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ABSTRACT

Self-supervised learning is currently gaining a lot of attention, as it allows neural
networks to learn robust representations from large quantities of unlabeled data.
Additionally, multi-task learning can further improve representation learning by
training networks simultaneously on related tasks, leading to significant perform-
ance improvements. In this paper, we propose a general framework to improve
graph-based neural network models by combining self-supervised auxiliary learn-
ing tasks in a multi-task fashion. Since Graph Convolutional Networks are among
the most promising approaches for capturing relationships among structured data
points, we use them as a building block to achieve competitive results on standard
semi-supervised graph classification tasks.

1 INTRODUCTION

In the last decade, neural networks approaches that can deal with with structured data have been
gaining a lot of traction (Scarselli et al., 2009; Bruna et al., 2013; Defferrard et al., 2016; Kipf &
Welling, 2017; Manessi et al., 2020). Due to the prevalence of data structured in the form of graphs,
the capability to explicitly exploit structural relationships among data points is particularly useful
in improving the performance for a variety of tasks. Graph Convolutional Networks (GCNs, Kipf
& Welling (2017)) stand out as a particularly successful iteration of such networks, especially for
semi-supervised problems. GCNs act to encode graph structures, while being trained on a supervised
target loss for all the nodes with labels. This technique is able to share the gradient information from
the supervised loss through the graph adjacency matrix and to learn representations exploiting both
labeled and unlabeled nodes. Although GCNs can stack multiple graph convolutional layers in order
to capture high-order relations, these architectures suffer from “over-smoothing” when the number
of layers increases (Li et al., 2018), thus making difficult to choose an appropriate number of layers.

If we have a dataset with enough labels, supervised learning can usually achieve good results. Un-
fortunately, to label a large amount of data is an expensive task. In general, the amount of unlabelled
data is substantially more than the data that has been human curated and labelled. It is therefore
valuable to find ways to make use of this unlabelled data. A potential solution to this problem
comes if we can get labels from unlabelled data and train unsupervised dataset in a supervised man-
ner. Self-supervision achieves this by automatically generating additional labelled signals from the
available unlabelled data, using them to learn representations. A possible approach in deep learning
involves taking a complex signal, hiding part of it from the network, and then asking the network to
fill in the missing information (Doersch & Zisserman, 2017).

Additionally, it is found that joint learning of different tasks can improve performance over learning
them individually, given that at least a subset of these tasks are related to each other (Caruana, 1997).
This observation is at the core of multi-task learning. Precisely, given T tasks {T i}Ti=1 where a
subset of them are related, multi-task learning aims to help improve the learning of a model for
{T i}Ti=1 by using the knowledge contained in all or some of the T tasks (Zhang & Yang (2017a)).

The idea presented in this paper is to learn self-supervised auxiliary tasks in a multi-task framework,
to improve the performance achieved by a neural network-based graph architecture. The proposed
framework is general but, considering the promising results of the GCN, we decided to experiment it
in semi-supervised classification problems on graphs employing GCN as a base building block. This
new framework allows us to achieve competitive results on standard datasets and helps to reduce the
aforementioned “over-smoothing” limitation of deep GCNs.
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We investigate three different auxiliary tasks:

autoencoding: with which we aim at extracting node representations robust enough to allow both
semi-supervised classification as well as vertex features reconstruction;

corrupted features reconstruction: with which we try to extract node representations that allows
to reconstruct some of the vertex input features, starting from an embedding built from a
corrupted version of them. This auxiliary task can be seen as the graph equivalent of recon-
structing one of the color channels of a RGB image using the other channels in computer
vision self-supervised learning;

corrupted embeddings reconstruction: with which we try to extract node representations robust
to embedding corruption. This is similar to the aforementioned auxiliary task, with the
difference that the reconstruction is performed on the node embeddings instead of the vertex
features.

These three tasks are intrinsically self-supervised, since the labels are directly extracted from the
input graph and its vertex features. To the best of our knowledge, this is the first attempt to com-
bine multiple self-supervised auxiliary task with Graph Convolutional Networks using a multi-task
framework.

The paper is organized as follows: in Section 2 the related works are summarized; in Section 3 we
describe our methods; in Section 4 a detailed comparison against GCN on a standard public datasets
is presented; Section 5 reports conclusions and future works.

2 RELATED WORKS

In recent years, graph representation learning have gained a lot of attention. These techniques can
be divided in three main categories: (i) random walk-based; (ii) factorization-based; (iii) neural net-
work-based. In the first group, node2vec (Grover & Leskovec, 2016) and Deepwalk (Perozzi et al.,
2014) are worth mentioning. The former is an efficient and scalable algorithm for feature learning
that optimizes a novel network-aware, neighborhood preserving objective function, using stochastic
gradient descent. The latter uses truncated random walks to efficiently learn representations for ver-
tices in graphs. These latent representations, which encode graph relations in a vector space, can be
easily exploited by standard statistical models to produce state-of-the-art results.

Among the factorization based methods, Xu et al. (2013) presents a semi-supervised factor graph
model that can exploit the relationships among the nodes. In this approach, each vertex is modeled
as a variable node and the various relationships are modeled as factor nodes.

In the last group, we find all the works that have revisited the problem of generalizing neural net-
works to work on structured graphs, some of them achieving promising results in domains that have
been previously dominated by other techniques. Gori et al. (2005) and Scarselli et al. (2009) form-
alize a novel neural network model, the Graph Neural Network. This model maps a graph and its
nodes into a D-dimensional Euclidean space in order to learn a final classification/regression model.
Bruna et al. (2013) approach the graph structured data by proposing two generalizations of Convo-
lutional Neural Networks (CNNs): one based on a hierarchical clustering of the domain and another
based on the spectrum of the graph (computed using the Laplacian matrix). Defferrard et al. (2016)
extend the spectral graph theory approach of the previous work by providing efficient numerical
schemes to design fast localized convolutional filters on graphs, achieving the same computational
complexity of classical CNNs. Kipf & Welling (2017) build on this idea by introducing GCNs. They
exploit a localized first-order approximation of the spectral graph convolutions framework (Ham-
mond et al., 2011). Recently, Veličković et al. (2018) have applied attention mechanism to graph
neural networks to improve model performance.

However, the majority of the methods belonging the three aforementioned categories require a large
amount of labelled data, which can limit their applicability. On the other hand, unsupervised al-
gorithms, such as Hamilton et al. (2017); Grover et al. (2019); Velickovic et al. (2019) do not require
any external labels, but their performances usually suffer when compared to supervised techniques.

Self-supervised learning can be considered a branch of unsupervised learning, where virtually un-
limited supervised signals are generated from the available data and used to learn representations.
This learning framework finds many applications, ranging from language modeling (Wu et al., 2019;
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Mikolov et al., 2013; Radford et al., 2018), to robotics (Jang et al., 2018), and computer vision
(Zhang et al., 2016; Ledig et al., 2017; Pathak et al., 2016; Zhang et al., 2017; Noroozi & Favaro,
2016; Doersch et al., 2015). Applied to graph representation learning, Sun et al. (2020) proposed a
multi-stage self-supervised framework, called M3S, showing some empirical success.

Multi-task learning approaches can be divided in five many categories: (i) feature learning;
(ii) low-rank approaches; (iii) task clustering; (iv) task relation learning; (v) decomposition (Zhang
& Yang, 2017b). In the feature learning approach, it is assumed that different tasks share a common
feature representation based on the original features. In the Multi-Task Feature Learning method,
task specific hidden representations within a shallow network are obtained by learning the feature
covariance for all the tasks, in turn allowing to decouple the learning of the different tasks (Argyriou
et al., 2007; 2008). A common approach applied in the deep learning setting is to have the differ-
ent tasks share the first several hidden network layers, including task-specific parameters only in
the subsequent layers (Zhang et al., 2014; Mrkšić et al., 2015; Li et al., 2014). A more complex
approach in deep learning is the cross-stitch network, proposed by Misra et al. (2016), in which
each task has its own independent hidden layers that operate on learned linear combinations of the
activation maps of the previous layers.

The low-rank approaches assume that the model parameters of different tasks share a low-rank
subspace (Ando & Zhang, 2005). Pong et al. (2010) propose to regularize the model parameters by
means of the trace norm regularizer, in order to exploit the property of the trace norm to induce low
rank matrices. The same idea has been applied in deep learning by Yang & Hospedales (2016).

Another approach is to assume that different tasks form several clusters, each of which consists of
similar tasks. This can be thought of as clustering algorithms on the task level, while the conven-
tional clustering algorithms operate on the data level. Thrun & O’Sullivan (1996) introduced the
first implementation of this idea for binary classification tasks that are defined over the same input
space. Bakker & Heskes (2003) followed the idea to recast the neural networks used in the feature
learning approach in a Bayesian settings, where the weights of the task specific final layers are as-
sumed to have a Gaussian mixture as a prior. Similarly, Xue et al. (2007) build on the previous idea
by changing the prior to a Dirichlet process.

In the task relation based approaches, the task relatedness (e.g. task correlation or task covariance)
is used to drive the joint training of multiple tasks. In the early works, these relations are assumed
to be known in advance. They are used to design regularizers to guide the learning of multiple
tasks, so that the more similar two tasks are, the closer the corresponding model parameters are
expected to be (Evgeniou et al., 2005; Kato et al., 2008). However, in most applications, task
relations are not available and need to be automatically estimated from data. Bonilla et al. (2008) go
into this direction by exploiting Gaussian processes and defining a multivariate normal prior on the
functional output of all the task outputs, whose covariance is trained from data and represents the
relation between the different tasks.

Finally, in the decomposition approach, it is assumed that the matrix whose row vectors are the
weights of each of the tasks can be decomposed as a linear combination of two or more sub-matrices,
where each sub-matrix is suitably regularized (Jalali et al., 2010; Chen et al., 2012; Zhong & Kwok,
2012).

3 METHODS

In this section, we introduce the formalization of a multi-task self-supervised GCN for semi-
supervised classification. We will first give some preliminary definitions, including of a Graph
Convolutional (GC) layer and multi-task target loss. We then proceed by showing the auxiliary tasks
that can be learned jointly with the semi-supervised classification loss. Finally, we introduce the
overall architecture we used in our experiments.

3.1 PRELIMINARIES

Let Yi,j be the i-th row, j-th column element of the matrix Y . Id is the identity matrix in Rd;
softmax and ReLU are the soft-maximum and the rectified linear unit activation functions (Good-
fellow et al., 2016). Note that all the activation functions act element-wise when applied to a matrix.

3



Under review as a conference paper at ICLR 2021

An undirected graph G = (V ,E) is defined by its set of the nodes (or vertices), V , and set of the
edges, E . For each vertex vi ∈ V let vi ∈ Rd be the corresponding feature vector. Moreover, let
A be the adjacency matrix of the graph G; namely, A ∈ R|V|×|V| where Ai,j = Aj,i = wij if and
only if there is an edge between the i-th and j-th vertices and the edge has weight wij . In the case
of an unweighted graph, wij = 1. The symbol X will denote instead the vertex-features matrix
X ∈ R|V|×d, i.e. the matrix whose row vectors are the xi.

The mathematics of the GC layer (Kipf & Welling, 2017) is here briefly recalled, since it is a ba-
sic building block of the following network architectures. Given a graph with adjacency matrix
A ∈ R|V|×|V| and vertex-feature matrix X ∈ R|V|×d, the GC layer with M output nodes (also
called channels) and B ∈ Rd×M weight matrix is defined as the function GCM from R|V|×d
to R|V|×M such as GCM (X) := ÂXB, where Â is the re-normalized adjacency matrix, i.e.
Â := D̃ -1/2ÃD̃ -1/2 with Ã := A+ I|V| and D̃kk :=

∑
l Ãkl. Note that the GC layer can be seen as

localized first-order approximation of spectral graph convolution (Defferrard et al., 2016), with the
additional renormalization trick in order to improve numerical stability (Kipf & Welling, 2017).

Consider now a multi-task problem, made of T tasks, indexed by t = 1, . . . , T . All the tasks
share the input space X and have the task-specific output spaces Yt. We suppose that each task
t is associated to a parametric hypothesis class ft (e.g. a neural network architecture) such that
ft(x;ϑsh, ϑt) = ŷt, where x ∈ X , yt ∈ Yt, ϑsh is a parameter vector shared among the hypothesis
classes of different tasks, and ϑt is task-specific. The joint training of each of the ft is achieved by
means of empirical risk minimization:

argminϑsh,ϑ1,...,ϑT

T∑
t=1

wtRt(ϑsh, ϑt), (1)

where wt ∈ R+ and Rt(ϑsh, ϑt) are the task-specific empirical risks. Precisely, Rt(ϑsh, ϑt) :=
1
N

∑
i Lt(ft(xi;ϑsh, ϑt), y

t
i) with Lt the task-specific loss function, xi the feature vectors of the

i-th training sample, yti the target variable of the i-th training sample corresponding to the t-th
task, and N the total number of training samples. Roughly speaking, the multi-task objective of
Equation (1) is the conic combination with weights wt of the empirical risk of each task. A basic
justification for taking the weighted combination is due to the fact that it is not possible to define
global optimality in the multi-task setting. Indeed, consider two sets of solutions (ϑsh, ϑ1, ϑ2) and
(ϑ̄sh, ϑ̄1, ϑ̄2) such thatR1(ϑsh, ϑ1) < R1(ϑ̄sh, ϑ̄1) andR2(ϑsh, ϑ2) > R2(ϑ̄sh, ϑ̄2), i.e. (ϑsh, ϑ1, ϑ2)
is the best solution for the first task, while (ϑ̄sh, ϑ̄1, ϑ̄2) reaches optimality in the second task. It is
not possible to compare these two solutions without a pairwise measure. A possible way to put them
on the same footing is by mean of the conic combination of Equation (1).

The weights wt will be considered as static hyper-parameters of the training procedure in the re-
maining of the paper. It is worth mentioning that also other approaches exist in which the weights
are dynamically computed or obtained through an heuristic (Chen et al., 2018; Kendall et al., 2018).

It is worth noting that the framework we are considering is usually called hard parameter sharing,
i.e. there are some parameters ϑsh that are shared among all the tasks. On the other hand, in soft
parameter sharing, all parameters are task-specific but they are jointly constrained by means of
regularization.

3.2 THE TASKS

This section is organized as follows: in 3.2.1 the main task is defined; in 3.2.2, 3.2.3, 3.2.4 the
auxiliary tasks are formalized.

3.2.1 THE MAIN TASK

As mentioned before, we will consider the semi-supervised classification of graph nodes as our main
task. However, what follows can easily be extended to other main tasks as well.

Let’s consider a K-class semi-supervised classification problem; thus the output space of the main
task can be written as Ymain := {y ∈ RK | yk ∈ {0, 1},

∑
k yk = 1}, i.e. the space of one-hot

encoded K-class vectors. By denoting with V l ⊆ V the subset of the labeled nodes of the graph G,
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the empirical riskRmain of the main task, corresponding to a cross-entropy loss, can be written as:

Rmain :=
1

|V l|
∑
i∈V l

K∑
k=1

yk log fmain(xi;ϑsh, ϑmain), with 0× log 0 = 0.

We make the assumption that fmain := gsh ◦ gmain, with ∂gsh/∂ϑmain = ∂gmain/∂ϑsh = 0, namely,
fmain can be seen as the function composition of a vertex feature embedding function gsh paramet-
erized only by ϑsh, followed by a task specific classification head gmain parameterized by ϑmain only.
As we will see later, gsh is shared with the auxiliary tasks. Finally, gsh, gmain, and all the functions
we will discuss further ahead are considered differentiable almost everywhere.

3.2.2 AUTOENCODING

The objective in the autoencoding task (also called AE) is to reconstruct the graph vertex features
from an encoding thereof. Using the mean squared error reconstruction loss, the corresponding
empirical riskRAE can be written as:

RAE :=
1

|VAE|
∑

i∈VAE
VAE⊆V

‖xi − fAE(xi;ϑsh, ϑAE)‖22, with , fAE := gsh ◦ gAE,
∂gAE

∂ϑsh
= 0.

Namely, the autoencoder is made of the encoder function gsh also present in the main task, and a
decoder component specified by gAE that depends on the task specific parameters ϑAE only.

3.2.3 CORRUPTED FEATURES RECONSTRUCTION

The aim of this task (also called FR) is to reconstruct the graph vertex features from an encoding of a
corrupted version of them. Namely, the goal is to train an autoencoder that it is able to restore vertex
features starting from a vertex-feature matrix X that has some columns zeroed out, i.e. corrupted.

We distinguish two methods: (i) partial reconstruction, where we aim at outputting the restored
features only; (ii) full reconstruction, where we aim at outputting also the non-corrupted ones.

Let M be the subset M ⊂ {1, . . . , d}, and PM ∈ Rd×d the diagonal matrix such as its i-th
diagonal elements are 1 for all i /∈M, and 0 otherwise, i.e. PM is the identity matrix with some
elements equal to zero. When applied to a column vector v ∈ Rd, such a matrix has the property of
zero-ing out all the vector elements corresponding to the indexes belonging toM.

Thanks to PM, and considering the mean squared error reconstruction loss, the empirical risk Rf
FR

corresponding to the corrupted full features reconstruction can be written as:

Rf
FR :=

1

|VFR|
∑
i∈VFR
VFR⊆V

‖xi − f f
FR(PMxi;ϑsh, ϑ

f
FR)‖22, with f f

FR := gsh ◦ gf
FR,

∂gf
FR

∂ϑsh
= 0. (2)

Namely, f f
FR acts as a denoising autoencoder, with the input corrupted by the matrix PM (for some

arbitrary chosenM), and as encoder the function gsh also present in the main task. The decoder
component is specified by gf

FR, that depends on task specific parameters ϑf
FR only.

Now, we will consider the partial features reconstruction. Let IM ∈ R|M|×d be a rectangular mat-
rix whose i-th row is a zero vector, with only a 1 at the j-th position, with j ∈M. When applied
to a column vector v ∈ Rd, such a matrix has the property of selecting the vector elements corres-
ponding to the indexes belonging toM. Leveraging IM, the empirical risk Rp

FR corresponding to
the corrupted partial features reconstruction can be written similarly as:

Rp
FR :=

1

|VFR|
∑
i∈VFR
VFR⊆V

‖IMxi− f p
FR(PMxi;ϑsh, ϑ

p
FR)‖22, with f p

FR := gsh ◦ gp
FR,

∂gp
FR

∂ϑsh
= 0. (3)

3.2.4 CORRUPTED EMBEDDINGS RECONSTRUCTION

Similarly to the previous task, the aim is to reconstruct “something” from a corrupted version of it.
In this case (also called ER), the goal is to reconstruct the embeddings produced by some encoder,
in order to make the embeddings resilient to noise. Also in this case, the corruption is achieved by
zero-ing out some entries, distinguishing two methods: (i) partial reconstruction, where we aim at
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Figure 1: The drawing shows the architecture of the network described in Section 3.3, which is the
one used in our experiments. The network is made of a shared encoder gsh, followed by four heads,
one devoted to the main task gmain, and the other three to each of the auxiliary tasks gAE, gFR, gER.

outputting the restored embeddings only; (ii) full reconstruction, where we aim at outputting the
restored embeddings as well as the non-corrupted ones.

Considering the full reconstruction case, the mean squared error loss, and N as the set containing
the corrupted embedding index, we can write the empirical riskRf

ER corresponding to the corrupted
full embeddings reconstruction can be written as:

Rf
ER :=

1

|VER|
∑

i∈VER
VER⊆V

‖gsh(xi)− f f
ER(xi;ϑsh, ϑ

f
ER)‖22, with f f

ER := gsh ◦PN ◦ gf
ER,

∂gf
ER

∂ϑsh
= 0. (4)

Namely, we use the function gsh also present in the main task as our encoder producing vertex
embeddings, we corrupt them by zero-ing out some of them with PN , and we try to reconstruct
them with the decoder defined by gf

ER.

The partial reconstruction version can be obtained by leveraging IN as made in Section 3.2.3.

3.3 THE FINAL NETWORK

The formalism introduced in the previous section does not make any assumptions about the math-
ematical form of the various encoder and decoder functions. This means that the functions gsh, gmain,
gAE, gFR, gER can be modeled by an arbitrary neural network, with any kind of layers, number of
units, and activation functions. In the rest of the paper, we will restrict our analysis by using as a
foundation block the GC layer (Kipf & Welling, 2017).

Our overall network, is composed of a shared encoder gsh, and four output heads gmain, gAE, gf
FR,

gf
ER, one per task. Note that we are going to present explicitly only the full reconstruction variant of

the network, since the partial reconstruction version can be easily derived.

The shared encoder gsh is the same used in Kipf & Welling (2017), i.e. a dropout layer (Srivastava
et al., 2014) with 50% dropout rate followed by GC layer made of 16 units and a ReLU activation
function: gsh = Dropout(0.5) ◦ GC16 ◦ReLU. The main task classification head gmain is made of
a dropout layer followed by a GC layer and a softmax activation, where the units of the GC layer
depends on the number of classification classes (gmain = Dropout(0.5) ◦GC ◦ softmax).

All the auxiliary task heads gAE, gf
FR, gf

ER are made of a dropout layer followed by a GC layer made of
16 units, a ReLU activation function, another dropout layer, and a final GC layer with no activation
function: Dropout(0.5) ◦ GC16 ◦ReLU ◦Dropout(0.5) ◦ GC. Note that the number of nodes of
the last GC layer depends on the dimension of the vector that we have to reconstruct.

The resulting 4-head network is represented in Figure 1, and it is trained by minimization of the
empirical risk given by wmainRmain + wAERAE + wFRRf

FR + wERRf
ER. The parameters ϑsh, ϑmain,

ϑAE, ϑf
FR, ϑf

ER are trained by stochastic gradient descent. As in previous works (Kipf & Welling,
2017), the gradient update is performed batch-wise, using the full dataset for every training iteration.
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The proposed framework inherits memory and time complexity from the underlying layers we chose
to use for each of the functions gsh, gmain, gAE, gf

FR, gf
ER. Thus, for the architecture here presented,

it means a memory complexity linear in the number of edges for a sparse representation of the
adjacency matrix A, and a time complexity linear in the number of edges (Kipf & Welling, 2017).

Note that by forcing some of wAE, wf
FR, and wf

ER to be identically equal to zero, we can achieve with
the same network architecture a settings where some of the auxiliary tasks are effectively deactiv-
ated, and in the limit case where all of them are equal to zero we recover the standard GCN.

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND EXPERIMENTAL SETUP

We test our models on semi-supervised classification using the standard datasets Citeseer, Cora,
and Pubmed (Sen et al., 2008). These are citation networks, where graph vertexes correspond to
documents and (undirected) edges to citations. The vertex features are a bag-of-words representation
of the documents. Each node is associated to a class label. The Cora dataset contains 2.708 nodes,
5.429 edges, 7 classes and 1.433 features per node. The Citeseer dataset contains 3.327 nodes, 4.732
edges, 6 classes and 3.703 features per node. The Pubmed dataset contains 19.717 nodes, 44.338
edges, 3 classes and 500 features per node.

For the training phase, we used the same setting adopted by Kipf & Welling (2017), which in turns
follows the experimental setup of Yang et al. (2016). We allow for only 20 nodes per class to be
used for training. However, since this is a semi-supervised setting, the training procedure can use
the features of all the nodes. The test and validation sets comprise 1.000 and 500 nodes respectively.
All the train/test/splitting used in the experiments are the ones used by Kipf & Welling (2017).

Since as already mentioned in Section 3.3 we opted to use the GC layers as foundational building
blocks, the fair baseline comparison is with GCNs. We conducted two kinds of experiments. In
the first round of tests, we focused on one-hidden layer architectures with 16 units, so that we
could compare these results directly with the one presented in Kipf & Welling (2017). For each of
the three datasets, the networks that we compared against the baseline and against each other are
the ones showed in Table 1. Each of them are instances of the multi-head architecture presented
in Section 3.3, with some of the heads deactivated. We used the same amount of dropout, L2
regularization, optimizer (Kingma & Ba, 2015), and learning rate used by Kipf & Welling (2017),
unless otherwise stated. The sub-tasks weights appearing in Equation (1) have been tuned for all
the networks by means of grid search. For the network main + FR, we tuned whether it is better
the full or the partial reconstruction and we found the optimal number of reconstructed features by
searching through the values 100, 200, 400, 800 for the Citeseer and Cora, and through the values
50, 100, 200 for Pubmed 1. The resulting optimal values have been used also for the networks main
+ AE + FR and main + AE + FR + ER. Similarly, for the network main + FR we tuned whether
it is better the full or the partial reconstruction and we found the optimal number of reconstructed
embeddings by searching through the values 2, 4, 8 for all the datasets. The resulting optimal values
have been used also for the networks main + AE + ER and main + AE + FR + ER as well. Finally,
we tuned the sets VAE, VFR, VER by comparing the two limiting cases VAE = VFR = VER = V l
and VAE = VFR = VER = V .

With Citeseer and Cora we trained for 5.000 epochs, while with Pubmed we trained for 2.500 epochs.
During the training, the learning rate was reduced by a factor 10 if the multi-task loss on the valid-
ation set did not improve for 40 epochs in a row. In all the cases, we selected the best performing
epoch on the validation set to assess the final performance on the test set. Each network has been
trained and tested 10 times, each time with a different random weights initialization, and randomized
reconstruction features and embeddings (if applicable).

In the second rounds of experiments we compared two-hidden layers architectures instead. The goal
was to assess if the proposed framework allows to achieve good results even when increasing the
network depth, thus making less relevant to tune the number of hidden layers in GCN architectures
in order to reduce the “over-smoothing” phenomenon whenever the networks become deeper. The

1As an example, considering Citeseer, which has 3.703 dimensions, we searched through 100, 200, 400, 800
reconstructed features, meaning that we zero-ed out 3.603, 3.503, 3.303, 2.903 number of features, respectively.
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Table 1: The table shows the mean classification accuracy achieved on the test sets and the standard
error of the mean for both the one-hidden layer and the two-hidden layers networks on Citeseer,
Cora, and Pubmed. The acronyms AE, FR, and ER refer to the three auxiliary tasks described in
Section 3.2. For completeness, in the one-hidden layer case we show also the results reported by
Kipf & Welling (2017), which however do not report the standard errors.

Accuracy

One-hidden layer Two-hidden layers

Network Citeseer Cora Pubmed Citeseer Cora Pubmed

GCN (Kipf & Welling, 2017) 70.3% 81.5% 79.0% — — —
GCN (our 10 runs) 69.84± 0.22% 81.13± 0.13% 78.63± 0.41% 67.51± 0.52% 79.74± 0.54% 73.43± 3.37%

main + AE 71.06± 0.16% 82.17± 0.09% 78.97± 0.14% 67.65± 0.25% 81.10± 0.28% 78.14± 0.12%
main + FR 70.94± 0.13% 82.07± 0.15% 78.91± 0.19% 67.82± 0.32% 80.89± 0.29% 78.52± 0.15%
main + ER 70.42± 0.20% 81.83± 0.12% 79.33± 0.07% 67.75± 0.28% 80.37± 0.20% 72.39± 1.49%
main + AE + FR 71.14± 0.12% 82.13± 0.10% 78.92± 0.14% 67.80± 0.33% 80.85± 0.25% 78.14± 0.16%
main + AE + ER 69.95± 0.14% 82.05± 0.14% 79.15± 0.13% 67.77± 0.29% 79.76± 0.23% 78.06± 0.18%
main + AE + FR + ER 70.09± 0.20% 81.96± 0.13% 79.15± 0.13% 67.75± 0.32% 79.45± 0.13% 78.32± 0.11%

experimental setup is the same as in the first round of experiments, the only difference being that
each hidden GC layer has been replaced by two 16 units GC layers.

4.2 RESULTS

The left side of Table 1 shows the results for the one-hidden layer architectures. It can be seen that
all the proposed self-supervised multi-task frameworks achieve better mean accuracy than a plain
GCN architecture. Moreover, the best performing architecture in each dataset is always one of ours,
with a corresponding improvement in performance ranging from 0.70 to 1.30 percentage points.
Interestingly, the best performing architecture always shows a smaller standard error compared to
the plain GCN, thus exhibiting a more stable performance at different random weights initialization.

The stable performance verified with our one-hidden layer networks are confirmed in the second
rounds of experiments (see the right side of the Table 1). Also in this case, the best performing
architectures are those proposed in this paper. Notice that the improved stability is not only in
terms of reduced variance of the accuracy metric, but also in the reduced need of hyper-parameters
tuning. Indeed, in the two-layers GCN we had to carefully tune the learning rate to achieve results
comparable to the one-layer networks. Such a procedure was not needed in any of the multi-head
variants, thus reducing the effort to tune their hyper-parameters. These results suggest that the
proposed framework helps to alleviate the “over-smoothing” problem affecting deep GCNs.

Finally, it is worth noticing that, the best performing architectures varies depending on the dataset
at hand. In particular, the full network with 4 active heads was never the best performing candidate
model (but still better than the baseline).

5 CONCLUSION

We introduced a general framework to improve semi-supervised classification performance on graph
structured data by jointly learn multiple self-supervised auxiliary tasks in a multi-task fashion. To
achieve this goal, we exploited three different self-supervised auxiliary tasks, i.e. (i) vertex fea-
tures autoencoding; (ii) corrupted vertex features reconstruction; (iii) corrupted vertex embeddings
reconstruction.

The theoretical framework is agnostic to the mathematical form of the various encoder and decoder
functions, in terms of kind of layers, number of units, and activation functions. We restricted our
analyses by selecting the GC layer as the fundamental building block.

The experiments we performed on standard datasets showed better performance with respect to
GCNs. Contrary to GCNs, in the two-hidden layers scenario the proposed architectures showed no
need to tune the learning rate. These considerations suggest that the proposed framework helps to
alleviate the “over-smoothing” problem affecting deep GCNs (Li et al., 2018).

The generality of the proposed framework allows for further developments in the direction of: (i) re-
placing the GC layer with other neural layers devoted to deal with graph structured data (e.g. Graph
Attention Networks (Veličković et al., 2018)); and (ii) exploring additional auxiliary tasks.
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