασ2

Mp2ε4

)
communication rounds. Next we mention that at each communication round
we communicate with Ck,h devices, thus, number of communications is

O
(
max
k,h

Ck,h

(
(f(x0,0)−f(x∗))Lαδ1

p2ε2 +
(f(x0,0)−f(x∗))Lαδ2

p2ε4 +
(f(x0,0)−f(x∗))Lασ2

Mp2ε4

))
. Taking,

p =
min
k,h

Ck,h

M , we have the result of the corollary. The choice of p is motivated by the fact that we
perform 1

pmax
k,h

Ck,h + M communications per-epoch, and established p is the minimal, which

delivers O
(
M M

min
k,h

Ck,h

)
communications at each epoch while guarantee the epoch is executed

(if we take p =
max
k,h

Ck,h

M , we can meet p = 1). This is also the reason for the additional factor
M M

min
k,h

Ck,h in the estimate on communications.

Remark D.5. Considering fixed rules R̂ ≡ R̃ ≡ R, we have O
(
M M

C

(
∆Lδ1
ε2 + ∆Lδ2

ε4 + ∆Lσ2

Mε4

))
and O

(
M2M

C

(
∆Lδ1
ε2 + ∆Lδ2

ε4 + ∆Lσ2

Mε4

))
number of devices communications with regularizing

parameter α = 1 and α = M respectively. Considering various rules, best case with regularizing

coefficient α = 1 gives us O

(
M

(
M

min
k,h

Ck,h

)2 (
∆Lδ1
ε2 + ∆Lδ2

ε4 + ∆Lσ2

Mε4

))
and worst case α = M

gives us O

(
M2

(
M

max
k,h

Ck,h

)2 (
∆Lδ1
ε2 + ∆Lδ2

ε4 + ∆Lσ2

Mε4

))
number of devices communications.
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D.2 PROOF FOR STRONGLY-CONVEX CASE

Theorem D.6 (Theorem 3.5). Suppose Assumptions 2.1, 2.2(b), 2.3, 2.4 hold. Then for Algorithm 1
with θ ⩽ pγµ

4 and γ ⩽ p2

96Lα(δ1+1) it implies that

E
∥∥xK,0 − x∗∥∥2 ⩽

(
1− γµ

8

)K ∥∥x0,0 − x∗∥∥2 + 8γα

µp3

(
144δ2 +

74σ2

M

)
.

Proof. We start with the definition of virtual sequence:

x̃k,h = xk,h − γ

M∑
m=1

gk,hm . (20)

It is followed by

x̃k,h+1 = xk,h+1 − γ

M∑
m=1

gk,h+1
m

= xk,h − γ

[
(1− θ)

M∑
m=1

π̃k,h
m ∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]

−γ

M∑
m=1

gk,hm − γ (1− θ)

M∑
m=1

(
1

M
− π̃k,h

m

)
∇fm(xk,h, ξk,hm )

= x̃k,h − γ

[
(1− θ)

1

M

M∑
m=1

∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
. (21)

We use this to write a descent:∥∥x̃k,h+1 − x∗∥∥2 =
∥∥x̃k,h − x∗∥∥2 + 2

〈
x̃k,h − x∗, x̃k,h+1 − x̃k,h

〉
+
∥∥x̃k,h+1 − x̃k,h

∥∥2
(21)
=

∥∥x̃k,h − x∗∥∥2 − 2γθ
〈
x̃k,h − x∗, gk−1,Hk−1

〉
−2γ (1− θ)

〈
x̃k,h − x∗,

1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

〉

+γ2

∥∥∥∥∥θgk−1,Hk−1

+ (1− θ)
1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

(Jen)

⩽
∥∥x̃k,h − x∗∥∥2 − 2γθ

〈
x̃k,h − x∗, gk−1,Hk−1

〉
−2γ (1− θ)

〈
x̃k,h − xk,h,

1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

〉

−2γ (1− θ)

〈
xk,h − x∗,

1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

〉

+γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2 + γ2 (1− θ)

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

.

Taking the expectation over ξk,hm , we have

Eξk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽ Eξk,h
m

∥∥x̃k,h − x∗∥∥2 − 2γθEξk,h
m

〈
x̃k,h − x∗, gk−1,Hk−1

〉
−2γ (1− θ)Eξk,h

m

〈
x̃k,h − xk,h,

1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

〉

−2γ (1− θ)Eξk,h
m

〈
xk,h − x∗,

1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

〉

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

+γ2θEξk,h
m

∥∥∥gk−1,Hk−1
∥∥∥2

+γ2 (1− θ)Eξk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

. (22)

Mention that

x̃k,h (20)
= xk,h − γgk,h

Line 12
= xk,h − γ

(
gk,h−1 + (1− θ)

M∑
m=1

(
1

M
− π̃k,h−1

m

)
∇f(xk,h−1.ξk,h−1

m )

)
,

Thus, x̃k,h and ξk,hm are independent. Analogously, gk−1,Hk−1

and ξk,hm are independent. In this way,
equation 22 transforms into

Eξk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
∥∥x̃k,h − x∗∥∥2 − 2γθ

〈
x̃k,h − x∗, gk−1,Hk−1

〉
−2γ (1− θ)

〈
x̃k,h − xk,h,∇f(xk,h)

〉
−2γ (1− θ)

〈
xk,h − x∗,∇f(xk,h)

〉
+γ2θ

∥∥∥gk−1,Hk−1
∥∥∥2

+γ2 (1− θ)Eξk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

(CS)

⩽
∥∥x̃k,h − x∗∥∥2 − 2γθ

〈
x̃k,h − x∗, gk−1,Hk−1

〉
−2γ (1− θ)

〈
x̃k,h − xk,h,∇f(xk,h)

〉
−2γ (1− θ)

〈
xk,h − x∗,∇f(xk,h)

〉
+2γ2 (1− θ)Eξk,h

m

∥∥∥∥∥ 1

M

M∑
m=1

(
∇fm(xk,h, ξk,hm )−∇f(xk,h)

)∥∥∥∥∥
2

+2γ2 (1− θ)
∥∥∇f(xk,h)

∥∥2 + γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2 . (23)

Now we pay attention to the following term:

Eξk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

(
∇fm(xk,h, ξk,hm )−∇fm(xk,h)

)∥∥∥∥∥
2

(i)
=

1

M2

M∑
m=1

Eξk,h
m

∥∥∇fm(xk,h, ξk,hm )−∇fm(xk,h)
∥∥2

+
2

M2

∑
i̸=j

〈
Eξk,h

i

[
∇fi(x

k,h, ξk,hi )−∇fi(x
k,h)

]
,Eξk,h

j

[
∇fj(x

k,h, ξk,hj )−∇fj(x
k,h)

]〉
As. 2.4
⩽

1

M
σ2,

where (i) is correct, since ξk,hi and ξk,hj are independent. Substituting this estimate into equation 23,
we have

Eξk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
∥∥x̃k,h − x∗∥∥2 − 2γθ

〈
x̃k,h − x∗, gk−1,Hk−1

〉
−2γ (1− θ)

〈
x̃k,h − xk,h,∇f(xk,h)

〉
−2γ (1− θ)

〈
xk,h − x∗,∇f(xk,h)

〉
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+2γ2 (1− θ)
∥∥∇f(xk,h)

∥∥2 + γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+
2γ2(1− θ)σ2

M
. (24)

Let us estimate scalar products separately.

−2γθ
〈
x̃k,h − x∗, gk−1,Hk−1

〉 (Fen)

⩽ θ
∥∥x̃k,h − x∗∥∥2 + γ2θ

∥∥∥gk−1,Hk−1
∥∥∥2 ,

−2γ (1− θ)
〈
x̃k,h − xk,h,∇f(xk,h)

〉 (Fen)

⩽ (1− θ)
∥∥x̃k,h − xk,h

∥∥2
+γ2(1− θ)

∥∥∇f(xk,h)
∥∥2

(20)
= γ2(1− θ)

∥∥gk,h∥∥2 + γ2(1− θ)
∥∥∇f(xk,h)

∥∥2 ,
−2γ (1− θ)

〈
xk,h − x∗,∇f(xk,h)

〉 As. 2.2(b)
⩽ −γµ(1− θ)

∥∥xk,h − x∗∥∥2
−2γ(1− θ)

[
f(xk,h)− f(x∗)

]
(CS)

⩽ −γµ(1− θ)

2

∥∥x̃k,h − x∗∥∥2
+γµ(1− θ)

∥∥xk,h − x̃k,h
∥∥2

−2γ(1− θ)
[
f(xk,h)− f(x∗)

]
(20)
= −γµ(1− θ)

2

∥∥x̃k,h − x∗∥∥2
+γ3µ(1− θ)

∥∥gk,h∥∥2
−2γ(1− θ)

[
f(xk,h)− f(x∗)

]
.

Substituting this estimates into equation 24, we obtain

Eξkh
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
∥∥x̃k,h − x∗∥∥2 + θ

∥∥x̃k,h − x∗∥∥2 + 2γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+γ2(1− θ)(1 + γµ)

∥∥gk,h∥∥2 + 3γ2(1− θ)
∥∥∇f(xk,h)

∥∥2
−γµ(1− θ)

2

∥∥x̃k,h − x∗∥∥2 − 2γ(1− θ)
[
f(xk,h)− f(x∗)

]
+
2γ2(1− θ)σ2

M

=

(
1− γµ(1− θ)

2
+ θ

)∥∥x̃k,h − x∗∥∥2 + 2γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+γ2(1− θ)(1 + γµ)

∥∥gk,h∥∥2 + 3γ2(1− θ)
∥∥∇f(xk,h)

∥∥2
−2γ(1− θ)

[
f(xk,h)− f(x∗)

]
+

2γ2(1− θ)σ2

M
. (25)

Let us choose θ ⩽ γµ
4 and γ ⩽ 1

L . Then,
(
1− γµ(1−θ)

2 + θ
)
⩽
(
1− 3γµ

8 + γµ
4

)
=
(
1− γµ

8

)
. In

this way, equation 25 transforms to

Eξkh
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
(
1− γµ

8

)∥∥x̃k,h − x∗∥∥2 + 2γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+2γ2(1− θ)

∥∥gk,h∥∥2 + 3γ2(1− θ)
∥∥∇f(xk,h)

∥∥2
−2γ(1− θ)

[
f(xk,h)− f(x∗)

]
+

2γ2(1− θ)σ2

M
. (26)

Next we estimate
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3γ2(1− θ)
∥∥∇f(xk,h)

∥∥2 (Lip)

⩽ 6γ2L(1− θ)
[
f(xk,h)− f(x∗)

]
and combine with equation 25:

Eξk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
(
1− γµ

8

)∥∥x̃k,h − x∗∥∥2 + 2γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+2γ2(1− θ)

∥∥gk,h∥∥2
−2γ(1− θ)(1− 3γL)

[
f(xk,h)− f(x∗)

]
+
2γ2(1− θ)σ2

M
.

By choosing γ ⩽ 1
6L we can simplify as

Eξk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
(
1− γµ

8

)∥∥x̃k,h − x∗∥∥2 + 2γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+2γ2(1− θ)

∥∥gk,h∥∥2 − γ(1− θ)
[
f(xk,h)− f(x∗)

]
+
2γ2(1− θ)σ2

M
.

Now we put h = Hk − 1 and take additional expectations to obtain

Eξk−1,0
m

. . .E
ξk,Hk−1
m

∥∥∥x̃k,Hk

− x∗
∥∥∥2 ⩽

(
1− γµ

8

)
Eξk−1,0

m
. . .E

ξk,Hk−1
m

∥∥∥x̃k,Hk−1 − x∗
∥∥∥2

+2γ2θEξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

+2γ2(1− θ)Eξk−1,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk−1
∥∥∥2

−γ(1− θ)Eξk−1,0
m

. . .E
ξk,Hk−1
m

[
f(xk,Hk−1)− f(x∗)

]
+
2γ2(1− θ)σ2

M
.

We take expectation with respect to Hk−1 and Hk, and apply Lemma C.1:

EHk−1EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

∥∥∥x̃k,Hk

− x∗
∥∥∥2

⩽ p
(
1− γµ

8

)
EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥x̃k,0 − x∗∥∥2
+ (1− p)

(
1− γµ

8

)
EHk−1EHkEξk−1,0

m
. . .E

ξk,Hk−1
m

∥∥∥x̃k,Hk

− x∗
∥∥∥2

+ 2γ2θEHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

+ 2γ2(1− θ)(1− p)EHk−1EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2

+ 2γ2(1− θ)pEHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

∥∥gk,0∥∥2︸ ︷︷ ︸
=0

− γ(1− p)(1− θ)EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

[
f(xk,Hk

)− f(x∗)
]

− γp(1− θ)EHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

[
f(xk,0)− f(x∗)

]
+

2γ2(1− θ)σ2

M
.

We rearrange terms and use that Hk and
{
ξk−1,h
m

}Hk−1−1

h=0
are independent stochastic values:
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pEHk−1EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

∥∥∥x̃k,Hk

− x∗
∥∥∥2

⩽ p
(
1− γµ

8

)
EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥x̃k,0 − x∗∥∥2
+ 2γ2θEHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

+ 2γ2(1− p)(1− θ)EHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

EHkEξk,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2

− γ(1− p)(1− θ)EHk−1EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

[
f(xk,Hk

)− f(x∗)
]

− γp(1− θ)EHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

[
f(xk,0)− f(x∗)

]
+

2γ2(1− θ)σ2

M
. (27)

We use Lemma 3.1 to estimate
∥∥∥gk,Hk

∥∥∥2 and
∥∥∥gk−1,Hk−1

∥∥∥2. We obtain

EHkEξk,0
m

. . .E
ξk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 ⩽

24(1− θ)2α(δ1 + 1)

p2
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2 + 48(1− θ)2αδ2

p2

+
24(1− θ)2ασ2

Mp2
. (28)

As for
∥∥∥gk−1,Hk−1

∥∥∥2, we have

EHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

⩽
24(1− θ)2α(δ1 + 1)

p2
EHk−1

∥∥∥∇f(xk−1,Hk−1

)
∥∥∥2 + 48(1− θ)2αδ2

p2
+

24(1− θ)2ασ2

Mp2

(CS)

⩽
48(1− θ)α(δ1 + 1)

p2
EHk−1

∥∥∥∇f(xk−1,Hk−1

)−∇f(x̃k−1,Hk−1

)
∥∥∥2

+
48(1− θ)2α(δ1 + 1)

p2
EHk−1

∥∥∥∇f(x̃k−1,Hk−1

)
∥∥∥2 + 48(1− θ)2αδ2

p2
+

24(1− θ)2ασ2

Mp2

As. 2.1
⩽

48L2(1− θ)2α(δ1 + 1)

p2
EHk−1

∥∥∥xk−1,Hk−1

− x̃k−1,Hk−1
∥∥∥2

+
48(1− θ)2α(δ1 + 1)

p2
EHk−1

∥∥∇f(xk,0)
∥∥2 + 48(1− θ)2αδ2

p2
+

24(1− θ)2ασ2

Mp2

(20)
=

48γ2L2(1− θ)2α(δ1 + 1)

p2
EHk−1

∥∥∥gk−1,Hk−1
∥∥∥2

+
48(1− θ)2α(δ1 + 1)

p2
EHk−1

∥∥∇f(xk,0)
∥∥2 + 48(1− θ)2αδ2

p2
+

24(1− θ)2ασ2

Mp2
.

We choose γ ⩽ p
96L

√
α
√
δ1+1

. Moreover, we take additional expectations and again use that Hk−1

and
{
ξk−1,h
m

}Hk−1−1

h=0
are independent stochastic values:

EHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

⩽
96(1− θ)2α(δ1 + 1)

p2
EHk−1Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥∇f(xk,0)
∥∥2 + 96(1− θ)2αδ2

p2

+
48(1− θ)2ασ2

Mp2
. (29)

Applying equation Lip to equation 28, equation 29 and substituting it to equation 27, we get
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pEHk−1EHkEξk−1,0
m

. . .E
ξk,Hk−1
m

∥∥∥x̃k,Hk

− x∗
∥∥∥2

⩽ p
(
1− γµ

8

)
Eξk−1,0

m
. . .E

ξk−1,Hk−1−1
m

∥∥x̃k,0 − x∗∥∥2
− γ(1− p)(1− θ)EHk−1EHkEξk−1,0

m
. . .E

ξk,Hk−1
m

[
f(xk,Hk

)− f(x∗)
]

− γp(1− θ)EHk−1Eξk−1,0
m

. . .E
ξk−1,Hk−1−1
m

[
f(xk,0)− f(x∗)

]
+

96γ2L(1− p)(1− θ)3α(δ1 + 1)

p2
EHk−1Eξk−1,0

m
. . .Eξk−1,H−1

m
EHk

[
f(xk,Hk

)− f(x∗)
]

+
96γ2(1− p)(1− θ)3αδ2

p2
+

48γ2(1− p)(1− θ)3ασ2

Mp2

+
384γ2Lθ(1− θ)2α(δ1 + 1)

p2
EHk−1Eξk−1,0

m
. . .Eξk−1,H−1

m

[
f(xk,0)− f(x∗)

]
+

192γ2θ(1− θ)2αδ2
p2

+
96γ2θ(1− θ)2ασ2

Mp2
+

2γ2(1− θ)σ2

M
.

We take the full expectation, then use a law of expectation and rearrange terms:

pE
∥∥∥x̃k,Hk

− x∗
∥∥∥2 ⩽ p

(
1− γµ

8

)
E
∥∥x̃k,0 − x∗∥∥2

−γ(1− p)(1− θ)

(
1− 96γL(1− θ)2α(δ1 + 1)

p2

)
·

·E
[
f(xk,Hk

)− f(x∗)
]

−γp(1− θ)

(
1− 384γLθ(1− θ)α(δ1 + 1)

p3

)
E
[
f(xk,0)− f(x∗)

]
+
96γ2(1− p)(1− θ)3αδ2

p2
+

192γ2θ(1− θ)2αδ2
p2

+
48γ2(1− p)(1− θ)3ασ2

Mp2
+

96γ2θ(1− θ)2ασ2

Mp2

+
2γ2(1− θ)σ2

M
.

We choose θ ⩽ pγµ
4 and γ ⩽ p2

96Lα(δ1+1) . Note that all previous transitions hold even with larger
choice of θ and γ, consequently this choice is correct. In that way, we obtain

E
∥∥∥x̃k,Hk

− x∗
∥∥∥2 ⩽

(
1− γµ

8

)
E
∥∥x̃k,0 − x∗∥∥2 + 96γ2αδ2

p3
+

48γ3µαδ2
p2

+
48γ2ασ2

Mp3
+

24γ3µασ2

Mp2
+

2γ2σ2

Mp
.

Note that x̃k,Hk

= xk,Hk − γgk,H
k

= xk+1,0 and x̃k,0 = xk,0. Thus,

E
∥∥xk+1,0 − x∗∥∥2 ⩽

(
1− γµ

8

)
E
∥∥xk,0 − x∗∥∥2 + γ2α

p3

(
144δ2 +

74σ2

M

)
.

It remains for us to take into account going into recursion over all epochs and claim the result of the
theorem:

E
∥∥xK,0 − x∗∥∥2 ⩽

(
1− γµ

8

)K ∥∥x0,0 − x∗∥∥2 + γ2α

p3

(
144δ2 +

74σ2

M

) K∑
k=0

(
1− γµ

8

)k
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⩽
(
1− γµ

8

)K ∥∥x0,0 − x∗∥∥2 + 8γα

µp3

(
144δ2 +

74σ2

M

)
.

Corollary D.7 (Corollary 3.6). Under conditions of Theorem 3.5 Algorithm 1 with fixed rules
R̂ ≡ R̃ ≡ R needs

Õ

((
M

C

)2(
L

µ
αδ1 log

(
1

ε

)
+

M

C

αδ2
µ2ε

+
ασ2

µ2Cε

))
epochs and

Õ

(
M

(
M

C

)2(
L

µ
αδ1 log

(
1

ε

)
+

M

C

αδ2
µ2ε

+
ασ2

µ2Cε

))
number of devices communications

to reach ε-accuracy, where ε2 = E
∥∥xK,0 − x∗

∥∥2 and C is the number devices participating in each
epoch.

Proof. Using the result of Theorem 3.5, we choose

γ ⩽ min


p2

96Lα(δ1 + 1)
,

8 log

(
max

{
2,

µ2Mp3∥x0,0−x∗∥2
K

4736ασ2 ,
µ2p3∥x0,0−x∗∥2

K

9216αδ2

})
µK


Thus, we need Õ

(
Lαδ1
µp2 log

(
1
ε

)
+ αδ2

µ2p3ε + ασ2

µ2Mp3ε

)
epochs to reach ε-accuracy, where ε2 =

E
∥∥xK,0 − x∗

∥∥2. Since the length of the epoch H ∈ Geom(p), Algorithm 1 requires

Õ
(

Lαδ1
µp3 log

(
1
ε

)
+ αδ2

µ2p4ε + ασ2

µ2Mp4ε

)
communication rounds. Next we mention that at each

communication round we communicate with C devices, thus, number of communications is
Õ
(
C
(

Lαδ1
µp3 log

(
1
ε

)
+ αδ2

µ2p4ε + ασ2

µ2Mp4ε

))
. Taking, p = C

M , we have the result of the corollary.

The choice of p is motivated by the fact that we perform 1
pC +M communications per-epoch, and

established p is the minimal, which delivers O(M) communications at each epoch. This is also the
reason for the additional factor M in the estimate on communications.

Corollary D.8. Under conditions of Theorem 3.5 Algorithm 1 needs

Õ


 M

min
k,h

Ck,h

2L

µ
αδ1 log

(
1

ε

)
+

M

min
k,h

Ck,h

αδ2
µ2ε

+
ασ2

µ2min
k,h

Ck,hε


 epochs and

Õ

M

 M

min
k,h

Ck,h

3L

µ
αδ1 log

(
1

ε

)
+

M

min
k,h

Ck,h

αδ2
µ2ε

+
ασ2

µ2min
k,h

Ck,hε




number of devices communications to reach ε-accuracy, where ε2 = E
∥∥xK,0 − x∗

∥∥2 and Ck,h is
the number of devices participating in k-th iteration in h-th epoch.

Proof. Using the result of Theorem 3.5, we choose

γ ⩽ min


p2

96Lα(δ1 + 1)
,

8 log

(
max

{
2,

µ2Mp3∥x0,0−x∗∥2
K

4736ασ2 ,
µ2p3∥x0,0−x∗∥2

K

9216αδ2

})
µK


Thus, we need Õ

(
Lαδ1
µp2 log

(
1
ε

)
+ αδ2

µ2p3ε + ασ2

µ2Mp3ε

)
epochs to reach ε-accuracy, where ε2 =

E
∥∥xK,0 − x∗

∥∥2. Since the length of the epoch H ∈ Geom(p), Algorithm 1 requires

Õ
(

Lαδ1
µp3 log

(
1
ε

)
+ αδ2

µ2p4ε + ασ2

µ2Mp4ε

)
communication rounds. Next we mention that at each

communication round we communicate with Ck,h devices, thus, number of communications is

Õ
(
max
k,h

Ck,h
(

Lαδ1
µp3 log

(
1
ε

)
+ αδ2

µ2p4ε + ασ2

µ2Mp4ε

))
. Taking, p =

min
k,h

Ck,h

M , we have the result of the
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corollary. The choice of p is motivated by the fact that we perform 1
pmax

k,h
Ck,h +M communications

per-epoch, and established p is the minimal, which delivers O
(
M M

min
k,h

Ck,h

)
communications at

each epoch while guarantee the epoch is executed (if we take p =
max
k,h

Ck,h

M , we can meet p = 1).
This is also the reason for the additional factor M M

min
k,h

Ck,h in the estimate on communications.

Remark D.9. Considering fixed rules R̂ ≡ R̃ ≡ R,
we have Õ

(
M
(
M
C

)2 (L
µ δ1 log

(
1
ε

)
+ M

C
δ2
µ2ε + σ2

µ2Cε

))
and Õ

(
M2

(
M
C

)2 (L
µ δ1 log

(
1
ε

)
+ M

C
δ2
µ2ε + σ2

µ2Cε

))
number of devices communi-

cations with regularizing parameter α = 1 and α = M respectively. Con-
sidering various rules, best case with regularizing coefficient α = 1 gives us

Õ

(
M

(
M

min
k,h

Ck,h

)3(
L
µ δ1 log

(
1
ε

)
+ M

min
k,h

Ck,h
δ2
µ2ε + σ2

µ2min
k,h

Ck,hε

))
and worst case α = M

gives us Õ

(
M2

(
M

min
k,h

Ck,h

)3(
L
µ δ1 log

(
1
ε

)
+ M

min
k,h

Ck,h
δ2
µ2ε + σ2

µ2min
k,h

Ck,hε

))
number of devices

communications.

E PROOFS FOR ALGORITHM 2

Lemma E.1. Suppose Assumptions 2.3, 2.4 hold. Then for Algorithm 2 it implies that

EHkEξk,0
m

Eηk,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 ⩽

96(1− θ)2α(δ1 + 1)

p2 min
1⩽m⩽M

qm
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2

+
192(1− θ)2αδ2
p2 min

1⩽m⩽M
qm

+
96(1− θ)2ασ2

p2 min
1⩽m⩽M

qm
.

Proof. Let us start with the following estimate:∥∥gk,h+1
∥∥2 =

∥∥∥∥∥gk,h + (1− θ)

M∑
m=1

ηk,hm

qm

(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

(Fen)

⩽ (1 + c)
∥∥gk,h∥∥2

+

(
1 +

1

c

)
(1− θ)2

∥∥∥∥∥
M∑

m=1

ηk,hm

qm

(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

, (30)

where c is defined below. Let us estimate the last term and obtain∥∥∥∥∥
M∑

m=1

ηk,hm

qm

(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

(CS)

⩽ 2

∥∥∥∥∥
M∑

m=1

(
ηk,hm

qm
− 1

)(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

(CS)

⩽ 2

M∑
m=1

(
ηk,hm

qm
− 1

)2(
1

M
− π̂k,h

m

)2 M∑
m=1

∥∥∇fm(xk,h, ξk,hm )
∥∥2
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+ 2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

.

We pay attention to the first term. Using ηk,hm ∼ B(qm),

Eηk,h
m

(
ηk,hm

qm
− 1

)2

=
Eηk,h

m

(
ηk,hm − qm

)2
(qm)2

⩽
σ2
η

(qm)2
=

1− qm
qm

⩽
1

qm
.

In that way,

Eηk,h
m

∥∥∥∥∥
M∑

m=1

ηk,hm

qm

(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

⩽
2

min
1⩽m⩽M

qm

M∑
m=1

(
1

M
− π̂k,h

m

)2 M∑
m=1

∥∥∇fm(xk,h, ξk,hm )
∥∥2

+ 2

∥∥∥∥∥
M∑

m=1

(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

. (31)

We obtained an estimate for the second term in Lemma D.1 in equation 7:

Eξk,h
m

∥∥∥∥∥
M∑

m=1

(
1

M
− π̂k,h

m

)
∇fm(xk,h)

∥∥∥∥∥
2

⩽ 4α (δ1 + 1)
∥∥∇f(xk,h)

∥∥2 + 4αδ2 +
2ασ2

M
.

Moreover, in equation 6 we found out

M∑
m=1

(
1

M
− π̂k,h

m

)2

⩽
α

M
.

Combining this estimates with equation 31,

Eξk,h
m

Eηk,h
m

∥∥∥∥∥
M∑

m=1

ηk,hm

qm

(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

⩽
2α

min
1⩽m⩽M

qmM

M∑
m=1

Eξk,h
m

∥∥∇fm(xk,h, ξk,hm )
∥∥2

+ 8α(δ1 + 1)
∥∥∇f(xk,h)

∥∥2 + 8αδ2 +
4ασ2

M

(CS)

⩽
4α

min
1⩽m⩽M

qmM

M∑
m=1

Eξk,h
m

∥∥∇fm(xk,h)
∥∥2

+
4α

min
1⩽m⩽M

qmM

M∑
m=1

Eξk,h
m

∥∥∇fm(xk,h, ξk,hm )−∇fm(xk,h)
∥∥2

+ 8α(δ1 + 1)
∥∥∇f(xk,h)

∥∥2 + 8αδ2 +
4ασ2

M

As. 2.4
⩽

4α

min
1⩽m⩽M

qmM

M∑
m=1

∥∥∇fm(xk,h)
∥∥2 + 4ασ2

min
1⩽m⩽M

qm

+ 8α(δ1 + 1)
∥∥∇f(xk,h)

∥∥2 + 8αδ2 +
4ασ2

M
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(CS)

⩽
8α

min
1⩽m⩽M

qmM

M∑
m=1

∥∥∇f(xk,h)
∥∥2 + 8α

min
1⩽m⩽M

qmM

M∑
m=1

∥∥∇fm(xk,h)−∇f(xk,h)
∥∥2

+ 8α(δ1 + 1)
∥∥∇f(xk,h)

∥∥2 + 8αδ2 +
8ασ2

min
1⩽m⩽M

qm

As. 2.3
⩽

8α(δ1 + 1)

min
1⩽m⩽M

qm

∥∥∇f(xk,h)
∥∥2 + 8α(δ1 + 1)

∥∥∇f(xk,h)
∥∥2 + 8αδ2

min
1⩽m⩽M

qm

+ 8αδ2 +
8ασ2

min
1⩽m⩽M

qm

⩽
16α(δ1 + 1)

min
1⩽m⩽M

qm

∥∥∇f(xk,h)
∥∥2 + 16αδ2

min
1⩽m⩽M

qm
+

8ασ2

min
1⩽m⩽M

qm
.

Substituting this estimate into equation 30, we have

Eξk,h
m

Eηk,h
m

∥∥gk,h+1
∥∥2 ⩽ (1 + c)

∥∥gk,h∥∥2 + 16

(
1 +

1

c

)
(1− θ)2

α(δ1 + 1)

min
1⩽m⩽M

qm

∥∥∇f(xk,h)
∥∥2

+16

(
1 +

1

c

)
(1− θ)2

αδ2
min

1⩽m⩽M
qm

+8

(
1 +

1

c

)
(1− θ)2

ασ2

min
1⩽m⩽M

qm
.

Enrolling a recursion, we get

Eξk,0
m

Eηk,0
m

. . .Eξk,h
m

Eηk,h
m

∥∥gk,h+1
∥∥2

⩽ 16

(
1 +

1

c

)
(1− θ)2

α(δ1 + 1)

min
1⩽m⩽M

qm

h∑
i=0

(1 + c)h−i
∥∥∇f(xk,i)

∥∥2
+ 16

(
1 +

1

c

)
(1− θ)2

αδ2
min

1⩽m⩽M
qm

h∑
i=0

(1 + c)h−i

+ 8

(
1 +

1

c

)
(1− θ)2

ασ2

min
1⩽m⩽M

qm

h∑
i=0

(1 + c)h−i. (32)

Next, choosing c = p
2 , taking exception on Hk and applying equation 9, equation 10, equation 11

from Lemma D.1, we obtain the result of the lemma:

EHkEξk,0
m

Eηk,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 ⩽

96(1− θ)2α(δ1 + 1)

p2 min
1⩽m⩽M

qm
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2

+
192(1− θ)2αδ2
p2 min

1⩽m⩽M
qm

+
96(1− θ)2ασ2

p2 min
1⩽m⩽M

qm
.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

E.1 PROOF FOR NON-CONVEX SETTING

Theorem E.2. Suppose Assumptions 2.1, 2.2(a), 2.3, 2.4 hold. Then for Algorithm 2 with θ ⩽ γLp2

2

and γ ⩽ pmin1⩽m⩽M qm
768Lα(δ1+1) it implies that

1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2 ⩽
16
(
f(x0,0)− f(x∗)

)
γK

+
1536γ2L2αδ2
p3 min

1⩽m⩽M
qm

+
3200γLαδ2
p min
1⩽m⩽M

qm

+
768γ2L2ασ2

p3 min
1⩽m⩽M

qm
+

1600γLασ2

p min
1⩽m⩽M

qm
.

Proof. We start with the definition of virtual sequence:

x̃k,h = xk,h − γ

M∑
m=1

gk,hm = xk,h − γgk,h. (33)

It is followed by

x̃k,h+1 = xk,h+1 − γ

M∑
m=1

gk,h+1
m

= xk,h − γ

[
(1− θ)

M∑
m=1

ηk,hm

qm
π̂k,h
m ∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]

−γ

M∑
m=1

gk,hm − γ (1− θ)

M∑
m=1

ηk,hm

qm

(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )

= x̃k,h − γ

[
(1− θ)

1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
. (34)

Assumption 2.1 implies

f(x̃k,h+1) ⩽ f(x̃k,h) +
〈
∇f(x̃k,h), x̃k,h+1 − x̃k,h

〉
+

L

2

∥∥x̃k,h+1 − x̃k,h
∥∥2

(34)
(Jen)

⩽ f(x̃k,h)− γθ
〈
∇f(x̃k,h), gk−1,Hk−1

〉
−γ(1− θ)

〈
∇f(x̃k,h),

1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

〉

+
γ2L(1− θ)

2

∥∥∥∥∥ 1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

+
γ2Lθ

2

∥∥∥gk−1,Hk−1
∥∥∥2 .

Now we use that ηk,hm ∼ B(qm). Consequently, Eηk,hm = qm. Since ηk,hm is independent of
xk,h, x̃k,h, ξk,hm , gk−1,Hk−1

, we take the expectation and obtain

Eηk,h
m

[
f(x̃k,h+1)

]
⩽ f(x̃k,h)− γθ

〈
∇f(x̃k,h), gk−1,Hk−1

〉
−γ(1− θ)

〈
∇f(x̃k,h),

1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

〉

+
γ2L(1− θ)

2
Eηk,h

m

∥∥∥∥∥ 1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

+
γ2Lθ

2

∥∥∥gk−1,Hk−1
∥∥∥2 .
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We take the expectation over ξk,hm . Mention that

x̃k,h (33)
= xk,h − γgk,h

Line 12
= xk,h − γ

(
gk,h−1 + (1− θ)

M∑
m=1

ηk,h−1
m

qm

(
1

M
− π̂k,h−1

m

)
∇f(xk,h−1, ξk,h−1

m )

)
.

Thus, x̃k,h and ξk,hm are independent. Analogously, gk−1,Hk−1

and ξk,hm are independent. In this way,

Eξk,h
m

Eηk,h
m

[
f(x̃k,h+1)

]
⩽ f(x̃k,h)− γθ

〈
∇f(x̃k,h), gk−1,Hk−1

〉
−γ(1− θ)

〈
∇f(x̃k,h),∇f(xk,h)

〉
+
γ2L(1− θ)

2
Eξk,h

m
Eηk,h

m

∥∥∥∥∥ 1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

+
γ2Lθ

2

∥∥∥gk−1,Hk−1
∥∥∥2 . (35)

Let us consider separately the following term:

Eξk,h
m

Eηk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

(CS)

⩽ 2Eξk,h
m

Eηk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )− 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

+2Eξk,h
m

Eηk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

= 2Eξk,h
m

Eηk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

(
ηk,hm

qm
− 1

)
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

+2Eξk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

(CS)

⩽
2

M2
Eξk,h

m
Eηk,h

m

M∑
m=1

(
ηk,hm

qm
− 1

)2 M∑
m=1

∥∥∇fm(xk,h, ξk,hm )
∥∥2

+2Eξk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

. (36)

We pay attention to the first term. Using ηk,hm ∼ B(qm),

M∑
m=1

Eηk,h
m

(
ηk,hm

qm
− 1

)2

=

M∑
m=1

Eηk,h
m

(
ηk,hm − qm

)2
(qm)2

⩽
M∑

m=1

σ2
η

(qm)2

=

M∑
m=1

1− qm
qm

⩽
M

min
1⩽m⩽M

qm
.

Combining with equation 36,

Eξk,h
m

Eηk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2
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⩽
2

M min
1⩽m⩽M

qm

M∑
m=1

Eξk,h
m

∥∥∇fm(xk,h, ξk,hm )
∥∥2 + 2Eξk,h

m

∥∥∥∥∥ 1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

(CS)

⩽
4

M min
1⩽m⩽M

qm

M∑
m=1

Eξk,h
m

∥∥∇fm(xk,h, ξk,hm )
∥∥2

(CS)

⩽
8

M min
1⩽m⩽M

qm

M∑
m=1

∥∥∇fm(xk,h)
∥∥2

+
8

M min
1⩽m⩽M

qm

M∑
m=1

Eξk,h
m

∥∥∇fm(xk,h, ξk,hm )−∇fm(xk,h)
∥∥2

As. 2.4
⩽

8

M min
1⩽m⩽M

qm

M∑
m=1

∥∥∇fm(xk,h)
∥∥2 + 8σ2

min
1⩽m⩽M

qm

(CS)

⩽
16

M min
1⩽m⩽M

qm

M∑
m=1

∥∥∇f(xk,h)
∥∥2

+
16

M min
1⩽m⩽M

qm

M∑
m=1

∥∥∇fm(xk,h)−∇f(xk,h)
∥∥2 + 8σ2

min
1⩽m⩽M

qm

As. 2.3
⩽

16(δ1 + 1)

min
1⩽m⩽M

qm

∥∥∇f(xk,h)
∥∥2 + 16δ2

min
1⩽m⩽M

qm
+

8σ2

min
1⩽m⩽M

qm
. (37)

We substitute this estimate into equation 35 to obtain

Eξk,h
m

Eηk,h
m

[
f(x̃k,h+1)

]
⩽ f(x̃k,h)− γθ

〈
∇f(x̃k,h), gk−1,Hk−1

〉
−γ(1− θ)

〈
∇f(x̃k,h),∇f(xk,h)

〉
+
8γ2L(1− θ)(δ1 + 1)

min
1⩽m⩽M

qm

∥∥∇f(xk,h)
∥∥2

+
γ2Lθ

2

∥∥∥gk−1,Hk−1
∥∥∥2 + 8γ2L(1− θ)δ2

min
1⩽m⩽M

qm

+
4γ2L(1− θ)σ2

min
1⩽m⩽M

qm
. (38)

Let us estimate the scalar products separately.

−γ(1− θ)
〈
∇f(x̃k,h),∇f(xk,h)

〉
= −γ(1− θ)

2

∥∥∇f(x̃k,h)
∥∥2 − γ(1− θ)

2

∥∥∇f(xk,h)
∥∥2

+
γ(1− θ)

2

∥∥∇f(x̃k,h)−∇f(xk,h)
∥∥2

As. 2.1
⩽ −γ(1− θ)

2

∥∥∇f(x̃k,h)
∥∥2 − γ(1− θ)

2

∥∥∇f(xk,h)
∥∥2

+
γL2(1− θ)

2

∥∥x̃k,h − xk,h
∥∥2

(12)
= −γ(1− θ)

2

∥∥∇f(x̃k,h)
∥∥2 − γ(1− θ)

2

∥∥∇f(xk,h)
∥∥2

+
γ3L2(1− θ)

2

∥∥gk,h∥∥2 ,
−γθ

〈
∇f(x̃k,h), gk−1,Hk−1

〉 (Fen)

⩽
γθ

2

∥∥∇f(x̃k,h)
∥∥2 + γθ

2

∥∥∥gk−1,Hk−1
∥∥∥2 .
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Combining it with equation 38,

Eξk,h
m

Eηk,h
m

[
f(x̃k,h+1)

]
⩽ f(x̃k,h)− γ(1− θ)

2

1− 16γL(δ1 + 1)

min
1⩽m⩽M

qm

∥∥∇f(xk,h)
∥∥2

−γ(1− 2θ)

2

∥∥∇f(x̃k,h)
∥∥2 + γ3L2(1− θ)

2

∥∥gk,h∥∥2
+
γθ(γL+ 1)

2

∥∥∥gk−1,Hk−1
∥∥∥2 + 8γ2L(1− θ)δ2

min
1⩽m⩽M

qm
+

4γ2L(1− θ)σ2

min
1⩽m⩽M

qm
.

Choosing γ ⩽ min1⩽m⩽M qm
32L(δ1+1) and θ ⩽ 1

2 ,

Eξk,h
m

Eηk,h
m

[
f(x̃k,h+1)

]
⩽ f(x̃k,h)− γ(1− θ)

4

∥∥∇f(xk,h)
∥∥2 + γ3L2(1− θ)

2

∥∥gk,h∥∥2
+γθ

∥∥∥gk−1,Hk−1
∥∥∥2 + 8γ2L(1− θ)δ2

min
1⩽m⩽M

qm
+

4γ2L(1− θ)σ2

min
1⩽m⩽M

qm
.

Now we put h = Hk − 1 and take additional expectations.

Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

[
f(x̃k,Hk

)
]

⩽ Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

[
f(x̃k,Hk−1)

]
− γ(1− θ)

4
Eξk−1,0

m
Eηk−1,0

m
. . .E

ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥∇f(xk,Hk−1)
∥∥∥2

+
γ3L2(1− θ)

2
Eξk−1,0

m
Eηk−1,0

m
. . .E

ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥gk,Hk−1
∥∥∥2

+ γθEξk−1,0
m

Eηk−1,0
m

. . .E
ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

+
8γ2L(1− θ)δ2

min
1⩽m⩽M

qm
+

4γ2L(1− θ)σ2

min
1⩽m⩽M

qm
.

We take expectation with respect to Hk−1 and Hk, and apply Lemma C.1:

EHk−1EHkEξk−1,0
m

Eηk−1,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

[
f(x̃k,Hk

)
]

⩽ (1− p)EHk−1EHkEξk−1,0
m

Eηk−1,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

[
f(x̃k,Hk

)
]

+ pEHk−1Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

[
f(x̃k,0)

]
− γ(1− θ)p

4
EHk−1Eξk−1,0

m
Eηk−1,0

m
. . .E

ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥∇f(xk,0)
∥∥2

− γ(1− θ)(1− p)

4
EHk−1EHkEξk−1,0

m
Eηk−1,0

m
. . .E

ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥∇f(xk,Hk

)
∥∥∥2

+
γ3L2(1− θ)p

2
EHk−1Eξk−1,0

m
Eηk−1,0

m
. . .E

ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥gk,0∥∥2︸ ︷︷ ︸
=0

+
γ3L2(1− θ)(1− p)

2
EHk−1EHkEξk−1,0

m
Eηk−1,0

m
. . .E

ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2

+ γθEHk−1Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

+
8γ2L(1− θ)δ2

min
1⩽m⩽M

qm
+

4γ2L(1− θ)σ2

min
1⩽m⩽M

qm
. (39)
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We use Lemma E.1 to estimate
∥∥∥gk,Hk

∥∥∥2 and
∥∥∥gk−1,Hk−1

∥∥∥2. We have

EHkEξk,0
m

Eηk,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 ⩽

96(1− θ)2α(δ1 + 1)

p2 min
1⩽m⩽M

qm
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2

+
192(1− θ)2αδ2
p2 min

1⩽m⩽M
qm

+
96(1− θ)2ασ2

p2 min
1⩽m⩽M

qm
. (40)

Next, analogously to equation 19, we choose γ ⩽
p·
√

min1⩽m⩽M qm

384L
√
α
√
δ1+1

and obtain

EHk−1Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

⩽
384(1− θ)2α(δ1 + 1)

p2 min
1⩽m⩽M

qm
EHk−1Eξk−1,0

m
Eηk−1,0

m
. . .E

ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥∇f(xk,0)
∥∥2

+
384(1− θ)2αδ2
p2 min

1⩽m⩽M
qm

+
192(1− θ)2ασ2

p2 min
1⩽m⩽M

qm
. (41)

We combine equation 40 and equation 41 with equation 39 and use that Hk−1 with
{
ξk−1,h
m

}Hk−1−1

h=0

and Hk with
{
ηk−1,h
m

}Hk−1−1

h=0
are independent stochastic values. Moreover we take full expectation:

pE
[
f(x̃k,Hk

)
]

⩽ pE
[
f(x̃k,0)

]
−γ(1− θ)p

4
E
∥∥∇f(xk,0)

∥∥2 − γ(1− θ)(1− p)

4
E
∥∥∥∇f(xk,Hk

)
∥∥∥2

+
48γ3L2(1− θ)3(1− p)α(δ1 + 1)

p2 min
1⩽m⩽M

qm
E
∥∥∥∇f(xk,Hk

)
∥∥∥2

+
192γθ(1− θ)2α(δ1 + 1)

p2 min
1⩽m⩽M

qm
E
∥∥∇f(xk,0)

∥∥2
+
96γ3L2(1− θ)3(1− p)αδ2

p2 min
1⩽m⩽M

qm
+

384γθ(1− θ)2αδ2
p2 min

1⩽m⩽M
qm

+
8γ2L(1− θ)δ2

min
1⩽m⩽M

qm

+
48γ3L2(1− θ)3(1− p)ασ2

p2 min
1⩽m⩽M

qm
+

192γθ(1− θ)2ασ2

p2 min
1⩽m⩽M

qm
+

4γ2L(1− θ)σ2

min
1⩽m⩽M

qm

= pE
[
f(x̃k,0)

]
−γ(1− θ)(1− p)

4

1− 192γ2L2(1− θ)2α(δ1 + 1)

p2 min
1⩽m⩽M

qm

E
∥∥∥∇f(xk,Hk

)
∥∥∥2

−γ(1− θ)p

4

1− 384θ(1− θ)2α(δ1 + 1)

p3 min
1⩽m⩽M

qm

E
∥∥∇f(xk,0)

∥∥2
+
96γ3L2(1− θ)3(1− p)αδ2

p2 min
1⩽m⩽M

qm
+

768γθ(1− θ)2αδ2
p2 min

1⩽m⩽M
qm

+
8γ2L(1− θ)δ2

min
1⩽m⩽M

qm

+
48γ3L2(1− θ)3(1− p)ασ2

p2 min
1⩽m⩽M

qm
+

192γθ(1− θ)2ασ2

p2 min
1⩽m⩽M

qm
+

4γ2L(1− θ)σ2

min
1⩽m⩽M

qm
.

We choose θ ⩽ γLp2

2 γ ⩽ pmin1⩽m⩽M qm
768Lα(δ+1) . In that way,
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pE
[
f(x̃k,Hk

)
]

⩽ pE
[
f(x̃k,0)

]
− γ(1− θ)p

8
E
∥∥∇f(xk,0)

∥∥2
+

96γ3L2αδ2
p2 min

1⩽m⩽M
qm

+
192γ2Lαδ2
min

1⩽m⩽M
qm

+
8γ2Lδ2
min

1⩽m⩽M
qm

+
48γ3L2ασ2

p2 min
1⩽m⩽M

qm
+

96γ2Lασ2

min
1⩽m⩽M

qm
+

4γ2Lσ2

min
1⩽m⩽M

qm
,

γ(1− θ)

8
E
∥∥∇f(xk,0)

∥∥2 ⩽ E
[
f(x̃k,0)

]
− E

[
f(x̃k,Hk

)
]

+
96γ3L2αδ2
p3 min

1⩽m⩽M
qm

+
200γ2Lαδ2
p min
1⩽m⩽M

qm

+
48γ3L2ασ2

p3 min
1⩽m⩽M

qm
+

100γ2Lασ2

p min
1⩽m⩽M

qm
.

Note that x̃k,Hk

= xk,Hk − γgk,H
k

= xk+1,0 and x̃k,0 = xk,0. Thus,

γ(1− θ)

8
E
∥∥∇f(xk,0)

∥∥2 ⩽ E
[
f(xk,0)

]
− E

[
f(xk+1,0)

]
+

96γ3L2αδ2
p3 min

1⩽m⩽M
qm

+
200γ2Lαδ2
p min
1⩽m⩽M

qm

+
48γ3L2ασ2

p3 min
1⩽m⩽M

qm
+

100γ2Lασ2

p min
1⩽m⩽M

qm
.

Summing over all iterations, we obtain the result of the theorem:

1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2 ⩽
8
(
f(x0,0)− E

[
f(xK,0)

])
γ(1− θ)K

+
768γ2L2αδ2

p3 min
1⩽m⩽M

qm(1− θ)
+

1600γLαδ2
p min
1⩽m⩽M

qm(1− θ)

+
384γ2L2ασ2

p3 min
1⩽m⩽M

qm(1− θ)
+

800γLασ2

p min
1⩽m⩽M

qm(1− θ)

⩽
16
(
f(x0,0)− f(x∗)

)
γK

+
1536γ2L2αδ2
p3 min

1⩽m⩽M
qm

+
3200γLαδ2
p min
1⩽m⩽M

qm

+
768γ2L2ασ2

p3 min
1⩽m⩽M

qm
+

1600γLασ2

p min
1⩽m⩽M

qm
.

Corollary E.3 (Corollary 3.8). Under conditions of Theorem E.2 Algorithm 2 with fixed rules
R̂ ≡ R̃ ≡ R needs

O

M

C

1

min
1⩽m⩽M

qm

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

ε4

) epochs and

O

M
M

C

1

min
1⩽m⩽M

qm

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

ε4

) number of devices communications
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to reach ε-accuracy, where ε2 = 1
K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2, ∆ = f(x0,0)−f(x∗) and C is the number

of devices participating in each epoch.

Proof. Proof is analogous to the proof of Corollary D.3.

Corollary E.4. Under conditions of Theorem E.2 Algorithm 2 needs

O

 M

min
k,h

Ck,h

1

min
1⩽m⩽M

qm

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

ε4

) epochs and

O

M

 M

min
k,h

Ck,h

2

1

min
1⩽m⩽M

qm

(
∆Lαδ1

ε2
+

∆Lαδ2
ε4

+
∆Lασ2

ε4

)
number of devices communications to reach ε-accuracy, where ε2 = 1

K

K−1∑
k=0

E
∥∥∇f(xk,0)

∥∥2, ∆ =

f(x0,0)− f(x∗) and Ck,h is the number of devices participating in k-th iteration in h-th epoch.

Proof. Proof is analogous to the proof of Corollary D.4.

Remark E.5. Considering fixed rules R̂ ≡ R̃ ≡ R,

we have O
(
M M

C
1

min
1⩽m⩽M

qm

(
∆Lδ1
ε2 + ∆Lδ2

ε4 + ∆Lσ2

Mε4

))
and O

(
M2M

C
1

min
1⩽m⩽M

qm

(
∆Lδ1
ε2 + ∆Lδ2

ε4 + ∆Lσ2

Mε4

))
number of devices communications with reg-

ularizing parameter α = 1 and α = M respectively. Considering various rules, best case with

regularizing coefficient α = 1 gives us O

(
M

(
M

min
k,h

Ck,h

)2
1

min
1⩽m⩽M

qm

(
∆Lδ1
ε2 + ∆Lδ2

ε4 + ∆Lσ2

Mε4

))

and worst case α = M gives us O

(
M2

(
M

max
k,h

Ck,h

)2
1

min
1⩽m⩽M

qm

(
∆Lδ1
ε2 + ∆Lδ2

ε4 + ∆Lσ2

Mε4

))
num-

ber of devices communications.

E.2 PROOF FOR STRONGLY-CONVEX SETTING

Theorem E.6. Suppose Assumptions 2.1, 2.2(b), 2.3, 2.4 hold. Then for Algorithm 2 with θ ⩽ pγµ
4

and γ ⩽ p2 min1⩽m⩽M qm
384Lα(δ1+1) it implies that

E
∥∥xK,0 − x∗∥∥2 ⩽

(
1− γµ

8

)K
E
∥∥x0,0 − x∗∥∥2 + 2368γα

µp3 min
1⩽m⩽M

qm
(2δ2 + σ2).

Proof. We start with the definition of virtual sequence:

x̃k,h = xk,h − γ

M∑
m=1

gk,hm = xk,h − γgk,h. (42)

It is followed by

x̃k,h+1 = xk,h+1 − γ

M∑
m=1

gk,h+1
m

= xk,h − γ

[
(1− θ)

M∑
m=1

ηk,hm

qm
π̂k,h
m ∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]

−γ

M∑
m=1

gk,hm − γ (1− θ)

M∑
m=1

ηk,hm

qm

(
1

M
− π̂k,h

m

)
∇fm(xk,h, ξk,hm )
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= x̃k,h − γ

[
(1− θ)

1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm ) + θgk−1,Hk−1

]
. (43)

Next, we use this to write a descent:∥∥x̃k,h+1 − x∗∥∥2 =
∥∥x̃k,h − x∗∥∥2 + 2

〈
x̃k,h − x∗, x̃k,h+1 − x̃k,h

〉
+
∥∥x̃k,h+1 − x̃k,h

∥∥2
(43)
=

∥∥x̃k,h − x∗∥∥2 − 2γθ
〈
x̃k,h − x∗, gk−1,Hk−1

〉
−2γ (1− θ)

〈
x̃k,h − x∗,

1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

〉

+γ2

∥∥∥∥∥θgk−1,Hk−1

+ (1− θ)
1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

(Jen)

⩽
∥∥x̃k,h − x∗∥∥2 − 2γθ

〈
x̃k,h − x∗, gk−1,Hk−1

〉
−2γ (1− θ)

〈
x̃k,h − xk,h,

1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

〉

−2γ (1− θ)

〈
xk,h − x∗,

1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

〉

+γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2 + γ2 (1− θ)

∥∥∥∥∥ 1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

.

Now we use that ηk,hm ∼ B(qm). Consequently, Eηk,hm = qm. Since ηk,hm is independent of
xk,h, x̃k,h, ξk,hm , gk−1,Hk−1

, we take the expectation and obtain

Eηk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
∥∥x̃k,h − x∗∥∥2 − 2γθ

〈
x̃k,h − x∗, gk−1,Hk−1

〉
−2γ(1− θ)

〈
x̃k,h − xk,h,

1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

〉

−2γ(1− θ)

〈
xk,h − x∗,

1

M

M∑
m=1

∇fm(xk,h, ξk,hm )

〉

+γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+γ2(1− θ)Eηk,h

m

∥∥∥∥∥ 1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

.

Now we take the expectation over ξk,hm . Mention that

x̃k,h (42)
= xk,h − γgk,h

Line 12
= xk,h − γ

(
gk,h−1 + (1− θ)

M∑
m=1

ηk,h−1
m

qm

(
1

M
− π̂k,h−1

m

)
∇f(xk,h−1, ξk,h−1

m )

)
.

Thus, x̃k,h and ξk,hm are independent. Analogously, gk−1,Hk−1

and ξk,hm are independent. In this way,

Eξk,h
m

Eηk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
∥∥x̃k,h − x∗∥∥2 − 2γθ

〈
x̃k,h − x∗, gk−1,Hk−1

〉
− 2γ(1− θ)

〈
x̃k,h − xk,h,∇f(xk,h)

〉
− 2γ(1− θ)

〈
xk,h − x∗,∇f(xk,h)

〉
+ γ2θ

∥∥∥gk−1,Hk−1
∥∥∥2
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+ γ2(1− θ)Eξk,h
m

Eηk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

. (44)

Recall we estimated the last term in Theorem E.2 in equation 37:

Eξk,h
m

Eηk,h
m

∥∥∥∥∥ 1

M

M∑
m=1

ηk,hm

qm
∇fm(xk,h, ξk,hm )

∥∥∥∥∥
2

⩽
16(δ1 + 1)

min
1⩽m⩽M

qm

∥∥∇f(xk,h)
∥∥2 + 16δ2

min
1⩽m⩽M

qm

+
8σ2

min
1⩽m⩽M

qm
. (45)

Now let us estimate scalar products separately.

−2γθ
〈
x̃k,h − x∗, gk−1,Hk−1

〉 (Fen)

⩽ θ
∥∥x̃k,h − x∗∥∥2 + γ2θ

∥∥∥gk−1,Hk−1
∥∥∥2 ,

−2γ (1− θ)
〈
x̃k,h − xk,h,∇f(xk,h)

〉 (Fen)

⩽ (1− θ)
∥∥x̃k,h − xk,h

∥∥2
+γ2(1− θ)

∥∥∇f(xk,h)
∥∥2

(20)
= γ2(1− θ)

∥∥gk,h∥∥2 + γ2(1− θ)
∥∥∇f(xk,h)

∥∥2 ,
−2γ (1− θ)

〈
xk,h − x∗,∇f(xk,h)

〉 As. 2.2(b)
⩽ −γµ(1− θ)

∥∥xk,h − x∗∥∥2
−2γ(1− θ)

[
f(xk,h)− f(x∗)

]
(CS)

⩽ −γµ(1− θ)

2

∥∥x̃k,h − x∗∥∥2
+γµ(1− θ)

∥∥xk,h − x̃k,h
∥∥2

−2γ(1− θ)
[
f(xk,h)− f(x∗)

]
(20)
= −γµ(1− θ)

2

∥∥x̃k,h − x∗∥∥2
+γ3µ(1− θ)

∥∥gk,h∥∥2
−2γ(1− θ)

[
f(xk,h)− f(x∗)

]
.

Substituting this estimates and equation 45 into equation 44,

Eξk,h
m

Eηk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽

(
1− γµ(1− θ)

2
+ θ

)∥∥x̃k,h − x∗∥∥2 + 2γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+γ2(1− θ)(1 + γµ)

∥∥gk,h∥∥2
+
19γ2(1− θ)(δ1 + 1)

min
1⩽m⩽M

qm

∥∥∇f(xk,h)
∥∥2

−2γ(1− θ)
[
f(xk,h)− f(x∗)

]
+
16γ2(1− θ)δ2

min
1⩽m⩽M

qm
+

8γ2(1− θ)σ2

min
1⩽m⩽M

qm
.

Let us choose θ ⩽ γµ
4 and γ ⩽ 1

L . Then,
(
1− γµ(1−θ)

2 + θ
)
⩽
(
1− 3γµ

8 + γµ
4

)
=
(
1− γµ

8

)
. In

this way,

Eξk,h
m

Eηk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
(
1− γµ

8

)∥∥x̃k,h − x∗∥∥2 + 2γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+γ2(1− θ)(1 + γµ)

∥∥gk,h∥∥2
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+
19γ2(1− θ)(δ1 + 1)

min
1⩽m⩽M

qm

∥∥∇f(xk,h)
∥∥2

−2γ(1− θ)
[
f(xk,h)− f(x∗)

]
+
16γ2(1− θ)δ2

min
1⩽m⩽M

qm
+

8γ2(1− θ)σ2

min
1⩽m⩽M

qm
.

Next, we estimate

19γ2(1− θ)(δ1 + 1)

min
1⩽m⩽M

qm

∥∥∇f(xk,h)
∥∥2 ⩽

38γ2L(1− θ)(δ1 + 1)

min
1⩽m⩽M

qm

[
f(xk,h)− f(x∗)

]
.

It implies that

Eξk,h
m

Eηk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
(
1− γµ

8

)∥∥x̃k,h − x∗∥∥2 + 2γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+γ2(1− θ)(1 + γµ)

∥∥gk,h∥∥2
−2γ(1− θ)

1− 19γL(δ1 + 1)

min
1⩽m⩽M

qm

[f(xk,h)− f(x∗)
]

+
16γ2(1− θ)δ2

min
1⩽m⩽M

qm
+

8γ2(1− θ)σ2

min
1⩽m⩽M

qm
.

Choosing γ ⩽ min1⩽m⩽M qm
38L(δ1+1) , we can simplify as

Eξk,h
m

Eηk,h
m

∥∥x̃k,h+1 − x∗∥∥2 ⩽
(
1− γµ

8

)∥∥x̃k,h − x∗∥∥2 + 2γ2θ
∥∥∥gk−1,Hk−1

∥∥∥2
+2γ2(1− θ)

∥∥gk,h∥∥2
−γ(1− θ)

[
f(xk,h)− f(x∗)

]
+
16γ2(1− θ)δ2

min
1⩽m⩽M

qm
+

8γ2(1− θ)σ2

min
1⩽m⩽M

qm
.

Now we put h = Hk − 1 and take additional expectations to obtain

Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥x̃k,Hk

− x∗
∥∥∥2

⩽
(
1− γµ

8

)
Eξk−1,0

m
Eηk−1,0

m
. . .E

ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥x̃k,Hk−1 − x∗
∥∥∥2

+ 2γ2θEξk−1,0
m

Eηk−1,0
m

. . .E
ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

+ 2γ2(1− θ)Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥gk,Hk−1
∥∥∥2

− γ(1− θ)Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

[
f(xk,Hk−1)− f(x∗)

]
+

16γ2(1− θ)δ2
min

1⩽m⩽M
qm

+
8γ2(1− θ)σ2

min
1⩽m⩽M

qm
.

We take expectation with respect to Hk−1 and Hk, and apply Lemma C.1:

EHk−1EHkEξk−1,0
m

Eηk−1,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥x̃k,Hk

− x∗
∥∥∥2

⩽ p
(
1− γµ

8

)
EHk−1Eξk−1,0

m
Eηk−1,0

m
. . .E

ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥x̃k,0 − x∗∥∥2
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+(1− p)
(
1− γµ

8

)
EHk−1EHkEξk−1,0

m
Eηk−1,0

m
. . .E

ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥x̃k,Hk

− x∗
∥∥∥2

+2γ2θEHk−1Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

+2γ2(1− θ)(1− p)EHk−1EHkEξk−1,0
m

Eηk−1,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2

+2γ2(1− θ)pEHk−1Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥gk,0∥∥2︸ ︷︷ ︸
=0

−γ(1− p)(1− θ)EHk−1EHkEξk−1,0
m

Eηk−1,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

[
f(xk,Hk

)− f(x∗)
]

−γp(1− θ)EHk−1Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

[
f(xk,0)− f(x∗)

]
+
16γ2(1− θ)δ2

min
1⩽m⩽M

qm
+

8γ2(1− θ)σ2

min
1⩽m⩽M

qm
. (46)

We use Lemma E.1 to estimate
∥∥∥gk,Hk

∥∥∥2 and
∥∥∥gk−1,Hk−1

∥∥∥2. We have

EHkEξk,0
m

Eηk,0
m

. . .E
ξk,Hk−1
m

E
ηk,Hk−1
m

∥∥∥gk,Hk
∥∥∥2 ⩽

96(1− θ)2α(δ1 + 1)

p2 min
1⩽m⩽M

qm
EHk

∥∥∥∇f(xk,Hk

)
∥∥∥2

+
192(1− θ)2αδ2
p2 min

1⩽m⩽M
qm

+
96(1− θ)2ασ2

p2 min
1⩽m⩽M

qm
. (47)

Next, analogously to equation 29, we choose γ ⩽
p·
√

min1⩽m⩽M qm

384L
√
α
√
δ1+1

and obtain

EHk−1Eξk−1,0
m

Eηk−1,0
m

. . .E
ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥∥gk−1,Hk−1
∥∥∥2

⩽
384(1− θ)2α(δ1 + 1)

p2 min
1⩽m⩽M

qm
EHk−1Eξk−1,0

m
Eηk−1,0

m
. . .E

ξk−1,Hk−1−1
m

E
ηk−1,Hk−1−1
m

∥∥∇f(xk,0)
∥∥2

+
384(1− θ)2αδ2
p2 min

1⩽m⩽M
qm

+
192(1− θ)2ασ2

p2 min
1⩽m⩽M

qm
. (48)

Now we use equation Lip and that Hk with
{
ξk−1,h
m

}Hk−1−1

h=0
and Hk−1 with

{
ηk−1,h
m

}Hk−1−1

h=0
are

independent stochastic values. Moreover, we combine equation 47 and equation 48 with equation 46
and take full expectation.

pE
∥∥∥x̃k,Hk

− x∗
∥∥∥2 ⩽ p

(
1− γµ

8

)
E
∥∥x̃k,0 − x∗∥∥2

−γ(1− p)(1− θ)E
[
f(xk,Hk

)− f(x∗)
]

−γp(1− θ)E
[
f(xk,0)− f(x∗)

]
+
384γ2L(1− θ)3(1− p)α(δ1 + 1)

p2 min
1⩽m⩽M

qm
E
[
f(xk,Hk

)− f(x∗)
]

+
1536γ2Lθ(1− θ)2α(δ1 + 1)

p2 min
1⩽m⩽M

qm
E
[
f(xk,0)− f(x∗)

]
+
384γ2(1− θ)3(1− p)αδ2

p2 min
1⩽m⩽M

qm
+

768γ2θ(1− θ)2αδ2
p2 min

1⩽m⩽M
qm

+
16γ2(1− θ)δ2

min
1⩽m⩽M

qm

+
192γ2(1− θ)3(1− p)ασ2

p2 min
1⩽m⩽M

qm
+

384γ2θ(1− θ)2ασ2

p2 min
1⩽m⩽M

qm
+

8γ2(1− θ)σ2

min
1⩽m⩽M

qm
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⩽ p
(
1− γµ

8

)
E
∥∥x̃k,0 − x∗∥∥2

−γ(1− p)(1− θ)

1− 384γL(1− θ)2α(δ1 + 1)

p2 min
1⩽m⩽M

qm


·E
[
f(xk,Hk

)− f(x∗)
]

−γp(1− θ)

1− 1536γLθ(1− θ)α(δ1 + 1)

p3 min
1⩽m⩽M

qm

E
[
f(xk,0)− f(x∗)

]
+
384γ2(1− θ)3(1− p)αδ2

p2 min
1⩽m⩽M

qm
+

768γ2θ(1− θ)2αδ2
p2 min

1⩽m⩽M
qm

+
16γ2(1− θ)δ2

min
1⩽m⩽M

qm

+
192γ2(1− θ)3(1− p)ασ2

p2 min
1⩽m⩽M

qm
+

384γ2θ(1− θ)2ασ2

p2 min
1⩽m⩽M

qm
+

8γ2(1− θ)σ2

min
1⩽m⩽M

qm
.

Choosing θ ⩽ pγµ
4 and γ ⩽ p2 min1⩽m⩽M qm

384Lα(δ1+1) , we obtain

E
∥∥∥x̃k,Hk

− x∗
∥∥∥2 ⩽

(
1− γµ

8

)
E
∥∥x̃k,0 − x∗∥∥2 + 296γα

p3 min
1⩽m⩽M

qm
(2δ2 + σ2).

Note that x̃k,Hk

= xk,Hk − γgk,H
k

= xk+1,0 and x̃k,0 = xk,0. Thus,

E
∥∥xk+1,0 − x∗∥∥2 ⩽

(
1− γµ

8

)
E
∥∥xk,0 − x∗∥∥2 + 296γ2α

p3 min
1⩽m⩽M

qm
(2δ2 + σ2).

It remains for us to going into recursion over all epochs and the result of the theorem:

E
∥∥xK,0 − x∗∥∥2 ⩽

(
1− γµ

8

)K
E
∥∥x0,0 − x∗∥∥2 + 296γ2α

p3 min
1⩽m⩽M

qm
(2δ2 + σ2)

K∑
k=0

(
1− γµ

8

)k
⩽

(
1− γµ

8

)K
E
∥∥x0,0 − x∗∥∥2 + 2368γα

µp3 min
1⩽m⩽M

qm
(2δ2 + σ2).

Corollary E.7 (Corollary 3.10). Under conditions of Theorem E.6 Algorithm 2 with fixed rules
R̂ ≡ R̃ ≡ R needs

Õ

(M

C

)2
1

min
1⩽m⩽M

qm

(
L

µ
αδ1 log

(
1

ε

)
+

M

C

αδ2
µ2ε

+
M

C

ασ2

µ2ε

)
epochs and

Õ

M

(
M

C

)2
1

min
1⩽m⩽M

qm

(
L

µ
αδ1 log

(
1

ε

)
+

M

C

αδ2
µ2ε

+
M

C

ασ2

µ2ε

)
number of devices communications

to reach ε-accuracy, where ε2 = E
∥∥xK,0 − x∗

∥∥2 and C is number of devices participating in each
epoch.

Proof. Proof is analogous to the proof of Corollary D.7.
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Corollary E.8. Under conditions of Theorem E.6 Algorithm 2 needs

Õ


 M

min
k,h

Ck,h

2

1

min
1⩽m⩽M

qm

L

µ
αδ1 log

(
1

ε

)
+

M

min
k,h

Ck,h

αδ2
µ2ε

+
M

min
k,h

Ck,h

ασ2

µ2ε




epochs or

Õ

M

 M

min
k,h

Ck,h

3

1

min
1⩽m⩽M

qm

L

µ
αδ1 log

(
1

ε

)
+

M

min
k,h

Ck,h

αδ2
µ2ε

+
M

min
k,h

Ck,h

ασ2

µ2ε




communications

to reach ε-accuracy, where ε2 = E
∥∥xK,0 − x∗

∥∥2 and Ck,h is the number of devices participating in
k-th iteration in h-th epoch.

Proof. Proof is analogous to the proof of Corollary D.8.

Remark E.9. Considering fixed rules R̂ ≡ R̃ ≡ R,

we have Õ
(
M
(
M
C

)2 1
min

1⩽m⩽M
qm

(
L
µ δ1 log

(
1
ε

)
+ M

C
δ2
µ2ε + M

C
σ2

µ2ε

))
and Õ

(
M2

(
M
C

)2 1
min

1⩽m⩽M
qm

(
L
µ δ1 log

(
1
ε

)
+ M

C
δ2
µ2ε + M

C
σ2

µ2ε

))
number of devices commu-

nications with regularizing parameter α = 1 and α = M respectively. Con-
sidering various rules, best case with regularizing coefficient α = 1 gives us

Õ

(
M

(
M

min
k,h

Ck,h

)3
1

min
1⩽m⩽M

qm

(
L
µ δ1 log

(
1
ε

)
+ M

min
k,h

Ck,h
δ2
µ2ε + M

min
k,h

Ck,h
σ2

µ2ε

))
and worst case α =

M gives us Õ

(
M2

(
M

min
k,h

Ck,h

)3
1

min
1⩽m⩽M

qm

(
L
µ δ1 log

(
1
ε

)
+ M

min
k,h

Ck,h
δ2
µ2ε + M

min
k,h

Ck,h
σ2

µ2ε

))
num-

ber of devices communications.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) were used exclusively for spelling edits.
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