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ABSTRACT

Aligning visual features with language embeddings is a key challenge in vision-
language models (VLMs). The performance of such models hinges on having
a good connector that maps visual features generated by a vision encoder to a
shared embedding space with the LLM while preserving semantic similarity. Ex-
isting connectors, such as multilayer perceptrons (MLPs), often produce out-of-
distribution or noisy inputs, leading to misalignment between the modalities. In
this work, we propose a novel vision-text alignment method, ALIGNVLM, that
maps visual features to a weighted average of LLM text embeddings. Our ap-
proach leverages the linguistic priors encoded by the LLM to ensure that visual
features are mapped to regions of the space that the LLM can effectively inter-
pret. ALIGNVLM is particularly effective for document understanding tasks,
where scanned document images must be accurately mapped to their textual con-
tent. Our extensive experiments show that ALIGNVLM achieves state-of-the-art
performance compared to prior alignment methods. We provide further analysis
demonstrating improved vision-text feature alignment and robustness to noise.

1 INTRODUCTION

Vision-Language Models (VLMs) have gained significant traction in recent years as a powerful
framework for multimodal document understanding tasks that involve interpreting both the visual
and textual contents of scanned documents (Kim et al., [2022; [Lee et al., [2023; [Liu et al., |2023a;
2024; Hu et al., [2024; [Wang et al.| 2023a; |Rodriguez et al.,|2024b). Such tasks are common in real-
world commercial applications, including invoice parsing (Park et al} [2019), form reading (Jaume
et al.,2019), and document question answering (Mathew et al.,2021b). VLM architectures typically
consist of three components: (i) a vision encoder to process raw images, (ii) a Large Language Model
(LLM) pre-trained on text, and (ii) a connector module that maps the visual features from the vision
encoder into the LLM’s semantic space.

A central challenge in this pipeline is to effectively map the continuous feature embeddings of
the vision encoder into the latent space of the LLM while preserving the semantic properties of
visual concepts. Existing approaches can be broadly categorized into deep fusion and shallow fusion
methods. Deep fusion methods, such as NVLM (Dai et al.,|[2024), Flamingo (Alayrac et al.,|[2022),
CogVLM (Wang et al.,[2023b)), and LLama 3.2-Vision (Grattafiori et al., 2024)), integrate visual and
textual features by introducing additional cross-attention and feed-forward layers at each layer of the
LLM. While effective at enhancing cross-modal interaction, these methods substantially increase the
parameter count of the VLM compared to the base LLM, resulting in high computational overhead
and reduced efficiency.
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Figure 1: Performance of Different VLM Connectors. The proposed ALIGN connector outper-
forms other methods across benchmarks using the same training configuration. Radial distance is
proportion of maximal score, truncated at 0.7 (black dot).

In contrast, shallow fusion methods project visual features from the vision encoder into the LLM
input embedding space using either multilayer perceptrons (MLPs) (Liu et al., 2023b; [2024) or
attention-based mechanisms such as the Perceiver Resampler (Li et al. [2023; [Laurencon et al.
2024; |Alayrac et al., 2022), before concatenating them with the textual prompt’s input embeddings.
This approach is more parameter-efficient and computationally lighter than deep fusion methods,
but it lacks a mechanism to ensure the projected embeddings remain within the region spanned
by the LLM’s text embeddings — i.e. regions the LLM was pretrained to understand. As a result,
unconstrained visual features can produce out-of-distribution (OOD) and noisy inputs, leading to
misalignment between modalities and often degrading overall performance. Recent methods like
Ovis (Lu et al.l [2024) attempt to alleviate these issues by introducing separate visual embeddings
indexed from the vision encoder outputs and combined together to construct the visual inputs to the
LLM. However, this approach significantly increases parameter count due to the massive embed-
ding matrix and requires extensive training to learn a new embedding space without guaranteeing
alignment with the LLM’s input latent space.

To address these limitations, this paper introduces ALIGNVLM, a novel framework that sidesteps
direct projection of visual features into the LLM embedding space. Instead, our proposed connector,
ALIGN, maps visual features into probability distributions over the LLM’s existing pretrained vocab-
ulary embeddings, which are then combined into a weighted representation of the text embeddings.
By constraining each visual feature as a convex combination of the LLM text embeddings, our ap-
proach leverages the linguistic priors already encoded in the LLM’s text space. This ensures that
the resulting visual features lie within the convex hull of the LLM’s embedding space, reducing the
risk of noisy or out-of-distribution inputs and improving alignment between modalities. Our exper-
imental results show that this approach improves performance on various document understanding
tasks, outperforming prior connector methods by effectively fusing visual and linguistic content. We
summarize our main contributions as follows:

* We propose a novel connector, ALIGN, to bridge the representation gap between vision
and text modalities.

* We introduce a family of Vision-Language Models, ALIGNVLM, that achieves state-of-
the-art performance on multimodal document understanding tasks by leveraging ALIGN.

* We conduct extensive experiments demonstrating the robustness and effectiveness of
ALIGN across different model sizes ranging from 1B to 8B parameters.
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2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

Over the past few years, Vision-Language Models (VLMs) have achieved remarkable progress,
largely due to advances in Large Language Models (LLMs). Initially demonstrating breakthroughs
in text understanding and generation (Brown et al.| [2020; Raffel et al., 2023 |Achiam et al., 2023;
Grattafiori et al.l 2024; |Qwen et al., 2025} [Team, [2024)), LLMs are now increasingly used to effec-
tively interpret visual inputs (Liu et al.| 2023b; Li et al.| [2024; |Wang et al., 2024} |Chen et al.| [2024b;
Dai et al.| 2024; |Drouin et al., 2024} Rodriguez et al.,|2022). This progress has enabled real-world
applications across diverse domains, particularly in multimodal document understanding for tasks
like form reading (Svetlichnayal, |2020), document question answering (Mathew et al., [2021b)), and
chart question answering (Masry et al.,[2022). VLMs commonly adopt a three-component architec-
ture: a pretrained vision encoder (Zhai et al., 2023} |Radford et al.| [2021), a LLM, and a connector
module. A key challenge for VLMs is effectively aligning visual features with the LLM’s semantic
space to enable accurate and meaningful multimodal interpretation.

2.2  VISION-LANGUAGE ALIGNMENT FOR MULTIMODAL MODELS

Existing vision-language alignment approaches can be classified into deep fusion and shallow fusion.
Deep fusion methods integrate visual and textual features by modifying the LLM’s architecture,
adding cross-attention and feed-forward layers. For example, Flamingo (Alayrac et al., 2022)) em-
ploys the Perceiver Resampler, which uses fixed latent embeddings to attend to vision features and
fuses them into the LLM via gated cross-attention layers. Similarly, NVLM (Dai et al.,[2024) adopts
cross-gated attention while replacing the Perceiver Resampler with a simpler MLP. CogVLM (Wang
et al., 2023b) extends this approach by incorporating new feed-forward (FFN) and QKV layers for
the vision modality within every layer of the LLM. While these methods improve cross-modal align-
ment, they significantly increase parameter counts and computational overhead, making them less
efficient.

On the other hand, shallow fusion methods are more computationally efficient, mapping visual fea-
tures into the LLM’s embedding space without altering its architecture. These methods can be
categorized into three main types: (1) MLP-based mapping, such as LLaVA (Liu et al.,2023b) and
PaliGemma (Beyer et al.| 2024)), which use multilayer perceptrons (MLP) to project visual features
but often produce misaligned or noisy features due to a lack of constraints (Rodriguez et al.,[2024b));
(2) cross-attention mechanisms, BLIP-2 (Li et al., |2023) uses Q-Former, which utilizes a fixed set
of latent embeddings to cross-attend to visual features, but that may still produce noisy or OOD vi-
sual features; and (3) visual embeddings, such as those introduced by Ovis (Lu et al., [2024)), which
use embeddings indexed by the vision encoder’s outputs to produce the visual inputs. While this
regularizes feature mapping, it adds substantial parameter overhead and creates a new vision em-
bedding space, risking misalignment with the LLM’s text embedding space. Encoder-free VLMs,
like Fuyu-8B [ﬂand EVE (Diao et al.,|2024), eliminate dedicated vision encoders but show degraded
performance (Beyer et al.,[2024).

In contrast, ALIGNVLM maps visual features from the vision encoder into probability distributions
over the LLM’s text embeddings, using them to compute a convex combination. By leveraging the
linguistic priors encoded in the LLM’s vocabulary, ALIGNVLM ensures that visual features remain
within the convex hull of the text embeddings, mitigating noisy or out-of-distribution inputs and en-
hancing alignment, particularly for tasks that require joint modalities representation like multimodal
document understanding.

3 METHODOLOGY

3.1 MODEL ARCHITECTURE

The overall model architecture, shown in Figure 2] consists of three main components:

(1) Vision Encoder. To handle high-resolution images of different aspect ratios, we divide each in-
put image into multiple tiles according to one of the predefined aspect ratios (e.g., 1:1, 1:2, ..., 9:1)

"https://www.adept.ai/blog/fuyu-8b
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Figure 2: ALIGNVLM Model Architecture. The vision encoder extracts image features, which
are processed to produce probabilities over the LLM embeddings. A weighted average combines
these probabilities with embeddings to generate vision input vectors. Text inputs are tokenized, and
the corresponding embeddings are selected from the embedding matrix, which is then used as input

to the LLM. We display the vision layers in blue , and the text layers in purple .

chosen via a coverage ratio (Lu et al., [2024} |Chen et al.| [2024a). Due to limited computational re-
sources, we set the maximum number of tiles to 9. Each tile is further partitioned into 14 x 14
patches, projected into vectors, and processed by a SigLip-400M vision encoder (Zhai et al., 2023)
to extract contextual visual features.

Eachtile t € {1,---,T} is divided into N; patches
Pt = {Pt,h e upt,Nt}7

where p; ; is the -th patch of tile £. The vision encoder maps these patches to a set of visual feature
vectors

F; = VisionEncoder(P;)
Ft = {ft,lv e 7ft,N1,}7 ft,i S Rd'

Finally, we concatenate the feature sets across all tiles into a single output

F= concat(Fl,Fg, e ,FT).

(2) ALIGN Module. This module aligns the visual features with the LLM. A linear layer W; €
RP*4 first projects the visual features F € RT" V¢4 to the LLM’s token embedding space: one R”
vector per token. A second linear layer W € RY*P (initialized from the LLM’s language-model
head) followed by a softmax, produces a probability simplex Pyqcap over the LLM’s vocabulary (V
tokens)

Pyocab = (1)
softmax(LayerNorm (W2 LayerNorm(W- F)))

We then use the LLM text embeddings Ex; € RV*P to compute a weighted sum

Lion = Pocar Erext: 2)

align vocab

Finally, we concatenate F/ .  with the tokenized text embeddings to form the LLM input

align
H;pu = concat (F;“gn, Eex(x)),
where E(x) is obtained by tokenizing the input text x = (x1,-- -, z)s) and selecting the corre-
sponding embeddings from E such that
Eeex(x) = [Etext(xl)v cee ,Etext(xM)]- €)]
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(3) Large Language Model. We feed the concatenated vision and text vectors, Hjppy, into the
LLM, which then generates output text auto-regressively. To demonstrate the effectiveness of our
alignment technique, we experiment with the Llama 3.1 model family (Grattafiori et al., [2024).
These models offer state-of-the-art performance and permissive licenses, making them suitable for
commercial applications. In particular, we utilize Llama 3.2-1B, Llama 3.2-3B, and Llama 3.1-8B.

3.2 MOTIVATION AND RELATION WITH EXISTING METHODS

By construction, each R” representation in F/,._ is constrained to the convex hull of the points Eey,
y P align p

thus concentrating the visual features in the part of latent space that the LLM can effectively inter-
pret. Moreover, we argue that our initialization of W to the language model head is an inductive
bias toward recycling some of the semantics of these text tokens into visual tokens. This contrasts
with past methods that have been proposed to adapt the vision encoder outputs F € RT-V¢Xd tg an
F’ € RT"NexD o be fed to the LLM. Here, we consider two examples in more detail, highlighting
these contrasts.

(1) MLP Connector Liu et al.| (2023b) applies a linear projection with parameters Wy p € RP*¢
and byp € RP, followed by an activation function o (e.g., ReLU)

Fyp = o(WupF + byip).

These parameters are all learned from scratch, with no particular bias aligning them to text embed-
dings.

(2) Visual Embedding Table Lu et al|(2024) introduces an entire new set of visual embeddings
Ever € RE*D which, together with the weights Wygr € RExd specifies

FafET = SOftmaX(WVETF) T EVET .

When D < d, our Wo W7 amounts to a low-rank version of Wygr. There is thus much more to
learn to obtain F{gr, and there is again no explicit pressure to align it with the text embeddings.

3.3 TRAINING DATASETS & STAGES

We train our model in three stages:

Stage 1. This stage focuses on training the ALIGN Module to map visual features to the LLM’s text
embeddings effectively. We use the CC-12M dataset (Changpinyo et al.| (2021), a large-scale web
dataset commonly used for VLM pretraining [Liu et al.| (2023b), which contains 12M image-text
pairs. However, due to broken or unavailable links, we retrieved 8.1M pairs. This dataset facilitates
the alignment of visual features with the text embedding space of the LLM. During this stage, we
train the full model, as this approach improves performance and stabilizes the training of the ALIGN
Module.

Stage 2. The goal is to enhance the model’s document understanding capabilities, such as OCR,
document structure comprehension, in-depth reasoning, and instruction-following. We leverage the
BigDocs-7.5M dataset Rodriguez et al.| (2024a), a curated collection of license-permissive datasets
designed for multimodal document understanding. This dataset aligns with the Accountability, Re-
sponsibility, and Transparency (ART) principles Bommasani et al.|(2023)); |Vogus & Llansée|(2021)),
ensuring compliance for commercial applications. As in Stage 1, we train the full model during this
stage.

Stage 3. To enhance the model’s instruction-tuning capabilities, particularly for downstream tasks
like question answering, we further train it on the DocDownstream [Rodriguez et al.| (2024a); [Hu
et al.[(2024) instruction tuning dataset. In this stage, the vision encoder is frozen, focusing training
exclusively on the LLM and ALIGN module.

4 EXPERIMENTAL SETUP

Setup. We conduct all experiments using 8 nodes of H100 GPUs, totaling 64 GPUs. For model
training, we leverage the MS-Swift framework (Zhao et al.|[2024)) for its flexibility. Additionally, we
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Table 1: Main Results on General Document Benchmarks. We compare ALIGNVLM (ours)
with state-of-the-art (SOTA) open and closed-source instructed models, and with base mod-
els that we trained using the process described in Section ALIGNVLM models outper-
form all Base VLM models trained in the same data regime. Our models also perform com-
petitively across document benchmarks even compared with SOTA models, in which the data

regime is more targeted and optimized. Color coding for comparison: closed-source models ,
open-source models below 7B parameters , open-source models between 7-12B parameters .
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Model N A\
Closed-Source VLMs
(Opagque Training Data)
Claude-3.5 Sonnet 88.48 59.05 31.41 2482 47.13 5348 51.84 7142 8127 56.54
GeminiPro-1.5 9123 73.94 32.16 24.07 5029 7122 34.68 68.16 8043 5846
GPT-40 20240806 92.80 66.37 3839 2992 46.63 81.10 8570 7046 72.87 64.91
Open-Source Instruct VLMs
(Semi-Opaque Training Data)
Janus-1.3B (Wu et al.|[2024a) 30.15 17.09 0.62 15.06 930 5134 5720 5197 18.67 2793
Qwen2-VL-2B (Wang et al.|[2024) 89.16 64.11 3238 2518 38.20 57.21 73.40 7990 43.07 55.84
InternVL-2.5-2B (Chen et al.[[2024b) 87.70 61.85 13.14 16.58 36.33 57.26 7496 76.85 4220 51.87
DeepSeek-VL2-Tiny-3.4B (Wu et al.|[2024b) 88.57 63.88 25.11 19.04 35.07 52.15 80.92 8048 5630 55.72
Phi3.5-Vision-4B (Abdin et al.[|2024) 86.00 5620 1047 749 17.18 3043 8216 73.12 70.70 48.19
Qwen2-VL-7B (Wang et al.[[2024] 9383 76.12 3455 2337 5252 74.68 83.16 8448 5397 64.08
LLaVA-NeXT-7B (Xu et al.|2024) 63.51 30.90 1.30 535 20.06 5283 52.12 65.10 32.87 36.00
DocOwl11.5-8B (Hu et al.[[2024) 80.73 4994 68.84 37.99 3887 79.67 6856 6891 52.60 60.68
InternVL-2.5-8B (Chen et al.[[2024b) 9198 7536 3455 2231 5033 7475 82.84 79.00 52.10 62.58
Ovis-1.6-Gemma2-9B (Lu et al.{[2024) 88.84 7397 4516 2391 50.72 76.66 8140 77.73 4833 62.96
Llama3.2-11B (Grattafiori et al.|2024) 82.71 36.62 1.78 347 23.03 5833 23.80 5428 2240 34.04
Pixtral-12B (Agrawal et al.[|2024) 87.67 4945 2737 2407 45.18 73.53 7180 76.09 67.13 58.03
Document Understanding Instructed Models
(Instruction Tuned on BigDocs-7.5M + DocDownStream (Rodriguez et al.||2024a)|Hu et al.|[2024))

Qwen2-VL-2B (base+) (Qwen et al.|[2025) 5723 31.88 4931 3439 3T6l 64.75 68.60 61.01 47.53 49.59
ALIGNVLM-Llama-3.2-1B (ours) 7242 38.16 6047 3371 28.66 7131 6544 4881 5029 52.14
ALIGNVLM-Llama-3.2-3B (ours) 79.63 44.53 6349 3525 38.59 78.51 71.88 5738 60.10 58.81
DocOwI1.5-8B (base+) (Hu et al.[[2024) 7870 47.62 6439 3693 35.69 7265 6580 6730 49.03 57.56
Llama3.2-11B (base+) (Grattafiori et al.|[2024) 78.99 44.27 67.05 37.22 40.18 78.04 71.40 6846 56.73 60.26
ALIGNVLM-Llama-3.1-8B (ours) 81.18 53.75 6325 3550 4531 83.04 75.00 6460 64.33 62.88

utilize the DeepSpeed framework (Aminabadi et al., 2022), specifically the ZeRO-3 configuration,
to optimize efficient parallel training across multiple nodes. Detailed hyperparameters are outlined

in Appendix[A.T]

Baselines. Our work focuses on architectural innovations, so we ensure that all baselines are
trained on the same datasets. To enable fair comparisons, we evaluate our models against a set
of Base VLMs fine-tuned on the same instruction-tuning tasks (Stages 2 and 3) as our models,
using the BigDocs-7.5M and BigDocs-DocDownstream datasets. This approach ensures consis-
tent training data, avoiding biases introduced by the Instruct versions of VLMs, which are often
trained on undisclosed instruction-tuning datasets. Due to the scarcity of recently released pub-
licly available Base VLMs, we primarily compare our model against the following Base VLMs of
varying sizes: Qwen2-VL-2B (Wang et al.l 2024), DocOwl1.5-8B (Hu et al.| 2024), and LLama
3.2-11B (Grattafiori et al.| [2024).

For additional context, we also include results from the Instruct versions of recent VLMs of different
sizes: Phi3.5-Vision-4B (Abdin et al., 2024), Qwen2-VL-2B and 7B (Wang et al.| |2024)), LLaVA-
NeXT-7B (Liu et al., [2024)), InternVL2.5-2B and 8B (Chen et al.| [2024b), Janus-1.3B (Wu et al.,
2024a)), DeepSeek-VL2-Tiny (Wu et al., 2024b), Ovisl.6-Gemma-9B (Lu et al.| [2024)), Llama3.2-
11B (Grattafiori et al., [2024), DocOwl1.5-8B (Hu et al.| 2024), and Pixtral-12B (Agrawal et al.,
2024]).

Evaluation Benchmarks. We evaluate our models on a diverse range of document understand-
ing benchmarks that assess the model’s capabilities in OCR, chart reasoning, table processing,
or form comprehension. In particular, we employ the VLMEvalKit (Duan et al., [2024) frame-
work and report the results on the following popular benchmarks: DocVQA (Mathew et al.,
2021b), InfoVQA (Mathew et al.,2021a), DeepForm (Svetlichnaya, [2020)), KLC (Stanistawek et al.,
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Table 2: Impact of Connector Designs on VLM Performance: We present the results of ex-
periments evaluating different connector designs for conditioning LLMs on visual features. Our
proposed ALIGN connector is compared against a basic Multi-Layer Perceptron (MLP), the Per-
ceiver Resampler, and Ovis. The results demonstrate that ALIGN consistently outperforms these
alternatives across all benchmarks.

>
L L& ¢

S S A $L e Fo  F & X
ST s R 8T & g &
Model v e ° < ¢ 8 N v
Llama-3.2-3B-MLP 7146 3756 6207 3336 2894 7322 6648 5356 50.96 53.06
Llama-3.2-3B-Perciever R.  69.08 34.13 57.08 31.75 27.95 7193 65.16 5133 4776 50.68
Llama-3.2-3B-Ovis 7468 4211 5802 33.50 33.13 7667 6792 52.60 5393 5472

Llama-3.2-3B-ALIGN (ours) 79.63 44.53 6349 3525 3859 7851 71.88 57.38 60.10 58.81

2021), WTQ (Pasupat & Liang, 2015])), TabFact (Chen et al.l [2020), ChartQA (Masry et al., |[2022),
TextVQA (Singh et al.} 2019), and TableVQA (Kim et al., 2024).

5 RESULTS

5.1 MAIN RESULTS

Table (1] presents the performance of ALIGNVLM compared to state-of-the-art (SOTA) open- and
closed-source instructed models, as well as baseline Base VLMs fine-tuned in the same instruction-
tuning setup. The results demonstrate that ALIGNVLM consistently outperforms all Base VLMs
within the same size category and achieves competitive performance against SOTA Instruct VLMs
despite being trained on a more limited data regime. Below, we provide a detailed analysis.

ALIGNVLM vs. Base VLMs. Our ALIGNVLM models, based on Llama 3.2-1B and Llama
3.2-3B, significantly outperform the corresponding Base VLM, Qwen2-VL-2B, by up to 9.22%.
Notably, ALIGNVLM-Llama-3.2-3B surpasses DocOwl1.5-8B, which has 4B more parameters,
demonstrating the effectiveness of ALIGN in enhancing multimodal capabilities compared to tra-
ditional shallow fusion methods (e.g., MLPs). Furthermore, our 8B model achieves a 2.62% im-
provement over Llama3.2-11B despite sharing the same Base LLM, Llama3.1-8B. Since all models
in this comparison were trained on the same instruction-tuning setup, this experiment provides a
controlled evaluation, isolating the impact of architectural differences rather than dataset biases.
Consequently, these results suggest that ALIGNVLM outperforms VLMs with shallow fusion tech-
niques and surpasses parameter-heavy deep fusion VLMs, such as Llama3.2-11B, while maintaining
a more efficient architecture.

ALIGNVLM vs. Instruct VLMs. Even as open-source Instruct models are trained on signifi-
cantly larger, often undisclosed instruction-tuning datasets, ALIGNVLM achieves superior perfor-
mance. For instance, ALIGNVLM-Llama-3.2-3B (58.81%) outperforms all instructed VLMs in its
size category, surpassing its closest competitor, Qwen2-VL-2B (55.84%), by 2.97%. Additionally,
our 8B model outperforms significantly larger models such as Llama 3.2-11B and PixTral-12B by
substantial margins. It also surpasses InternVL-2.5-8B and performs competitively with Qwen2-
VL-7B, though a direct comparison may not be entirely fair since Qwen2-VL-7B was trained on an
undisclosed instruction-tuning dataset. Finally, ALIGNVLM also exhibits comparable performance
to closed-source models like GeminiPro-1.5 and GPT4o.

Opverall, these results validate the effectiveness of ALIGN and establish ALIGNVLM as a state-of-
the-art model for multimodal document understanding.

5.2 IMPACT OF CONNECTOR DESIGNS ON VLM PERFORMANCE

To assess the effectiveness of our ALIGN module, we compare it against three different and widely
used shallow fusion VLM connectors: MLP, Perceiver Resampler, and Ovis. The results in Table
[2) show that ALIGN consistently outperforms all alternatives, demonstrating its superiority both in
aligning visual and textual modalities and in multimodal document understanding. MLP and Per-
ceiver Resampler achieve the lowest performance, 53.06% and 50.68%, respectively, due to their
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Figure 3: Probability distribution over the LLM text tokens and VCR Task Analysis.

direct feature projection, which lacks an explicit mechanism to align visual features with the LLM’s
text space, leading to misalignment. Ovis introduces a separate visual embedding table, but this
additional complexity does not significantly improve alignment, yielding only 54.72% accuracy. In
contrast, ALIGN ensures that visual features remain within the convex hull of the LLM’s text latent
space, leveraging the linguistic priors of the LLM to enhance alignment and mitigate noisy em-
beddings. This design leads to the highest performance (58.81%), establishing ALIGN as the most
effective connector for integrating vision and language in multimodal document understanding. We
provide some example outputs of the Llama-3.2-3B models with different connector designs in Ap-

pendix [A.3]

5.3 PROBABILITY DISTRIBUTION OVER TEXT TOKENS ANALYSIS

To better understand the behavior of ALIGN, we examine the probability distribution, Pyecap in Eq
equation[I} over the LLM’s text vocabulary generated from visual features. Specifically, we process
100 document images through the vision encoder and ALIGN, then average the resulting probability
distributions across all image patches. The final distribution is shown in Figure [3a] As illustrated,
the distribution is dense (rather than sparse), with the highest probability assigned to a single token
being 0.0118. This can be explained by the vision feature space being continuous and of much
higher cardinality than the discrete text space. Indeed, while the LLM has 128K distinct vocabulary
tokens, an image patch (e.g., 14x14 pixels) contains continuous, high-dimensional information that
cannot be effectively mapped to a single or a few discrete tokens.

Furthermore, we observe that tokens on the left side of the distribution in Figure [3a] have higher
probabilities than the rest. Upon investigation, we found that these tokens correspond to patches that
are predominantly white — a common feature in document images. Further analysis of the associated
text tokens reveals that they predominantly consist of punctuation marks, as illustrated further in
Appendix[A.2] This suggests that the model repurposes punctuation marks to represent whitespaces.
This may be attributed to the fact that both punctuation and whitespaces act as structural cues and
separators. Other possibilities include whitespaces being rarely directly-required to perform a task,
and LLMs may pay less specific attention to common tokens such as punctuation.

5.4 PIXEL-LEVEL TASKS ANALYSIS

To rigorously evaluate the ability of vision-language models to integrate fine-grained visual and
textual pixel-level cues, we test our model on the VCR benchmark (Zhang et al., 2024)), which
requires the model to recover partially occluded texts with pixel-level hints from the revealed parts
of the text. This task challenges VLM’s alignment of text and image in extreme situations. Current
state-of-the-art models like GPT-4V OpenAl et al.| (2023), Claude 3.5 Sonnet |Anthropic| (2024),
and Llama-3.2 Dubey et al.| (2024) significantly underperform humans on hard VCR task due to
their inability to process subtle pixel-level cues in occluded text regions. These models frequently
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Figure 4: Case Study for Pixel-Level Tasks. We provide examples of our proposed ALIGN con-
nector compared with a the Multi-Layer Perceptron (MLP) connector. The ALIGN connector tends
to better map visual elements to common words. GT is the ground truth.

discard critical visual tokens during image tokenization on semantic priors, overlooking the interplay
between partial character strokes and contextual visual scenes. To evaluate performance on VCR,
we modify our Stage 3 SFT dataset composition by replacing the exclusive use of DocDownstream
with a 5:1 blended ratio of DocDownstream and VCR training data. This adjustment enables direct
evaluation of our architecture ALIGN’s ability to leverage pixel-level character cues.

From the experimental outcomes, it is evident that ALIGNVLM consistently outperforms the MLP
Connector Model across both easy and hard settings of the pixel-level VCR task (see Figure 3b),
with improvements ranging from 10.18% on the hard setting to 14.41% on the easy setting.

We provide a case study on VCR in Figure ] featuring four representative examples. In Figure
[a] it is evident that the MLP connector model fails to capture semantic consistency as effectively
as ALIGNVLM. The phrase “The commune first census in written history in” (where the words in
italics are generated by the model while the rest are in the image) is not as semantically coherent as
the phrase generated by ALIGN “The commune first appears in written history in”.

Beyond the issue of semantic fluency, in Figure [4b] we also observe that ALIGNVLM successfully

identifies the uncovered portion of the letter “g” in “accounting” and uses it as a pixel-level hint to
infer the correct word. In contrast, the MLP model fails to effectively attend to this crucial detail.

Figurescland[dd|show examples where ALIGNVLM fails on the VCR task. These carefully picked
instances show that our method mistakes names of landmarks with common words when the two
are very similar. As seen in the examples, ALIGNVLM mistakes “Llanengan” for “Llanongan”
and “Gorden” for “Garden”. In both instances, the pairs differ by one character, indicating perhaps
that ALIGNVLM tends to align vision representations to more common tokens in the vocabulary.
One approach that would potentially mitigate such errors would be to train ALIGNVLM with more
contextually-relevant data.

5.5 ROBUSTNESS TO NOISE ANALYSIS

To evaluate the robustness of our ALIGN connector to noisy visual features, we conduct an experi-
ment where random Gaussian noise is added to the visual features produced by the vision encoder
before passing them into the connector. Specifically, given the visual features F € RY*9 output
by the vision encoder (where NV is the number of feature vectors and d is their dimensionality), we
perturbed them as

F=F+N, N~N(0,0=3).
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Table 3: Robustness to Noise. Comparison of Avg. Scores with and without Gaussian noise (¢ =
3), including performance drop (A).

Model Without Noise With Noise Drop (A)
Llama-3.2-3B-MLP 53.06 27.52 125.54
Llama-3.2-3B-ALIGN (ours) 58.81 57.14 1 1.67

As shown in Table [3] our ALIGN connector demonstrates high robustness to noise, with only a
1.67% average drop in performance. In contrast, the widely adopted MLP connector suffers a sig-
nificant performance degradation of 25.54%, highlighting its vulnerability to noisy inputs. These
empirical results support our hypothesis that leveraging the knowledge encoded in the LLM’s text
embeddings and constraining the visual features within the convex hull of the text latent space act
as a regularization mechanism, reducing the model’s sensitivity to noisy visual features.

6 CONCLUSION

We introduce ALIGN, a novel connector designed to align vision and language latent spaces in
vision-language models (VLMs), specifically enhancing multimodal document understanding. By
improving cross-modal alignment and minimizing noisy embeddings, our models, ALIGNVLM,
which leverage ALIGN, achieve state-of-the-art performance across diverse document understand-
ing tasks. This includes outperforming base VLMs trained on the same datasets and open-source
instruct models trained on undisclosed data. Extensive experiments and ablations validate the ro-
bustness and effectiveness of ALIGN compared to existing connector designs, establishing it as a
significant contribution to vision-language modeling. Future work will explore training on more di-
verse instruction-tuning datasets to generalize beyond document understanding to broader domains.
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A APPENDIX

A.1 EXPERIMENTAL SETUP

We provide detailed hyperparameters of our experiments in Table 4]

Table 4: Detailed hyperparameters for each training stage across different LLM backbones.

LLM Backbone | Llama 3.2-1B | Llama 3.2-3B | Llama 3.1-8B

| Stage-1 Stage-2 Stage-3 | Stage-1 Stage-2 Stage-3 | Stage-1 Stage-2 Stage-3
Trainable Parameters | Full Model Full Model LLM & ALIGN | Full Model Full Mode;;l LLM & ALIGN | Full Model Full Model LLM & ALIGN
Batch Size 512 512 512 512 256 256 512 256 256
Text Max Length 1024 2048 2048 1024 2048 2048 1024 2048 2048
Epochs 1 1 5 1 1 5 1 1 5

Learning Rate 1x107°  5x107° 5x107° 1x107° 5x107° 5x107° 1x107° 1x107° 1x107°

A.2 VISION-TO-TEXT

In this experiment, we analyze how ALIGN maps visual features to the LLM’s text tokens. To do
so, we manually curate a small dataset of image crops, each containing either a single word or a
small set of visual text elements. Unlike the processing of high-resolution images described earlier
(Section [3.1)), these image crops are not divided into tiles. Instead, the backbone image encoder
processes each crop as a single tile, producing 14 x 14 features from the input image. The resulting
features pass through the Softmax operation (Equation [I), yielding a probability distribution over
the LLM’s text tokens for each feature (region). We examine the decoded text tokens from specific
image regions to better understand how visual features are mapped to textual representations.

As shown in Figure 5] white regions in the images tend to assign higher probabilities to punctuation
tokens, such as commas or periods. Since punctuation structures written text, while white space
separates document components like paragraphs, tables, and sections, ALIGN appears to leverage
these implicit patterns to align visual structures with semantically meaningful representations in the
LLM’s embedding space.
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A.3 CASE STUDIES

In this section, we provide case studies for the experiments in Section Specifically, we pro-
vide examples of our Llama-3.2-3B-ALIGN, and its counterpart model with alternative connectors
Llama-3.2-3B-MLP and Llama-3.2-3B-Ovis on three different datasets: KLC (Stanistawek et al.,
2021), DocVQA (Mathew et al., [2021b), and TextVQA (Singh et all [2019). The examples are
shown in Figure[6] [7} and (8]
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Date:|

Figure 5: Mapping Visual-to-Text tokens. The left column shows the visual input to the model.
In contrast, the right column visualizes the decoded tokens on a 14x14 grid, displaying the top k=2
tokens corresponding to the most likely LLM tokens predicted for the respective visual feature in
each cell.
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Question: What is the value for the
charity name?

GT: (Ardingly College Ltd.)

MLP: (Ardington College Ltd.) X

Ovis: (Ardington College Ltd.) X

ALIGN: (Ardingly College Ltd.) /

(a) Positive Example #1

ANNUALREPORT

AND FINANCIAL STATEMENTS 2015

Question: What is the value for the
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GT: (Human Appeal)
MLP: (Humanitarian Agenda)
X
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(c) Negative Example #1

Name { o s ot sl e

Question: What is the value for the
address postcode?

GT: (SW2 20QP)

MLP: (SW22 0PQ) X
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ALIGN: (SW22QP) v/

(b) Positive Example #2

Bishop’s Stortford Baptisi

Annual Report 2017

Question: What is the value for the
post town address?

GT: (Bishop’s Stortford)

MLP: (Stortford) X

Ovis: (Bishop’s Stortford) /

ALIGN: (Stortford) X

(d) Negative Example #2

Figure 6: Case Study for Connector Comparison on the KLC dataset (Stanistawek et al.,[2021).
We show four qualitative examples (including two correct and two incorrect examples) comparing
Llama-3.2-3B-ALIGN to the same architecture with different connectors, LLlama-3.2-3B-MLP and
Llama-3.2-3B-Ovis. “GT” denotes the ground truth.
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uuuuuuuuuuuuuuuu

P2378:00001

Question: What type of policy is de-
scribed in this document?

GT: (Policy on Document Con- Question: What was the diet fed to
trol) the #1 group?
MLP: (Policy on Document Con- GT: (basal diet)
trol) / MLP: (basel diet) /
Ovis: (General Provisions) X Ovis: (Whole blood) X
ALIGN:  (Document Control) X ALIGN: (control diet) X
(c) Negative Example #1 (d) Negative Example #2

Figure 7: Case Study for Connector Comparison on the DocVQA dataset
[2021b). We show four qualitative examples (including two correct and two incorrect examples)
comparing Llama-3.2-3B-ALIGN to the same architecture with different connectors, Llama-3.2-3B-
MLP and Llama-3.2-3B-Ovis. “GT” denotes the ground truth.
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letter?
GT: (good bye)
MLP: (good) X
Ovis: (good buy) X
ALIGN: (good bye) /

(a) Positive Example #1

Question: What type of club is adver-

tised?
GT: (health club)
MLP: (topnote health club) X
Ovis: (health club) v/
ALIGN: (professional passionate per-
sonal) X
(c) Negative Example #1

Question: What indoor temperature is

shown?
GT: (68.4)
MLP: (68F) X
Ovis: (40.0) X
ALIGN: (68.4)/
(b) Positive Example #2
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T

You can now convert your Hadiah Points to BIG Points
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Question: What credit card is this?

GT: (hadiah plus)
MLP: (hadiah plus) v/
Opvis: (american big loyalty pro-
gram) X
ALIGN: (hadia plus) X
(d) Negative Example #2

Figure 8: Case Study for Connector Comparison on the TextVQA dataset (Singh et al.,[2019).
We show four qualitative examples (including two correct and two incorrect examples) comparing
Llama-3.2-3B-ALIGN to the same architecture with different connectors, LLlama-3.2-3B-MLP and
Llama-3.2-3B-Ovis. “GT” denotes the ground truth.
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