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Abstract

Autonomous driving represents a transformative ad-001
vancement with the potential to significantly impact daily002
mobility, including enabling independent vehicle operation003
for individuals with visual disabilities. The commercializa-004
tion of autonomous driving requires guaranteed safety and005
accuracy, underscoring the need for robust localization and006
environmental perception algorithms. In cost-sensitive plat-007
forms such as delivery robots and electric vehicles, cam-008
eras are increasingly favored for their ability to provide009
rich visual information at low cost. However, estimating010
3D positional changes using only 2D image sequences re-011
mains a fundamental challenge, primarily due to inherent012
scale ambiguity and the presence of dynamic scene ele-013
ments. In this paper, we present a visual-inertial odom-014
etry framework incorporating a depth estimation model015
trained without ground-truth depth supervision. Our ap-016
proach leverages a self-supervised learning pipeline en-017
hanced with knowledge distillation via foundation models,018
including both self-distillation and geometry-aware distilla-019
tion. The proposed method improves depth estimation per-020
formance and consequently enhances odometry estimation,021
without modifying the network architecture or increasing022
the number of parameters. The effectiveness of the pro-023
posed method is demonstrated through comparative evalua-024
tions on both the public KITTI dataset and a custom campus025
driving dataset, showing performance improvements over026
existing approaches.027

1. Introduction028

Recent advances in deep learning, driven by improvements029
in both hardware and software, have enabled its widespread030
application across various industries. In the field of com-031
puter vision, significant progress has been made not only in032
well-established areas such as object detection [29] and se-033
mantic segmentation [14], but also in depth estimation [5].034
Depth estimation is the task of inferring the real-world035

Figure 1. Geometric cues used for knowledge distillation and their
effects. Sky mask, relative depth, and surface normal are derived
using foundation model-based methods [11, 12, 28]. These ge-
ometric cues guide our knowledge distillation framework, which
outperforms [8], especially in handling transparent objects.

distance from the camera to the scene surface at each 036
pixel. This technique has become a key for applications in 037
robotics, including autonomous navigation of mobile robots 038
and drones [2, 3], as well as for providing auxiliary infor- 039
mation in minimally invasive surgery [21]. Due to its broad 040
applicability across various domains, depth estimation con- 041
tinues to receive increasing attention. Although depth esti- 042
mation has seen significant progress, it still faces fundamen- 043
tal challenges. Monocular methods are limited by scale am- 044
biguity, making absolute depth recovery ill-posed without 045
additional cues. In contrast, stereo approaches must trade 046
off between long-range accuracy and occlusion handling, 047
which depends on the baseline length. In this paper, we 048
propose a novel monocular depth estimation method based 049
on a foundation model, aimed at improving the performance 050
of simultaneous localization and mapping (SLAM). 051

As a data-driven approach, the performance of deep neu- 052
ral networks is largely determined by the quality and quan- 053
tity of the training data. Constructing high-quality datasets 054
typically requires ensuring domain diversity, filtering out 055
noisy or erroneous samples, and generating accurate ground 056
truth annotations. In recent years, increasing awareness 057
of ethical and legal concerns—such as privacy and copy- 058
right issues—has made data collection more cautious. To 059
address these challenges, recent research has increasingly 060
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focused on the use of foundation models trained on large-061
scale datasets. In this work, we propose a method that fine-062
tunes a depth foundation model pretrained on a large-scale063
dataset comprising synthetic data generated from carefully064
designed virtual environments, using a target dataset.065

A straightforward and widely used approach for training066
depth estimation models is the supervised learning pipeline.067
This method minimizes a loss function defined based on068
the error between the estimated depth map and the ground-069
truth depth map. It typically yields high performance, as the070
model is trained directly using explicit supervisory signals.071
However, generating accurate ground-truth depth data re-072
quires expensive light detection and ranging (LiDAR) sen-073
sor and precise calibration between sensors. Moreover, such074
ground-truth data is often domain-specific, leading to over-075
fitting to the data acquisition environment and resulting in076
limited generalization performance. As an alternative, self-077
supervised learning approaches based on image reprojec-078
tion have been proposed to mitigate these limitations. These079
methods estimate a depth map from an input image and080
leverage adjacent frames to reproject their content into the081
viewpoint of the input image, using the photometric error082
between the synthesized and original views as the supervi-083
sion signal. Due to their complex and indirect supervision084
pipelines, self-supervised methods typically exhibit lower085
accuracy than supervised approaches. To address this limi-086
tation, we introduce a self-supervised framework that im-087
proves depth estimation by incorporating auxiliary depth088
cues via knowledge distillation, as shown in Figure 1, while089
preserving image reprojection-based supervision.090

SLAM is a technique that enables a robot to simultane-091
ously construct a map of its environment and estimate its092
position within it in real time. The performance of SLAM093
algorithms is primarily influenced by the sensor modality.094
Recent advancements in SLAM research have given rise to095
two primary system categories: LiDAR-based approaches096
and camera-based approaches. LiDAR-based methods are097
known for their high accuracy, primarily due to their ca-098
pability to directly capture detailed and reliable 3D points.099
However, they face several challenges, including high cost100
and reduced reliability in environments such as highways,101
which are characterized by repetitive or low-texture geo-102
metric features. Additionally, they require extra processing103
to mitigate issues caused by light reflection and material104
transparency. Camera-based SLAM systems, on the other105
hand, are generally more robust in such scenarios and offer106
a more cost-effective alternative. Nevertheless, due to the107
absence of direct 3D measurements, camera-based SLAM108
systems generally underperform compared to LiDAR-based109
approaches. In this work, we demonstrate that the proposed110
camera-based SLAM system with integrated depth estima-111
tion outperforms existing methods on a real-world outdoor112
dataset.113

2. Related work 114

Monodepth2 [8] serves as a commonly used baseline in re- 115
cent self-supervised depth estimation research. Godard et 116
al. introduced a method to ensure that only pixels satisfy- 117
ing the photometric consistency assumption in reprojection- 118
based training are used for supervision. To address occlu- 119
sion issues, they introduced a loss function that warps mul- 120
tiple source images into a single target image and computes 121
the reprojection error, selecting only the minimum error 122
across the sources. In addition, they proposed an automatic 123
masking strategy to exclude pixels that violate the parallax 124
assumption, such as those belonging to static background 125
regions. In some cases, this strategy may also filter out mov- 126
ing objects whose motion is consistent with the camera, as 127
these can otherwise degrade the quality of the supervision 128
signal. These contributions enhanced the reliability of the 129
underlying assumptions in the training pipeline and led to 130
significant performance improvements. In contrast to pre- 131
vious methods that primarily suppress unreliable training 132
signals, we introduce a knowledge distillation framework 133
designed to provide more direct and semantically enriched 134
supervision for self-supervised depth estimation. 135

Knowledge distillation refers to the transfer of learned 136
representations from a teacher model to a student model. 137
It has been extensively studied in deep learning across 138
various tasks including depth estimation. In the field of 139
depth estimation, knowledge distillation has been applied 140
both to reduce model complexity and to transfer informa- 141
tive geometric cues that contribute to improved depth pre- 142
diction performance. For example, Wang et al. [26] fo- 143
cused on enabling real-time depth estimation on edge de- 144
vices by reducing model complexity. Rather than relying 145
on the final output of the teacher, they proposed a frame- 146
work in which the intermediate features extracted from the 147
decoders of both teacher and student models are aligned us- 148
ing a pairwise loss. Pilzer et al. [16] proposed a training 149
framework that enforces cycle consistency over repeated 150
reprojections of a single image, allowing the student net- 151
work to learn more stable depth representations in a self- 152
supervised setting. In contrast, Poggi et al. [17] proposed 153
a self-distillation framework where the student shares the 154
same structure as the teacher, and can even outperform it. 155
Their method incorporates pixel-level uncertainty into the 156
loss function via a negative log-likelihood formulation, al- 157
lowing the student model to account for uncertainty dur- 158
ing training. Song et al. [23] designed a modified model 159
architecture and loss function tailored for effective knowl- 160
edge distillation of foundation depth model. Their method 161
demonstrated state-of-the-art performance on the KITTI on- 162
line benchmark, providing empirical evidence of the strong 163
generalization capability of foundation models when used 164
as sources of transferable knowledge. Foundation models 165
often require networks with a large number of parameters 166
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to fully leverage their representational capacity. However,167
practical applications such as SLAM benefit from models168
with significantly fewer parameters due to computational169
and resource constraints. To bridge this gap, we propose a170
knowledge distillation framework in which lightweight stu-171
dent model is guided by both segmentation and depth foun-172
dation models through geometry-aware supervision.173

Foundation models refer to large-scale models pre-174
trained using extensive computational resources and mas-175
sive datasets. These models were initially developed for176
natural language processing tasks and have subsequently177
exhibited substantial impact in computer vision. Oquab et178
al. introduced DINOv2 [15], a robust vision transformer179
capable of extracting generalizable visual features from un-180
seen images, enabling its use across various downstream181
tasks such as classification, segmentation, and depth esti-182
mation. Liu et al. proposed GroundingDINO [12], a vision-183
language model designed for object detection tasks involv-184
ing unseen classes, which leverages diverse forms of text185
prompts to achieve strong performance. Kirillov et al. intro-186
duced the Segment Anything Model (SAM) [11], a prompt-187
driven segmentation framework capable of processing var-188
ious input types—such as points, bounding boxes, masks,189
and text—alongside image data. In this work, we utilize190
GroundingDINO and SAM to explicitly distinguish sky re-191
gions, which are unsuitable for quantitative evaluation and192
potentially detrimental to depth model training. Ranftl et193
al. proposed the Dense Prediction Transformer (DPT) [19],194
which is trained on a large meta-dataset constructed by ag-195
gregating multiple existing depth datasets. Yang et al. in-196
troduced Depth Anything v2 [28], a model composed of a197
DINOv2-based encoder and a DPT-based decoder, trained198
using both labeled synthetic images and unlabeled real-199
world images to enhance generalization. The foundation200
depth model can reliably estimate relative depth even for201
unseen images; however, fine-tuning is required to achieve202
accurate absolute depth estimation. To address this limita-203
tion, we do not directly incorporate the absolute outputs of204
the foundation model into the knowledge distillation pro-205
cess. Instead, surface normal map is derived from relative206
depth prediction and incorporated as auxiliary geometric207
supervision in the training framework.208

SLAM has increasingly integrated Inertial Measurement209
Unit (IMU) sensors, which provide measurements of lin-210
ear acceleration and angular velocity. While IMUs provide211
valuable measurements, they are prone to cumulative drift212
due to inherent sensor noise characteristics. Therefore, inte-213
grating complementary sensor modalities is often necessary214
to improve the robustness of state estimation. Represen-215
tative examples include LiDAR–Inertial Odometry (LIO),216
which integrates LiDAR and IMU data, and Visual–Inertial217
Odometry (VIO), which combines camera and IMU mea-218
surements. Bai et al. proposed a Faster-LIO [1], introduc-219

ing efficient data structures for handling point cloud rep- 220
resentations. Their method offers computational efficiency 221
while maintaining reliable and accurate state estimation. In 222
this study, it is utilized to generate ground-truth odometry 223
for our custom dataset. This enables quantitative evalua- 224
tion of odometry accuracy in VIO. Qin et al. introduced 225
VINS-Mono [18], a widely adopted baseline VIO frame- 226
work that fuses monocular images with IMU data. Building 227
upon the original VINS-Mono framework, Shan et al. in- 228
troduced VINS-RGBD [20], which incorporates depth data 229
from RGB-D camera. Leveraging prior frameworks, we 230
propose an RGB-based VIO pipeline guided by foundation 231
models, designed to enhance the robustness of vision-based 232
autonomous navigation systems. 233

3. Method 234

A detailed explanation of each component in the proposed 235
VIO pipeline is presented in this section, as shown in Fig- 236
ure 2. Section 3.1 and 3.2 describe the image reprojection- 237
based supervision strategy and the self-distillation scheme 238
using a transformer-based foundation depth model. Sec- 239
tion 3.3 describes the process of generating sky segmen- 240
tation masks from foundation models for use in geometry- 241
aware distillation. Section 3.4 presents a geometry-aware 242
distillation strategy that transfers boundary and geometric 243
cues from a pretrained foundation model to enhance stu- 244
dent prediction accuracy. Finally, Section 3.5 presents the 245
integration of the student depth model into a VIO pipeline. 246

3.1. Image reprojection based training 247

Our proposed depth estimation training pipeline incorpo- 248
rates an image reprojection-based self-supervised learning 249
strategy, following prior successful work in the field [8]. 250
Given a target image It, a corresponding depth map Ds

t is 251
predicted by the student depth model. The relative camera 252
transformation from the target view It to a reference view 253
It′ is denoted as Tt→t′ to facilitate reprojection. In stereo 254
settings, this transformation is derived from known extrin- 255
sic calibration parameters. In monocular settings, it is es- 256
timated by a ResNet [9]-based pose network that takes the 257
image pair (It, It′) as input. Given the camera intrinsic ma- 258
trix K, the reprojected view It′→t is synthesized from the 259
reference image It′ . 260

It′→t = It′⟨proj(Ds
t , Tt→t′ ,K)⟩. (1) 261

Here, proj(·) denotes the projection operation into the tar- 262
get frame, and ⟨·⟩ indicates bilinear sampling. A photomet- 263
ric loss Lp is employed, combining the Structural Similarity 264
Index Measure (SSIM) [27] and the L1-norm with a weight- 265
ing factor α: 266

Lp = min
t′

pe(It, It′→t), (2) 267
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Figure 2. Overview of the proposed visual–inertial odometry pipeline. Yellow boxes represent non-learnable geometric modules, blue
boxes indicate deep neural networks, and red boxes denote loss functions used for training the student network.

268
pe(It, It′→t) =

α

2
(1− SSIM(It, It′→t))

+(1− α)∥It − It′→t∥1.
(3)269

To account for occlusions, the minimum photometric error270
is computed across multiple reference frames, ensuring su-271
pervision is derived from the most photometrically consis-272
tent view. Since this approach assumes a static scene with a273
moving camera, a binary mask µ is introduced to restrict the274
loss computation to valid regions. It is computed as follows:275

µ =
[
min
t′

pe(It, It′→t) < min
t′

pe(It, It′)
]
, (4)276

where [·] denotes the Iverson bracket. And we adopted an277
auxiliary loss term known as the edge-aware smoothness278
loss Ls, which encourages depth smoothness in textureless279
regions while preserving object boundaries:280

Ls = |∂xDs
t |e−|∂xIt| + |∂yDs

t |e−|∂yIt|. (5)281

Here, ∂x and ∂y denote the partial derivatives with respect282
to the x-axis and y-axis, respectively. The final reprojection283
loss is defined as a weighted combination of the masked284
photometric loss and the smoothness loss:285

Lrepr = µLp + βLs. (6)286

In all experiments, the hyperparameter β is empirically set287
to 0.001. The reprojection-based approach is supported by288
established theoretical principles and demonstrates reliable289
performance in coarse depth estimation. However, it tends290
to struggle with fine-grained details such as object bound-291
aries and transparent surfaces. To address these limitations,292
two knowledge distillation techniques are additionally em-293
ployed, as detailed in the following sections.294

3.2. Self-distillation of dense prediction transformer 295

Recent approaches [17, 23] have explored self-distillation 296
techniques in which a model fine-tuned on the target dataset 297
is used to generate pseudo ground truth depth map Df

t . 298
The pseudo label is then used as supervision signal to 299
train the student model by minimizing a depth loss func- 300
tion. Although the generated pseudo depth may be imper- 301
fect, the availability of dense supervision provides explicit 302
guidance during training, often resulting in improved per- 303
formance. Prior studies have shown that, even when the 304
teacher and student models share identical architectures, the 305
student model can achieve superior performance through 306
self-distillation. In contrast, our work aims to bridge the 307
performance gap between a high-capacity teacher model 308
and a lightweight student model with significantly fewer 309
parameters. The depth models adopt the architecture of 310
a depth foundation model based on DPT [19], utilizing a 311
ViT-based encoder [4] to extract rich visual representations. 312
The decoder consists of a reassemble block and a fusion 313
block, followed by a prediction head that reconstructs the 314
depth map in the image space. To better leverage dense 315
depth cues, the student model is augmented with parameter- 316
shared multi-prediction heads. Deep supervision is applied 317
to all intermediate predictions to encourage the extraction of 318
semantically meaningful features. For the self-distillation 319
loss, we adopt the scale-invariant error, a widely used met- 320
ric in supervised depth estimation [5], which compares the 321
predicted depth Ds

t with the pseudo ground truth Df
t in log- 322

arithmic space: 323

Lself =
1

n

n∑
i=1

ϵi
2 − λ

n2

(
n∑

i=1

ϵi

)2

, (7) 324
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325
ϵi = log dsi − log dfi . (8)326

Here, n denotes the number of valid pixels, while dsi and dfi327
represent the predicted and pseudo depth values at pixel i.328

3.3. Sky mask generation via foundation model329

In depth estimation, the sky region is inherently unsuitable330
for accurate prediction due to its near-infinite depth, which331
fundamentally differs from other regions that exhibit ob-332
servable geometric structure. Recent approaches, such as333
Depth Anything v2 [28], address this issue by training mod-334
els to predict values that are inversely proportional to depth,335
thereby encouraging near-zero outputs for sky pixels. How-336
ever, when applying similar strategies to relatively limited337
real-world custom dataset, we observed a substantial degra-338
dation in both quantitative accuracy and generalization per-339
formance. Therefore, a sky segmentation mask Mt is gen-340
erated for input image It to explicitly exclude these regions341
from the distillation process. The mask Mt is generated342
in two stages, beginning with the input of the RGB image343
It and the textual prompt “sky” into GroundingDINO [12],344
a state-of-the-art open-vocabulary object detection model345
recognized for its strong performance in zero-shot scenar-346
ios. This model produces bounding boxes that roughly lo-347
calize sky regions. These bounding boxes then serve as348
strong prompts for SAM [11], which takes the RGB image349
It and outputs high-quality segmentation mask correspond-350
ing to the detected sky area.351

3.4. Geometry-aware knowledge distillation352

Depth foundation models pre-trained on large-scale datasets353
are capable of producing sharp and geometrically con-354
sistent relative depth maps Dp

t , even for previously un-355
seen images. Leveraging this capability, we propose two356
geometry-aware distillation losses designed to transfer the357
boundary-aware and surface-consistent knowledge from the358
pretrained model to the student model. We introduce359
a structure consistency loss Lstru, which promotes edge360
preservation by evaluating local structural patterns instead361
of penalizing absolute depth differences. Inspired by the362
structural similarity term in the SSIM metric, the loss mea-363
sures local geometric coherence between the foundation364
model prediction Dp

t and the student output Ds
t .365

Lstru =
1

n

n∑
i=1

(1− σps
i + k

σp
i σ

s
i + k

), (9)366

where σps
i denotes the local covariance between Dp

t and Ds
t367

at pixel i, while σp
i and σs

i represent the local standard de-368
viations of Dp

t and Ds
t , respectively. These statistics are369

computed over a 3× 3 window centered at each pixel. The370
constant k, which is empirically set to 30 in accordance with371

the SSIM formulation, stabilizes the computation by pre- 372
venting division by near-zero values. 373

To enhance the model’s understanding of object shapes 374
through geometric context, we incorporate surface nor- 375
mal supervision, which provides richer structural informa- 376
tion than depth values alone. To generate surface nor- 377
mal supervision, we employ Depth-to-Normal Transformer 378
(D2NT) [6], a recently proposed method that achieves both 379
high accuracy and computational efficiency. As normal es- 380
timation directly impacts the training speed of our pipeline, 381
fast and reliable normal computation is a critical require- 382
ment. Both Dp

t and Ds
t , along with the corresponding sky 383

mask Mt, are passed through D2NT to produce surface nor- 384
mal maps Np

t and Ns
t , respectively. We then define a ge- 385

ometric consistency loss Lgeom based on cosine similarity 386
between the predicted and reference normal vectors: 387

Lgeom =
1

m

m∑
i=1

(1− np
i · n

s
i ), (10) 388

where m denotes the number of pixels outside the masked 389
region defined by Mt, and np

i and ns
i represent the normal 390

vectors at pixel i in Np
t and Ns

t , respectively. 391
By incorporating both boundary-sensitive and surface- 392

aware supervision, the proposed method facilitates en- 393
hanced structural understanding within the student network, 394
thereby promoting more stable and accurate depth estima- 395
tion. Consequently, the total loss used for training the stu- 396
dent depth model is formulated as a weighted combination 397
of the following components: 398

Ltotal = Lrepr + w1Lself + w2Lstru + w3Lgeom (11) 399

In all experiments, we set the loss weights to w1 = 0.1, 400
w2 = 1, and w3 = 0.1 based on empirical tuning. 401

3.5. VIO with depth estimation 402

We construct a VIO pipeline based on VINS-RGBD [20], 403
integrating RGB images, the predicted depth maps from 404
the student model, and inertial measurements from an IMU 405
sensor. Given the distinct characteristics of visual and in- 406
ertial modalities, we apply modality-specific preprocessing 407
steps. The IMU operates at a significantly higher sam- 408
pling rate than the camera and is subject to considerable 409
sensor noise; thus, we employ pre-integration techniques 410
to fuse the high-rate inertial data effectively. In the visual 411
processing pipeline, feature points are identified in each 412
RGB frame using the Shi–Tomasi corner detection algo- 413
rithm [22], and their inter-frame correspondences are estab- 414
lished via the Kanade–Lucas–Tomasi (KLT) sparse optical 415
flow method [13]. In contrast to conventional RGB-based 416
VIO systems that estimate depth through the perspective- 417
n-point (PnP) algorithm, the proposed method directly in- 418
corporates depth values aligned with tracked features, as 419
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obtained from the predicted depth map Ds
t . During sys-420

tem initialization, visual–inertial initialization [18] is con-421
ducted to jointly estimate the metric scale, gravity direction,422
and initial pose. Upon successful completion of the initial-423
ization phase, subsequent preprocessing outputs are propa-424
gated into a sliding-window-based local VIO optimization425
framework. When a previously visited location is recog-426
nized using a Bag-of-Words-based visual retrieval method,427
the accumulated drift in relative pose estimates is corrected428
through pose graph optimization. Our experiments demon-429
strate that the proposed method enhances the robustness of430
localization in challenging outdoor environments.431

4. Experiments432

4.1. Experimental setup433

All experiments were conducted on a workstation equipped434
with an AMD EPYC 7313P 16-core processor and two435
NVIDIA RTX 4090 GPUs. Pretrained weights from the436
foundation model trained on the meta-dataset [19] were437
used to initialize both the teacher and student depth net-438
works. The models were optimized using the Adam op-439
timizer [10] with a weight decay of 10−2, where the ini-440
tial learning rate was set to 10−4 for the baseline [8] and441
10−5 for the foundation-based models. To mitigate over-442
fitting, standard data augmentation techniques were em-443
ployed. These included horizontal flipping and color jit-444
tering, with brightness, contrast, and saturation factors ran-445
domly sampled from the range 0.8 to 1.2, and hue from -0.1446
to 0.1. Each augmentation was applied with a probability447
of 50%. Although all sequences were captured at a frame448
rate of 10 Hz, different temporal triplet configurations were449
adopted to account for variations in motion dynamics: the450
triplet [-1, 0, 1] was used for the KITTI dataset, while [-3,451
0, 3] was applied to the custom dataset.452

Depth estimation was evaluated using three accuracy453
metrics (δ1, δ2, δ3) and six error metrics (RMSE, RMSEi,454
AbsRel, SqRel, log10, SIlog). Accuracy metrics δj denote455

the percentage of pixels satisfying max(d̂/d, d/d̂) < 1.25j ,456

where d̂ and d denote the predicted and ground-truth depth457
values, respectively. Detailed definitions and formulations458
of the error metrics are available in previous work [5]. In the459
tables presenting quantitative results for depth estimation,460
error metrics are indicated with a red background, while ac-461
curacy metrics are marked in blue. For odometry evalua-462
tion, ground-truth trajectories were generated using an ex-463
isting LiDAR-based SLAM algorithm [1]. As evaluation464
metrics, we used the relative pose error (RPE) in both trans-465
lation and rotation, and the RMSE of the absolute trajec-466
tory error (ATE), as defined in the RGB-D SLAM bench-467
mark [24]. Bold and underlined values indicate the best and468
second-best performance, respectively, for each task.469

4.2. KITTI dataset 470

To empirically validate the effectiveness of the proposed 471
depth estimation framework, we conduct experiments on 472
the KITTI public dataset [7]. The KITTI dataset was con- 473
structed to facilitate a broad spectrum of computer vision 474
tasks, including depth estimation, stereo matching, optical 475
flow, and 3D object detection and tracking. It was collected 476
using a vehicle equipped with stereo cameras, a 3D LiDAR 477
scanner, and GPS/IMU sensors, driving through real-world 478
urban, rural, and highway environments in Karlsruhe, Ger- 479
many. We employ the Eigen split [5], a standardized data 480
partitioning widely adopted for evaluating depth estimation 481
methods. This split comprises 39,810 monocular triplets for 482
training, 4,424 for validation, and 697 for evaluation. 483

Quantitative and qualitative evaluations on the KITTI 484
dataset are presented in Table 1 and Figure 3, respectively. 485
We compare the proposed method against Monodepth2 [8] 486
and a finetuning strategy that uses pretrained parameters 487
from Depth Anything V2 [28] under a reprojection-based 488
training pipeline. All methods were evaluated using monoc- 489
ular inputs at a fixed resolution of 1024 × 320 pixels, and 490
median scaling was applied following standard practice. 491
The number of parameters in Depth Anything V2 varies 492
depending on the Vision Transformer [4] backbone: ViT- 493
Large (vitl) yields 335.3M parameters, while ViT-Small 494
(vits) results in 24.7M. While the vitl-based model achieves 495
strong performance due to its high representational capac- 496
ity, its substantially higher computational cost may hinder 497
deployment in resource-constrained settings. In contrast, 498
Monodepth2, with only 14.8M parameters, is highly effi- 499
cient in terms of computational resources but requires im- 500
provement in estimation accuracy for real-world deploy- 501
ment. The vits-based Depth Anything V2 model achieves 502
better performance than Monodepth2 when fine-tuned, but 503
still falls short of the vitl model overall. Although our pro- 504
posed method shares the same backbone architecture as the 505
vits-based model, it integrates additional loss functions for 506
training, which lead to the best performance on four er- 507
ror metrics and two accuracy metrics. A slight decrease 508
was observed in AbsRel and δ1, indicating a minor reduc- 509
tion in absolute distance estimation accuracy. However, im- 510
provements in SIlog and δ3 suggest that the model has bet- 511
ter learned the relative geometric structure within scenes. 512
Qualitative results in Figure 3 further support these findings. 513
In columns 1 and 2, the proposed method better captures 514
fine structures such as pedestrians and bicycles. Further- 515
more, as shown in columns 3 and 4, the method that relies 516
solely on reprojection loss in the third row exhibits texture- 517
induced artifacts in the predicted depth, whereas the pro- 518
posed method produces smoother and more geometrically 519
consistent depth maps. 520

Table 2 presents an ablation analysis that investigates the 521
individual contributions of each loss component in addition 522
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Table 1. Quantitative evaluation of depth estimation performance on the Eigen validation split of the KITTI dataset. All methods use
monocular input with a resolution of 1024× 320. DAv2 denotes Depth Anything V2 [28].

Method Params SIlog AbsRel SqRel RMSE RMSEi log10 δ1 δ2 δ3

Monodepth2 [8] 14.8 M 18.293 0.109 0.832 4.648 0.186 0.048 0.888 0.963 0.982

DAv2(vits) [28] 24.7 M 16.994 0.099 0.740 4.314 0.173 0.043 0.908 0.969 0.985

Ours 24.7 M 16.856 0.101 0.687 4.280 0.172 0.044 0.899 0.969 0.986
DAv2(vitl) [28] 335.3 M 16.406 0.090 0.639 4.040 0.166 0.040 0.924 0.971 0.985

Figure 3. Qualitative comparisons of depth estimation results on the Eigen validation split of the KITTI dataset.

Table 2. Ablation study of loss function configurations on the
Eigen validation split of the KITTI dataset. All methods use stereo
input with a resolution of 640× 192.

Loss function SIlog AbsRel RMSE δ1

Lrepr 19.688 0.118 5.230 0.853

Lrepr, Lself 18.926 0.120 5.055 0.852

Lrepr, Lstru 18.872 0.121 5.067 0.854

Lrepr, Lgeom 18.703 0.115 5.024 0.861
Ltotal 18.521 0.119 5.017 0.861

to the baseline reprojection loss Lrepr, which is consistently523
employed across all model variants. To ensure a consis-524
tent and equitable evaluation, all experiments were carried525
out using stereo image inputs with a fixed resolution of526
640×192. When incorporating Lself or Lstru during training,527
we observed moderate performance gains in SIlog, RMSE,528
and δ1, indicating improvements in both relative depth ac-529
curacy and structural consistency. The adoption of Lgeom,530
which supervises surface normals, led to performance im-531
provements across four metrics, including AbsRel. The full532
model trained with all loss terms Ltotal achieved superior533
performance on most metrics, with only a marginal decline534
in AbsRel, indicating improved overall depth quality.535

4.3. Campus driving dataset536

We further evaluate the performance of the proposed algo-537
rithm on depth and odometry estimation using a custom-538
collected real-world dataset, and compare it against exist-539

ing methods. As illustrated in Figure 4, the dataset was ac- 540
quired using a compact electric vehicle equipped with an 541
RGB stereo camera and a 3D LiDAR sensor. The vehi- 542
cle was driven at speeds ranging from 6 to 12 km/h within 543
a university campus. Although the campus is an outdoor 544
environment, it features rich textures and geometric struc- 545
tures in both 3D point clouds and camera imagery, making it 546
suitable for generating reliable ground truth using LiDAR- 547
based SLAM and for validating the application of vision- 548
based SLAM systems. The RGB stereo and LiDAR data 549
were recorded at 10 Hz, while the IMU embedded in the 550
LiDAR system was recorded at 100 Hz. The dataset con- 551
sists of 12 driving sequences, each lasting between 100 and 552
400 seconds. For both tasks, the dataset is partitioned into 553
8 sequences for training, 1 for validation, and 3 for testing, 554
corresponding to 15,025 stereo pairs for training, 1,205 for 555
validation, and 6,416 for testing. Reliable ground truth was 556
established through offline extrinsic calibration [25] using 557
optimization-based methods between the camera–IMU and 558
camera–LiDAR sensor pairs. 559

Table 3 presents depth estimation results on the cus- 560
tom campus driving dataset, which reveal patterns consis- 561
tent with those observed on the public dataset. Foundation 562
model-based approaches significantly outperformed Mon- 563
odepth2 across all evaluation metrics, demonstrating the ef- 564
fectiveness of pretraining on large-scale data. Compared 565
to the baseline finetuning strategy using only reprojection 566
loss, the proposed method achieved further improvements, 567
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Figure 4. Sensor setup for the custom dataset collection.

Table 3. Quantitative evaluation of depth estimation performance
on the custom dataset. DAv2 denotes Depth Anything V2 [28].

Method SIlog AbsRel RMSE δ1

Monodepth2 [8] 19.448 0.121 3.106 0.886

DAv2(vits) [28] 17.883 0.096 2.997 0.918
Ours 17.631 0.097 2.857 0.903

particularly in SIlog and RMSE, indicating enhanced rela-568
tive and overall depth accuracy. As illustrated in Figure 5,569
the qualitative comparisons highlight distinct improvements570
in visual prediction quality. Models trained solely with re-571
projection loss tend to overfit to image textures, resulting572
in depth artifacts around regions such as tree foliage and573
ground shadows. In contrast, the proposed method effec-574
tively suppresses such artifacts while providing sharper de-575
lineation of structural elements like building pillars and bol-576
lard edges, along with globally smoother and more coherent577
depth predictions.578

As an RGB-based method, the proposed VIO system579
leverages depth predictions from the student network and580
is evaluated against both RGB-only [18] and RGB-D [20]581
VIO baselines, as shown in Table 4. In terms of the582
RMSE of ATE, which serves as a principal metric for eval-583
uating odometry accuracy, the proposed method consis-584
tently outperformed the RGB-only baseline across all test585
cases, achieving significantly lower error values. In case 1,586
the proposed method demonstrated slightly superior perfor-587
mance even compared to the RGB-D baseline. Although588
the translation error of the RPE varied across individual589
cases, the proposed method achieved a higher average per-590
formance. In terms of the rotation error of the RPE, the591
RGB-based method exhibited slightly better performance592
than the RGB-D based approach. However, as all VIO593
methods demonstrated consistently low rotation errors, the594
differences were not statistically significant.595

Figure 5. Qualitative comparisons of depth estimation results on
the custom dataset. DAv2 denotes Depth Anything V2 [28].

Table 4. Quantitative evaluation of odometry estimation perfor-
mance on the campus driving dataset.

Scenario Case 1 Case 2 Case 3
Average

Distance [m] 318.12 394.75 502.55

Method RMSE of ATE [m]

VINS-Mono [18] 4.9564 8.2617 7.8689 7.0290

Ours 4.1027 5.2186 7.0312 5.4508
VINS-RGBD [20] 4.3050 4.7788 6.1443 5.0760

Method Translation error of RPE [m]

VINS-Mono [18] 0.3712 0.6332 0.3648 0.4564

Ours 0.3993 0.4627 0.3921 0.4180
VINS-RGBD [20] 0.3957 0.4092 0.3399 0.3816

Method Rotation error of RPE [deg]

VINS-Mono [18] 0.3116 0.2635 0.3291 0.3014
Ours 0.3319 0.3666 0.3733 0.3573

VINS-RGBD [20] 0.2975 0.2959 0.3440 0.3125

5. Conclusion 596

In this study, we fine-tune a pretrained foundation model 597
through a self-supervised learning framework and integrate 598
it into a VIO system, resulting in performance that sur- 599
passes existing RGB-based VIO. Our self-supervised train- 600
ing strategy effectively distills knowledge from the pre- 601
trained foundation models into a lightweight student depth 602
network, enabling it to inherit the structural understand- 603
ing learned from large-scale data. In the depth estima- 604
tion, the proposed method demonstrates notable improve- 605
ments in qualitative performance. However, metrics re- 606
lated to absolute depth accuracy exhibit slight degrada- 607
tion. Nevertheless, the proposed network exhibits robust 608
performance in capturing object boundaries and recogniz- 609
ing transparent surfaces, achieving results comparable to 610
those of the pretrained foundation model. These capabil- 611
ities cannot be reliably obtained using reprojection-based 612
supervision alone, highlighting the necessity of our knowl- 613
edge distillation approach. Furthermore, as transparent ob- 614
jects pose inherent challenges not only in depth predic- 615
tion but also in reliable ground-truth acquisition, future re- 616
search should investigate both improved estimation tech- 617
niques and more appropriate evaluation strategies for such 618
regions. 619
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